xref: /openbmc/linux/fs/btrfs/scrub.c (revision 53a2a90d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - track and record media errors, throw out bad devices
35  *  - add a mode to also read unallocated space
36  */
37 
38 struct scrub_block;
39 struct scrub_ctx;
40 
41 /*
42  * The following three values only influence the performance.
43  *
44  * The last one configures the number of parallel and outstanding I/O
45  * operations. The first one configures an upper limit for the number
46  * of (dynamically allocated) pages that are added to a bio.
47  */
48 #define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
49 #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 
51 /*
52  * The following value times PAGE_SIZE needs to be large enough to match the
53  * largest node/leaf/sector size that shall be supported.
54  */
55 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
56 
57 struct scrub_recover {
58 	refcount_t		refs;
59 	struct btrfs_io_context	*bioc;
60 	u64			map_length;
61 };
62 
63 struct scrub_sector {
64 	struct scrub_block	*sblock;
65 	struct page		*page;
66 	struct btrfs_device	*dev;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	u64			logical;
71 	u64			physical;
72 	u64			physical_for_dev_replace;
73 	atomic_t		refs;
74 	u8			mirror_num;
75 	unsigned int		have_csum:1;
76 	unsigned int		io_error:1;
77 	u8			csum[BTRFS_CSUM_SIZE];
78 
79 	struct scrub_recover	*recover;
80 };
81 
82 struct scrub_bio {
83 	int			index;
84 	struct scrub_ctx	*sctx;
85 	struct btrfs_device	*dev;
86 	struct bio		*bio;
87 	blk_status_t		status;
88 	u64			logical;
89 	u64			physical;
90 	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
91 	int			sector_count;
92 	int			next_free;
93 	struct work_struct	work;
94 };
95 
96 struct scrub_block {
97 	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
98 	int			sector_count;
99 	atomic_t		outstanding_sectors;
100 	refcount_t		refs; /* free mem on transition to zero */
101 	struct scrub_ctx	*sctx;
102 	struct scrub_parity	*sparity;
103 	struct {
104 		unsigned int	header_error:1;
105 		unsigned int	checksum_error:1;
106 		unsigned int	no_io_error_seen:1;
107 		unsigned int	generation_error:1; /* also sets header_error */
108 
109 		/* The following is for the data used to check parity */
110 		/* It is for the data with checksum */
111 		unsigned int	data_corrected:1;
112 	};
113 	struct work_struct	work;
114 };
115 
116 /* Used for the chunks with parity stripe such RAID5/6 */
117 struct scrub_parity {
118 	struct scrub_ctx	*sctx;
119 
120 	struct btrfs_device	*scrub_dev;
121 
122 	u64			logic_start;
123 
124 	u64			logic_end;
125 
126 	int			nsectors;
127 
128 	u32			stripe_len;
129 
130 	refcount_t		refs;
131 
132 	struct list_head	sectors_list;
133 
134 	/* Work of parity check and repair */
135 	struct work_struct	work;
136 
137 	/* Mark the parity blocks which have data */
138 	unsigned long		*dbitmap;
139 
140 	/*
141 	 * Mark the parity blocks which have data, but errors happen when
142 	 * read data or check data
143 	 */
144 	unsigned long		*ebitmap;
145 
146 	unsigned long		bitmap[];
147 };
148 
149 struct scrub_ctx {
150 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
151 	struct btrfs_fs_info	*fs_info;
152 	int			first_free;
153 	int			curr;
154 	atomic_t		bios_in_flight;
155 	atomic_t		workers_pending;
156 	spinlock_t		list_lock;
157 	wait_queue_head_t	list_wait;
158 	struct list_head	csum_list;
159 	atomic_t		cancel_req;
160 	int			readonly;
161 	int			sectors_per_bio;
162 
163 	/* State of IO submission throttling affecting the associated device */
164 	ktime_t			throttle_deadline;
165 	u64			throttle_sent;
166 
167 	int			is_dev_replace;
168 	u64			write_pointer;
169 
170 	struct scrub_bio        *wr_curr_bio;
171 	struct mutex            wr_lock;
172 	struct btrfs_device     *wr_tgtdev;
173 	bool                    flush_all_writes;
174 
175 	/*
176 	 * statistics
177 	 */
178 	struct btrfs_scrub_progress stat;
179 	spinlock_t		stat_lock;
180 
181 	/*
182 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 	 * decrement bios_in_flight and workers_pending and then do a wakeup
184 	 * on the list_wait wait queue. We must ensure the main scrub task
185 	 * doesn't free the scrub context before or while the workers are
186 	 * doing the wakeup() call.
187 	 */
188 	refcount_t              refs;
189 };
190 
191 struct scrub_warning {
192 	struct btrfs_path	*path;
193 	u64			extent_item_size;
194 	const char		*errstr;
195 	u64			physical;
196 	u64			logical;
197 	struct btrfs_device	*dev;
198 };
199 
200 struct full_stripe_lock {
201 	struct rb_node node;
202 	u64 logical;
203 	u64 refs;
204 	struct mutex mutex;
205 };
206 
207 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
208 				     struct scrub_block *sblocks_for_recheck);
209 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
210 				struct scrub_block *sblock,
211 				int retry_failed_mirror);
212 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
213 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
214 					     struct scrub_block *sblock_good);
215 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
216 					    struct scrub_block *sblock_good,
217 					    int sector_num, int force_write);
218 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
219 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
220 					     int sector_num);
221 static int scrub_checksum_data(struct scrub_block *sblock);
222 static int scrub_checksum_tree_block(struct scrub_block *sblock);
223 static int scrub_checksum_super(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_sector_get(struct scrub_sector *sector);
226 static void scrub_sector_put(struct scrub_sector *sector);
227 static void scrub_parity_get(struct scrub_parity *sparity);
228 static void scrub_parity_put(struct scrub_parity *sparity);
229 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
230 			 u64 physical, struct btrfs_device *dev, u64 flags,
231 			 u64 gen, int mirror_num, u8 *csum,
232 			 u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio);
234 static void scrub_bio_end_io_worker(struct work_struct *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
237 				 u64 extent_logical, u32 extent_len,
238 				 u64 *extent_physical,
239 				 struct btrfs_device **extent_dev,
240 				 int *extent_mirror_num);
241 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
242 				      struct scrub_sector *sector);
243 static void scrub_wr_submit(struct scrub_ctx *sctx);
244 static void scrub_wr_bio_end_io(struct bio *bio);
245 static void scrub_wr_bio_end_io_worker(struct work_struct *work);
246 static void scrub_put_ctx(struct scrub_ctx *sctx);
247 
248 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
249 {
250 	return sector->recover &&
251 	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
252 }
253 
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256 	refcount_inc(&sctx->refs);
257 	atomic_inc(&sctx->bios_in_flight);
258 }
259 
260 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
261 {
262 	atomic_dec(&sctx->bios_in_flight);
263 	wake_up(&sctx->list_wait);
264 	scrub_put_ctx(sctx);
265 }
266 
267 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
268 {
269 	while (atomic_read(&fs_info->scrub_pause_req)) {
270 		mutex_unlock(&fs_info->scrub_lock);
271 		wait_event(fs_info->scrub_pause_wait,
272 		   atomic_read(&fs_info->scrub_pause_req) == 0);
273 		mutex_lock(&fs_info->scrub_lock);
274 	}
275 }
276 
277 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
278 {
279 	atomic_inc(&fs_info->scrubs_paused);
280 	wake_up(&fs_info->scrub_pause_wait);
281 }
282 
283 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
284 {
285 	mutex_lock(&fs_info->scrub_lock);
286 	__scrub_blocked_if_needed(fs_info);
287 	atomic_dec(&fs_info->scrubs_paused);
288 	mutex_unlock(&fs_info->scrub_lock);
289 
290 	wake_up(&fs_info->scrub_pause_wait);
291 }
292 
293 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
294 {
295 	scrub_pause_on(fs_info);
296 	scrub_pause_off(fs_info);
297 }
298 
299 /*
300  * Insert new full stripe lock into full stripe locks tree
301  *
302  * Return pointer to existing or newly inserted full_stripe_lock structure if
303  * everything works well.
304  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
305  *
306  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
307  * function
308  */
309 static struct full_stripe_lock *insert_full_stripe_lock(
310 		struct btrfs_full_stripe_locks_tree *locks_root,
311 		u64 fstripe_logical)
312 {
313 	struct rb_node **p;
314 	struct rb_node *parent = NULL;
315 	struct full_stripe_lock *entry;
316 	struct full_stripe_lock *ret;
317 
318 	lockdep_assert_held(&locks_root->lock);
319 
320 	p = &locks_root->root.rb_node;
321 	while (*p) {
322 		parent = *p;
323 		entry = rb_entry(parent, struct full_stripe_lock, node);
324 		if (fstripe_logical < entry->logical) {
325 			p = &(*p)->rb_left;
326 		} else if (fstripe_logical > entry->logical) {
327 			p = &(*p)->rb_right;
328 		} else {
329 			entry->refs++;
330 			return entry;
331 		}
332 	}
333 
334 	/*
335 	 * Insert new lock.
336 	 */
337 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
338 	if (!ret)
339 		return ERR_PTR(-ENOMEM);
340 	ret->logical = fstripe_logical;
341 	ret->refs = 1;
342 	mutex_init(&ret->mutex);
343 
344 	rb_link_node(&ret->node, parent, p);
345 	rb_insert_color(&ret->node, &locks_root->root);
346 	return ret;
347 }
348 
349 /*
350  * Search for a full stripe lock of a block group
351  *
352  * Return pointer to existing full stripe lock if found
353  * Return NULL if not found
354  */
355 static struct full_stripe_lock *search_full_stripe_lock(
356 		struct btrfs_full_stripe_locks_tree *locks_root,
357 		u64 fstripe_logical)
358 {
359 	struct rb_node *node;
360 	struct full_stripe_lock *entry;
361 
362 	lockdep_assert_held(&locks_root->lock);
363 
364 	node = locks_root->root.rb_node;
365 	while (node) {
366 		entry = rb_entry(node, struct full_stripe_lock, node);
367 		if (fstripe_logical < entry->logical)
368 			node = node->rb_left;
369 		else if (fstripe_logical > entry->logical)
370 			node = node->rb_right;
371 		else
372 			return entry;
373 	}
374 	return NULL;
375 }
376 
377 /*
378  * Helper to get full stripe logical from a normal bytenr.
379  *
380  * Caller must ensure @cache is a RAID56 block group.
381  */
382 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
383 {
384 	u64 ret;
385 
386 	/*
387 	 * Due to chunk item size limit, full stripe length should not be
388 	 * larger than U32_MAX. Just a sanity check here.
389 	 */
390 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
391 
392 	/*
393 	 * round_down() can only handle power of 2, while RAID56 full
394 	 * stripe length can be 64KiB * n, so we need to manually round down.
395 	 */
396 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
397 			cache->full_stripe_len + cache->start;
398 	return ret;
399 }
400 
401 /*
402  * Lock a full stripe to avoid concurrency of recovery and read
403  *
404  * It's only used for profiles with parities (RAID5/6), for other profiles it
405  * does nothing.
406  *
407  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
408  * So caller must call unlock_full_stripe() at the same context.
409  *
410  * Return <0 if encounters error.
411  */
412 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
413 			    bool *locked_ret)
414 {
415 	struct btrfs_block_group *bg_cache;
416 	struct btrfs_full_stripe_locks_tree *locks_root;
417 	struct full_stripe_lock *existing;
418 	u64 fstripe_start;
419 	int ret = 0;
420 
421 	*locked_ret = false;
422 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
423 	if (!bg_cache) {
424 		ASSERT(0);
425 		return -ENOENT;
426 	}
427 
428 	/* Profiles not based on parity don't need full stripe lock */
429 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
430 		goto out;
431 	locks_root = &bg_cache->full_stripe_locks_root;
432 
433 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
434 
435 	/* Now insert the full stripe lock */
436 	mutex_lock(&locks_root->lock);
437 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
438 	mutex_unlock(&locks_root->lock);
439 	if (IS_ERR(existing)) {
440 		ret = PTR_ERR(existing);
441 		goto out;
442 	}
443 	mutex_lock(&existing->mutex);
444 	*locked_ret = true;
445 out:
446 	btrfs_put_block_group(bg_cache);
447 	return ret;
448 }
449 
450 /*
451  * Unlock a full stripe.
452  *
453  * NOTE: Caller must ensure it's the same context calling corresponding
454  * lock_full_stripe().
455  *
456  * Return 0 if we unlock full stripe without problem.
457  * Return <0 for error
458  */
459 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
460 			      bool locked)
461 {
462 	struct btrfs_block_group *bg_cache;
463 	struct btrfs_full_stripe_locks_tree *locks_root;
464 	struct full_stripe_lock *fstripe_lock;
465 	u64 fstripe_start;
466 	bool freeit = false;
467 	int ret = 0;
468 
469 	/* If we didn't acquire full stripe lock, no need to continue */
470 	if (!locked)
471 		return 0;
472 
473 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
474 	if (!bg_cache) {
475 		ASSERT(0);
476 		return -ENOENT;
477 	}
478 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
479 		goto out;
480 
481 	locks_root = &bg_cache->full_stripe_locks_root;
482 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
483 
484 	mutex_lock(&locks_root->lock);
485 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
486 	/* Unpaired unlock_full_stripe() detected */
487 	if (!fstripe_lock) {
488 		WARN_ON(1);
489 		ret = -ENOENT;
490 		mutex_unlock(&locks_root->lock);
491 		goto out;
492 	}
493 
494 	if (fstripe_lock->refs == 0) {
495 		WARN_ON(1);
496 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
497 			fstripe_lock->logical);
498 	} else {
499 		fstripe_lock->refs--;
500 	}
501 
502 	if (fstripe_lock->refs == 0) {
503 		rb_erase(&fstripe_lock->node, &locks_root->root);
504 		freeit = true;
505 	}
506 	mutex_unlock(&locks_root->lock);
507 
508 	mutex_unlock(&fstripe_lock->mutex);
509 	if (freeit)
510 		kfree(fstripe_lock);
511 out:
512 	btrfs_put_block_group(bg_cache);
513 	return ret;
514 }
515 
516 static void scrub_free_csums(struct scrub_ctx *sctx)
517 {
518 	while (!list_empty(&sctx->csum_list)) {
519 		struct btrfs_ordered_sum *sum;
520 		sum = list_first_entry(&sctx->csum_list,
521 				       struct btrfs_ordered_sum, list);
522 		list_del(&sum->list);
523 		kfree(sum);
524 	}
525 }
526 
527 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
528 {
529 	int i;
530 
531 	if (!sctx)
532 		return;
533 
534 	/* this can happen when scrub is cancelled */
535 	if (sctx->curr != -1) {
536 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
537 
538 		for (i = 0; i < sbio->sector_count; i++) {
539 			WARN_ON(!sbio->sectors[i]->page);
540 			scrub_block_put(sbio->sectors[i]->sblock);
541 		}
542 		bio_put(sbio->bio);
543 	}
544 
545 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
546 		struct scrub_bio *sbio = sctx->bios[i];
547 
548 		if (!sbio)
549 			break;
550 		kfree(sbio);
551 	}
552 
553 	kfree(sctx->wr_curr_bio);
554 	scrub_free_csums(sctx);
555 	kfree(sctx);
556 }
557 
558 static void scrub_put_ctx(struct scrub_ctx *sctx)
559 {
560 	if (refcount_dec_and_test(&sctx->refs))
561 		scrub_free_ctx(sctx);
562 }
563 
564 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
565 		struct btrfs_fs_info *fs_info, int is_dev_replace)
566 {
567 	struct scrub_ctx *sctx;
568 	int		i;
569 
570 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
571 	if (!sctx)
572 		goto nomem;
573 	refcount_set(&sctx->refs, 1);
574 	sctx->is_dev_replace = is_dev_replace;
575 	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
576 	sctx->curr = -1;
577 	sctx->fs_info = fs_info;
578 	INIT_LIST_HEAD(&sctx->csum_list);
579 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
580 		struct scrub_bio *sbio;
581 
582 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
583 		if (!sbio)
584 			goto nomem;
585 		sctx->bios[i] = sbio;
586 
587 		sbio->index = i;
588 		sbio->sctx = sctx;
589 		sbio->sector_count = 0;
590 		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
591 
592 		if (i != SCRUB_BIOS_PER_SCTX - 1)
593 			sctx->bios[i]->next_free = i + 1;
594 		else
595 			sctx->bios[i]->next_free = -1;
596 	}
597 	sctx->first_free = 0;
598 	atomic_set(&sctx->bios_in_flight, 0);
599 	atomic_set(&sctx->workers_pending, 0);
600 	atomic_set(&sctx->cancel_req, 0);
601 
602 	spin_lock_init(&sctx->list_lock);
603 	spin_lock_init(&sctx->stat_lock);
604 	init_waitqueue_head(&sctx->list_wait);
605 	sctx->throttle_deadline = 0;
606 
607 	WARN_ON(sctx->wr_curr_bio != NULL);
608 	mutex_init(&sctx->wr_lock);
609 	sctx->wr_curr_bio = NULL;
610 	if (is_dev_replace) {
611 		WARN_ON(!fs_info->dev_replace.tgtdev);
612 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
613 		sctx->flush_all_writes = false;
614 	}
615 
616 	return sctx;
617 
618 nomem:
619 	scrub_free_ctx(sctx);
620 	return ERR_PTR(-ENOMEM);
621 }
622 
623 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
624 				     void *warn_ctx)
625 {
626 	u32 nlink;
627 	int ret;
628 	int i;
629 	unsigned nofs_flag;
630 	struct extent_buffer *eb;
631 	struct btrfs_inode_item *inode_item;
632 	struct scrub_warning *swarn = warn_ctx;
633 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
634 	struct inode_fs_paths *ipath = NULL;
635 	struct btrfs_root *local_root;
636 	struct btrfs_key key;
637 
638 	local_root = btrfs_get_fs_root(fs_info, root, true);
639 	if (IS_ERR(local_root)) {
640 		ret = PTR_ERR(local_root);
641 		goto err;
642 	}
643 
644 	/*
645 	 * this makes the path point to (inum INODE_ITEM ioff)
646 	 */
647 	key.objectid = inum;
648 	key.type = BTRFS_INODE_ITEM_KEY;
649 	key.offset = 0;
650 
651 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
652 	if (ret) {
653 		btrfs_put_root(local_root);
654 		btrfs_release_path(swarn->path);
655 		goto err;
656 	}
657 
658 	eb = swarn->path->nodes[0];
659 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
660 					struct btrfs_inode_item);
661 	nlink = btrfs_inode_nlink(eb, inode_item);
662 	btrfs_release_path(swarn->path);
663 
664 	/*
665 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
666 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
667 	 * not seem to be strictly necessary.
668 	 */
669 	nofs_flag = memalloc_nofs_save();
670 	ipath = init_ipath(4096, local_root, swarn->path);
671 	memalloc_nofs_restore(nofs_flag);
672 	if (IS_ERR(ipath)) {
673 		btrfs_put_root(local_root);
674 		ret = PTR_ERR(ipath);
675 		ipath = NULL;
676 		goto err;
677 	}
678 	ret = paths_from_inode(inum, ipath);
679 
680 	if (ret < 0)
681 		goto err;
682 
683 	/*
684 	 * we deliberately ignore the bit ipath might have been too small to
685 	 * hold all of the paths here
686 	 */
687 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
688 		btrfs_warn_in_rcu(fs_info,
689 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
690 				  swarn->errstr, swarn->logical,
691 				  rcu_str_deref(swarn->dev->name),
692 				  swarn->physical,
693 				  root, inum, offset,
694 				  fs_info->sectorsize, nlink,
695 				  (char *)(unsigned long)ipath->fspath->val[i]);
696 
697 	btrfs_put_root(local_root);
698 	free_ipath(ipath);
699 	return 0;
700 
701 err:
702 	btrfs_warn_in_rcu(fs_info,
703 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
704 			  swarn->errstr, swarn->logical,
705 			  rcu_str_deref(swarn->dev->name),
706 			  swarn->physical,
707 			  root, inum, offset, ret);
708 
709 	free_ipath(ipath);
710 	return 0;
711 }
712 
713 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
714 {
715 	struct btrfs_device *dev;
716 	struct btrfs_fs_info *fs_info;
717 	struct btrfs_path *path;
718 	struct btrfs_key found_key;
719 	struct extent_buffer *eb;
720 	struct btrfs_extent_item *ei;
721 	struct scrub_warning swarn;
722 	unsigned long ptr = 0;
723 	u64 extent_item_pos;
724 	u64 flags = 0;
725 	u64 ref_root;
726 	u32 item_size;
727 	u8 ref_level = 0;
728 	int ret;
729 
730 	WARN_ON(sblock->sector_count < 1);
731 	dev = sblock->sectors[0]->dev;
732 	fs_info = sblock->sctx->fs_info;
733 
734 	path = btrfs_alloc_path();
735 	if (!path)
736 		return;
737 
738 	swarn.physical = sblock->sectors[0]->physical;
739 	swarn.logical = sblock->sectors[0]->logical;
740 	swarn.errstr = errstr;
741 	swarn.dev = NULL;
742 
743 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
744 				  &flags);
745 	if (ret < 0)
746 		goto out;
747 
748 	extent_item_pos = swarn.logical - found_key.objectid;
749 	swarn.extent_item_size = found_key.offset;
750 
751 	eb = path->nodes[0];
752 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
753 	item_size = btrfs_item_size(eb, path->slots[0]);
754 
755 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
756 		do {
757 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
758 						      item_size, &ref_root,
759 						      &ref_level);
760 			btrfs_warn_in_rcu(fs_info,
761 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
762 				errstr, swarn.logical,
763 				rcu_str_deref(dev->name),
764 				swarn.physical,
765 				ref_level ? "node" : "leaf",
766 				ret < 0 ? -1 : ref_level,
767 				ret < 0 ? -1 : ref_root);
768 		} while (ret != 1);
769 		btrfs_release_path(path);
770 	} else {
771 		btrfs_release_path(path);
772 		swarn.path = path;
773 		swarn.dev = dev;
774 		iterate_extent_inodes(fs_info, found_key.objectid,
775 					extent_item_pos, 1,
776 					scrub_print_warning_inode, &swarn, false);
777 	}
778 
779 out:
780 	btrfs_free_path(path);
781 }
782 
783 static inline void scrub_get_recover(struct scrub_recover *recover)
784 {
785 	refcount_inc(&recover->refs);
786 }
787 
788 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
789 				     struct scrub_recover *recover)
790 {
791 	if (refcount_dec_and_test(&recover->refs)) {
792 		btrfs_bio_counter_dec(fs_info);
793 		btrfs_put_bioc(recover->bioc);
794 		kfree(recover);
795 	}
796 }
797 
798 /*
799  * scrub_handle_errored_block gets called when either verification of the
800  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
801  * case, this function handles all sectors in the bio, even though only one
802  * may be bad.
803  * The goal of this function is to repair the errored block by using the
804  * contents of one of the mirrors.
805  */
806 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
807 {
808 	struct scrub_ctx *sctx = sblock_to_check->sctx;
809 	struct btrfs_device *dev;
810 	struct btrfs_fs_info *fs_info;
811 	u64 logical;
812 	unsigned int failed_mirror_index;
813 	unsigned int is_metadata;
814 	unsigned int have_csum;
815 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
816 	struct scrub_block *sblock_bad;
817 	int ret;
818 	int mirror_index;
819 	int sector_num;
820 	int success;
821 	bool full_stripe_locked;
822 	unsigned int nofs_flag;
823 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
824 				      DEFAULT_RATELIMIT_BURST);
825 
826 	BUG_ON(sblock_to_check->sector_count < 1);
827 	fs_info = sctx->fs_info;
828 	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
829 		/*
830 		 * if we find an error in a super block, we just report it.
831 		 * They will get written with the next transaction commit
832 		 * anyway
833 		 */
834 		spin_lock(&sctx->stat_lock);
835 		++sctx->stat.super_errors;
836 		spin_unlock(&sctx->stat_lock);
837 		return 0;
838 	}
839 	logical = sblock_to_check->sectors[0]->logical;
840 	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
841 	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
842 	is_metadata = !(sblock_to_check->sectors[0]->flags &
843 			BTRFS_EXTENT_FLAG_DATA);
844 	have_csum = sblock_to_check->sectors[0]->have_csum;
845 	dev = sblock_to_check->sectors[0]->dev;
846 
847 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
848 		return 0;
849 
850 	/*
851 	 * We must use GFP_NOFS because the scrub task might be waiting for a
852 	 * worker task executing this function and in turn a transaction commit
853 	 * might be waiting the scrub task to pause (which needs to wait for all
854 	 * the worker tasks to complete before pausing).
855 	 * We do allocations in the workers through insert_full_stripe_lock()
856 	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
857 	 * this function.
858 	 */
859 	nofs_flag = memalloc_nofs_save();
860 	/*
861 	 * For RAID5/6, race can happen for a different device scrub thread.
862 	 * For data corruption, Parity and Data threads will both try
863 	 * to recovery the data.
864 	 * Race can lead to doubly added csum error, or even unrecoverable
865 	 * error.
866 	 */
867 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
868 	if (ret < 0) {
869 		memalloc_nofs_restore(nofs_flag);
870 		spin_lock(&sctx->stat_lock);
871 		if (ret == -ENOMEM)
872 			sctx->stat.malloc_errors++;
873 		sctx->stat.read_errors++;
874 		sctx->stat.uncorrectable_errors++;
875 		spin_unlock(&sctx->stat_lock);
876 		return ret;
877 	}
878 
879 	/*
880 	 * read all mirrors one after the other. This includes to
881 	 * re-read the extent or metadata block that failed (that was
882 	 * the cause that this fixup code is called) another time,
883 	 * sector by sector this time in order to know which sectors
884 	 * caused I/O errors and which ones are good (for all mirrors).
885 	 * It is the goal to handle the situation when more than one
886 	 * mirror contains I/O errors, but the errors do not
887 	 * overlap, i.e. the data can be repaired by selecting the
888 	 * sectors from those mirrors without I/O error on the
889 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
890 	 * would be that mirror #1 has an I/O error on the first sector,
891 	 * the second sector is good, and mirror #2 has an I/O error on
892 	 * the second sector, but the first sector is good.
893 	 * Then the first sector of the first mirror can be repaired by
894 	 * taking the first sector of the second mirror, and the
895 	 * second sector of the second mirror can be repaired by
896 	 * copying the contents of the 2nd sector of the 1st mirror.
897 	 * One more note: if the sectors of one mirror contain I/O
898 	 * errors, the checksum cannot be verified. In order to get
899 	 * the best data for repairing, the first attempt is to find
900 	 * a mirror without I/O errors and with a validated checksum.
901 	 * Only if this is not possible, the sectors are picked from
902 	 * mirrors with I/O errors without considering the checksum.
903 	 * If the latter is the case, at the end, the checksum of the
904 	 * repaired area is verified in order to correctly maintain
905 	 * the statistics.
906 	 */
907 
908 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
909 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
910 	if (!sblocks_for_recheck) {
911 		spin_lock(&sctx->stat_lock);
912 		sctx->stat.malloc_errors++;
913 		sctx->stat.read_errors++;
914 		sctx->stat.uncorrectable_errors++;
915 		spin_unlock(&sctx->stat_lock);
916 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
917 		goto out;
918 	}
919 
920 	/* Setup the context, map the logical blocks and alloc the sectors */
921 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
922 	if (ret) {
923 		spin_lock(&sctx->stat_lock);
924 		sctx->stat.read_errors++;
925 		sctx->stat.uncorrectable_errors++;
926 		spin_unlock(&sctx->stat_lock);
927 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
928 		goto out;
929 	}
930 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
931 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
932 
933 	/* build and submit the bios for the failed mirror, check checksums */
934 	scrub_recheck_block(fs_info, sblock_bad, 1);
935 
936 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
937 	    sblock_bad->no_io_error_seen) {
938 		/*
939 		 * The error disappeared after reading sector by sector, or
940 		 * the area was part of a huge bio and other parts of the
941 		 * bio caused I/O errors, or the block layer merged several
942 		 * read requests into one and the error is caused by a
943 		 * different bio (usually one of the two latter cases is
944 		 * the cause)
945 		 */
946 		spin_lock(&sctx->stat_lock);
947 		sctx->stat.unverified_errors++;
948 		sblock_to_check->data_corrected = 1;
949 		spin_unlock(&sctx->stat_lock);
950 
951 		if (sctx->is_dev_replace)
952 			scrub_write_block_to_dev_replace(sblock_bad);
953 		goto out;
954 	}
955 
956 	if (!sblock_bad->no_io_error_seen) {
957 		spin_lock(&sctx->stat_lock);
958 		sctx->stat.read_errors++;
959 		spin_unlock(&sctx->stat_lock);
960 		if (__ratelimit(&rs))
961 			scrub_print_warning("i/o error", sblock_to_check);
962 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
963 	} else if (sblock_bad->checksum_error) {
964 		spin_lock(&sctx->stat_lock);
965 		sctx->stat.csum_errors++;
966 		spin_unlock(&sctx->stat_lock);
967 		if (__ratelimit(&rs))
968 			scrub_print_warning("checksum error", sblock_to_check);
969 		btrfs_dev_stat_inc_and_print(dev,
970 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
971 	} else if (sblock_bad->header_error) {
972 		spin_lock(&sctx->stat_lock);
973 		sctx->stat.verify_errors++;
974 		spin_unlock(&sctx->stat_lock);
975 		if (__ratelimit(&rs))
976 			scrub_print_warning("checksum/header error",
977 					    sblock_to_check);
978 		if (sblock_bad->generation_error)
979 			btrfs_dev_stat_inc_and_print(dev,
980 				BTRFS_DEV_STAT_GENERATION_ERRS);
981 		else
982 			btrfs_dev_stat_inc_and_print(dev,
983 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
984 	}
985 
986 	if (sctx->readonly) {
987 		ASSERT(!sctx->is_dev_replace);
988 		goto out;
989 	}
990 
991 	/*
992 	 * now build and submit the bios for the other mirrors, check
993 	 * checksums.
994 	 * First try to pick the mirror which is completely without I/O
995 	 * errors and also does not have a checksum error.
996 	 * If one is found, and if a checksum is present, the full block
997 	 * that is known to contain an error is rewritten. Afterwards
998 	 * the block is known to be corrected.
999 	 * If a mirror is found which is completely correct, and no
1000 	 * checksum is present, only those sectors are rewritten that had
1001 	 * an I/O error in the block to be repaired, since it cannot be
1002 	 * determined, which copy of the other sectors is better (and it
1003 	 * could happen otherwise that a correct sector would be
1004 	 * overwritten by a bad one).
1005 	 */
1006 	for (mirror_index = 0; ;mirror_index++) {
1007 		struct scrub_block *sblock_other;
1008 
1009 		if (mirror_index == failed_mirror_index)
1010 			continue;
1011 
1012 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1013 		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1014 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1015 				break;
1016 			if (!sblocks_for_recheck[mirror_index].sector_count)
1017 				break;
1018 
1019 			sblock_other = sblocks_for_recheck + mirror_index;
1020 		} else {
1021 			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1022 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1023 
1024 			if (mirror_index >= max_allowed)
1025 				break;
1026 			if (!sblocks_for_recheck[1].sector_count)
1027 				break;
1028 
1029 			ASSERT(failed_mirror_index == 0);
1030 			sblock_other = sblocks_for_recheck + 1;
1031 			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
1032 		}
1033 
1034 		/* build and submit the bios, check checksums */
1035 		scrub_recheck_block(fs_info, sblock_other, 0);
1036 
1037 		if (!sblock_other->header_error &&
1038 		    !sblock_other->checksum_error &&
1039 		    sblock_other->no_io_error_seen) {
1040 			if (sctx->is_dev_replace) {
1041 				scrub_write_block_to_dev_replace(sblock_other);
1042 				goto corrected_error;
1043 			} else {
1044 				ret = scrub_repair_block_from_good_copy(
1045 						sblock_bad, sblock_other);
1046 				if (!ret)
1047 					goto corrected_error;
1048 			}
1049 		}
1050 	}
1051 
1052 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1053 		goto did_not_correct_error;
1054 
1055 	/*
1056 	 * In case of I/O errors in the area that is supposed to be
1057 	 * repaired, continue by picking good copies of those sectors.
1058 	 * Select the good sectors from mirrors to rewrite bad sectors from
1059 	 * the area to fix. Afterwards verify the checksum of the block
1060 	 * that is supposed to be repaired. This verification step is
1061 	 * only done for the purpose of statistic counting and for the
1062 	 * final scrub report, whether errors remain.
1063 	 * A perfect algorithm could make use of the checksum and try
1064 	 * all possible combinations of sectors from the different mirrors
1065 	 * until the checksum verification succeeds. For example, when
1066 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1067 	 * of mirror #2 is readable but the final checksum test fails,
1068 	 * then the 2nd sector of mirror #3 could be tried, whether now
1069 	 * the final checksum succeeds. But this would be a rare
1070 	 * exception and is therefore not implemented. At least it is
1071 	 * avoided that the good copy is overwritten.
1072 	 * A more useful improvement would be to pick the sectors
1073 	 * without I/O error based on sector sizes (512 bytes on legacy
1074 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1075 	 * mirror could be repaired by taking 512 byte of a different
1076 	 * mirror, even if other 512 byte sectors in the same sectorsize
1077 	 * area are unreadable.
1078 	 */
1079 	success = 1;
1080 	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1081 	     sector_num++) {
1082 		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1083 		struct scrub_block *sblock_other = NULL;
1084 
1085 		/* Skip no-io-error sectors in scrub */
1086 		if (!sector_bad->io_error && !sctx->is_dev_replace)
1087 			continue;
1088 
1089 		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1090 			/*
1091 			 * In case of dev replace, if raid56 rebuild process
1092 			 * didn't work out correct data, then copy the content
1093 			 * in sblock_bad to make sure target device is identical
1094 			 * to source device, instead of writing garbage data in
1095 			 * sblock_for_recheck array to target device.
1096 			 */
1097 			sblock_other = NULL;
1098 		} else if (sector_bad->io_error) {
1099 			/* Try to find no-io-error sector in mirrors */
1100 			for (mirror_index = 0;
1101 			     mirror_index < BTRFS_MAX_MIRRORS &&
1102 			     sblocks_for_recheck[mirror_index].sector_count > 0;
1103 			     mirror_index++) {
1104 				if (!sblocks_for_recheck[mirror_index].
1105 				    sectors[sector_num]->io_error) {
1106 					sblock_other = sblocks_for_recheck +
1107 						       mirror_index;
1108 					break;
1109 				}
1110 			}
1111 			if (!sblock_other)
1112 				success = 0;
1113 		}
1114 
1115 		if (sctx->is_dev_replace) {
1116 			/*
1117 			 * Did not find a mirror to fetch the sector from.
1118 			 * scrub_write_sector_to_dev_replace() handles this
1119 			 * case (sector->io_error), by filling the block with
1120 			 * zeros before submitting the write request
1121 			 */
1122 			if (!sblock_other)
1123 				sblock_other = sblock_bad;
1124 
1125 			if (scrub_write_sector_to_dev_replace(sblock_other,
1126 							      sector_num) != 0) {
1127 				atomic64_inc(
1128 					&fs_info->dev_replace.num_write_errors);
1129 				success = 0;
1130 			}
1131 		} else if (sblock_other) {
1132 			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1133 								 sblock_other,
1134 								 sector_num, 0);
1135 			if (0 == ret)
1136 				sector_bad->io_error = 0;
1137 			else
1138 				success = 0;
1139 		}
1140 	}
1141 
1142 	if (success && !sctx->is_dev_replace) {
1143 		if (is_metadata || have_csum) {
1144 			/*
1145 			 * need to verify the checksum now that all
1146 			 * sectors on disk are repaired (the write
1147 			 * request for data to be repaired is on its way).
1148 			 * Just be lazy and use scrub_recheck_block()
1149 			 * which re-reads the data before the checksum
1150 			 * is verified, but most likely the data comes out
1151 			 * of the page cache.
1152 			 */
1153 			scrub_recheck_block(fs_info, sblock_bad, 1);
1154 			if (!sblock_bad->header_error &&
1155 			    !sblock_bad->checksum_error &&
1156 			    sblock_bad->no_io_error_seen)
1157 				goto corrected_error;
1158 			else
1159 				goto did_not_correct_error;
1160 		} else {
1161 corrected_error:
1162 			spin_lock(&sctx->stat_lock);
1163 			sctx->stat.corrected_errors++;
1164 			sblock_to_check->data_corrected = 1;
1165 			spin_unlock(&sctx->stat_lock);
1166 			btrfs_err_rl_in_rcu(fs_info,
1167 				"fixed up error at logical %llu on dev %s",
1168 				logical, rcu_str_deref(dev->name));
1169 		}
1170 	} else {
1171 did_not_correct_error:
1172 		spin_lock(&sctx->stat_lock);
1173 		sctx->stat.uncorrectable_errors++;
1174 		spin_unlock(&sctx->stat_lock);
1175 		btrfs_err_rl_in_rcu(fs_info,
1176 			"unable to fixup (regular) error at logical %llu on dev %s",
1177 			logical, rcu_str_deref(dev->name));
1178 	}
1179 
1180 out:
1181 	if (sblocks_for_recheck) {
1182 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1183 		     mirror_index++) {
1184 			struct scrub_block *sblock = sblocks_for_recheck +
1185 						     mirror_index;
1186 			struct scrub_recover *recover;
1187 			int i;
1188 
1189 			for (i = 0; i < sblock->sector_count; i++) {
1190 				sblock->sectors[i]->sblock = NULL;
1191 				recover = sblock->sectors[i]->recover;
1192 				if (recover) {
1193 					scrub_put_recover(fs_info, recover);
1194 					sblock->sectors[i]->recover = NULL;
1195 				}
1196 				scrub_sector_put(sblock->sectors[i]);
1197 			}
1198 		}
1199 		kfree(sblocks_for_recheck);
1200 	}
1201 
1202 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1203 	memalloc_nofs_restore(nofs_flag);
1204 	if (ret < 0)
1205 		return ret;
1206 	return 0;
1207 }
1208 
1209 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1210 {
1211 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1212 		return 2;
1213 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1214 		return 3;
1215 	else
1216 		return (int)bioc->num_stripes;
1217 }
1218 
1219 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1220 						 u64 *raid_map,
1221 						 u64 mapped_length,
1222 						 int nstripes, int mirror,
1223 						 int *stripe_index,
1224 						 u64 *stripe_offset)
1225 {
1226 	int i;
1227 
1228 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1229 		/* RAID5/6 */
1230 		for (i = 0; i < nstripes; i++) {
1231 			if (raid_map[i] == RAID6_Q_STRIPE ||
1232 			    raid_map[i] == RAID5_P_STRIPE)
1233 				continue;
1234 
1235 			if (logical >= raid_map[i] &&
1236 			    logical < raid_map[i] + mapped_length)
1237 				break;
1238 		}
1239 
1240 		*stripe_index = i;
1241 		*stripe_offset = logical - raid_map[i];
1242 	} else {
1243 		/* The other RAID type */
1244 		*stripe_index = mirror;
1245 		*stripe_offset = 0;
1246 	}
1247 }
1248 
1249 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1250 				     struct scrub_block *sblocks_for_recheck)
1251 {
1252 	struct scrub_ctx *sctx = original_sblock->sctx;
1253 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1254 	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1255 	u64 logical = original_sblock->sectors[0]->logical;
1256 	u64 generation = original_sblock->sectors[0]->generation;
1257 	u64 flags = original_sblock->sectors[0]->flags;
1258 	u64 have_csum = original_sblock->sectors[0]->have_csum;
1259 	struct scrub_recover *recover;
1260 	struct btrfs_io_context *bioc;
1261 	u64 sublen;
1262 	u64 mapped_length;
1263 	u64 stripe_offset;
1264 	int stripe_index;
1265 	int sector_index = 0;
1266 	int mirror_index;
1267 	int nmirrors;
1268 	int ret;
1269 
1270 	/*
1271 	 * Note: the two members refs and outstanding_sectors are not used (and
1272 	 * not set) in the blocks that are used for the recheck procedure.
1273 	 */
1274 
1275 	while (length > 0) {
1276 		sublen = min_t(u64, length, fs_info->sectorsize);
1277 		mapped_length = sublen;
1278 		bioc = NULL;
1279 
1280 		/*
1281 		 * With a length of sectorsize, each returned stripe represents
1282 		 * one mirror
1283 		 */
1284 		btrfs_bio_counter_inc_blocked(fs_info);
1285 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1286 				       logical, &mapped_length, &bioc);
1287 		if (ret || !bioc || mapped_length < sublen) {
1288 			btrfs_put_bioc(bioc);
1289 			btrfs_bio_counter_dec(fs_info);
1290 			return -EIO;
1291 		}
1292 
1293 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1294 		if (!recover) {
1295 			btrfs_put_bioc(bioc);
1296 			btrfs_bio_counter_dec(fs_info);
1297 			return -ENOMEM;
1298 		}
1299 
1300 		refcount_set(&recover->refs, 1);
1301 		recover->bioc = bioc;
1302 		recover->map_length = mapped_length;
1303 
1304 		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1305 
1306 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1307 
1308 		for (mirror_index = 0; mirror_index < nmirrors;
1309 		     mirror_index++) {
1310 			struct scrub_block *sblock;
1311 			struct scrub_sector *sector;
1312 
1313 			sblock = sblocks_for_recheck + mirror_index;
1314 			sblock->sctx = sctx;
1315 
1316 			sector = kzalloc(sizeof(*sector), GFP_NOFS);
1317 			if (!sector) {
1318 leave_nomem:
1319 				spin_lock(&sctx->stat_lock);
1320 				sctx->stat.malloc_errors++;
1321 				spin_unlock(&sctx->stat_lock);
1322 				scrub_put_recover(fs_info, recover);
1323 				return -ENOMEM;
1324 			}
1325 			scrub_sector_get(sector);
1326 			sblock->sectors[sector_index] = sector;
1327 			sector->sblock = sblock;
1328 			sector->flags = flags;
1329 			sector->generation = generation;
1330 			sector->logical = logical;
1331 			sector->have_csum = have_csum;
1332 			if (have_csum)
1333 				memcpy(sector->csum,
1334 				       original_sblock->sectors[0]->csum,
1335 				       sctx->fs_info->csum_size);
1336 
1337 			scrub_stripe_index_and_offset(logical,
1338 						      bioc->map_type,
1339 						      bioc->raid_map,
1340 						      mapped_length,
1341 						      bioc->num_stripes -
1342 						      bioc->num_tgtdevs,
1343 						      mirror_index,
1344 						      &stripe_index,
1345 						      &stripe_offset);
1346 			sector->physical = bioc->stripes[stripe_index].physical +
1347 					 stripe_offset;
1348 			sector->dev = bioc->stripes[stripe_index].dev;
1349 
1350 			BUG_ON(sector_index >= original_sblock->sector_count);
1351 			sector->physical_for_dev_replace =
1352 				original_sblock->sectors[sector_index]->
1353 				physical_for_dev_replace;
1354 			/* For missing devices, dev->bdev is NULL */
1355 			sector->mirror_num = mirror_index + 1;
1356 			sblock->sector_count++;
1357 			sector->page = alloc_page(GFP_NOFS);
1358 			if (!sector->page)
1359 				goto leave_nomem;
1360 
1361 			scrub_get_recover(recover);
1362 			sector->recover = recover;
1363 		}
1364 		scrub_put_recover(fs_info, recover);
1365 		length -= sublen;
1366 		logical += sublen;
1367 		sector_index++;
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static void scrub_bio_wait_endio(struct bio *bio)
1374 {
1375 	complete(bio->bi_private);
1376 }
1377 
1378 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1379 					struct bio *bio,
1380 					struct scrub_sector *sector)
1381 {
1382 	DECLARE_COMPLETION_ONSTACK(done);
1383 	int ret;
1384 	int mirror_num;
1385 
1386 	bio->bi_iter.bi_sector = sector->logical >> 9;
1387 	bio->bi_private = &done;
1388 	bio->bi_end_io = scrub_bio_wait_endio;
1389 
1390 	mirror_num = sector->sblock->sectors[0]->mirror_num;
1391 	ret = raid56_parity_recover(bio, sector->recover->bioc,
1392 				    sector->recover->map_length,
1393 				    mirror_num, 0);
1394 	if (ret)
1395 		return ret;
1396 
1397 	wait_for_completion_io(&done);
1398 	return blk_status_to_errno(bio->bi_status);
1399 }
1400 
1401 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1402 					  struct scrub_block *sblock)
1403 {
1404 	struct scrub_sector *first_sector = sblock->sectors[0];
1405 	struct bio *bio;
1406 	int i;
1407 
1408 	/* All sectors in sblock belong to the same stripe on the same device. */
1409 	ASSERT(first_sector->dev);
1410 	if (!first_sector->dev->bdev)
1411 		goto out;
1412 
1413 	bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1414 
1415 	for (i = 0; i < sblock->sector_count; i++) {
1416 		struct scrub_sector *sector = sblock->sectors[i];
1417 
1418 		WARN_ON(!sector->page);
1419 		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
1420 	}
1421 
1422 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1423 		bio_put(bio);
1424 		goto out;
1425 	}
1426 
1427 	bio_put(bio);
1428 
1429 	scrub_recheck_block_checksum(sblock);
1430 
1431 	return;
1432 out:
1433 	for (i = 0; i < sblock->sector_count; i++)
1434 		sblock->sectors[i]->io_error = 1;
1435 
1436 	sblock->no_io_error_seen = 0;
1437 }
1438 
1439 /*
1440  * This function will check the on disk data for checksum errors, header errors
1441  * and read I/O errors. If any I/O errors happen, the exact sectors which are
1442  * errored are marked as being bad. The goal is to enable scrub to take those
1443  * sectors that are not errored from all the mirrors so that the sectors that
1444  * are errored in the just handled mirror can be repaired.
1445  */
1446 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1447 				struct scrub_block *sblock,
1448 				int retry_failed_mirror)
1449 {
1450 	int i;
1451 
1452 	sblock->no_io_error_seen = 1;
1453 
1454 	/* short cut for raid56 */
1455 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1456 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1457 
1458 	for (i = 0; i < sblock->sector_count; i++) {
1459 		struct scrub_sector *sector = sblock->sectors[i];
1460 		struct bio bio;
1461 		struct bio_vec bvec;
1462 
1463 		if (sector->dev->bdev == NULL) {
1464 			sector->io_error = 1;
1465 			sblock->no_io_error_seen = 0;
1466 			continue;
1467 		}
1468 
1469 		WARN_ON(!sector->page);
1470 		bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ);
1471 		bio_add_page(&bio, sector->page, fs_info->sectorsize, 0);
1472 		bio.bi_iter.bi_sector = sector->physical >> 9;
1473 
1474 		btrfsic_check_bio(&bio);
1475 		if (submit_bio_wait(&bio)) {
1476 			sector->io_error = 1;
1477 			sblock->no_io_error_seen = 0;
1478 		}
1479 
1480 		bio_uninit(&bio);
1481 	}
1482 
1483 	if (sblock->no_io_error_seen)
1484 		scrub_recheck_block_checksum(sblock);
1485 }
1486 
1487 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1488 {
1489 	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
1490 	int ret;
1491 
1492 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1493 	return !ret;
1494 }
1495 
1496 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1497 {
1498 	sblock->header_error = 0;
1499 	sblock->checksum_error = 0;
1500 	sblock->generation_error = 0;
1501 
1502 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1503 		scrub_checksum_data(sblock);
1504 	else
1505 		scrub_checksum_tree_block(sblock);
1506 }
1507 
1508 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1509 					     struct scrub_block *sblock_good)
1510 {
1511 	int i;
1512 	int ret = 0;
1513 
1514 	for (i = 0; i < sblock_bad->sector_count; i++) {
1515 		int ret_sub;
1516 
1517 		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1518 							     sblock_good, i, 1);
1519 		if (ret_sub)
1520 			ret = ret_sub;
1521 	}
1522 
1523 	return ret;
1524 }
1525 
1526 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1527 					      struct scrub_block *sblock_good,
1528 					      int sector_num, int force_write)
1529 {
1530 	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1531 	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1532 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1533 	const u32 sectorsize = fs_info->sectorsize;
1534 
1535 	BUG_ON(sector_bad->page == NULL);
1536 	BUG_ON(sector_good->page == NULL);
1537 	if (force_write || sblock_bad->header_error ||
1538 	    sblock_bad->checksum_error || sector_bad->io_error) {
1539 		struct bio bio;
1540 		struct bio_vec bvec;
1541 		int ret;
1542 
1543 		if (!sector_bad->dev->bdev) {
1544 			btrfs_warn_rl(fs_info,
1545 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1546 			return -EIO;
1547 		}
1548 
1549 		bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1550 		bio.bi_iter.bi_sector = sector_bad->physical >> 9;
1551 		__bio_add_page(&bio, sector_good->page, sectorsize, 0);
1552 
1553 		btrfsic_check_bio(&bio);
1554 		ret = submit_bio_wait(&bio);
1555 		bio_uninit(&bio);
1556 
1557 		if (ret) {
1558 			btrfs_dev_stat_inc_and_print(sector_bad->dev,
1559 				BTRFS_DEV_STAT_WRITE_ERRS);
1560 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1561 			return -EIO;
1562 		}
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1569 {
1570 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1571 	int i;
1572 
1573 	/*
1574 	 * This block is used for the check of the parity on the source device,
1575 	 * so the data needn't be written into the destination device.
1576 	 */
1577 	if (sblock->sparity)
1578 		return;
1579 
1580 	for (i = 0; i < sblock->sector_count; i++) {
1581 		int ret;
1582 
1583 		ret = scrub_write_sector_to_dev_replace(sblock, i);
1584 		if (ret)
1585 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1586 	}
1587 }
1588 
1589 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1590 {
1591 	struct scrub_sector *sector = sblock->sectors[sector_num];
1592 
1593 	BUG_ON(sector->page == NULL);
1594 	if (sector->io_error)
1595 		clear_page(page_address(sector->page));
1596 
1597 	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1598 }
1599 
1600 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1601 {
1602 	int ret = 0;
1603 	u64 length;
1604 
1605 	if (!btrfs_is_zoned(sctx->fs_info))
1606 		return 0;
1607 
1608 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1609 		return 0;
1610 
1611 	if (sctx->write_pointer < physical) {
1612 		length = physical - sctx->write_pointer;
1613 
1614 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1615 						sctx->write_pointer, length);
1616 		if (!ret)
1617 			sctx->write_pointer = physical;
1618 	}
1619 	return ret;
1620 }
1621 
1622 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1623 				      struct scrub_sector *sector)
1624 {
1625 	struct scrub_bio *sbio;
1626 	int ret;
1627 	const u32 sectorsize = sctx->fs_info->sectorsize;
1628 
1629 	mutex_lock(&sctx->wr_lock);
1630 again:
1631 	if (!sctx->wr_curr_bio) {
1632 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1633 					      GFP_KERNEL);
1634 		if (!sctx->wr_curr_bio) {
1635 			mutex_unlock(&sctx->wr_lock);
1636 			return -ENOMEM;
1637 		}
1638 		sctx->wr_curr_bio->sctx = sctx;
1639 		sctx->wr_curr_bio->sector_count = 0;
1640 	}
1641 	sbio = sctx->wr_curr_bio;
1642 	if (sbio->sector_count == 0) {
1643 		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
1644 		if (ret) {
1645 			mutex_unlock(&sctx->wr_lock);
1646 			return ret;
1647 		}
1648 
1649 		sbio->physical = sector->physical_for_dev_replace;
1650 		sbio->logical = sector->logical;
1651 		sbio->dev = sctx->wr_tgtdev;
1652 		if (!sbio->bio) {
1653 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1654 					      REQ_OP_WRITE, GFP_NOFS);
1655 		}
1656 		sbio->bio->bi_private = sbio;
1657 		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1658 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1659 		sbio->status = 0;
1660 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1661 		   sector->physical_for_dev_replace ||
1662 		   sbio->logical + sbio->sector_count * sectorsize !=
1663 		   sector->logical) {
1664 		scrub_wr_submit(sctx);
1665 		goto again;
1666 	}
1667 
1668 	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
1669 	if (ret != sectorsize) {
1670 		if (sbio->sector_count < 1) {
1671 			bio_put(sbio->bio);
1672 			sbio->bio = NULL;
1673 			mutex_unlock(&sctx->wr_lock);
1674 			return -EIO;
1675 		}
1676 		scrub_wr_submit(sctx);
1677 		goto again;
1678 	}
1679 
1680 	sbio->sectors[sbio->sector_count] = sector;
1681 	scrub_sector_get(sector);
1682 	sbio->sector_count++;
1683 	if (sbio->sector_count == sctx->sectors_per_bio)
1684 		scrub_wr_submit(sctx);
1685 	mutex_unlock(&sctx->wr_lock);
1686 
1687 	return 0;
1688 }
1689 
1690 static void scrub_wr_submit(struct scrub_ctx *sctx)
1691 {
1692 	struct scrub_bio *sbio;
1693 
1694 	if (!sctx->wr_curr_bio)
1695 		return;
1696 
1697 	sbio = sctx->wr_curr_bio;
1698 	sctx->wr_curr_bio = NULL;
1699 	scrub_pending_bio_inc(sctx);
1700 	/* process all writes in a single worker thread. Then the block layer
1701 	 * orders the requests before sending them to the driver which
1702 	 * doubled the write performance on spinning disks when measured
1703 	 * with Linux 3.5 */
1704 	btrfsic_check_bio(sbio->bio);
1705 	submit_bio(sbio->bio);
1706 
1707 	if (btrfs_is_zoned(sctx->fs_info))
1708 		sctx->write_pointer = sbio->physical + sbio->sector_count *
1709 			sctx->fs_info->sectorsize;
1710 }
1711 
1712 static void scrub_wr_bio_end_io(struct bio *bio)
1713 {
1714 	struct scrub_bio *sbio = bio->bi_private;
1715 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1716 
1717 	sbio->status = bio->bi_status;
1718 	sbio->bio = bio;
1719 
1720 	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1721 	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1722 }
1723 
1724 static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1725 {
1726 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1727 	struct scrub_ctx *sctx = sbio->sctx;
1728 	int i;
1729 
1730 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1731 	if (sbio->status) {
1732 		struct btrfs_dev_replace *dev_replace =
1733 			&sbio->sctx->fs_info->dev_replace;
1734 
1735 		for (i = 0; i < sbio->sector_count; i++) {
1736 			struct scrub_sector *sector = sbio->sectors[i];
1737 
1738 			sector->io_error = 1;
1739 			atomic64_inc(&dev_replace->num_write_errors);
1740 		}
1741 	}
1742 
1743 	for (i = 0; i < sbio->sector_count; i++)
1744 		scrub_sector_put(sbio->sectors[i]);
1745 
1746 	bio_put(sbio->bio);
1747 	kfree(sbio);
1748 	scrub_pending_bio_dec(sctx);
1749 }
1750 
1751 static int scrub_checksum(struct scrub_block *sblock)
1752 {
1753 	u64 flags;
1754 	int ret;
1755 
1756 	/*
1757 	 * No need to initialize these stats currently,
1758 	 * because this function only use return value
1759 	 * instead of these stats value.
1760 	 *
1761 	 * Todo:
1762 	 * always use stats
1763 	 */
1764 	sblock->header_error = 0;
1765 	sblock->generation_error = 0;
1766 	sblock->checksum_error = 0;
1767 
1768 	WARN_ON(sblock->sector_count < 1);
1769 	flags = sblock->sectors[0]->flags;
1770 	ret = 0;
1771 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1772 		ret = scrub_checksum_data(sblock);
1773 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1774 		ret = scrub_checksum_tree_block(sblock);
1775 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1776 		(void)scrub_checksum_super(sblock);
1777 	else
1778 		WARN_ON(1);
1779 	if (ret)
1780 		scrub_handle_errored_block(sblock);
1781 
1782 	return ret;
1783 }
1784 
1785 static int scrub_checksum_data(struct scrub_block *sblock)
1786 {
1787 	struct scrub_ctx *sctx = sblock->sctx;
1788 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1789 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1790 	u8 csum[BTRFS_CSUM_SIZE];
1791 	struct scrub_sector *sector;
1792 	char *kaddr;
1793 
1794 	BUG_ON(sblock->sector_count < 1);
1795 	sector = sblock->sectors[0];
1796 	if (!sector->have_csum)
1797 		return 0;
1798 
1799 	kaddr = page_address(sector->page);
1800 
1801 	shash->tfm = fs_info->csum_shash;
1802 	crypto_shash_init(shash);
1803 
1804 	/*
1805 	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
1806 	 * only contains one sector of data.
1807 	 */
1808 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1809 
1810 	if (memcmp(csum, sector->csum, fs_info->csum_size))
1811 		sblock->checksum_error = 1;
1812 	return sblock->checksum_error;
1813 }
1814 
1815 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1816 {
1817 	struct scrub_ctx *sctx = sblock->sctx;
1818 	struct btrfs_header *h;
1819 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1820 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1821 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1822 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1823 	/*
1824 	 * This is done in sectorsize steps even for metadata as there's a
1825 	 * constraint for nodesize to be aligned to sectorsize. This will need
1826 	 * to change so we don't misuse data and metadata units like that.
1827 	 */
1828 	const u32 sectorsize = sctx->fs_info->sectorsize;
1829 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1830 	int i;
1831 	struct scrub_sector *sector;
1832 	char *kaddr;
1833 
1834 	BUG_ON(sblock->sector_count < 1);
1835 
1836 	/* Each member in sectors is just one sector */
1837 	ASSERT(sblock->sector_count == num_sectors);
1838 
1839 	sector = sblock->sectors[0];
1840 	kaddr = page_address(sector->page);
1841 	h = (struct btrfs_header *)kaddr;
1842 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1843 
1844 	/*
1845 	 * we don't use the getter functions here, as we
1846 	 * a) don't have an extent buffer and
1847 	 * b) the page is already kmapped
1848 	 */
1849 	if (sector->logical != btrfs_stack_header_bytenr(h))
1850 		sblock->header_error = 1;
1851 
1852 	if (sector->generation != btrfs_stack_header_generation(h)) {
1853 		sblock->header_error = 1;
1854 		sblock->generation_error = 1;
1855 	}
1856 
1857 	if (!scrub_check_fsid(h->fsid, sector))
1858 		sblock->header_error = 1;
1859 
1860 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1861 		   BTRFS_UUID_SIZE))
1862 		sblock->header_error = 1;
1863 
1864 	shash->tfm = fs_info->csum_shash;
1865 	crypto_shash_init(shash);
1866 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1867 			    sectorsize - BTRFS_CSUM_SIZE);
1868 
1869 	for (i = 1; i < num_sectors; i++) {
1870 		kaddr = page_address(sblock->sectors[i]->page);
1871 		crypto_shash_update(shash, kaddr, sectorsize);
1872 	}
1873 
1874 	crypto_shash_final(shash, calculated_csum);
1875 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1876 		sblock->checksum_error = 1;
1877 
1878 	return sblock->header_error || sblock->checksum_error;
1879 }
1880 
1881 static int scrub_checksum_super(struct scrub_block *sblock)
1882 {
1883 	struct btrfs_super_block *s;
1884 	struct scrub_ctx *sctx = sblock->sctx;
1885 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1886 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1887 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1888 	struct scrub_sector *sector;
1889 	char *kaddr;
1890 	int fail_gen = 0;
1891 	int fail_cor = 0;
1892 
1893 	BUG_ON(sblock->sector_count < 1);
1894 	sector = sblock->sectors[0];
1895 	kaddr = page_address(sector->page);
1896 	s = (struct btrfs_super_block *)kaddr;
1897 
1898 	if (sector->logical != btrfs_super_bytenr(s))
1899 		++fail_cor;
1900 
1901 	if (sector->generation != btrfs_super_generation(s))
1902 		++fail_gen;
1903 
1904 	if (!scrub_check_fsid(s->fsid, sector))
1905 		++fail_cor;
1906 
1907 	shash->tfm = fs_info->csum_shash;
1908 	crypto_shash_init(shash);
1909 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1910 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1911 
1912 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1913 		++fail_cor;
1914 
1915 	if (fail_cor + fail_gen) {
1916 		/*
1917 		 * if we find an error in a super block, we just report it.
1918 		 * They will get written with the next transaction commit
1919 		 * anyway
1920 		 */
1921 		spin_lock(&sctx->stat_lock);
1922 		++sctx->stat.super_errors;
1923 		spin_unlock(&sctx->stat_lock);
1924 		if (fail_cor)
1925 			btrfs_dev_stat_inc_and_print(sector->dev,
1926 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1927 		else
1928 			btrfs_dev_stat_inc_and_print(sector->dev,
1929 				BTRFS_DEV_STAT_GENERATION_ERRS);
1930 	}
1931 
1932 	return fail_cor + fail_gen;
1933 }
1934 
1935 static void scrub_block_get(struct scrub_block *sblock)
1936 {
1937 	refcount_inc(&sblock->refs);
1938 }
1939 
1940 static void scrub_block_put(struct scrub_block *sblock)
1941 {
1942 	if (refcount_dec_and_test(&sblock->refs)) {
1943 		int i;
1944 
1945 		if (sblock->sparity)
1946 			scrub_parity_put(sblock->sparity);
1947 
1948 		for (i = 0; i < sblock->sector_count; i++)
1949 			scrub_sector_put(sblock->sectors[i]);
1950 		kfree(sblock);
1951 	}
1952 }
1953 
1954 static void scrub_sector_get(struct scrub_sector *sector)
1955 {
1956 	atomic_inc(&sector->refs);
1957 }
1958 
1959 static void scrub_sector_put(struct scrub_sector *sector)
1960 {
1961 	if (atomic_dec_and_test(&sector->refs)) {
1962 		if (sector->page)
1963 			__free_page(sector->page);
1964 		kfree(sector);
1965 	}
1966 }
1967 
1968 /*
1969  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1970  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1971  */
1972 static void scrub_throttle(struct scrub_ctx *sctx)
1973 {
1974 	const int time_slice = 1000;
1975 	struct scrub_bio *sbio;
1976 	struct btrfs_device *device;
1977 	s64 delta;
1978 	ktime_t now;
1979 	u32 div;
1980 	u64 bwlimit;
1981 
1982 	sbio = sctx->bios[sctx->curr];
1983 	device = sbio->dev;
1984 	bwlimit = READ_ONCE(device->scrub_speed_max);
1985 	if (bwlimit == 0)
1986 		return;
1987 
1988 	/*
1989 	 * Slice is divided into intervals when the IO is submitted, adjust by
1990 	 * bwlimit and maximum of 64 intervals.
1991 	 */
1992 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1993 	div = min_t(u32, 64, div);
1994 
1995 	/* Start new epoch, set deadline */
1996 	now = ktime_get();
1997 	if (sctx->throttle_deadline == 0) {
1998 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1999 		sctx->throttle_sent = 0;
2000 	}
2001 
2002 	/* Still in the time to send? */
2003 	if (ktime_before(now, sctx->throttle_deadline)) {
2004 		/* If current bio is within the limit, send it */
2005 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2006 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2007 			return;
2008 
2009 		/* We're over the limit, sleep until the rest of the slice */
2010 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2011 	} else {
2012 		/* New request after deadline, start new epoch */
2013 		delta = 0;
2014 	}
2015 
2016 	if (delta) {
2017 		long timeout;
2018 
2019 		timeout = div_u64(delta * HZ, 1000);
2020 		schedule_timeout_interruptible(timeout);
2021 	}
2022 
2023 	/* Next call will start the deadline period */
2024 	sctx->throttle_deadline = 0;
2025 }
2026 
2027 static void scrub_submit(struct scrub_ctx *sctx)
2028 {
2029 	struct scrub_bio *sbio;
2030 
2031 	if (sctx->curr == -1)
2032 		return;
2033 
2034 	scrub_throttle(sctx);
2035 
2036 	sbio = sctx->bios[sctx->curr];
2037 	sctx->curr = -1;
2038 	scrub_pending_bio_inc(sctx);
2039 	btrfsic_check_bio(sbio->bio);
2040 	submit_bio(sbio->bio);
2041 }
2042 
2043 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2044 				      struct scrub_sector *sector)
2045 {
2046 	struct scrub_block *sblock = sector->sblock;
2047 	struct scrub_bio *sbio;
2048 	const u32 sectorsize = sctx->fs_info->sectorsize;
2049 	int ret;
2050 
2051 again:
2052 	/*
2053 	 * grab a fresh bio or wait for one to become available
2054 	 */
2055 	while (sctx->curr == -1) {
2056 		spin_lock(&sctx->list_lock);
2057 		sctx->curr = sctx->first_free;
2058 		if (sctx->curr != -1) {
2059 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2060 			sctx->bios[sctx->curr]->next_free = -1;
2061 			sctx->bios[sctx->curr]->sector_count = 0;
2062 			spin_unlock(&sctx->list_lock);
2063 		} else {
2064 			spin_unlock(&sctx->list_lock);
2065 			wait_event(sctx->list_wait, sctx->first_free != -1);
2066 		}
2067 	}
2068 	sbio = sctx->bios[sctx->curr];
2069 	if (sbio->sector_count == 0) {
2070 		sbio->physical = sector->physical;
2071 		sbio->logical = sector->logical;
2072 		sbio->dev = sector->dev;
2073 		if (!sbio->bio) {
2074 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2075 					      REQ_OP_READ, GFP_NOFS);
2076 		}
2077 		sbio->bio->bi_private = sbio;
2078 		sbio->bio->bi_end_io = scrub_bio_end_io;
2079 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2080 		sbio->status = 0;
2081 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2082 		   sector->physical ||
2083 		   sbio->logical + sbio->sector_count * sectorsize !=
2084 		   sector->logical ||
2085 		   sbio->dev != sector->dev) {
2086 		scrub_submit(sctx);
2087 		goto again;
2088 	}
2089 
2090 	sbio->sectors[sbio->sector_count] = sector;
2091 	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
2092 	if (ret != sectorsize) {
2093 		if (sbio->sector_count < 1) {
2094 			bio_put(sbio->bio);
2095 			sbio->bio = NULL;
2096 			return -EIO;
2097 		}
2098 		scrub_submit(sctx);
2099 		goto again;
2100 	}
2101 
2102 	scrub_block_get(sblock); /* one for the page added to the bio */
2103 	atomic_inc(&sblock->outstanding_sectors);
2104 	sbio->sector_count++;
2105 	if (sbio->sector_count == sctx->sectors_per_bio)
2106 		scrub_submit(sctx);
2107 
2108 	return 0;
2109 }
2110 
2111 static void scrub_missing_raid56_end_io(struct bio *bio)
2112 {
2113 	struct scrub_block *sblock = bio->bi_private;
2114 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2115 
2116 	if (bio->bi_status)
2117 		sblock->no_io_error_seen = 0;
2118 
2119 	bio_put(bio);
2120 
2121 	queue_work(fs_info->scrub_workers, &sblock->work);
2122 }
2123 
2124 static void scrub_missing_raid56_worker(struct work_struct *work)
2125 {
2126 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2127 	struct scrub_ctx *sctx = sblock->sctx;
2128 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2129 	u64 logical;
2130 	struct btrfs_device *dev;
2131 
2132 	logical = sblock->sectors[0]->logical;
2133 	dev = sblock->sectors[0]->dev;
2134 
2135 	if (sblock->no_io_error_seen)
2136 		scrub_recheck_block_checksum(sblock);
2137 
2138 	if (!sblock->no_io_error_seen) {
2139 		spin_lock(&sctx->stat_lock);
2140 		sctx->stat.read_errors++;
2141 		spin_unlock(&sctx->stat_lock);
2142 		btrfs_err_rl_in_rcu(fs_info,
2143 			"IO error rebuilding logical %llu for dev %s",
2144 			logical, rcu_str_deref(dev->name));
2145 	} else if (sblock->header_error || sblock->checksum_error) {
2146 		spin_lock(&sctx->stat_lock);
2147 		sctx->stat.uncorrectable_errors++;
2148 		spin_unlock(&sctx->stat_lock);
2149 		btrfs_err_rl_in_rcu(fs_info,
2150 			"failed to rebuild valid logical %llu for dev %s",
2151 			logical, rcu_str_deref(dev->name));
2152 	} else {
2153 		scrub_write_block_to_dev_replace(sblock);
2154 	}
2155 
2156 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2157 		mutex_lock(&sctx->wr_lock);
2158 		scrub_wr_submit(sctx);
2159 		mutex_unlock(&sctx->wr_lock);
2160 	}
2161 
2162 	scrub_block_put(sblock);
2163 	scrub_pending_bio_dec(sctx);
2164 }
2165 
2166 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2167 {
2168 	struct scrub_ctx *sctx = sblock->sctx;
2169 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2170 	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2171 	u64 logical = sblock->sectors[0]->logical;
2172 	struct btrfs_io_context *bioc = NULL;
2173 	struct bio *bio;
2174 	struct btrfs_raid_bio *rbio;
2175 	int ret;
2176 	int i;
2177 
2178 	btrfs_bio_counter_inc_blocked(fs_info);
2179 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2180 			       &length, &bioc);
2181 	if (ret || !bioc || !bioc->raid_map)
2182 		goto bioc_out;
2183 
2184 	if (WARN_ON(!sctx->is_dev_replace ||
2185 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2186 		/*
2187 		 * We shouldn't be scrubbing a missing device. Even for dev
2188 		 * replace, we should only get here for RAID 5/6. We either
2189 		 * managed to mount something with no mirrors remaining or
2190 		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2191 		 */
2192 		goto bioc_out;
2193 	}
2194 
2195 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2196 	bio->bi_iter.bi_sector = logical >> 9;
2197 	bio->bi_private = sblock;
2198 	bio->bi_end_io = scrub_missing_raid56_end_io;
2199 
2200 	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2201 	if (!rbio)
2202 		goto rbio_out;
2203 
2204 	for (i = 0; i < sblock->sector_count; i++) {
2205 		struct scrub_sector *sector = sblock->sectors[i];
2206 
2207 		/*
2208 		 * For now, our scrub is still one page per sector, so pgoff
2209 		 * is always 0.
2210 		 */
2211 		raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical);
2212 	}
2213 
2214 	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2215 	scrub_block_get(sblock);
2216 	scrub_pending_bio_inc(sctx);
2217 	raid56_submit_missing_rbio(rbio);
2218 	return;
2219 
2220 rbio_out:
2221 	bio_put(bio);
2222 bioc_out:
2223 	btrfs_bio_counter_dec(fs_info);
2224 	btrfs_put_bioc(bioc);
2225 	spin_lock(&sctx->stat_lock);
2226 	sctx->stat.malloc_errors++;
2227 	spin_unlock(&sctx->stat_lock);
2228 }
2229 
2230 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2231 		       u64 physical, struct btrfs_device *dev, u64 flags,
2232 		       u64 gen, int mirror_num, u8 *csum,
2233 		       u64 physical_for_dev_replace)
2234 {
2235 	struct scrub_block *sblock;
2236 	const u32 sectorsize = sctx->fs_info->sectorsize;
2237 	int index;
2238 
2239 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2240 	if (!sblock) {
2241 		spin_lock(&sctx->stat_lock);
2242 		sctx->stat.malloc_errors++;
2243 		spin_unlock(&sctx->stat_lock);
2244 		return -ENOMEM;
2245 	}
2246 
2247 	/* one ref inside this function, plus one for each page added to
2248 	 * a bio later on */
2249 	refcount_set(&sblock->refs, 1);
2250 	sblock->sctx = sctx;
2251 	sblock->no_io_error_seen = 1;
2252 
2253 	for (index = 0; len > 0; index++) {
2254 		struct scrub_sector *sector;
2255 		/*
2256 		 * Here we will allocate one page for one sector to scrub.
2257 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2258 		 * more memory for PAGE_SIZE > sectorsize case.
2259 		 */
2260 		u32 l = min(sectorsize, len);
2261 
2262 		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
2263 		if (!sector) {
2264 leave_nomem:
2265 			spin_lock(&sctx->stat_lock);
2266 			sctx->stat.malloc_errors++;
2267 			spin_unlock(&sctx->stat_lock);
2268 			scrub_block_put(sblock);
2269 			return -ENOMEM;
2270 		}
2271 		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2272 		scrub_sector_get(sector);
2273 		sblock->sectors[index] = sector;
2274 		sector->sblock = sblock;
2275 		sector->dev = dev;
2276 		sector->flags = flags;
2277 		sector->generation = gen;
2278 		sector->logical = logical;
2279 		sector->physical = physical;
2280 		sector->physical_for_dev_replace = physical_for_dev_replace;
2281 		sector->mirror_num = mirror_num;
2282 		if (csum) {
2283 			sector->have_csum = 1;
2284 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2285 		} else {
2286 			sector->have_csum = 0;
2287 		}
2288 		sblock->sector_count++;
2289 		sector->page = alloc_page(GFP_KERNEL);
2290 		if (!sector->page)
2291 			goto leave_nomem;
2292 		len -= l;
2293 		logical += l;
2294 		physical += l;
2295 		physical_for_dev_replace += l;
2296 	}
2297 
2298 	WARN_ON(sblock->sector_count == 0);
2299 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2300 		/*
2301 		 * This case should only be hit for RAID 5/6 device replace. See
2302 		 * the comment in scrub_missing_raid56_pages() for details.
2303 		 */
2304 		scrub_missing_raid56_pages(sblock);
2305 	} else {
2306 		for (index = 0; index < sblock->sector_count; index++) {
2307 			struct scrub_sector *sector = sblock->sectors[index];
2308 			int ret;
2309 
2310 			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2311 			if (ret) {
2312 				scrub_block_put(sblock);
2313 				return ret;
2314 			}
2315 		}
2316 
2317 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2318 			scrub_submit(sctx);
2319 	}
2320 
2321 	/* last one frees, either here or in bio completion for last page */
2322 	scrub_block_put(sblock);
2323 	return 0;
2324 }
2325 
2326 static void scrub_bio_end_io(struct bio *bio)
2327 {
2328 	struct scrub_bio *sbio = bio->bi_private;
2329 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2330 
2331 	sbio->status = bio->bi_status;
2332 	sbio->bio = bio;
2333 
2334 	queue_work(fs_info->scrub_workers, &sbio->work);
2335 }
2336 
2337 static void scrub_bio_end_io_worker(struct work_struct *work)
2338 {
2339 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2340 	struct scrub_ctx *sctx = sbio->sctx;
2341 	int i;
2342 
2343 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2344 	if (sbio->status) {
2345 		for (i = 0; i < sbio->sector_count; i++) {
2346 			struct scrub_sector *sector = sbio->sectors[i];
2347 
2348 			sector->io_error = 1;
2349 			sector->sblock->no_io_error_seen = 0;
2350 		}
2351 	}
2352 
2353 	/* Now complete the scrub_block items that have all pages completed */
2354 	for (i = 0; i < sbio->sector_count; i++) {
2355 		struct scrub_sector *sector = sbio->sectors[i];
2356 		struct scrub_block *sblock = sector->sblock;
2357 
2358 		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2359 			scrub_block_complete(sblock);
2360 		scrub_block_put(sblock);
2361 	}
2362 
2363 	bio_put(sbio->bio);
2364 	sbio->bio = NULL;
2365 	spin_lock(&sctx->list_lock);
2366 	sbio->next_free = sctx->first_free;
2367 	sctx->first_free = sbio->index;
2368 	spin_unlock(&sctx->list_lock);
2369 
2370 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2371 		mutex_lock(&sctx->wr_lock);
2372 		scrub_wr_submit(sctx);
2373 		mutex_unlock(&sctx->wr_lock);
2374 	}
2375 
2376 	scrub_pending_bio_dec(sctx);
2377 }
2378 
2379 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2380 				       unsigned long *bitmap,
2381 				       u64 start, u32 len)
2382 {
2383 	u64 offset;
2384 	u32 nsectors;
2385 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2386 
2387 	if (len >= sparity->stripe_len) {
2388 		bitmap_set(bitmap, 0, sparity->nsectors);
2389 		return;
2390 	}
2391 
2392 	start -= sparity->logic_start;
2393 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2394 	offset = offset >> sectorsize_bits;
2395 	nsectors = len >> sectorsize_bits;
2396 
2397 	if (offset + nsectors <= sparity->nsectors) {
2398 		bitmap_set(bitmap, offset, nsectors);
2399 		return;
2400 	}
2401 
2402 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2403 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2404 }
2405 
2406 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2407 						   u64 start, u32 len)
2408 {
2409 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2410 }
2411 
2412 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2413 						  u64 start, u32 len)
2414 {
2415 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2416 }
2417 
2418 static void scrub_block_complete(struct scrub_block *sblock)
2419 {
2420 	int corrupted = 0;
2421 
2422 	if (!sblock->no_io_error_seen) {
2423 		corrupted = 1;
2424 		scrub_handle_errored_block(sblock);
2425 	} else {
2426 		/*
2427 		 * if has checksum error, write via repair mechanism in
2428 		 * dev replace case, otherwise write here in dev replace
2429 		 * case.
2430 		 */
2431 		corrupted = scrub_checksum(sblock);
2432 		if (!corrupted && sblock->sctx->is_dev_replace)
2433 			scrub_write_block_to_dev_replace(sblock);
2434 	}
2435 
2436 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2437 		u64 start = sblock->sectors[0]->logical;
2438 		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
2439 			  sblock->sctx->fs_info->sectorsize;
2440 
2441 		ASSERT(end - start <= U32_MAX);
2442 		scrub_parity_mark_sectors_error(sblock->sparity,
2443 						start, end - start);
2444 	}
2445 }
2446 
2447 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2448 {
2449 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2450 	list_del(&sum->list);
2451 	kfree(sum);
2452 }
2453 
2454 /*
2455  * Find the desired csum for range [logical, logical + sectorsize), and store
2456  * the csum into @csum.
2457  *
2458  * The search source is sctx->csum_list, which is a pre-populated list
2459  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2460  * that is before @logical.
2461  *
2462  * Return 0 if there is no csum for the range.
2463  * Return 1 if there is csum for the range and copied to @csum.
2464  */
2465 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2466 {
2467 	bool found = false;
2468 
2469 	while (!list_empty(&sctx->csum_list)) {
2470 		struct btrfs_ordered_sum *sum = NULL;
2471 		unsigned long index;
2472 		unsigned long num_sectors;
2473 
2474 		sum = list_first_entry(&sctx->csum_list,
2475 				       struct btrfs_ordered_sum, list);
2476 		/* The current csum range is beyond our range, no csum found */
2477 		if (sum->bytenr > logical)
2478 			break;
2479 
2480 		/*
2481 		 * The current sum is before our bytenr, since scrub is always
2482 		 * done in bytenr order, the csum will never be used anymore,
2483 		 * clean it up so that later calls won't bother with the range,
2484 		 * and continue search the next range.
2485 		 */
2486 		if (sum->bytenr + sum->len <= logical) {
2487 			drop_csum_range(sctx, sum);
2488 			continue;
2489 		}
2490 
2491 		/* Now the csum range covers our bytenr, copy the csum */
2492 		found = true;
2493 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2494 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2495 
2496 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2497 		       sctx->fs_info->csum_size);
2498 
2499 		/* Cleanup the range if we're at the end of the csum range */
2500 		if (index == num_sectors - 1)
2501 			drop_csum_range(sctx, sum);
2502 		break;
2503 	}
2504 	if (!found)
2505 		return 0;
2506 	return 1;
2507 }
2508 
2509 /* scrub extent tries to collect up to 64 kB for each bio */
2510 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2511 			u64 logical, u32 len,
2512 			u64 physical, struct btrfs_device *dev, u64 flags,
2513 			u64 gen, int mirror_num)
2514 {
2515 	struct btrfs_device *src_dev = dev;
2516 	u64 src_physical = physical;
2517 	int src_mirror = mirror_num;
2518 	int ret;
2519 	u8 csum[BTRFS_CSUM_SIZE];
2520 	u32 blocksize;
2521 
2522 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2523 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2524 			blocksize = map->stripe_len;
2525 		else
2526 			blocksize = sctx->fs_info->sectorsize;
2527 		spin_lock(&sctx->stat_lock);
2528 		sctx->stat.data_extents_scrubbed++;
2529 		sctx->stat.data_bytes_scrubbed += len;
2530 		spin_unlock(&sctx->stat_lock);
2531 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2532 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2533 			blocksize = map->stripe_len;
2534 		else
2535 			blocksize = sctx->fs_info->nodesize;
2536 		spin_lock(&sctx->stat_lock);
2537 		sctx->stat.tree_extents_scrubbed++;
2538 		sctx->stat.tree_bytes_scrubbed += len;
2539 		spin_unlock(&sctx->stat_lock);
2540 	} else {
2541 		blocksize = sctx->fs_info->sectorsize;
2542 		WARN_ON(1);
2543 	}
2544 
2545 	/*
2546 	 * For dev-replace case, we can have @dev being a missing device.
2547 	 * Regular scrub will avoid its execution on missing device at all,
2548 	 * as that would trigger tons of read error.
2549 	 *
2550 	 * Reading from missing device will cause read error counts to
2551 	 * increase unnecessarily.
2552 	 * So here we change the read source to a good mirror.
2553 	 */
2554 	if (sctx->is_dev_replace && !dev->bdev)
2555 		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2556 				     &src_dev, &src_mirror);
2557 	while (len) {
2558 		u32 l = min(len, blocksize);
2559 		int have_csum = 0;
2560 
2561 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2562 			/* push csums to sbio */
2563 			have_csum = scrub_find_csum(sctx, logical, csum);
2564 			if (have_csum == 0)
2565 				++sctx->stat.no_csum;
2566 		}
2567 		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2568 				    flags, gen, src_mirror,
2569 				    have_csum ? csum : NULL, physical);
2570 		if (ret)
2571 			return ret;
2572 		len -= l;
2573 		logical += l;
2574 		physical += l;
2575 		src_physical += l;
2576 	}
2577 	return 0;
2578 }
2579 
2580 static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2581 				  u64 logical, u32 len,
2582 				  u64 physical, struct btrfs_device *dev,
2583 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2584 {
2585 	struct scrub_ctx *sctx = sparity->sctx;
2586 	struct scrub_block *sblock;
2587 	const u32 sectorsize = sctx->fs_info->sectorsize;
2588 	int index;
2589 
2590 	ASSERT(IS_ALIGNED(len, sectorsize));
2591 
2592 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2593 	if (!sblock) {
2594 		spin_lock(&sctx->stat_lock);
2595 		sctx->stat.malloc_errors++;
2596 		spin_unlock(&sctx->stat_lock);
2597 		return -ENOMEM;
2598 	}
2599 
2600 	/* one ref inside this function, plus one for each page added to
2601 	 * a bio later on */
2602 	refcount_set(&sblock->refs, 1);
2603 	sblock->sctx = sctx;
2604 	sblock->no_io_error_seen = 1;
2605 	sblock->sparity = sparity;
2606 	scrub_parity_get(sparity);
2607 
2608 	for (index = 0; len > 0; index++) {
2609 		struct scrub_sector *sector;
2610 
2611 		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
2612 		if (!sector) {
2613 leave_nomem:
2614 			spin_lock(&sctx->stat_lock);
2615 			sctx->stat.malloc_errors++;
2616 			spin_unlock(&sctx->stat_lock);
2617 			scrub_block_put(sblock);
2618 			return -ENOMEM;
2619 		}
2620 		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2621 		/* For scrub block */
2622 		scrub_sector_get(sector);
2623 		sblock->sectors[index] = sector;
2624 		/* For scrub parity */
2625 		scrub_sector_get(sector);
2626 		list_add_tail(&sector->list, &sparity->sectors_list);
2627 		sector->sblock = sblock;
2628 		sector->dev = dev;
2629 		sector->flags = flags;
2630 		sector->generation = gen;
2631 		sector->logical = logical;
2632 		sector->physical = physical;
2633 		sector->mirror_num = mirror_num;
2634 		if (csum) {
2635 			sector->have_csum = 1;
2636 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2637 		} else {
2638 			sector->have_csum = 0;
2639 		}
2640 		sblock->sector_count++;
2641 		sector->page = alloc_page(GFP_KERNEL);
2642 		if (!sector->page)
2643 			goto leave_nomem;
2644 
2645 
2646 		/* Iterate over the stripe range in sectorsize steps */
2647 		len -= sectorsize;
2648 		logical += sectorsize;
2649 		physical += sectorsize;
2650 	}
2651 
2652 	WARN_ON(sblock->sector_count == 0);
2653 	for (index = 0; index < sblock->sector_count; index++) {
2654 		struct scrub_sector *sector = sblock->sectors[index];
2655 		int ret;
2656 
2657 		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2658 		if (ret) {
2659 			scrub_block_put(sblock);
2660 			return ret;
2661 		}
2662 	}
2663 
2664 	/* Last one frees, either here or in bio completion for last sector */
2665 	scrub_block_put(sblock);
2666 	return 0;
2667 }
2668 
2669 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2670 				   u64 logical, u32 len,
2671 				   u64 physical, struct btrfs_device *dev,
2672 				   u64 flags, u64 gen, int mirror_num)
2673 {
2674 	struct scrub_ctx *sctx = sparity->sctx;
2675 	int ret;
2676 	u8 csum[BTRFS_CSUM_SIZE];
2677 	u32 blocksize;
2678 
2679 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2680 		scrub_parity_mark_sectors_error(sparity, logical, len);
2681 		return 0;
2682 	}
2683 
2684 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2685 		blocksize = sparity->stripe_len;
2686 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2687 		blocksize = sparity->stripe_len;
2688 	} else {
2689 		blocksize = sctx->fs_info->sectorsize;
2690 		WARN_ON(1);
2691 	}
2692 
2693 	while (len) {
2694 		u32 l = min(len, blocksize);
2695 		int have_csum = 0;
2696 
2697 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2698 			/* push csums to sbio */
2699 			have_csum = scrub_find_csum(sctx, logical, csum);
2700 			if (have_csum == 0)
2701 				goto skip;
2702 		}
2703 		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2704 					     flags, gen, mirror_num,
2705 					     have_csum ? csum : NULL);
2706 		if (ret)
2707 			return ret;
2708 skip:
2709 		len -= l;
2710 		logical += l;
2711 		physical += l;
2712 	}
2713 	return 0;
2714 }
2715 
2716 /*
2717  * Given a physical address, this will calculate it's
2718  * logical offset. if this is a parity stripe, it will return
2719  * the most left data stripe's logical offset.
2720  *
2721  * return 0 if it is a data stripe, 1 means parity stripe.
2722  */
2723 static int get_raid56_logic_offset(u64 physical, int num,
2724 				   struct map_lookup *map, u64 *offset,
2725 				   u64 *stripe_start)
2726 {
2727 	int i;
2728 	int j = 0;
2729 	u64 stripe_nr;
2730 	u64 last_offset;
2731 	u32 stripe_index;
2732 	u32 rot;
2733 	const int data_stripes = nr_data_stripes(map);
2734 
2735 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2736 	if (stripe_start)
2737 		*stripe_start = last_offset;
2738 
2739 	*offset = last_offset;
2740 	for (i = 0; i < data_stripes; i++) {
2741 		*offset = last_offset + i * map->stripe_len;
2742 
2743 		stripe_nr = div64_u64(*offset, map->stripe_len);
2744 		stripe_nr = div_u64(stripe_nr, data_stripes);
2745 
2746 		/* Work out the disk rotation on this stripe-set */
2747 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2748 		/* calculate which stripe this data locates */
2749 		rot += i;
2750 		stripe_index = rot % map->num_stripes;
2751 		if (stripe_index == num)
2752 			return 0;
2753 		if (stripe_index < num)
2754 			j++;
2755 	}
2756 	*offset = last_offset + j * map->stripe_len;
2757 	return 1;
2758 }
2759 
2760 static void scrub_free_parity(struct scrub_parity *sparity)
2761 {
2762 	struct scrub_ctx *sctx = sparity->sctx;
2763 	struct scrub_sector *curr, *next;
2764 	int nbits;
2765 
2766 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2767 	if (nbits) {
2768 		spin_lock(&sctx->stat_lock);
2769 		sctx->stat.read_errors += nbits;
2770 		sctx->stat.uncorrectable_errors += nbits;
2771 		spin_unlock(&sctx->stat_lock);
2772 	}
2773 
2774 	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2775 		list_del_init(&curr->list);
2776 		scrub_sector_put(curr);
2777 	}
2778 
2779 	kfree(sparity);
2780 }
2781 
2782 static void scrub_parity_bio_endio_worker(struct work_struct *work)
2783 {
2784 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2785 						    work);
2786 	struct scrub_ctx *sctx = sparity->sctx;
2787 
2788 	scrub_free_parity(sparity);
2789 	scrub_pending_bio_dec(sctx);
2790 }
2791 
2792 static void scrub_parity_bio_endio(struct bio *bio)
2793 {
2794 	struct scrub_parity *sparity = bio->bi_private;
2795 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2796 
2797 	if (bio->bi_status)
2798 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2799 			  sparity->nsectors);
2800 
2801 	bio_put(bio);
2802 
2803 	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2804 	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2805 }
2806 
2807 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2808 {
2809 	struct scrub_ctx *sctx = sparity->sctx;
2810 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2811 	struct bio *bio;
2812 	struct btrfs_raid_bio *rbio;
2813 	struct btrfs_io_context *bioc = NULL;
2814 	u64 length;
2815 	int ret;
2816 
2817 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2818 			   sparity->nsectors))
2819 		goto out;
2820 
2821 	length = sparity->logic_end - sparity->logic_start;
2822 
2823 	btrfs_bio_counter_inc_blocked(fs_info);
2824 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2825 			       &length, &bioc);
2826 	if (ret || !bioc || !bioc->raid_map)
2827 		goto bioc_out;
2828 
2829 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2830 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2831 	bio->bi_private = sparity;
2832 	bio->bi_end_io = scrub_parity_bio_endio;
2833 
2834 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
2835 					      sparity->scrub_dev,
2836 					      sparity->dbitmap,
2837 					      sparity->nsectors);
2838 	if (!rbio)
2839 		goto rbio_out;
2840 
2841 	scrub_pending_bio_inc(sctx);
2842 	raid56_parity_submit_scrub_rbio(rbio);
2843 	return;
2844 
2845 rbio_out:
2846 	bio_put(bio);
2847 bioc_out:
2848 	btrfs_bio_counter_dec(fs_info);
2849 	btrfs_put_bioc(bioc);
2850 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2851 		  sparity->nsectors);
2852 	spin_lock(&sctx->stat_lock);
2853 	sctx->stat.malloc_errors++;
2854 	spin_unlock(&sctx->stat_lock);
2855 out:
2856 	scrub_free_parity(sparity);
2857 }
2858 
2859 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2860 {
2861 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2862 }
2863 
2864 static void scrub_parity_get(struct scrub_parity *sparity)
2865 {
2866 	refcount_inc(&sparity->refs);
2867 }
2868 
2869 static void scrub_parity_put(struct scrub_parity *sparity)
2870 {
2871 	if (!refcount_dec_and_test(&sparity->refs))
2872 		return;
2873 
2874 	scrub_parity_check_and_repair(sparity);
2875 }
2876 
2877 /*
2878  * Return 0 if the extent item range covers any byte of the range.
2879  * Return <0 if the extent item is before @search_start.
2880  * Return >0 if the extent item is after @start_start + @search_len.
2881  */
2882 static int compare_extent_item_range(struct btrfs_path *path,
2883 				     u64 search_start, u64 search_len)
2884 {
2885 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
2886 	u64 len;
2887 	struct btrfs_key key;
2888 
2889 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2890 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
2891 	       key.type == BTRFS_METADATA_ITEM_KEY);
2892 	if (key.type == BTRFS_METADATA_ITEM_KEY)
2893 		len = fs_info->nodesize;
2894 	else
2895 		len = key.offset;
2896 
2897 	if (key.objectid + len <= search_start)
2898 		return -1;
2899 	if (key.objectid >= search_start + search_len)
2900 		return 1;
2901 	return 0;
2902 }
2903 
2904 /*
2905  * Locate one extent item which covers any byte in range
2906  * [@search_start, @search_start + @search_length)
2907  *
2908  * If the path is not initialized, we will initialize the search by doing
2909  * a btrfs_search_slot().
2910  * If the path is already initialized, we will use the path as the initial
2911  * slot, to avoid duplicated btrfs_search_slot() calls.
2912  *
2913  * NOTE: If an extent item starts before @search_start, we will still
2914  * return the extent item. This is for data extent crossing stripe boundary.
2915  *
2916  * Return 0 if we found such extent item, and @path will point to the extent item.
2917  * Return >0 if no such extent item can be found, and @path will be released.
2918  * Return <0 if hit fatal error, and @path will be released.
2919  */
2920 static int find_first_extent_item(struct btrfs_root *extent_root,
2921 				  struct btrfs_path *path,
2922 				  u64 search_start, u64 search_len)
2923 {
2924 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
2925 	struct btrfs_key key;
2926 	int ret;
2927 
2928 	/* Continue using the existing path */
2929 	if (path->nodes[0])
2930 		goto search_forward;
2931 
2932 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2933 		key.type = BTRFS_METADATA_ITEM_KEY;
2934 	else
2935 		key.type = BTRFS_EXTENT_ITEM_KEY;
2936 	key.objectid = search_start;
2937 	key.offset = (u64)-1;
2938 
2939 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2940 	if (ret < 0)
2941 		return ret;
2942 
2943 	ASSERT(ret > 0);
2944 	/*
2945 	 * Here we intentionally pass 0 as @min_objectid, as there could be
2946 	 * an extent item starting before @search_start.
2947 	 */
2948 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2949 	if (ret < 0)
2950 		return ret;
2951 	/*
2952 	 * No matter whether we have found an extent item, the next loop will
2953 	 * properly do every check on the key.
2954 	 */
2955 search_forward:
2956 	while (true) {
2957 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2958 		if (key.objectid >= search_start + search_len)
2959 			break;
2960 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
2961 		    key.type != BTRFS_EXTENT_ITEM_KEY)
2962 			goto next;
2963 
2964 		ret = compare_extent_item_range(path, search_start, search_len);
2965 		if (ret == 0)
2966 			return ret;
2967 		if (ret > 0)
2968 			break;
2969 next:
2970 		path->slots[0]++;
2971 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2972 			ret = btrfs_next_leaf(extent_root, path);
2973 			if (ret) {
2974 				/* Either no more item or fatal error */
2975 				btrfs_release_path(path);
2976 				return ret;
2977 			}
2978 		}
2979 	}
2980 	btrfs_release_path(path);
2981 	return 1;
2982 }
2983 
2984 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
2985 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
2986 {
2987 	struct btrfs_key key;
2988 	struct btrfs_extent_item *ei;
2989 
2990 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2991 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
2992 	       key.type == BTRFS_EXTENT_ITEM_KEY);
2993 	*extent_start_ret = key.objectid;
2994 	if (key.type == BTRFS_METADATA_ITEM_KEY)
2995 		*size_ret = path->nodes[0]->fs_info->nodesize;
2996 	else
2997 		*size_ret = key.offset;
2998 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
2999 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3000 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3001 }
3002 
3003 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3004 				      u64 boundary_start, u64 boudary_len)
3005 {
3006 	return (extent_start < boundary_start &&
3007 		extent_start + extent_len > boundary_start) ||
3008 	       (extent_start < boundary_start + boudary_len &&
3009 		extent_start + extent_len > boundary_start + boudary_len);
3010 }
3011 
3012 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3013 					       struct scrub_parity *sparity,
3014 					       struct map_lookup *map,
3015 					       struct btrfs_device *sdev,
3016 					       struct btrfs_path *path,
3017 					       u64 logical)
3018 {
3019 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3020 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3021 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3022 	u64 cur_logical = logical;
3023 	int ret;
3024 
3025 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3026 
3027 	/* Path must not be populated */
3028 	ASSERT(!path->nodes[0]);
3029 
3030 	while (cur_logical < logical + map->stripe_len) {
3031 		struct btrfs_io_context *bioc = NULL;
3032 		struct btrfs_device *extent_dev;
3033 		u64 extent_start;
3034 		u64 extent_size;
3035 		u64 mapped_length;
3036 		u64 extent_flags;
3037 		u64 extent_gen;
3038 		u64 extent_physical;
3039 		u64 extent_mirror_num;
3040 
3041 		ret = find_first_extent_item(extent_root, path, cur_logical,
3042 					     logical + map->stripe_len - cur_logical);
3043 		/* No more extent item in this data stripe */
3044 		if (ret > 0) {
3045 			ret = 0;
3046 			break;
3047 		}
3048 		if (ret < 0)
3049 			break;
3050 		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3051 				&extent_gen);
3052 
3053 		/* Metadata should not cross stripe boundaries */
3054 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3055 		    does_range_cross_boundary(extent_start, extent_size,
3056 					      logical, map->stripe_len)) {
3057 			btrfs_err(fs_info,
3058 	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3059 				  extent_start, logical);
3060 			spin_lock(&sctx->stat_lock);
3061 			sctx->stat.uncorrectable_errors++;
3062 			spin_unlock(&sctx->stat_lock);
3063 			cur_logical += extent_size;
3064 			continue;
3065 		}
3066 
3067 		/* Skip hole range which doesn't have any extent */
3068 		cur_logical = max(extent_start, cur_logical);
3069 
3070 		/* Truncate the range inside this data stripe */
3071 		extent_size = min(extent_start + extent_size,
3072 				  logical + map->stripe_len) - cur_logical;
3073 		extent_start = cur_logical;
3074 		ASSERT(extent_size <= U32_MAX);
3075 
3076 		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3077 
3078 		mapped_length = extent_size;
3079 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3080 				      &mapped_length, &bioc, 0);
3081 		if (!ret && (!bioc || mapped_length < extent_size))
3082 			ret = -EIO;
3083 		if (ret) {
3084 			btrfs_put_bioc(bioc);
3085 			scrub_parity_mark_sectors_error(sparity, extent_start,
3086 							extent_size);
3087 			break;
3088 		}
3089 		extent_physical = bioc->stripes[0].physical;
3090 		extent_mirror_num = bioc->mirror_num;
3091 		extent_dev = bioc->stripes[0].dev;
3092 		btrfs_put_bioc(bioc);
3093 
3094 		ret = btrfs_lookup_csums_range(csum_root, extent_start,
3095 					       extent_start + extent_size - 1,
3096 					       &sctx->csum_list, 1);
3097 		if (ret) {
3098 			scrub_parity_mark_sectors_error(sparity, extent_start,
3099 							extent_size);
3100 			break;
3101 		}
3102 
3103 		ret = scrub_extent_for_parity(sparity, extent_start,
3104 					      extent_size, extent_physical,
3105 					      extent_dev, extent_flags,
3106 					      extent_gen, extent_mirror_num);
3107 		scrub_free_csums(sctx);
3108 
3109 		if (ret) {
3110 			scrub_parity_mark_sectors_error(sparity, extent_start,
3111 							extent_size);
3112 			break;
3113 		}
3114 
3115 		cond_resched();
3116 		cur_logical += extent_size;
3117 	}
3118 	btrfs_release_path(path);
3119 	return ret;
3120 }
3121 
3122 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3123 						  struct map_lookup *map,
3124 						  struct btrfs_device *sdev,
3125 						  u64 logic_start,
3126 						  u64 logic_end)
3127 {
3128 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3129 	struct btrfs_path *path;
3130 	u64 cur_logical;
3131 	int ret;
3132 	struct scrub_parity *sparity;
3133 	int nsectors;
3134 	int bitmap_len;
3135 
3136 	path = btrfs_alloc_path();
3137 	if (!path) {
3138 		spin_lock(&sctx->stat_lock);
3139 		sctx->stat.malloc_errors++;
3140 		spin_unlock(&sctx->stat_lock);
3141 		return -ENOMEM;
3142 	}
3143 	path->search_commit_root = 1;
3144 	path->skip_locking = 1;
3145 
3146 	ASSERT(map->stripe_len <= U32_MAX);
3147 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3148 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3149 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3150 			  GFP_NOFS);
3151 	if (!sparity) {
3152 		spin_lock(&sctx->stat_lock);
3153 		sctx->stat.malloc_errors++;
3154 		spin_unlock(&sctx->stat_lock);
3155 		btrfs_free_path(path);
3156 		return -ENOMEM;
3157 	}
3158 
3159 	ASSERT(map->stripe_len <= U32_MAX);
3160 	sparity->stripe_len = map->stripe_len;
3161 	sparity->nsectors = nsectors;
3162 	sparity->sctx = sctx;
3163 	sparity->scrub_dev = sdev;
3164 	sparity->logic_start = logic_start;
3165 	sparity->logic_end = logic_end;
3166 	refcount_set(&sparity->refs, 1);
3167 	INIT_LIST_HEAD(&sparity->sectors_list);
3168 	sparity->dbitmap = sparity->bitmap;
3169 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3170 
3171 	ret = 0;
3172 	for (cur_logical = logic_start; cur_logical < logic_end;
3173 	     cur_logical += map->stripe_len) {
3174 		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3175 							  sdev, path, cur_logical);
3176 		if (ret < 0)
3177 			break;
3178 	}
3179 
3180 	scrub_parity_put(sparity);
3181 	scrub_submit(sctx);
3182 	mutex_lock(&sctx->wr_lock);
3183 	scrub_wr_submit(sctx);
3184 	mutex_unlock(&sctx->wr_lock);
3185 
3186 	btrfs_free_path(path);
3187 	return ret < 0 ? ret : 0;
3188 }
3189 
3190 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3191 {
3192 	if (!btrfs_is_zoned(sctx->fs_info))
3193 		return;
3194 
3195 	sctx->flush_all_writes = true;
3196 	scrub_submit(sctx);
3197 	mutex_lock(&sctx->wr_lock);
3198 	scrub_wr_submit(sctx);
3199 	mutex_unlock(&sctx->wr_lock);
3200 
3201 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3202 }
3203 
3204 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3205 					u64 physical, u64 physical_end)
3206 {
3207 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3208 	int ret = 0;
3209 
3210 	if (!btrfs_is_zoned(fs_info))
3211 		return 0;
3212 
3213 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3214 
3215 	mutex_lock(&sctx->wr_lock);
3216 	if (sctx->write_pointer < physical_end) {
3217 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3218 						    physical,
3219 						    sctx->write_pointer);
3220 		if (ret)
3221 			btrfs_err(fs_info,
3222 				  "zoned: failed to recover write pointer");
3223 	}
3224 	mutex_unlock(&sctx->wr_lock);
3225 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3226 
3227 	return ret;
3228 }
3229 
3230 /*
3231  * Scrub one range which can only has simple mirror based profile.
3232  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3233  *  RAID0/RAID10).
3234  *
3235  * Since we may need to handle a subset of block group, we need @logical_start
3236  * and @logical_length parameter.
3237  */
3238 static int scrub_simple_mirror(struct scrub_ctx *sctx,
3239 			       struct btrfs_root *extent_root,
3240 			       struct btrfs_root *csum_root,
3241 			       struct btrfs_block_group *bg,
3242 			       struct map_lookup *map,
3243 			       u64 logical_start, u64 logical_length,
3244 			       struct btrfs_device *device,
3245 			       u64 physical, int mirror_num)
3246 {
3247 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3248 	const u64 logical_end = logical_start + logical_length;
3249 	/* An artificial limit, inherit from old scrub behavior */
3250 	const u32 max_length = SZ_64K;
3251 	struct btrfs_path path = { 0 };
3252 	u64 cur_logical = logical_start;
3253 	int ret;
3254 
3255 	/* The range must be inside the bg */
3256 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3257 
3258 	path.search_commit_root = 1;
3259 	path.skip_locking = 1;
3260 	/* Go through each extent items inside the logical range */
3261 	while (cur_logical < logical_end) {
3262 		u64 extent_start;
3263 		u64 extent_len;
3264 		u64 extent_flags;
3265 		u64 extent_gen;
3266 		u64 scrub_len;
3267 
3268 		/* Canceled? */
3269 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3270 		    atomic_read(&sctx->cancel_req)) {
3271 			ret = -ECANCELED;
3272 			break;
3273 		}
3274 		/* Paused? */
3275 		if (atomic_read(&fs_info->scrub_pause_req)) {
3276 			/* Push queued extents */
3277 			sctx->flush_all_writes = true;
3278 			scrub_submit(sctx);
3279 			mutex_lock(&sctx->wr_lock);
3280 			scrub_wr_submit(sctx);
3281 			mutex_unlock(&sctx->wr_lock);
3282 			wait_event(sctx->list_wait,
3283 				   atomic_read(&sctx->bios_in_flight) == 0);
3284 			sctx->flush_all_writes = false;
3285 			scrub_blocked_if_needed(fs_info);
3286 		}
3287 		/* Block group removed? */
3288 		spin_lock(&bg->lock);
3289 		if (bg->removed) {
3290 			spin_unlock(&bg->lock);
3291 			ret = 0;
3292 			break;
3293 		}
3294 		spin_unlock(&bg->lock);
3295 
3296 		ret = find_first_extent_item(extent_root, &path, cur_logical,
3297 					     logical_end - cur_logical);
3298 		if (ret > 0) {
3299 			/* No more extent, just update the accounting */
3300 			sctx->stat.last_physical = physical + logical_length;
3301 			ret = 0;
3302 			break;
3303 		}
3304 		if (ret < 0)
3305 			break;
3306 		get_extent_info(&path, &extent_start, &extent_len,
3307 				&extent_flags, &extent_gen);
3308 		/* Skip hole range which doesn't have any extent */
3309 		cur_logical = max(extent_start, cur_logical);
3310 
3311 		/*
3312 		 * Scrub len has three limits:
3313 		 * - Extent size limit
3314 		 * - Scrub range limit
3315 		 *   This is especially imporatant for RAID0/RAID10 to reuse
3316 		 *   this function
3317 		 * - Max scrub size limit
3318 		 */
3319 		scrub_len = min(min(extent_start + extent_len,
3320 				    logical_end), cur_logical + max_length) -
3321 			    cur_logical;
3322 
3323 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3324 			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
3325 					cur_logical + scrub_len - 1,
3326 					&sctx->csum_list, 1);
3327 			if (ret)
3328 				break;
3329 		}
3330 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3331 		    does_range_cross_boundary(extent_start, extent_len,
3332 					      logical_start, logical_length)) {
3333 			btrfs_err(fs_info,
3334 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3335 				  extent_start, logical_start, logical_end);
3336 			spin_lock(&sctx->stat_lock);
3337 			sctx->stat.uncorrectable_errors++;
3338 			spin_unlock(&sctx->stat_lock);
3339 			cur_logical += scrub_len;
3340 			continue;
3341 		}
3342 		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3343 				   cur_logical - logical_start + physical,
3344 				   device, extent_flags, extent_gen,
3345 				   mirror_num);
3346 		scrub_free_csums(sctx);
3347 		if (ret)
3348 			break;
3349 		if (sctx->is_dev_replace)
3350 			sync_replace_for_zoned(sctx);
3351 		cur_logical += scrub_len;
3352 		/* Don't hold CPU for too long time */
3353 		cond_resched();
3354 	}
3355 	btrfs_release_path(&path);
3356 	return ret;
3357 }
3358 
3359 /* Calculate the full stripe length for simple stripe based profiles */
3360 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3361 {
3362 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3363 			    BTRFS_BLOCK_GROUP_RAID10));
3364 
3365 	return map->num_stripes / map->sub_stripes * map->stripe_len;
3366 }
3367 
3368 /* Get the logical bytenr for the stripe */
3369 static u64 simple_stripe_get_logical(struct map_lookup *map,
3370 				     struct btrfs_block_group *bg,
3371 				     int stripe_index)
3372 {
3373 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3374 			    BTRFS_BLOCK_GROUP_RAID10));
3375 	ASSERT(stripe_index < map->num_stripes);
3376 
3377 	/*
3378 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3379 	 * skip.
3380 	 */
3381 	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3382 }
3383 
3384 /* Get the mirror number for the stripe */
3385 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3386 {
3387 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3388 			    BTRFS_BLOCK_GROUP_RAID10));
3389 	ASSERT(stripe_index < map->num_stripes);
3390 
3391 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3392 	return stripe_index % map->sub_stripes + 1;
3393 }
3394 
3395 static int scrub_simple_stripe(struct scrub_ctx *sctx,
3396 			       struct btrfs_root *extent_root,
3397 			       struct btrfs_root *csum_root,
3398 			       struct btrfs_block_group *bg,
3399 			       struct map_lookup *map,
3400 			       struct btrfs_device *device,
3401 			       int stripe_index)
3402 {
3403 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3404 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3405 	const u64 orig_physical = map->stripes[stripe_index].physical;
3406 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3407 	u64 cur_logical = orig_logical;
3408 	u64 cur_physical = orig_physical;
3409 	int ret = 0;
3410 
3411 	while (cur_logical < bg->start + bg->length) {
3412 		/*
3413 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3414 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3415 		 * this stripe.
3416 		 */
3417 		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3418 					  cur_logical, map->stripe_len, device,
3419 					  cur_physical, mirror_num);
3420 		if (ret)
3421 			return ret;
3422 		/* Skip to next stripe which belongs to the target device */
3423 		cur_logical += logical_increment;
3424 		/* For physical offset, we just go to next stripe */
3425 		cur_physical += map->stripe_len;
3426 	}
3427 	return ret;
3428 }
3429 
3430 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3431 					   struct btrfs_block_group *bg,
3432 					   struct map_lookup *map,
3433 					   struct btrfs_device *scrub_dev,
3434 					   int stripe_index, u64 dev_extent_len)
3435 {
3436 	struct btrfs_path *path;
3437 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3438 	struct btrfs_root *root;
3439 	struct btrfs_root *csum_root;
3440 	struct blk_plug plug;
3441 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3442 	const u64 chunk_logical = bg->start;
3443 	int ret;
3444 	u64 physical = map->stripes[stripe_index].physical;
3445 	const u64 physical_end = physical + dev_extent_len;
3446 	u64 logical;
3447 	u64 logic_end;
3448 	/* The logical increment after finishing one stripe */
3449 	u64 increment;
3450 	/* Offset inside the chunk */
3451 	u64 offset;
3452 	u64 stripe_logical;
3453 	u64 stripe_end;
3454 	int stop_loop = 0;
3455 
3456 	path = btrfs_alloc_path();
3457 	if (!path)
3458 		return -ENOMEM;
3459 
3460 	/*
3461 	 * work on commit root. The related disk blocks are static as
3462 	 * long as COW is applied. This means, it is save to rewrite
3463 	 * them to repair disk errors without any race conditions
3464 	 */
3465 	path->search_commit_root = 1;
3466 	path->skip_locking = 1;
3467 	path->reada = READA_FORWARD;
3468 
3469 	wait_event(sctx->list_wait,
3470 		   atomic_read(&sctx->bios_in_flight) == 0);
3471 	scrub_blocked_if_needed(fs_info);
3472 
3473 	root = btrfs_extent_root(fs_info, bg->start);
3474 	csum_root = btrfs_csum_root(fs_info, bg->start);
3475 
3476 	/*
3477 	 * collect all data csums for the stripe to avoid seeking during
3478 	 * the scrub. This might currently (crc32) end up to be about 1MB
3479 	 */
3480 	blk_start_plug(&plug);
3481 
3482 	if (sctx->is_dev_replace &&
3483 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3484 		mutex_lock(&sctx->wr_lock);
3485 		sctx->write_pointer = physical;
3486 		mutex_unlock(&sctx->wr_lock);
3487 		sctx->flush_all_writes = true;
3488 	}
3489 
3490 	/*
3491 	 * There used to be a big double loop to handle all profiles using the
3492 	 * same routine, which grows larger and more gross over time.
3493 	 *
3494 	 * So here we handle each profile differently, so simpler profiles
3495 	 * have simpler scrubbing function.
3496 	 */
3497 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3498 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3499 		/*
3500 		 * Above check rules out all complex profile, the remaining
3501 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3502 		 * mirrored duplication without stripe.
3503 		 *
3504 		 * Only @physical and @mirror_num needs to calculated using
3505 		 * @stripe_index.
3506 		 */
3507 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3508 				bg->start, bg->length, scrub_dev,
3509 				map->stripes[stripe_index].physical,
3510 				stripe_index + 1);
3511 		offset = 0;
3512 		goto out;
3513 	}
3514 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3515 		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3516 					  scrub_dev, stripe_index);
3517 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3518 		goto out;
3519 	}
3520 
3521 	/* Only RAID56 goes through the old code */
3522 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3523 	ret = 0;
3524 
3525 	/* Calculate the logical end of the stripe */
3526 	get_raid56_logic_offset(physical_end, stripe_index,
3527 				map, &logic_end, NULL);
3528 	logic_end += chunk_logical;
3529 
3530 	/* Initialize @offset in case we need to go to out: label */
3531 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3532 	increment = map->stripe_len * nr_data_stripes(map);
3533 
3534 	/*
3535 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3536 	 * using their physical offset.
3537 	 */
3538 	while (physical < physical_end) {
3539 		ret = get_raid56_logic_offset(physical, stripe_index, map,
3540 					      &logical, &stripe_logical);
3541 		logical += chunk_logical;
3542 		if (ret) {
3543 			/* it is parity strip */
3544 			stripe_logical += chunk_logical;
3545 			stripe_end = stripe_logical + increment;
3546 			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3547 						  stripe_logical,
3548 						  stripe_end);
3549 			if (ret)
3550 				goto out;
3551 			goto next;
3552 		}
3553 
3554 		/*
3555 		 * Now we're at a data stripe, scrub each extents in the range.
3556 		 *
3557 		 * At this stage, if we ignore the repair part, inside each data
3558 		 * stripe it is no different than SINGLE profile.
3559 		 * We can reuse scrub_simple_mirror() here, as the repair part
3560 		 * is still based on @mirror_num.
3561 		 */
3562 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3563 					  logical, map->stripe_len,
3564 					  scrub_dev, physical, 1);
3565 		if (ret < 0)
3566 			goto out;
3567 next:
3568 		logical += increment;
3569 		physical += map->stripe_len;
3570 		spin_lock(&sctx->stat_lock);
3571 		if (stop_loop)
3572 			sctx->stat.last_physical = map->stripes[stripe_index].physical +
3573 						   dev_extent_len;
3574 		else
3575 			sctx->stat.last_physical = physical;
3576 		spin_unlock(&sctx->stat_lock);
3577 		if (stop_loop)
3578 			break;
3579 	}
3580 out:
3581 	/* push queued extents */
3582 	scrub_submit(sctx);
3583 	mutex_lock(&sctx->wr_lock);
3584 	scrub_wr_submit(sctx);
3585 	mutex_unlock(&sctx->wr_lock);
3586 
3587 	blk_finish_plug(&plug);
3588 	btrfs_free_path(path);
3589 
3590 	if (sctx->is_dev_replace && ret >= 0) {
3591 		int ret2;
3592 
3593 		ret2 = sync_write_pointer_for_zoned(sctx,
3594 				chunk_logical + offset,
3595 				map->stripes[stripe_index].physical,
3596 				physical_end);
3597 		if (ret2)
3598 			ret = ret2;
3599 	}
3600 
3601 	return ret < 0 ? ret : 0;
3602 }
3603 
3604 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3605 					  struct btrfs_block_group *bg,
3606 					  struct btrfs_device *scrub_dev,
3607 					  u64 dev_offset,
3608 					  u64 dev_extent_len)
3609 {
3610 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3611 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3612 	struct map_lookup *map;
3613 	struct extent_map *em;
3614 	int i;
3615 	int ret = 0;
3616 
3617 	read_lock(&map_tree->lock);
3618 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3619 	read_unlock(&map_tree->lock);
3620 
3621 	if (!em) {
3622 		/*
3623 		 * Might have been an unused block group deleted by the cleaner
3624 		 * kthread or relocation.
3625 		 */
3626 		spin_lock(&bg->lock);
3627 		if (!bg->removed)
3628 			ret = -EINVAL;
3629 		spin_unlock(&bg->lock);
3630 
3631 		return ret;
3632 	}
3633 	if (em->start != bg->start)
3634 		goto out;
3635 	if (em->len < dev_extent_len)
3636 		goto out;
3637 
3638 	map = em->map_lookup;
3639 	for (i = 0; i < map->num_stripes; ++i) {
3640 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3641 		    map->stripes[i].physical == dev_offset) {
3642 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i,
3643 					   dev_extent_len);
3644 			if (ret)
3645 				goto out;
3646 		}
3647 	}
3648 out:
3649 	free_extent_map(em);
3650 
3651 	return ret;
3652 }
3653 
3654 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3655 					  struct btrfs_block_group *cache)
3656 {
3657 	struct btrfs_fs_info *fs_info = cache->fs_info;
3658 	struct btrfs_trans_handle *trans;
3659 
3660 	if (!btrfs_is_zoned(fs_info))
3661 		return 0;
3662 
3663 	btrfs_wait_block_group_reservations(cache);
3664 	btrfs_wait_nocow_writers(cache);
3665 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3666 
3667 	trans = btrfs_join_transaction(root);
3668 	if (IS_ERR(trans))
3669 		return PTR_ERR(trans);
3670 	return btrfs_commit_transaction(trans);
3671 }
3672 
3673 static noinline_for_stack
3674 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3675 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3676 {
3677 	struct btrfs_dev_extent *dev_extent = NULL;
3678 	struct btrfs_path *path;
3679 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3680 	struct btrfs_root *root = fs_info->dev_root;
3681 	u64 chunk_offset;
3682 	int ret = 0;
3683 	int ro_set;
3684 	int slot;
3685 	struct extent_buffer *l;
3686 	struct btrfs_key key;
3687 	struct btrfs_key found_key;
3688 	struct btrfs_block_group *cache;
3689 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3690 
3691 	path = btrfs_alloc_path();
3692 	if (!path)
3693 		return -ENOMEM;
3694 
3695 	path->reada = READA_FORWARD;
3696 	path->search_commit_root = 1;
3697 	path->skip_locking = 1;
3698 
3699 	key.objectid = scrub_dev->devid;
3700 	key.offset = 0ull;
3701 	key.type = BTRFS_DEV_EXTENT_KEY;
3702 
3703 	while (1) {
3704 		u64 dev_extent_len;
3705 
3706 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3707 		if (ret < 0)
3708 			break;
3709 		if (ret > 0) {
3710 			if (path->slots[0] >=
3711 			    btrfs_header_nritems(path->nodes[0])) {
3712 				ret = btrfs_next_leaf(root, path);
3713 				if (ret < 0)
3714 					break;
3715 				if (ret > 0) {
3716 					ret = 0;
3717 					break;
3718 				}
3719 			} else {
3720 				ret = 0;
3721 			}
3722 		}
3723 
3724 		l = path->nodes[0];
3725 		slot = path->slots[0];
3726 
3727 		btrfs_item_key_to_cpu(l, &found_key, slot);
3728 
3729 		if (found_key.objectid != scrub_dev->devid)
3730 			break;
3731 
3732 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3733 			break;
3734 
3735 		if (found_key.offset >= end)
3736 			break;
3737 
3738 		if (found_key.offset < key.offset)
3739 			break;
3740 
3741 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3742 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3743 
3744 		if (found_key.offset + dev_extent_len <= start)
3745 			goto skip;
3746 
3747 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3748 
3749 		/*
3750 		 * get a reference on the corresponding block group to prevent
3751 		 * the chunk from going away while we scrub it
3752 		 */
3753 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3754 
3755 		/* some chunks are removed but not committed to disk yet,
3756 		 * continue scrubbing */
3757 		if (!cache)
3758 			goto skip;
3759 
3760 		ASSERT(cache->start <= chunk_offset);
3761 		/*
3762 		 * We are using the commit root to search for device extents, so
3763 		 * that means we could have found a device extent item from a
3764 		 * block group that was deleted in the current transaction. The
3765 		 * logical start offset of the deleted block group, stored at
3766 		 * @chunk_offset, might be part of the logical address range of
3767 		 * a new block group (which uses different physical extents).
3768 		 * In this case btrfs_lookup_block_group() has returned the new
3769 		 * block group, and its start address is less than @chunk_offset.
3770 		 *
3771 		 * We skip such new block groups, because it's pointless to
3772 		 * process them, as we won't find their extents because we search
3773 		 * for them using the commit root of the extent tree. For a device
3774 		 * replace it's also fine to skip it, we won't miss copying them
3775 		 * to the target device because we have the write duplication
3776 		 * setup through the regular write path (by btrfs_map_block()),
3777 		 * and we have committed a transaction when we started the device
3778 		 * replace, right after setting up the device replace state.
3779 		 */
3780 		if (cache->start < chunk_offset) {
3781 			btrfs_put_block_group(cache);
3782 			goto skip;
3783 		}
3784 
3785 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3786 			spin_lock(&cache->lock);
3787 			if (!cache->to_copy) {
3788 				spin_unlock(&cache->lock);
3789 				btrfs_put_block_group(cache);
3790 				goto skip;
3791 			}
3792 			spin_unlock(&cache->lock);
3793 		}
3794 
3795 		/*
3796 		 * Make sure that while we are scrubbing the corresponding block
3797 		 * group doesn't get its logical address and its device extents
3798 		 * reused for another block group, which can possibly be of a
3799 		 * different type and different profile. We do this to prevent
3800 		 * false error detections and crashes due to bogus attempts to
3801 		 * repair extents.
3802 		 */
3803 		spin_lock(&cache->lock);
3804 		if (cache->removed) {
3805 			spin_unlock(&cache->lock);
3806 			btrfs_put_block_group(cache);
3807 			goto skip;
3808 		}
3809 		btrfs_freeze_block_group(cache);
3810 		spin_unlock(&cache->lock);
3811 
3812 		/*
3813 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3814 		 * to avoid deadlock caused by:
3815 		 * btrfs_inc_block_group_ro()
3816 		 * -> btrfs_wait_for_commit()
3817 		 * -> btrfs_commit_transaction()
3818 		 * -> btrfs_scrub_pause()
3819 		 */
3820 		scrub_pause_on(fs_info);
3821 
3822 		/*
3823 		 * Don't do chunk preallocation for scrub.
3824 		 *
3825 		 * This is especially important for SYSTEM bgs, or we can hit
3826 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3827 		 * 1. The only SYSTEM bg is marked RO.
3828 		 *    Since SYSTEM bg is small, that's pretty common.
3829 		 * 2. New SYSTEM bg will be allocated
3830 		 *    Due to regular version will allocate new chunk.
3831 		 * 3. New SYSTEM bg is empty and will get cleaned up
3832 		 *    Before cleanup really happens, it's marked RO again.
3833 		 * 4. Empty SYSTEM bg get scrubbed
3834 		 *    We go back to 2.
3835 		 *
3836 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3837 		 * thread can't be triggered fast enough, and use up all space
3838 		 * of btrfs_super_block::sys_chunk_array
3839 		 *
3840 		 * While for dev replace, we need to try our best to mark block
3841 		 * group RO, to prevent race between:
3842 		 * - Write duplication
3843 		 *   Contains latest data
3844 		 * - Scrub copy
3845 		 *   Contains data from commit tree
3846 		 *
3847 		 * If target block group is not marked RO, nocow writes can
3848 		 * be overwritten by scrub copy, causing data corruption.
3849 		 * So for dev-replace, it's not allowed to continue if a block
3850 		 * group is not RO.
3851 		 */
3852 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3853 		if (!ret && sctx->is_dev_replace) {
3854 			ret = finish_extent_writes_for_zoned(root, cache);
3855 			if (ret) {
3856 				btrfs_dec_block_group_ro(cache);
3857 				scrub_pause_off(fs_info);
3858 				btrfs_put_block_group(cache);
3859 				break;
3860 			}
3861 		}
3862 
3863 		if (ret == 0) {
3864 			ro_set = 1;
3865 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3866 			/*
3867 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3868 			 * failed in creating new chunk for metadata.
3869 			 * It is not a problem for scrub, because
3870 			 * metadata are always cowed, and our scrub paused
3871 			 * commit_transactions.
3872 			 */
3873 			ro_set = 0;
3874 		} else if (ret == -ETXTBSY) {
3875 			btrfs_warn(fs_info,
3876 		   "skipping scrub of block group %llu due to active swapfile",
3877 				   cache->start);
3878 			scrub_pause_off(fs_info);
3879 			ret = 0;
3880 			goto skip_unfreeze;
3881 		} else {
3882 			btrfs_warn(fs_info,
3883 				   "failed setting block group ro: %d", ret);
3884 			btrfs_unfreeze_block_group(cache);
3885 			btrfs_put_block_group(cache);
3886 			scrub_pause_off(fs_info);
3887 			break;
3888 		}
3889 
3890 		/*
3891 		 * Now the target block is marked RO, wait for nocow writes to
3892 		 * finish before dev-replace.
3893 		 * COW is fine, as COW never overwrites extents in commit tree.
3894 		 */
3895 		if (sctx->is_dev_replace) {
3896 			btrfs_wait_nocow_writers(cache);
3897 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3898 					cache->length);
3899 		}
3900 
3901 		scrub_pause_off(fs_info);
3902 		down_write(&dev_replace->rwsem);
3903 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3904 		dev_replace->cursor_left = found_key.offset;
3905 		dev_replace->item_needs_writeback = 1;
3906 		up_write(&dev_replace->rwsem);
3907 
3908 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
3909 				  dev_extent_len);
3910 
3911 		/*
3912 		 * flush, submit all pending read and write bios, afterwards
3913 		 * wait for them.
3914 		 * Note that in the dev replace case, a read request causes
3915 		 * write requests that are submitted in the read completion
3916 		 * worker. Therefore in the current situation, it is required
3917 		 * that all write requests are flushed, so that all read and
3918 		 * write requests are really completed when bios_in_flight
3919 		 * changes to 0.
3920 		 */
3921 		sctx->flush_all_writes = true;
3922 		scrub_submit(sctx);
3923 		mutex_lock(&sctx->wr_lock);
3924 		scrub_wr_submit(sctx);
3925 		mutex_unlock(&sctx->wr_lock);
3926 
3927 		wait_event(sctx->list_wait,
3928 			   atomic_read(&sctx->bios_in_flight) == 0);
3929 
3930 		scrub_pause_on(fs_info);
3931 
3932 		/*
3933 		 * must be called before we decrease @scrub_paused.
3934 		 * make sure we don't block transaction commit while
3935 		 * we are waiting pending workers finished.
3936 		 */
3937 		wait_event(sctx->list_wait,
3938 			   atomic_read(&sctx->workers_pending) == 0);
3939 		sctx->flush_all_writes = false;
3940 
3941 		scrub_pause_off(fs_info);
3942 
3943 		if (sctx->is_dev_replace &&
3944 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3945 						      cache, found_key.offset))
3946 			ro_set = 0;
3947 
3948 		down_write(&dev_replace->rwsem);
3949 		dev_replace->cursor_left = dev_replace->cursor_right;
3950 		dev_replace->item_needs_writeback = 1;
3951 		up_write(&dev_replace->rwsem);
3952 
3953 		if (ro_set)
3954 			btrfs_dec_block_group_ro(cache);
3955 
3956 		/*
3957 		 * We might have prevented the cleaner kthread from deleting
3958 		 * this block group if it was already unused because we raced
3959 		 * and set it to RO mode first. So add it back to the unused
3960 		 * list, otherwise it might not ever be deleted unless a manual
3961 		 * balance is triggered or it becomes used and unused again.
3962 		 */
3963 		spin_lock(&cache->lock);
3964 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3965 		    cache->used == 0) {
3966 			spin_unlock(&cache->lock);
3967 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3968 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3969 							 cache);
3970 			else
3971 				btrfs_mark_bg_unused(cache);
3972 		} else {
3973 			spin_unlock(&cache->lock);
3974 		}
3975 skip_unfreeze:
3976 		btrfs_unfreeze_block_group(cache);
3977 		btrfs_put_block_group(cache);
3978 		if (ret)
3979 			break;
3980 		if (sctx->is_dev_replace &&
3981 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3982 			ret = -EIO;
3983 			break;
3984 		}
3985 		if (sctx->stat.malloc_errors > 0) {
3986 			ret = -ENOMEM;
3987 			break;
3988 		}
3989 skip:
3990 		key.offset = found_key.offset + dev_extent_len;
3991 		btrfs_release_path(path);
3992 	}
3993 
3994 	btrfs_free_path(path);
3995 
3996 	return ret;
3997 }
3998 
3999 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4000 					   struct btrfs_device *scrub_dev)
4001 {
4002 	int	i;
4003 	u64	bytenr;
4004 	u64	gen;
4005 	int	ret;
4006 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4007 
4008 	if (BTRFS_FS_ERROR(fs_info))
4009 		return -EROFS;
4010 
4011 	/* Seed devices of a new filesystem has their own generation. */
4012 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4013 		gen = scrub_dev->generation;
4014 	else
4015 		gen = fs_info->last_trans_committed;
4016 
4017 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4018 		bytenr = btrfs_sb_offset(i);
4019 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4020 		    scrub_dev->commit_total_bytes)
4021 			break;
4022 		if (!btrfs_check_super_location(scrub_dev, bytenr))
4023 			continue;
4024 
4025 		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4026 				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4027 				    NULL, bytenr);
4028 		if (ret)
4029 			return ret;
4030 	}
4031 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4032 
4033 	return 0;
4034 }
4035 
4036 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4037 {
4038 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4039 					&fs_info->scrub_lock)) {
4040 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4041 		struct workqueue_struct *scrub_wr_comp =
4042 						fs_info->scrub_wr_completion_workers;
4043 		struct workqueue_struct *scrub_parity =
4044 						fs_info->scrub_parity_workers;
4045 
4046 		fs_info->scrub_workers = NULL;
4047 		fs_info->scrub_wr_completion_workers = NULL;
4048 		fs_info->scrub_parity_workers = NULL;
4049 		mutex_unlock(&fs_info->scrub_lock);
4050 
4051 		if (scrub_workers)
4052 			destroy_workqueue(scrub_workers);
4053 		if (scrub_wr_comp)
4054 			destroy_workqueue(scrub_wr_comp);
4055 		if (scrub_parity)
4056 			destroy_workqueue(scrub_parity);
4057 	}
4058 }
4059 
4060 /*
4061  * get a reference count on fs_info->scrub_workers. start worker if necessary
4062  */
4063 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4064 						int is_dev_replace)
4065 {
4066 	struct workqueue_struct *scrub_workers = NULL;
4067 	struct workqueue_struct *scrub_wr_comp = NULL;
4068 	struct workqueue_struct *scrub_parity = NULL;
4069 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4070 	int max_active = fs_info->thread_pool_size;
4071 	int ret = -ENOMEM;
4072 
4073 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4074 		return 0;
4075 
4076 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4077 					is_dev_replace ? 1 : max_active);
4078 	if (!scrub_workers)
4079 		goto fail_scrub_workers;
4080 
4081 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4082 	if (!scrub_wr_comp)
4083 		goto fail_scrub_wr_completion_workers;
4084 
4085 	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4086 	if (!scrub_parity)
4087 		goto fail_scrub_parity_workers;
4088 
4089 	mutex_lock(&fs_info->scrub_lock);
4090 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4091 		ASSERT(fs_info->scrub_workers == NULL &&
4092 		       fs_info->scrub_wr_completion_workers == NULL &&
4093 		       fs_info->scrub_parity_workers == NULL);
4094 		fs_info->scrub_workers = scrub_workers;
4095 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4096 		fs_info->scrub_parity_workers = scrub_parity;
4097 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4098 		mutex_unlock(&fs_info->scrub_lock);
4099 		return 0;
4100 	}
4101 	/* Other thread raced in and created the workers for us */
4102 	refcount_inc(&fs_info->scrub_workers_refcnt);
4103 	mutex_unlock(&fs_info->scrub_lock);
4104 
4105 	ret = 0;
4106 	destroy_workqueue(scrub_parity);
4107 fail_scrub_parity_workers:
4108 	destroy_workqueue(scrub_wr_comp);
4109 fail_scrub_wr_completion_workers:
4110 	destroy_workqueue(scrub_workers);
4111 fail_scrub_workers:
4112 	return ret;
4113 }
4114 
4115 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4116 		    u64 end, struct btrfs_scrub_progress *progress,
4117 		    int readonly, int is_dev_replace)
4118 {
4119 	struct btrfs_dev_lookup_args args = { .devid = devid };
4120 	struct scrub_ctx *sctx;
4121 	int ret;
4122 	struct btrfs_device *dev;
4123 	unsigned int nofs_flag;
4124 
4125 	if (btrfs_fs_closing(fs_info))
4126 		return -EAGAIN;
4127 
4128 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4129 		/*
4130 		 * in this case scrub is unable to calculate the checksum
4131 		 * the way scrub is implemented. Do not handle this
4132 		 * situation at all because it won't ever happen.
4133 		 */
4134 		btrfs_err(fs_info,
4135 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4136 		       fs_info->nodesize,
4137 		       BTRFS_STRIPE_LEN);
4138 		return -EINVAL;
4139 	}
4140 
4141 	if (fs_info->nodesize >
4142 	    SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits ||
4143 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) {
4144 		/*
4145 		 * Would exhaust the array bounds of sectorv member in
4146 		 * struct scrub_block
4147 		 */
4148 		btrfs_err(fs_info,
4149 "scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails",
4150 		       fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK,
4151 		       fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK);
4152 		return -EINVAL;
4153 	}
4154 
4155 	/* Allocate outside of device_list_mutex */
4156 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4157 	if (IS_ERR(sctx))
4158 		return PTR_ERR(sctx);
4159 
4160 	ret = scrub_workers_get(fs_info, is_dev_replace);
4161 	if (ret)
4162 		goto out_free_ctx;
4163 
4164 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4165 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4166 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4167 		     !is_dev_replace)) {
4168 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4169 		ret = -ENODEV;
4170 		goto out;
4171 	}
4172 
4173 	if (!is_dev_replace && !readonly &&
4174 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4175 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4176 		btrfs_err_in_rcu(fs_info,
4177 			"scrub on devid %llu: filesystem on %s is not writable",
4178 				 devid, rcu_str_deref(dev->name));
4179 		ret = -EROFS;
4180 		goto out;
4181 	}
4182 
4183 	mutex_lock(&fs_info->scrub_lock);
4184 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4185 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4186 		mutex_unlock(&fs_info->scrub_lock);
4187 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188 		ret = -EIO;
4189 		goto out;
4190 	}
4191 
4192 	down_read(&fs_info->dev_replace.rwsem);
4193 	if (dev->scrub_ctx ||
4194 	    (!is_dev_replace &&
4195 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4196 		up_read(&fs_info->dev_replace.rwsem);
4197 		mutex_unlock(&fs_info->scrub_lock);
4198 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4199 		ret = -EINPROGRESS;
4200 		goto out;
4201 	}
4202 	up_read(&fs_info->dev_replace.rwsem);
4203 
4204 	sctx->readonly = readonly;
4205 	dev->scrub_ctx = sctx;
4206 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4207 
4208 	/*
4209 	 * checking @scrub_pause_req here, we can avoid
4210 	 * race between committing transaction and scrubbing.
4211 	 */
4212 	__scrub_blocked_if_needed(fs_info);
4213 	atomic_inc(&fs_info->scrubs_running);
4214 	mutex_unlock(&fs_info->scrub_lock);
4215 
4216 	/*
4217 	 * In order to avoid deadlock with reclaim when there is a transaction
4218 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4219 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4220 	 * invoked by our callees. The pausing request is done when the
4221 	 * transaction commit starts, and it blocks the transaction until scrub
4222 	 * is paused (done at specific points at scrub_stripe() or right above
4223 	 * before incrementing fs_info->scrubs_running).
4224 	 */
4225 	nofs_flag = memalloc_nofs_save();
4226 	if (!is_dev_replace) {
4227 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4228 		/*
4229 		 * by holding device list mutex, we can
4230 		 * kick off writing super in log tree sync.
4231 		 */
4232 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4233 		ret = scrub_supers(sctx, dev);
4234 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4235 	}
4236 
4237 	if (!ret)
4238 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4239 	memalloc_nofs_restore(nofs_flag);
4240 
4241 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4242 	atomic_dec(&fs_info->scrubs_running);
4243 	wake_up(&fs_info->scrub_pause_wait);
4244 
4245 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4246 
4247 	if (progress)
4248 		memcpy(progress, &sctx->stat, sizeof(*progress));
4249 
4250 	if (!is_dev_replace)
4251 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4252 			ret ? "not finished" : "finished", devid, ret);
4253 
4254 	mutex_lock(&fs_info->scrub_lock);
4255 	dev->scrub_ctx = NULL;
4256 	mutex_unlock(&fs_info->scrub_lock);
4257 
4258 	scrub_workers_put(fs_info);
4259 	scrub_put_ctx(sctx);
4260 
4261 	return ret;
4262 out:
4263 	scrub_workers_put(fs_info);
4264 out_free_ctx:
4265 	scrub_free_ctx(sctx);
4266 
4267 	return ret;
4268 }
4269 
4270 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4271 {
4272 	mutex_lock(&fs_info->scrub_lock);
4273 	atomic_inc(&fs_info->scrub_pause_req);
4274 	while (atomic_read(&fs_info->scrubs_paused) !=
4275 	       atomic_read(&fs_info->scrubs_running)) {
4276 		mutex_unlock(&fs_info->scrub_lock);
4277 		wait_event(fs_info->scrub_pause_wait,
4278 			   atomic_read(&fs_info->scrubs_paused) ==
4279 			   atomic_read(&fs_info->scrubs_running));
4280 		mutex_lock(&fs_info->scrub_lock);
4281 	}
4282 	mutex_unlock(&fs_info->scrub_lock);
4283 }
4284 
4285 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4286 {
4287 	atomic_dec(&fs_info->scrub_pause_req);
4288 	wake_up(&fs_info->scrub_pause_wait);
4289 }
4290 
4291 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4292 {
4293 	mutex_lock(&fs_info->scrub_lock);
4294 	if (!atomic_read(&fs_info->scrubs_running)) {
4295 		mutex_unlock(&fs_info->scrub_lock);
4296 		return -ENOTCONN;
4297 	}
4298 
4299 	atomic_inc(&fs_info->scrub_cancel_req);
4300 	while (atomic_read(&fs_info->scrubs_running)) {
4301 		mutex_unlock(&fs_info->scrub_lock);
4302 		wait_event(fs_info->scrub_pause_wait,
4303 			   atomic_read(&fs_info->scrubs_running) == 0);
4304 		mutex_lock(&fs_info->scrub_lock);
4305 	}
4306 	atomic_dec(&fs_info->scrub_cancel_req);
4307 	mutex_unlock(&fs_info->scrub_lock);
4308 
4309 	return 0;
4310 }
4311 
4312 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4313 {
4314 	struct btrfs_fs_info *fs_info = dev->fs_info;
4315 	struct scrub_ctx *sctx;
4316 
4317 	mutex_lock(&fs_info->scrub_lock);
4318 	sctx = dev->scrub_ctx;
4319 	if (!sctx) {
4320 		mutex_unlock(&fs_info->scrub_lock);
4321 		return -ENOTCONN;
4322 	}
4323 	atomic_inc(&sctx->cancel_req);
4324 	while (dev->scrub_ctx) {
4325 		mutex_unlock(&fs_info->scrub_lock);
4326 		wait_event(fs_info->scrub_pause_wait,
4327 			   dev->scrub_ctx == NULL);
4328 		mutex_lock(&fs_info->scrub_lock);
4329 	}
4330 	mutex_unlock(&fs_info->scrub_lock);
4331 
4332 	return 0;
4333 }
4334 
4335 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4336 			 struct btrfs_scrub_progress *progress)
4337 {
4338 	struct btrfs_dev_lookup_args args = { .devid = devid };
4339 	struct btrfs_device *dev;
4340 	struct scrub_ctx *sctx = NULL;
4341 
4342 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4343 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4344 	if (dev)
4345 		sctx = dev->scrub_ctx;
4346 	if (sctx)
4347 		memcpy(progress, &sctx->stat, sizeof(*progress));
4348 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4349 
4350 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4351 }
4352 
4353 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4354 				 u64 extent_logical, u32 extent_len,
4355 				 u64 *extent_physical,
4356 				 struct btrfs_device **extent_dev,
4357 				 int *extent_mirror_num)
4358 {
4359 	u64 mapped_length;
4360 	struct btrfs_io_context *bioc = NULL;
4361 	int ret;
4362 
4363 	mapped_length = extent_len;
4364 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4365 			      &mapped_length, &bioc, 0);
4366 	if (ret || !bioc || mapped_length < extent_len ||
4367 	    !bioc->stripes[0].dev->bdev) {
4368 		btrfs_put_bioc(bioc);
4369 		return;
4370 	}
4371 
4372 	*extent_physical = bioc->stripes[0].physical;
4373 	*extent_mirror_num = bioc->mirror_num;
4374 	*extent_dev = bioc->stripes[0].dev;
4375 	btrfs_put_bioc(bioc);
4376 }
4377