xref: /openbmc/linux/fs/btrfs/scrub.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
20 
21 /*
22  * This is only the first step towards a full-features scrub. It reads all
23  * extent and super block and verifies the checksums. In case a bad checksum
24  * is found or the extent cannot be read, good data will be written back if
25  * any can be found.
26  *
27  * Future enhancements:
28  *  - In case an unrepairable extent is encountered, track which files are
29  *    affected and report them
30  *  - track and record media errors, throw out bad devices
31  *  - add a mode to also read unallocated space
32  */
33 
34 struct scrub_block;
35 struct scrub_ctx;
36 
37 /*
38  * the following three values only influence the performance.
39  * The last one configures the number of parallel and outstanding I/O
40  * operations. The first two values configure an upper limit for the number
41  * of (dynamically allocated) pages that are added to a bio.
42  */
43 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 
47 /*
48  * the following value times PAGE_SIZE needs to be large enough to match the
49  * largest node/leaf/sector size that shall be supported.
50  * Values larger than BTRFS_STRIPE_LEN are not supported.
51  */
52 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
53 
54 struct scrub_recover {
55 	refcount_t		refs;
56 	struct btrfs_bio	*bbio;
57 	u64			map_length;
58 };
59 
60 struct scrub_page {
61 	struct scrub_block	*sblock;
62 	struct page		*page;
63 	struct btrfs_device	*dev;
64 	struct list_head	list;
65 	u64			flags;  /* extent flags */
66 	u64			generation;
67 	u64			logical;
68 	u64			physical;
69 	u64			physical_for_dev_replace;
70 	atomic_t		refs;
71 	struct {
72 		unsigned int	mirror_num:8;
73 		unsigned int	have_csum:1;
74 		unsigned int	io_error:1;
75 	};
76 	u8			csum[BTRFS_CSUM_SIZE];
77 
78 	struct scrub_recover	*recover;
79 };
80 
81 struct scrub_bio {
82 	int			index;
83 	struct scrub_ctx	*sctx;
84 	struct btrfs_device	*dev;
85 	struct bio		*bio;
86 	blk_status_t		status;
87 	u64			logical;
88 	u64			physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94 	int			page_count;
95 	int			next_free;
96 	struct btrfs_work	work;
97 };
98 
99 struct scrub_block {
100 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 	int			page_count;
102 	atomic_t		outstanding_pages;
103 	refcount_t		refs; /* free mem on transition to zero */
104 	struct scrub_ctx	*sctx;
105 	struct scrub_parity	*sparity;
106 	struct {
107 		unsigned int	header_error:1;
108 		unsigned int	checksum_error:1;
109 		unsigned int	no_io_error_seen:1;
110 		unsigned int	generation_error:1; /* also sets header_error */
111 
112 		/* The following is for the data used to check parity */
113 		/* It is for the data with checksum */
114 		unsigned int	data_corrected:1;
115 	};
116 	struct btrfs_work	work;
117 };
118 
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 	struct scrub_ctx	*sctx;
122 
123 	struct btrfs_device	*scrub_dev;
124 
125 	u64			logic_start;
126 
127 	u64			logic_end;
128 
129 	int			nsectors;
130 
131 	u64			stripe_len;
132 
133 	refcount_t		refs;
134 
135 	struct list_head	spages;
136 
137 	/* Work of parity check and repair */
138 	struct btrfs_work	work;
139 
140 	/* Mark the parity blocks which have data */
141 	unsigned long		*dbitmap;
142 
143 	/*
144 	 * Mark the parity blocks which have data, but errors happen when
145 	 * read data or check data
146 	 */
147 	unsigned long		*ebitmap;
148 
149 	unsigned long		bitmap[0];
150 };
151 
152 struct scrub_ctx {
153 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154 	struct btrfs_fs_info	*fs_info;
155 	int			first_free;
156 	int			curr;
157 	atomic_t		bios_in_flight;
158 	atomic_t		workers_pending;
159 	spinlock_t		list_lock;
160 	wait_queue_head_t	list_wait;
161 	u16			csum_size;
162 	struct list_head	csum_list;
163 	atomic_t		cancel_req;
164 	int			readonly;
165 	int			pages_per_rd_bio;
166 
167 	int			is_dev_replace;
168 
169 	struct scrub_bio        *wr_curr_bio;
170 	struct mutex            wr_lock;
171 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 	struct btrfs_device     *wr_tgtdev;
173 	bool                    flush_all_writes;
174 
175 	/*
176 	 * statistics
177 	 */
178 	struct btrfs_scrub_progress stat;
179 	spinlock_t		stat_lock;
180 
181 	/*
182 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 	 * decrement bios_in_flight and workers_pending and then do a wakeup
184 	 * on the list_wait wait queue. We must ensure the main scrub task
185 	 * doesn't free the scrub context before or while the workers are
186 	 * doing the wakeup() call.
187 	 */
188 	refcount_t              refs;
189 };
190 
191 struct scrub_fixup_nodatasum {
192 	struct scrub_ctx	*sctx;
193 	struct btrfs_device	*dev;
194 	u64			logical;
195 	struct btrfs_root	*root;
196 	struct btrfs_work	work;
197 	int			mirror_num;
198 };
199 
200 struct scrub_nocow_inode {
201 	u64			inum;
202 	u64			offset;
203 	u64			root;
204 	struct list_head	list;
205 };
206 
207 struct scrub_copy_nocow_ctx {
208 	struct scrub_ctx	*sctx;
209 	u64			logical;
210 	u64			len;
211 	int			mirror_num;
212 	u64			physical_for_dev_replace;
213 	struct list_head	inodes;
214 	struct btrfs_work	work;
215 };
216 
217 struct scrub_warning {
218 	struct btrfs_path	*path;
219 	u64			extent_item_size;
220 	const char		*errstr;
221 	u64			physical;
222 	u64			logical;
223 	struct btrfs_device	*dev;
224 };
225 
226 struct full_stripe_lock {
227 	struct rb_node node;
228 	u64 logical;
229 	u64 refs;
230 	struct mutex mutex;
231 };
232 
233 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
234 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
235 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
236 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239 				     struct scrub_block *sblocks_for_recheck);
240 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
241 				struct scrub_block *sblock,
242 				int retry_failed_mirror);
243 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
244 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
245 					     struct scrub_block *sblock_good);
246 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
247 					    struct scrub_block *sblock_good,
248 					    int page_num, int force_write);
249 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
250 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
251 					   int page_num);
252 static int scrub_checksum_data(struct scrub_block *sblock);
253 static int scrub_checksum_tree_block(struct scrub_block *sblock);
254 static int scrub_checksum_super(struct scrub_block *sblock);
255 static void scrub_block_get(struct scrub_block *sblock);
256 static void scrub_block_put(struct scrub_block *sblock);
257 static void scrub_page_get(struct scrub_page *spage);
258 static void scrub_page_put(struct scrub_page *spage);
259 static void scrub_parity_get(struct scrub_parity *sparity);
260 static void scrub_parity_put(struct scrub_parity *sparity);
261 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
262 				    struct scrub_page *spage);
263 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
264 		       u64 physical, struct btrfs_device *dev, u64 flags,
265 		       u64 gen, int mirror_num, u8 *csum, int force,
266 		       u64 physical_for_dev_replace);
267 static void scrub_bio_end_io(struct bio *bio);
268 static void scrub_bio_end_io_worker(struct btrfs_work *work);
269 static void scrub_block_complete(struct scrub_block *sblock);
270 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
271 			       u64 extent_logical, u64 extent_len,
272 			       u64 *extent_physical,
273 			       struct btrfs_device **extent_dev,
274 			       int *extent_mirror_num);
275 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
276 				    struct scrub_page *spage);
277 static void scrub_wr_submit(struct scrub_ctx *sctx);
278 static void scrub_wr_bio_end_io(struct bio *bio);
279 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
280 static int write_page_nocow(struct scrub_ctx *sctx,
281 			    u64 physical_for_dev_replace, struct page *page);
282 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
283 				      struct scrub_copy_nocow_ctx *ctx);
284 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
285 			    int mirror_num, u64 physical_for_dev_replace);
286 static void copy_nocow_pages_worker(struct btrfs_work *work);
287 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
288 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290 
291 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
292 {
293 	return page->recover &&
294 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
295 }
296 
297 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
298 {
299 	refcount_inc(&sctx->refs);
300 	atomic_inc(&sctx->bios_in_flight);
301 }
302 
303 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
304 {
305 	atomic_dec(&sctx->bios_in_flight);
306 	wake_up(&sctx->list_wait);
307 	scrub_put_ctx(sctx);
308 }
309 
310 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
311 {
312 	while (atomic_read(&fs_info->scrub_pause_req)) {
313 		mutex_unlock(&fs_info->scrub_lock);
314 		wait_event(fs_info->scrub_pause_wait,
315 		   atomic_read(&fs_info->scrub_pause_req) == 0);
316 		mutex_lock(&fs_info->scrub_lock);
317 	}
318 }
319 
320 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
321 {
322 	atomic_inc(&fs_info->scrubs_paused);
323 	wake_up(&fs_info->scrub_pause_wait);
324 }
325 
326 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
327 {
328 	mutex_lock(&fs_info->scrub_lock);
329 	__scrub_blocked_if_needed(fs_info);
330 	atomic_dec(&fs_info->scrubs_paused);
331 	mutex_unlock(&fs_info->scrub_lock);
332 
333 	wake_up(&fs_info->scrub_pause_wait);
334 }
335 
336 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
337 {
338 	scrub_pause_on(fs_info);
339 	scrub_pause_off(fs_info);
340 }
341 
342 /*
343  * Insert new full stripe lock into full stripe locks tree
344  *
345  * Return pointer to existing or newly inserted full_stripe_lock structure if
346  * everything works well.
347  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
348  *
349  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
350  * function
351  */
352 static struct full_stripe_lock *insert_full_stripe_lock(
353 		struct btrfs_full_stripe_locks_tree *locks_root,
354 		u64 fstripe_logical)
355 {
356 	struct rb_node **p;
357 	struct rb_node *parent = NULL;
358 	struct full_stripe_lock *entry;
359 	struct full_stripe_lock *ret;
360 
361 	lockdep_assert_held(&locks_root->lock);
362 
363 	p = &locks_root->root.rb_node;
364 	while (*p) {
365 		parent = *p;
366 		entry = rb_entry(parent, struct full_stripe_lock, node);
367 		if (fstripe_logical < entry->logical) {
368 			p = &(*p)->rb_left;
369 		} else if (fstripe_logical > entry->logical) {
370 			p = &(*p)->rb_right;
371 		} else {
372 			entry->refs++;
373 			return entry;
374 		}
375 	}
376 
377 	/* Insert new lock */
378 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
379 	if (!ret)
380 		return ERR_PTR(-ENOMEM);
381 	ret->logical = fstripe_logical;
382 	ret->refs = 1;
383 	mutex_init(&ret->mutex);
384 
385 	rb_link_node(&ret->node, parent, p);
386 	rb_insert_color(&ret->node, &locks_root->root);
387 	return ret;
388 }
389 
390 /*
391  * Search for a full stripe lock of a block group
392  *
393  * Return pointer to existing full stripe lock if found
394  * Return NULL if not found
395  */
396 static struct full_stripe_lock *search_full_stripe_lock(
397 		struct btrfs_full_stripe_locks_tree *locks_root,
398 		u64 fstripe_logical)
399 {
400 	struct rb_node *node;
401 	struct full_stripe_lock *entry;
402 
403 	lockdep_assert_held(&locks_root->lock);
404 
405 	node = locks_root->root.rb_node;
406 	while (node) {
407 		entry = rb_entry(node, struct full_stripe_lock, node);
408 		if (fstripe_logical < entry->logical)
409 			node = node->rb_left;
410 		else if (fstripe_logical > entry->logical)
411 			node = node->rb_right;
412 		else
413 			return entry;
414 	}
415 	return NULL;
416 }
417 
418 /*
419  * Helper to get full stripe logical from a normal bytenr.
420  *
421  * Caller must ensure @cache is a RAID56 block group.
422  */
423 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
424 				   u64 bytenr)
425 {
426 	u64 ret;
427 
428 	/*
429 	 * Due to chunk item size limit, full stripe length should not be
430 	 * larger than U32_MAX. Just a sanity check here.
431 	 */
432 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
433 
434 	/*
435 	 * round_down() can only handle power of 2, while RAID56 full
436 	 * stripe length can be 64KiB * n, so we need to manually round down.
437 	 */
438 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
439 		cache->full_stripe_len + cache->key.objectid;
440 	return ret;
441 }
442 
443 /*
444  * Lock a full stripe to avoid concurrency of recovery and read
445  *
446  * It's only used for profiles with parities (RAID5/6), for other profiles it
447  * does nothing.
448  *
449  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
450  * So caller must call unlock_full_stripe() at the same context.
451  *
452  * Return <0 if encounters error.
453  */
454 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
455 			    bool *locked_ret)
456 {
457 	struct btrfs_block_group_cache *bg_cache;
458 	struct btrfs_full_stripe_locks_tree *locks_root;
459 	struct full_stripe_lock *existing;
460 	u64 fstripe_start;
461 	int ret = 0;
462 
463 	*locked_ret = false;
464 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
465 	if (!bg_cache) {
466 		ASSERT(0);
467 		return -ENOENT;
468 	}
469 
470 	/* Profiles not based on parity don't need full stripe lock */
471 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
472 		goto out;
473 	locks_root = &bg_cache->full_stripe_locks_root;
474 
475 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
476 
477 	/* Now insert the full stripe lock */
478 	mutex_lock(&locks_root->lock);
479 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
480 	mutex_unlock(&locks_root->lock);
481 	if (IS_ERR(existing)) {
482 		ret = PTR_ERR(existing);
483 		goto out;
484 	}
485 	mutex_lock(&existing->mutex);
486 	*locked_ret = true;
487 out:
488 	btrfs_put_block_group(bg_cache);
489 	return ret;
490 }
491 
492 /*
493  * Unlock a full stripe.
494  *
495  * NOTE: Caller must ensure it's the same context calling corresponding
496  * lock_full_stripe().
497  *
498  * Return 0 if we unlock full stripe without problem.
499  * Return <0 for error
500  */
501 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
502 			      bool locked)
503 {
504 	struct btrfs_block_group_cache *bg_cache;
505 	struct btrfs_full_stripe_locks_tree *locks_root;
506 	struct full_stripe_lock *fstripe_lock;
507 	u64 fstripe_start;
508 	bool freeit = false;
509 	int ret = 0;
510 
511 	/* If we didn't acquire full stripe lock, no need to continue */
512 	if (!locked)
513 		return 0;
514 
515 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
516 	if (!bg_cache) {
517 		ASSERT(0);
518 		return -ENOENT;
519 	}
520 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
521 		goto out;
522 
523 	locks_root = &bg_cache->full_stripe_locks_root;
524 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
525 
526 	mutex_lock(&locks_root->lock);
527 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
528 	/* Unpaired unlock_full_stripe() detected */
529 	if (!fstripe_lock) {
530 		WARN_ON(1);
531 		ret = -ENOENT;
532 		mutex_unlock(&locks_root->lock);
533 		goto out;
534 	}
535 
536 	if (fstripe_lock->refs == 0) {
537 		WARN_ON(1);
538 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
539 			fstripe_lock->logical);
540 	} else {
541 		fstripe_lock->refs--;
542 	}
543 
544 	if (fstripe_lock->refs == 0) {
545 		rb_erase(&fstripe_lock->node, &locks_root->root);
546 		freeit = true;
547 	}
548 	mutex_unlock(&locks_root->lock);
549 
550 	mutex_unlock(&fstripe_lock->mutex);
551 	if (freeit)
552 		kfree(fstripe_lock);
553 out:
554 	btrfs_put_block_group(bg_cache);
555 	return ret;
556 }
557 
558 /*
559  * used for workers that require transaction commits (i.e., for the
560  * NOCOW case)
561  */
562 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
563 {
564 	struct btrfs_fs_info *fs_info = sctx->fs_info;
565 
566 	refcount_inc(&sctx->refs);
567 	/*
568 	 * increment scrubs_running to prevent cancel requests from
569 	 * completing as long as a worker is running. we must also
570 	 * increment scrubs_paused to prevent deadlocking on pause
571 	 * requests used for transactions commits (as the worker uses a
572 	 * transaction context). it is safe to regard the worker
573 	 * as paused for all matters practical. effectively, we only
574 	 * avoid cancellation requests from completing.
575 	 */
576 	mutex_lock(&fs_info->scrub_lock);
577 	atomic_inc(&fs_info->scrubs_running);
578 	atomic_inc(&fs_info->scrubs_paused);
579 	mutex_unlock(&fs_info->scrub_lock);
580 
581 	/*
582 	 * check if @scrubs_running=@scrubs_paused condition
583 	 * inside wait_event() is not an atomic operation.
584 	 * which means we may inc/dec @scrub_running/paused
585 	 * at any time. Let's wake up @scrub_pause_wait as
586 	 * much as we can to let commit transaction blocked less.
587 	 */
588 	wake_up(&fs_info->scrub_pause_wait);
589 
590 	atomic_inc(&sctx->workers_pending);
591 }
592 
593 /* used for workers that require transaction commits */
594 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
595 {
596 	struct btrfs_fs_info *fs_info = sctx->fs_info;
597 
598 	/*
599 	 * see scrub_pending_trans_workers_inc() why we're pretending
600 	 * to be paused in the scrub counters
601 	 */
602 	mutex_lock(&fs_info->scrub_lock);
603 	atomic_dec(&fs_info->scrubs_running);
604 	atomic_dec(&fs_info->scrubs_paused);
605 	mutex_unlock(&fs_info->scrub_lock);
606 	atomic_dec(&sctx->workers_pending);
607 	wake_up(&fs_info->scrub_pause_wait);
608 	wake_up(&sctx->list_wait);
609 	scrub_put_ctx(sctx);
610 }
611 
612 static void scrub_free_csums(struct scrub_ctx *sctx)
613 {
614 	while (!list_empty(&sctx->csum_list)) {
615 		struct btrfs_ordered_sum *sum;
616 		sum = list_first_entry(&sctx->csum_list,
617 				       struct btrfs_ordered_sum, list);
618 		list_del(&sum->list);
619 		kfree(sum);
620 	}
621 }
622 
623 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
624 {
625 	int i;
626 
627 	if (!sctx)
628 		return;
629 
630 	/* this can happen when scrub is cancelled */
631 	if (sctx->curr != -1) {
632 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
633 
634 		for (i = 0; i < sbio->page_count; i++) {
635 			WARN_ON(!sbio->pagev[i]->page);
636 			scrub_block_put(sbio->pagev[i]->sblock);
637 		}
638 		bio_put(sbio->bio);
639 	}
640 
641 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
642 		struct scrub_bio *sbio = sctx->bios[i];
643 
644 		if (!sbio)
645 			break;
646 		kfree(sbio);
647 	}
648 
649 	kfree(sctx->wr_curr_bio);
650 	scrub_free_csums(sctx);
651 	kfree(sctx);
652 }
653 
654 static void scrub_put_ctx(struct scrub_ctx *sctx)
655 {
656 	if (refcount_dec_and_test(&sctx->refs))
657 		scrub_free_ctx(sctx);
658 }
659 
660 static noinline_for_stack
661 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
662 {
663 	struct scrub_ctx *sctx;
664 	int		i;
665 	struct btrfs_fs_info *fs_info = dev->fs_info;
666 
667 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
668 	if (!sctx)
669 		goto nomem;
670 	refcount_set(&sctx->refs, 1);
671 	sctx->is_dev_replace = is_dev_replace;
672 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
673 	sctx->curr = -1;
674 	sctx->fs_info = dev->fs_info;
675 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
676 		struct scrub_bio *sbio;
677 
678 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
679 		if (!sbio)
680 			goto nomem;
681 		sctx->bios[i] = sbio;
682 
683 		sbio->index = i;
684 		sbio->sctx = sctx;
685 		sbio->page_count = 0;
686 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
687 				scrub_bio_end_io_worker, NULL, NULL);
688 
689 		if (i != SCRUB_BIOS_PER_SCTX - 1)
690 			sctx->bios[i]->next_free = i + 1;
691 		else
692 			sctx->bios[i]->next_free = -1;
693 	}
694 	sctx->first_free = 0;
695 	atomic_set(&sctx->bios_in_flight, 0);
696 	atomic_set(&sctx->workers_pending, 0);
697 	atomic_set(&sctx->cancel_req, 0);
698 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
699 	INIT_LIST_HEAD(&sctx->csum_list);
700 
701 	spin_lock_init(&sctx->list_lock);
702 	spin_lock_init(&sctx->stat_lock);
703 	init_waitqueue_head(&sctx->list_wait);
704 
705 	WARN_ON(sctx->wr_curr_bio != NULL);
706 	mutex_init(&sctx->wr_lock);
707 	sctx->wr_curr_bio = NULL;
708 	if (is_dev_replace) {
709 		WARN_ON(!fs_info->dev_replace.tgtdev);
710 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
711 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
712 		sctx->flush_all_writes = false;
713 	}
714 
715 	return sctx;
716 
717 nomem:
718 	scrub_free_ctx(sctx);
719 	return ERR_PTR(-ENOMEM);
720 }
721 
722 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
723 				     void *warn_ctx)
724 {
725 	u64 isize;
726 	u32 nlink;
727 	int ret;
728 	int i;
729 	unsigned nofs_flag;
730 	struct extent_buffer *eb;
731 	struct btrfs_inode_item *inode_item;
732 	struct scrub_warning *swarn = warn_ctx;
733 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
734 	struct inode_fs_paths *ipath = NULL;
735 	struct btrfs_root *local_root;
736 	struct btrfs_key root_key;
737 	struct btrfs_key key;
738 
739 	root_key.objectid = root;
740 	root_key.type = BTRFS_ROOT_ITEM_KEY;
741 	root_key.offset = (u64)-1;
742 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
743 	if (IS_ERR(local_root)) {
744 		ret = PTR_ERR(local_root);
745 		goto err;
746 	}
747 
748 	/*
749 	 * this makes the path point to (inum INODE_ITEM ioff)
750 	 */
751 	key.objectid = inum;
752 	key.type = BTRFS_INODE_ITEM_KEY;
753 	key.offset = 0;
754 
755 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
756 	if (ret) {
757 		btrfs_release_path(swarn->path);
758 		goto err;
759 	}
760 
761 	eb = swarn->path->nodes[0];
762 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
763 					struct btrfs_inode_item);
764 	isize = btrfs_inode_size(eb, inode_item);
765 	nlink = btrfs_inode_nlink(eb, inode_item);
766 	btrfs_release_path(swarn->path);
767 
768 	/*
769 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
770 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
771 	 * not seem to be strictly necessary.
772 	 */
773 	nofs_flag = memalloc_nofs_save();
774 	ipath = init_ipath(4096, local_root, swarn->path);
775 	memalloc_nofs_restore(nofs_flag);
776 	if (IS_ERR(ipath)) {
777 		ret = PTR_ERR(ipath);
778 		ipath = NULL;
779 		goto err;
780 	}
781 	ret = paths_from_inode(inum, ipath);
782 
783 	if (ret < 0)
784 		goto err;
785 
786 	/*
787 	 * we deliberately ignore the bit ipath might have been too small to
788 	 * hold all of the paths here
789 	 */
790 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
791 		btrfs_warn_in_rcu(fs_info,
792 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
793 				  swarn->errstr, swarn->logical,
794 				  rcu_str_deref(swarn->dev->name),
795 				  swarn->physical,
796 				  root, inum, offset,
797 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
798 				  (char *)(unsigned long)ipath->fspath->val[i]);
799 
800 	free_ipath(ipath);
801 	return 0;
802 
803 err:
804 	btrfs_warn_in_rcu(fs_info,
805 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
806 			  swarn->errstr, swarn->logical,
807 			  rcu_str_deref(swarn->dev->name),
808 			  swarn->physical,
809 			  root, inum, offset, ret);
810 
811 	free_ipath(ipath);
812 	return 0;
813 }
814 
815 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
816 {
817 	struct btrfs_device *dev;
818 	struct btrfs_fs_info *fs_info;
819 	struct btrfs_path *path;
820 	struct btrfs_key found_key;
821 	struct extent_buffer *eb;
822 	struct btrfs_extent_item *ei;
823 	struct scrub_warning swarn;
824 	unsigned long ptr = 0;
825 	u64 extent_item_pos;
826 	u64 flags = 0;
827 	u64 ref_root;
828 	u32 item_size;
829 	u8 ref_level = 0;
830 	int ret;
831 
832 	WARN_ON(sblock->page_count < 1);
833 	dev = sblock->pagev[0]->dev;
834 	fs_info = sblock->sctx->fs_info;
835 
836 	path = btrfs_alloc_path();
837 	if (!path)
838 		return;
839 
840 	swarn.physical = sblock->pagev[0]->physical;
841 	swarn.logical = sblock->pagev[0]->logical;
842 	swarn.errstr = errstr;
843 	swarn.dev = NULL;
844 
845 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
846 				  &flags);
847 	if (ret < 0)
848 		goto out;
849 
850 	extent_item_pos = swarn.logical - found_key.objectid;
851 	swarn.extent_item_size = found_key.offset;
852 
853 	eb = path->nodes[0];
854 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
855 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
856 
857 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
858 		do {
859 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
860 						      item_size, &ref_root,
861 						      &ref_level);
862 			btrfs_warn_in_rcu(fs_info,
863 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
864 				errstr, swarn.logical,
865 				rcu_str_deref(dev->name),
866 				swarn.physical,
867 				ref_level ? "node" : "leaf",
868 				ret < 0 ? -1 : ref_level,
869 				ret < 0 ? -1 : ref_root);
870 		} while (ret != 1);
871 		btrfs_release_path(path);
872 	} else {
873 		btrfs_release_path(path);
874 		swarn.path = path;
875 		swarn.dev = dev;
876 		iterate_extent_inodes(fs_info, found_key.objectid,
877 					extent_item_pos, 1,
878 					scrub_print_warning_inode, &swarn, false);
879 	}
880 
881 out:
882 	btrfs_free_path(path);
883 }
884 
885 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
886 {
887 	struct page *page = NULL;
888 	unsigned long index;
889 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
890 	int ret;
891 	int corrected = 0;
892 	struct btrfs_key key;
893 	struct inode *inode = NULL;
894 	struct btrfs_fs_info *fs_info;
895 	u64 end = offset + PAGE_SIZE - 1;
896 	struct btrfs_root *local_root;
897 	int srcu_index;
898 
899 	key.objectid = root;
900 	key.type = BTRFS_ROOT_ITEM_KEY;
901 	key.offset = (u64)-1;
902 
903 	fs_info = fixup->root->fs_info;
904 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
905 
906 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
907 	if (IS_ERR(local_root)) {
908 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
909 		return PTR_ERR(local_root);
910 	}
911 
912 	key.type = BTRFS_INODE_ITEM_KEY;
913 	key.objectid = inum;
914 	key.offset = 0;
915 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
916 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 	if (IS_ERR(inode))
918 		return PTR_ERR(inode);
919 
920 	index = offset >> PAGE_SHIFT;
921 
922 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
923 	if (!page) {
924 		ret = -ENOMEM;
925 		goto out;
926 	}
927 
928 	if (PageUptodate(page)) {
929 		if (PageDirty(page)) {
930 			/*
931 			 * we need to write the data to the defect sector. the
932 			 * data that was in that sector is not in memory,
933 			 * because the page was modified. we must not write the
934 			 * modified page to that sector.
935 			 *
936 			 * TODO: what could be done here: wait for the delalloc
937 			 *       runner to write out that page (might involve
938 			 *       COW) and see whether the sector is still
939 			 *       referenced afterwards.
940 			 *
941 			 * For the meantime, we'll treat this error
942 			 * incorrectable, although there is a chance that a
943 			 * later scrub will find the bad sector again and that
944 			 * there's no dirty page in memory, then.
945 			 */
946 			ret = -EIO;
947 			goto out;
948 		}
949 		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
950 					fixup->logical, page,
951 					offset - page_offset(page),
952 					fixup->mirror_num);
953 		unlock_page(page);
954 		corrected = !ret;
955 	} else {
956 		/*
957 		 * we need to get good data first. the general readpage path
958 		 * will call repair_io_failure for us, we just have to make
959 		 * sure we read the bad mirror.
960 		 */
961 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
962 					EXTENT_DAMAGED);
963 		if (ret) {
964 			/* set_extent_bits should give proper error */
965 			WARN_ON(ret > 0);
966 			if (ret > 0)
967 				ret = -EFAULT;
968 			goto out;
969 		}
970 
971 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
972 						btrfs_get_extent,
973 						fixup->mirror_num);
974 		wait_on_page_locked(page);
975 
976 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
977 						end, EXTENT_DAMAGED, 0, NULL);
978 		if (!corrected)
979 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
980 						EXTENT_DAMAGED);
981 	}
982 
983 out:
984 	if (page)
985 		put_page(page);
986 
987 	iput(inode);
988 
989 	if (ret < 0)
990 		return ret;
991 
992 	if (ret == 0 && corrected) {
993 		/*
994 		 * we only need to call readpage for one of the inodes belonging
995 		 * to this extent. so make iterate_extent_inodes stop
996 		 */
997 		return 1;
998 	}
999 
1000 	return -EIO;
1001 }
1002 
1003 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004 {
1005 	struct btrfs_fs_info *fs_info;
1006 	int ret;
1007 	struct scrub_fixup_nodatasum *fixup;
1008 	struct scrub_ctx *sctx;
1009 	struct btrfs_trans_handle *trans = NULL;
1010 	struct btrfs_path *path;
1011 	int uncorrectable = 0;
1012 
1013 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014 	sctx = fixup->sctx;
1015 	fs_info = fixup->root->fs_info;
1016 
1017 	path = btrfs_alloc_path();
1018 	if (!path) {
1019 		spin_lock(&sctx->stat_lock);
1020 		++sctx->stat.malloc_errors;
1021 		spin_unlock(&sctx->stat_lock);
1022 		uncorrectable = 1;
1023 		goto out;
1024 	}
1025 
1026 	trans = btrfs_join_transaction(fixup->root);
1027 	if (IS_ERR(trans)) {
1028 		uncorrectable = 1;
1029 		goto out;
1030 	}
1031 
1032 	/*
1033 	 * the idea is to trigger a regular read through the standard path. we
1034 	 * read a page from the (failed) logical address by specifying the
1035 	 * corresponding copynum of the failed sector. thus, that readpage is
1036 	 * expected to fail.
1037 	 * that is the point where on-the-fly error correction will kick in
1038 	 * (once it's finished) and rewrite the failed sector if a good copy
1039 	 * can be found.
1040 	 */
1041 	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042 					  scrub_fixup_readpage, fixup, false);
1043 	if (ret < 0) {
1044 		uncorrectable = 1;
1045 		goto out;
1046 	}
1047 	WARN_ON(ret != 1);
1048 
1049 	spin_lock(&sctx->stat_lock);
1050 	++sctx->stat.corrected_errors;
1051 	spin_unlock(&sctx->stat_lock);
1052 
1053 out:
1054 	if (trans && !IS_ERR(trans))
1055 		btrfs_end_transaction(trans);
1056 	if (uncorrectable) {
1057 		spin_lock(&sctx->stat_lock);
1058 		++sctx->stat.uncorrectable_errors;
1059 		spin_unlock(&sctx->stat_lock);
1060 		btrfs_dev_replace_stats_inc(
1061 			&fs_info->dev_replace.num_uncorrectable_read_errors);
1062 		btrfs_err_rl_in_rcu(fs_info,
1063 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064 			fixup->logical, rcu_str_deref(fixup->dev->name));
1065 	}
1066 
1067 	btrfs_free_path(path);
1068 	kfree(fixup);
1069 
1070 	scrub_pending_trans_workers_dec(sctx);
1071 }
1072 
1073 static inline void scrub_get_recover(struct scrub_recover *recover)
1074 {
1075 	refcount_inc(&recover->refs);
1076 }
1077 
1078 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079 				     struct scrub_recover *recover)
1080 {
1081 	if (refcount_dec_and_test(&recover->refs)) {
1082 		btrfs_bio_counter_dec(fs_info);
1083 		btrfs_put_bbio(recover->bbio);
1084 		kfree(recover);
1085 	}
1086 }
1087 
1088 /*
1089  * scrub_handle_errored_block gets called when either verification of the
1090  * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091  * case, this function handles all pages in the bio, even though only one
1092  * may be bad.
1093  * The goal of this function is to repair the errored block by using the
1094  * contents of one of the mirrors.
1095  */
1096 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097 {
1098 	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099 	struct btrfs_device *dev;
1100 	struct btrfs_fs_info *fs_info;
1101 	u64 logical;
1102 	unsigned int failed_mirror_index;
1103 	unsigned int is_metadata;
1104 	unsigned int have_csum;
1105 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106 	struct scrub_block *sblock_bad;
1107 	int ret;
1108 	int mirror_index;
1109 	int page_num;
1110 	int success;
1111 	bool full_stripe_locked;
1112 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 				      DEFAULT_RATELIMIT_BURST);
1114 
1115 	BUG_ON(sblock_to_check->page_count < 1);
1116 	fs_info = sctx->fs_info;
1117 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118 		/*
1119 		 * if we find an error in a super block, we just report it.
1120 		 * They will get written with the next transaction commit
1121 		 * anyway
1122 		 */
1123 		spin_lock(&sctx->stat_lock);
1124 		++sctx->stat.super_errors;
1125 		spin_unlock(&sctx->stat_lock);
1126 		return 0;
1127 	}
1128 	logical = sblock_to_check->pagev[0]->logical;
1129 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131 	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132 			BTRFS_EXTENT_FLAG_DATA);
1133 	have_csum = sblock_to_check->pagev[0]->have_csum;
1134 	dev = sblock_to_check->pagev[0]->dev;
1135 
1136 	/*
1137 	 * For RAID5/6, race can happen for a different device scrub thread.
1138 	 * For data corruption, Parity and Data threads will both try
1139 	 * to recovery the data.
1140 	 * Race can lead to doubly added csum error, or even unrecoverable
1141 	 * error.
1142 	 */
1143 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144 	if (ret < 0) {
1145 		spin_lock(&sctx->stat_lock);
1146 		if (ret == -ENOMEM)
1147 			sctx->stat.malloc_errors++;
1148 		sctx->stat.read_errors++;
1149 		sctx->stat.uncorrectable_errors++;
1150 		spin_unlock(&sctx->stat_lock);
1151 		return ret;
1152 	}
1153 
1154 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155 		sblocks_for_recheck = NULL;
1156 		goto nodatasum_case;
1157 	}
1158 
1159 	/*
1160 	 * read all mirrors one after the other. This includes to
1161 	 * re-read the extent or metadata block that failed (that was
1162 	 * the cause that this fixup code is called) another time,
1163 	 * page by page this time in order to know which pages
1164 	 * caused I/O errors and which ones are good (for all mirrors).
1165 	 * It is the goal to handle the situation when more than one
1166 	 * mirror contains I/O errors, but the errors do not
1167 	 * overlap, i.e. the data can be repaired by selecting the
1168 	 * pages from those mirrors without I/O error on the
1169 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170 	 * would be that mirror #1 has an I/O error on the first page,
1171 	 * the second page is good, and mirror #2 has an I/O error on
1172 	 * the second page, but the first page is good.
1173 	 * Then the first page of the first mirror can be repaired by
1174 	 * taking the first page of the second mirror, and the
1175 	 * second page of the second mirror can be repaired by
1176 	 * copying the contents of the 2nd page of the 1st mirror.
1177 	 * One more note: if the pages of one mirror contain I/O
1178 	 * errors, the checksum cannot be verified. In order to get
1179 	 * the best data for repairing, the first attempt is to find
1180 	 * a mirror without I/O errors and with a validated checksum.
1181 	 * Only if this is not possible, the pages are picked from
1182 	 * mirrors with I/O errors without considering the checksum.
1183 	 * If the latter is the case, at the end, the checksum of the
1184 	 * repaired area is verified in order to correctly maintain
1185 	 * the statistics.
1186 	 */
1187 
1188 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1190 	if (!sblocks_for_recheck) {
1191 		spin_lock(&sctx->stat_lock);
1192 		sctx->stat.malloc_errors++;
1193 		sctx->stat.read_errors++;
1194 		sctx->stat.uncorrectable_errors++;
1195 		spin_unlock(&sctx->stat_lock);
1196 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1197 		goto out;
1198 	}
1199 
1200 	/* setup the context, map the logical blocks and alloc the pages */
1201 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1202 	if (ret) {
1203 		spin_lock(&sctx->stat_lock);
1204 		sctx->stat.read_errors++;
1205 		sctx->stat.uncorrectable_errors++;
1206 		spin_unlock(&sctx->stat_lock);
1207 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1208 		goto out;
1209 	}
1210 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212 
1213 	/* build and submit the bios for the failed mirror, check checksums */
1214 	scrub_recheck_block(fs_info, sblock_bad, 1);
1215 
1216 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217 	    sblock_bad->no_io_error_seen) {
1218 		/*
1219 		 * the error disappeared after reading page by page, or
1220 		 * the area was part of a huge bio and other parts of the
1221 		 * bio caused I/O errors, or the block layer merged several
1222 		 * read requests into one and the error is caused by a
1223 		 * different bio (usually one of the two latter cases is
1224 		 * the cause)
1225 		 */
1226 		spin_lock(&sctx->stat_lock);
1227 		sctx->stat.unverified_errors++;
1228 		sblock_to_check->data_corrected = 1;
1229 		spin_unlock(&sctx->stat_lock);
1230 
1231 		if (sctx->is_dev_replace)
1232 			scrub_write_block_to_dev_replace(sblock_bad);
1233 		goto out;
1234 	}
1235 
1236 	if (!sblock_bad->no_io_error_seen) {
1237 		spin_lock(&sctx->stat_lock);
1238 		sctx->stat.read_errors++;
1239 		spin_unlock(&sctx->stat_lock);
1240 		if (__ratelimit(&_rs))
1241 			scrub_print_warning("i/o error", sblock_to_check);
1242 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243 	} else if (sblock_bad->checksum_error) {
1244 		spin_lock(&sctx->stat_lock);
1245 		sctx->stat.csum_errors++;
1246 		spin_unlock(&sctx->stat_lock);
1247 		if (__ratelimit(&_rs))
1248 			scrub_print_warning("checksum error", sblock_to_check);
1249 		btrfs_dev_stat_inc_and_print(dev,
1250 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251 	} else if (sblock_bad->header_error) {
1252 		spin_lock(&sctx->stat_lock);
1253 		sctx->stat.verify_errors++;
1254 		spin_unlock(&sctx->stat_lock);
1255 		if (__ratelimit(&_rs))
1256 			scrub_print_warning("checksum/header error",
1257 					    sblock_to_check);
1258 		if (sblock_bad->generation_error)
1259 			btrfs_dev_stat_inc_and_print(dev,
1260 				BTRFS_DEV_STAT_GENERATION_ERRS);
1261 		else
1262 			btrfs_dev_stat_inc_and_print(dev,
1263 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264 	}
1265 
1266 	if (sctx->readonly) {
1267 		ASSERT(!sctx->is_dev_replace);
1268 		goto out;
1269 	}
1270 
1271 	if (!is_metadata && !have_csum) {
1272 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1273 
1274 		WARN_ON(sctx->is_dev_replace);
1275 
1276 nodatasum_case:
1277 
1278 		/*
1279 		 * !is_metadata and !have_csum, this means that the data
1280 		 * might not be COWed, that it might be modified
1281 		 * concurrently. The general strategy to work on the
1282 		 * commit root does not help in the case when COW is not
1283 		 * used.
1284 		 */
1285 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286 		if (!fixup_nodatasum)
1287 			goto did_not_correct_error;
1288 		fixup_nodatasum->sctx = sctx;
1289 		fixup_nodatasum->dev = dev;
1290 		fixup_nodatasum->logical = logical;
1291 		fixup_nodatasum->root = fs_info->extent_root;
1292 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293 		scrub_pending_trans_workers_inc(sctx);
1294 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295 				scrub_fixup_nodatasum, NULL, NULL);
1296 		btrfs_queue_work(fs_info->scrub_workers,
1297 				 &fixup_nodatasum->work);
1298 		goto out;
1299 	}
1300 
1301 	/*
1302 	 * now build and submit the bios for the other mirrors, check
1303 	 * checksums.
1304 	 * First try to pick the mirror which is completely without I/O
1305 	 * errors and also does not have a checksum error.
1306 	 * If one is found, and if a checksum is present, the full block
1307 	 * that is known to contain an error is rewritten. Afterwards
1308 	 * the block is known to be corrected.
1309 	 * If a mirror is found which is completely correct, and no
1310 	 * checksum is present, only those pages are rewritten that had
1311 	 * an I/O error in the block to be repaired, since it cannot be
1312 	 * determined, which copy of the other pages is better (and it
1313 	 * could happen otherwise that a correct page would be
1314 	 * overwritten by a bad one).
1315 	 */
1316 	for (mirror_index = 0; ;mirror_index++) {
1317 		struct scrub_block *sblock_other;
1318 
1319 		if (mirror_index == failed_mirror_index)
1320 			continue;
1321 
1322 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1325 				break;
1326 			if (!sblocks_for_recheck[mirror_index].page_count)
1327 				break;
1328 
1329 			sblock_other = sblocks_for_recheck + mirror_index;
1330 		} else {
1331 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332 			int max_allowed = r->bbio->num_stripes -
1333 						r->bbio->num_tgtdevs;
1334 
1335 			if (mirror_index >= max_allowed)
1336 				break;
1337 			if (!sblocks_for_recheck[1].page_count)
1338 				break;
1339 
1340 			ASSERT(failed_mirror_index == 0);
1341 			sblock_other = sblocks_for_recheck + 1;
1342 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1343 		}
1344 
1345 		/* build and submit the bios, check checksums */
1346 		scrub_recheck_block(fs_info, sblock_other, 0);
1347 
1348 		if (!sblock_other->header_error &&
1349 		    !sblock_other->checksum_error &&
1350 		    sblock_other->no_io_error_seen) {
1351 			if (sctx->is_dev_replace) {
1352 				scrub_write_block_to_dev_replace(sblock_other);
1353 				goto corrected_error;
1354 			} else {
1355 				ret = scrub_repair_block_from_good_copy(
1356 						sblock_bad, sblock_other);
1357 				if (!ret)
1358 					goto corrected_error;
1359 			}
1360 		}
1361 	}
1362 
1363 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364 		goto did_not_correct_error;
1365 
1366 	/*
1367 	 * In case of I/O errors in the area that is supposed to be
1368 	 * repaired, continue by picking good copies of those pages.
1369 	 * Select the good pages from mirrors to rewrite bad pages from
1370 	 * the area to fix. Afterwards verify the checksum of the block
1371 	 * that is supposed to be repaired. This verification step is
1372 	 * only done for the purpose of statistic counting and for the
1373 	 * final scrub report, whether errors remain.
1374 	 * A perfect algorithm could make use of the checksum and try
1375 	 * all possible combinations of pages from the different mirrors
1376 	 * until the checksum verification succeeds. For example, when
1377 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378 	 * of mirror #2 is readable but the final checksum test fails,
1379 	 * then the 2nd page of mirror #3 could be tried, whether now
1380 	 * the final checksum succeeds. But this would be a rare
1381 	 * exception and is therefore not implemented. At least it is
1382 	 * avoided that the good copy is overwritten.
1383 	 * A more useful improvement would be to pick the sectors
1384 	 * without I/O error based on sector sizes (512 bytes on legacy
1385 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386 	 * mirror could be repaired by taking 512 byte of a different
1387 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388 	 * area are unreadable.
1389 	 */
1390 	success = 1;
1391 	for (page_num = 0; page_num < sblock_bad->page_count;
1392 	     page_num++) {
1393 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394 		struct scrub_block *sblock_other = NULL;
1395 
1396 		/* skip no-io-error page in scrub */
1397 		if (!page_bad->io_error && !sctx->is_dev_replace)
1398 			continue;
1399 
1400 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1401 			/*
1402 			 * In case of dev replace, if raid56 rebuild process
1403 			 * didn't work out correct data, then copy the content
1404 			 * in sblock_bad to make sure target device is identical
1405 			 * to source device, instead of writing garbage data in
1406 			 * sblock_for_recheck array to target device.
1407 			 */
1408 			sblock_other = NULL;
1409 		} else if (page_bad->io_error) {
1410 			/* try to find no-io-error page in mirrors */
1411 			for (mirror_index = 0;
1412 			     mirror_index < BTRFS_MAX_MIRRORS &&
1413 			     sblocks_for_recheck[mirror_index].page_count > 0;
1414 			     mirror_index++) {
1415 				if (!sblocks_for_recheck[mirror_index].
1416 				    pagev[page_num]->io_error) {
1417 					sblock_other = sblocks_for_recheck +
1418 						       mirror_index;
1419 					break;
1420 				}
1421 			}
1422 			if (!sblock_other)
1423 				success = 0;
1424 		}
1425 
1426 		if (sctx->is_dev_replace) {
1427 			/*
1428 			 * did not find a mirror to fetch the page
1429 			 * from. scrub_write_page_to_dev_replace()
1430 			 * handles this case (page->io_error), by
1431 			 * filling the block with zeros before
1432 			 * submitting the write request
1433 			 */
1434 			if (!sblock_other)
1435 				sblock_other = sblock_bad;
1436 
1437 			if (scrub_write_page_to_dev_replace(sblock_other,
1438 							    page_num) != 0) {
1439 				btrfs_dev_replace_stats_inc(
1440 					&fs_info->dev_replace.num_write_errors);
1441 				success = 0;
1442 			}
1443 		} else if (sblock_other) {
1444 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1445 							       sblock_other,
1446 							       page_num, 0);
1447 			if (0 == ret)
1448 				page_bad->io_error = 0;
1449 			else
1450 				success = 0;
1451 		}
1452 	}
1453 
1454 	if (success && !sctx->is_dev_replace) {
1455 		if (is_metadata || have_csum) {
1456 			/*
1457 			 * need to verify the checksum now that all
1458 			 * sectors on disk are repaired (the write
1459 			 * request for data to be repaired is on its way).
1460 			 * Just be lazy and use scrub_recheck_block()
1461 			 * which re-reads the data before the checksum
1462 			 * is verified, but most likely the data comes out
1463 			 * of the page cache.
1464 			 */
1465 			scrub_recheck_block(fs_info, sblock_bad, 1);
1466 			if (!sblock_bad->header_error &&
1467 			    !sblock_bad->checksum_error &&
1468 			    sblock_bad->no_io_error_seen)
1469 				goto corrected_error;
1470 			else
1471 				goto did_not_correct_error;
1472 		} else {
1473 corrected_error:
1474 			spin_lock(&sctx->stat_lock);
1475 			sctx->stat.corrected_errors++;
1476 			sblock_to_check->data_corrected = 1;
1477 			spin_unlock(&sctx->stat_lock);
1478 			btrfs_err_rl_in_rcu(fs_info,
1479 				"fixed up error at logical %llu on dev %s",
1480 				logical, rcu_str_deref(dev->name));
1481 		}
1482 	} else {
1483 did_not_correct_error:
1484 		spin_lock(&sctx->stat_lock);
1485 		sctx->stat.uncorrectable_errors++;
1486 		spin_unlock(&sctx->stat_lock);
1487 		btrfs_err_rl_in_rcu(fs_info,
1488 			"unable to fixup (regular) error at logical %llu on dev %s",
1489 			logical, rcu_str_deref(dev->name));
1490 	}
1491 
1492 out:
1493 	if (sblocks_for_recheck) {
1494 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1495 		     mirror_index++) {
1496 			struct scrub_block *sblock = sblocks_for_recheck +
1497 						     mirror_index;
1498 			struct scrub_recover *recover;
1499 			int page_index;
1500 
1501 			for (page_index = 0; page_index < sblock->page_count;
1502 			     page_index++) {
1503 				sblock->pagev[page_index]->sblock = NULL;
1504 				recover = sblock->pagev[page_index]->recover;
1505 				if (recover) {
1506 					scrub_put_recover(fs_info, recover);
1507 					sblock->pagev[page_index]->recover =
1508 									NULL;
1509 				}
1510 				scrub_page_put(sblock->pagev[page_index]);
1511 			}
1512 		}
1513 		kfree(sblocks_for_recheck);
1514 	}
1515 
1516 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1517 	if (ret < 0)
1518 		return ret;
1519 	return 0;
1520 }
1521 
1522 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523 {
1524 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1525 		return 2;
1526 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1527 		return 3;
1528 	else
1529 		return (int)bbio->num_stripes;
1530 }
1531 
1532 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1533 						 u64 *raid_map,
1534 						 u64 mapped_length,
1535 						 int nstripes, int mirror,
1536 						 int *stripe_index,
1537 						 u64 *stripe_offset)
1538 {
1539 	int i;
1540 
1541 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542 		/* RAID5/6 */
1543 		for (i = 0; i < nstripes; i++) {
1544 			if (raid_map[i] == RAID6_Q_STRIPE ||
1545 			    raid_map[i] == RAID5_P_STRIPE)
1546 				continue;
1547 
1548 			if (logical >= raid_map[i] &&
1549 			    logical < raid_map[i] + mapped_length)
1550 				break;
1551 		}
1552 
1553 		*stripe_index = i;
1554 		*stripe_offset = logical - raid_map[i];
1555 	} else {
1556 		/* The other RAID type */
1557 		*stripe_index = mirror;
1558 		*stripe_offset = 0;
1559 	}
1560 }
1561 
1562 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563 				     struct scrub_block *sblocks_for_recheck)
1564 {
1565 	struct scrub_ctx *sctx = original_sblock->sctx;
1566 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1567 	u64 length = original_sblock->page_count * PAGE_SIZE;
1568 	u64 logical = original_sblock->pagev[0]->logical;
1569 	u64 generation = original_sblock->pagev[0]->generation;
1570 	u64 flags = original_sblock->pagev[0]->flags;
1571 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1572 	struct scrub_recover *recover;
1573 	struct btrfs_bio *bbio;
1574 	u64 sublen;
1575 	u64 mapped_length;
1576 	u64 stripe_offset;
1577 	int stripe_index;
1578 	int page_index = 0;
1579 	int mirror_index;
1580 	int nmirrors;
1581 	int ret;
1582 
1583 	/*
1584 	 * note: the two members refs and outstanding_pages
1585 	 * are not used (and not set) in the blocks that are used for
1586 	 * the recheck procedure
1587 	 */
1588 
1589 	while (length > 0) {
1590 		sublen = min_t(u64, length, PAGE_SIZE);
1591 		mapped_length = sublen;
1592 		bbio = NULL;
1593 
1594 		/*
1595 		 * with a length of PAGE_SIZE, each returned stripe
1596 		 * represents one mirror
1597 		 */
1598 		btrfs_bio_counter_inc_blocked(fs_info);
1599 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600 				logical, &mapped_length, &bbio);
1601 		if (ret || !bbio || mapped_length < sublen) {
1602 			btrfs_put_bbio(bbio);
1603 			btrfs_bio_counter_dec(fs_info);
1604 			return -EIO;
1605 		}
1606 
1607 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1608 		if (!recover) {
1609 			btrfs_put_bbio(bbio);
1610 			btrfs_bio_counter_dec(fs_info);
1611 			return -ENOMEM;
1612 		}
1613 
1614 		refcount_set(&recover->refs, 1);
1615 		recover->bbio = bbio;
1616 		recover->map_length = mapped_length;
1617 
1618 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619 
1620 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1621 
1622 		for (mirror_index = 0; mirror_index < nmirrors;
1623 		     mirror_index++) {
1624 			struct scrub_block *sblock;
1625 			struct scrub_page *page;
1626 
1627 			sblock = sblocks_for_recheck + mirror_index;
1628 			sblock->sctx = sctx;
1629 
1630 			page = kzalloc(sizeof(*page), GFP_NOFS);
1631 			if (!page) {
1632 leave_nomem:
1633 				spin_lock(&sctx->stat_lock);
1634 				sctx->stat.malloc_errors++;
1635 				spin_unlock(&sctx->stat_lock);
1636 				scrub_put_recover(fs_info, recover);
1637 				return -ENOMEM;
1638 			}
1639 			scrub_page_get(page);
1640 			sblock->pagev[page_index] = page;
1641 			page->sblock = sblock;
1642 			page->flags = flags;
1643 			page->generation = generation;
1644 			page->logical = logical;
1645 			page->have_csum = have_csum;
1646 			if (have_csum)
1647 				memcpy(page->csum,
1648 				       original_sblock->pagev[0]->csum,
1649 				       sctx->csum_size);
1650 
1651 			scrub_stripe_index_and_offset(logical,
1652 						      bbio->map_type,
1653 						      bbio->raid_map,
1654 						      mapped_length,
1655 						      bbio->num_stripes -
1656 						      bbio->num_tgtdevs,
1657 						      mirror_index,
1658 						      &stripe_index,
1659 						      &stripe_offset);
1660 			page->physical = bbio->stripes[stripe_index].physical +
1661 					 stripe_offset;
1662 			page->dev = bbio->stripes[stripe_index].dev;
1663 
1664 			BUG_ON(page_index >= original_sblock->page_count);
1665 			page->physical_for_dev_replace =
1666 				original_sblock->pagev[page_index]->
1667 				physical_for_dev_replace;
1668 			/* for missing devices, dev->bdev is NULL */
1669 			page->mirror_num = mirror_index + 1;
1670 			sblock->page_count++;
1671 			page->page = alloc_page(GFP_NOFS);
1672 			if (!page->page)
1673 				goto leave_nomem;
1674 
1675 			scrub_get_recover(recover);
1676 			page->recover = recover;
1677 		}
1678 		scrub_put_recover(fs_info, recover);
1679 		length -= sublen;
1680 		logical += sublen;
1681 		page_index++;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static void scrub_bio_wait_endio(struct bio *bio)
1688 {
1689 	complete(bio->bi_private);
1690 }
1691 
1692 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1693 					struct bio *bio,
1694 					struct scrub_page *page)
1695 {
1696 	DECLARE_COMPLETION_ONSTACK(done);
1697 	int ret;
1698 	int mirror_num;
1699 
1700 	bio->bi_iter.bi_sector = page->logical >> 9;
1701 	bio->bi_private = &done;
1702 	bio->bi_end_io = scrub_bio_wait_endio;
1703 
1704 	mirror_num = page->sblock->pagev[0]->mirror_num;
1705 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706 				    page->recover->map_length,
1707 				    mirror_num, 0);
1708 	if (ret)
1709 		return ret;
1710 
1711 	wait_for_completion_io(&done);
1712 	return blk_status_to_errno(bio->bi_status);
1713 }
1714 
1715 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716 					  struct scrub_block *sblock)
1717 {
1718 	struct scrub_page *first_page = sblock->pagev[0];
1719 	struct bio *bio;
1720 	int page_num;
1721 
1722 	/* All pages in sblock belong to the same stripe on the same device. */
1723 	ASSERT(first_page->dev);
1724 	if (!first_page->dev->bdev)
1725 		goto out;
1726 
1727 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728 	bio_set_dev(bio, first_page->dev->bdev);
1729 
1730 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731 		struct scrub_page *page = sblock->pagev[page_num];
1732 
1733 		WARN_ON(!page->page);
1734 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1735 	}
1736 
1737 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1738 		bio_put(bio);
1739 		goto out;
1740 	}
1741 
1742 	bio_put(bio);
1743 
1744 	scrub_recheck_block_checksum(sblock);
1745 
1746 	return;
1747 out:
1748 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1749 		sblock->pagev[page_num]->io_error = 1;
1750 
1751 	sblock->no_io_error_seen = 0;
1752 }
1753 
1754 /*
1755  * this function will check the on disk data for checksum errors, header
1756  * errors and read I/O errors. If any I/O errors happen, the exact pages
1757  * which are errored are marked as being bad. The goal is to enable scrub
1758  * to take those pages that are not errored from all the mirrors so that
1759  * the pages that are errored in the just handled mirror can be repaired.
1760  */
1761 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762 				struct scrub_block *sblock,
1763 				int retry_failed_mirror)
1764 {
1765 	int page_num;
1766 
1767 	sblock->no_io_error_seen = 1;
1768 
1769 	/* short cut for raid56 */
1770 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1772 
1773 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1774 		struct bio *bio;
1775 		struct scrub_page *page = sblock->pagev[page_num];
1776 
1777 		if (page->dev->bdev == NULL) {
1778 			page->io_error = 1;
1779 			sblock->no_io_error_seen = 0;
1780 			continue;
1781 		}
1782 
1783 		WARN_ON(!page->page);
1784 		bio = btrfs_io_bio_alloc(1);
1785 		bio_set_dev(bio, page->dev->bdev);
1786 
1787 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788 		bio->bi_iter.bi_sector = page->physical >> 9;
1789 		bio->bi_opf = REQ_OP_READ;
1790 
1791 		if (btrfsic_submit_bio_wait(bio)) {
1792 			page->io_error = 1;
1793 			sblock->no_io_error_seen = 0;
1794 		}
1795 
1796 		bio_put(bio);
1797 	}
1798 
1799 	if (sblock->no_io_error_seen)
1800 		scrub_recheck_block_checksum(sblock);
1801 }
1802 
1803 static inline int scrub_check_fsid(u8 fsid[],
1804 				   struct scrub_page *spage)
1805 {
1806 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1807 	int ret;
1808 
1809 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1810 	return !ret;
1811 }
1812 
1813 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1814 {
1815 	sblock->header_error = 0;
1816 	sblock->checksum_error = 0;
1817 	sblock->generation_error = 0;
1818 
1819 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820 		scrub_checksum_data(sblock);
1821 	else
1822 		scrub_checksum_tree_block(sblock);
1823 }
1824 
1825 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826 					     struct scrub_block *sblock_good)
1827 {
1828 	int page_num;
1829 	int ret = 0;
1830 
1831 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1832 		int ret_sub;
1833 
1834 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1835 							   sblock_good,
1836 							   page_num, 1);
1837 		if (ret_sub)
1838 			ret = ret_sub;
1839 	}
1840 
1841 	return ret;
1842 }
1843 
1844 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845 					    struct scrub_block *sblock_good,
1846 					    int page_num, int force_write)
1847 {
1848 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1850 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1851 
1852 	BUG_ON(page_bad->page == NULL);
1853 	BUG_ON(page_good->page == NULL);
1854 	if (force_write || sblock_bad->header_error ||
1855 	    sblock_bad->checksum_error || page_bad->io_error) {
1856 		struct bio *bio;
1857 		int ret;
1858 
1859 		if (!page_bad->dev->bdev) {
1860 			btrfs_warn_rl(fs_info,
1861 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1862 			return -EIO;
1863 		}
1864 
1865 		bio = btrfs_io_bio_alloc(1);
1866 		bio_set_dev(bio, page_bad->dev->bdev);
1867 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869 
1870 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871 		if (PAGE_SIZE != ret) {
1872 			bio_put(bio);
1873 			return -EIO;
1874 		}
1875 
1876 		if (btrfsic_submit_bio_wait(bio)) {
1877 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1878 				BTRFS_DEV_STAT_WRITE_ERRS);
1879 			btrfs_dev_replace_stats_inc(
1880 				&fs_info->dev_replace.num_write_errors);
1881 			bio_put(bio);
1882 			return -EIO;
1883 		}
1884 		bio_put(bio);
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1891 {
1892 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893 	int page_num;
1894 
1895 	/*
1896 	 * This block is used for the check of the parity on the source device,
1897 	 * so the data needn't be written into the destination device.
1898 	 */
1899 	if (sblock->sparity)
1900 		return;
1901 
1902 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1903 		int ret;
1904 
1905 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1906 		if (ret)
1907 			btrfs_dev_replace_stats_inc(
1908 				&fs_info->dev_replace.num_write_errors);
1909 	}
1910 }
1911 
1912 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1913 					   int page_num)
1914 {
1915 	struct scrub_page *spage = sblock->pagev[page_num];
1916 
1917 	BUG_ON(spage->page == NULL);
1918 	if (spage->io_error) {
1919 		void *mapped_buffer = kmap_atomic(spage->page);
1920 
1921 		clear_page(mapped_buffer);
1922 		flush_dcache_page(spage->page);
1923 		kunmap_atomic(mapped_buffer);
1924 	}
1925 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1926 }
1927 
1928 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929 				    struct scrub_page *spage)
1930 {
1931 	struct scrub_bio *sbio;
1932 	int ret;
1933 
1934 	mutex_lock(&sctx->wr_lock);
1935 again:
1936 	if (!sctx->wr_curr_bio) {
1937 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938 					      GFP_KERNEL);
1939 		if (!sctx->wr_curr_bio) {
1940 			mutex_unlock(&sctx->wr_lock);
1941 			return -ENOMEM;
1942 		}
1943 		sctx->wr_curr_bio->sctx = sctx;
1944 		sctx->wr_curr_bio->page_count = 0;
1945 	}
1946 	sbio = sctx->wr_curr_bio;
1947 	if (sbio->page_count == 0) {
1948 		struct bio *bio;
1949 
1950 		sbio->physical = spage->physical_for_dev_replace;
1951 		sbio->logical = spage->logical;
1952 		sbio->dev = sctx->wr_tgtdev;
1953 		bio = sbio->bio;
1954 		if (!bio) {
1955 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1956 			sbio->bio = bio;
1957 		}
1958 
1959 		bio->bi_private = sbio;
1960 		bio->bi_end_io = scrub_wr_bio_end_io;
1961 		bio_set_dev(bio, sbio->dev->bdev);
1962 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1963 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964 		sbio->status = 0;
1965 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966 		   spage->physical_for_dev_replace ||
1967 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1968 		   spage->logical) {
1969 		scrub_wr_submit(sctx);
1970 		goto again;
1971 	}
1972 
1973 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974 	if (ret != PAGE_SIZE) {
1975 		if (sbio->page_count < 1) {
1976 			bio_put(sbio->bio);
1977 			sbio->bio = NULL;
1978 			mutex_unlock(&sctx->wr_lock);
1979 			return -EIO;
1980 		}
1981 		scrub_wr_submit(sctx);
1982 		goto again;
1983 	}
1984 
1985 	sbio->pagev[sbio->page_count] = spage;
1986 	scrub_page_get(spage);
1987 	sbio->page_count++;
1988 	if (sbio->page_count == sctx->pages_per_wr_bio)
1989 		scrub_wr_submit(sctx);
1990 	mutex_unlock(&sctx->wr_lock);
1991 
1992 	return 0;
1993 }
1994 
1995 static void scrub_wr_submit(struct scrub_ctx *sctx)
1996 {
1997 	struct scrub_bio *sbio;
1998 
1999 	if (!sctx->wr_curr_bio)
2000 		return;
2001 
2002 	sbio = sctx->wr_curr_bio;
2003 	sctx->wr_curr_bio = NULL;
2004 	WARN_ON(!sbio->bio->bi_disk);
2005 	scrub_pending_bio_inc(sctx);
2006 	/* process all writes in a single worker thread. Then the block layer
2007 	 * orders the requests before sending them to the driver which
2008 	 * doubled the write performance on spinning disks when measured
2009 	 * with Linux 3.5 */
2010 	btrfsic_submit_bio(sbio->bio);
2011 }
2012 
2013 static void scrub_wr_bio_end_io(struct bio *bio)
2014 {
2015 	struct scrub_bio *sbio = bio->bi_private;
2016 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017 
2018 	sbio->status = bio->bi_status;
2019 	sbio->bio = bio;
2020 
2021 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022 			 scrub_wr_bio_end_io_worker, NULL, NULL);
2023 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2024 }
2025 
2026 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2027 {
2028 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029 	struct scrub_ctx *sctx = sbio->sctx;
2030 	int i;
2031 
2032 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033 	if (sbio->status) {
2034 		struct btrfs_dev_replace *dev_replace =
2035 			&sbio->sctx->fs_info->dev_replace;
2036 
2037 		for (i = 0; i < sbio->page_count; i++) {
2038 			struct scrub_page *spage = sbio->pagev[i];
2039 
2040 			spage->io_error = 1;
2041 			btrfs_dev_replace_stats_inc(&dev_replace->
2042 						    num_write_errors);
2043 		}
2044 	}
2045 
2046 	for (i = 0; i < sbio->page_count; i++)
2047 		scrub_page_put(sbio->pagev[i]);
2048 
2049 	bio_put(sbio->bio);
2050 	kfree(sbio);
2051 	scrub_pending_bio_dec(sctx);
2052 }
2053 
2054 static int scrub_checksum(struct scrub_block *sblock)
2055 {
2056 	u64 flags;
2057 	int ret;
2058 
2059 	/*
2060 	 * No need to initialize these stats currently,
2061 	 * because this function only use return value
2062 	 * instead of these stats value.
2063 	 *
2064 	 * Todo:
2065 	 * always use stats
2066 	 */
2067 	sblock->header_error = 0;
2068 	sblock->generation_error = 0;
2069 	sblock->checksum_error = 0;
2070 
2071 	WARN_ON(sblock->page_count < 1);
2072 	flags = sblock->pagev[0]->flags;
2073 	ret = 0;
2074 	if (flags & BTRFS_EXTENT_FLAG_DATA)
2075 		ret = scrub_checksum_data(sblock);
2076 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077 		ret = scrub_checksum_tree_block(sblock);
2078 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079 		(void)scrub_checksum_super(sblock);
2080 	else
2081 		WARN_ON(1);
2082 	if (ret)
2083 		scrub_handle_errored_block(sblock);
2084 
2085 	return ret;
2086 }
2087 
2088 static int scrub_checksum_data(struct scrub_block *sblock)
2089 {
2090 	struct scrub_ctx *sctx = sblock->sctx;
2091 	u8 csum[BTRFS_CSUM_SIZE];
2092 	u8 *on_disk_csum;
2093 	struct page *page;
2094 	void *buffer;
2095 	u32 crc = ~(u32)0;
2096 	u64 len;
2097 	int index;
2098 
2099 	BUG_ON(sblock->page_count < 1);
2100 	if (!sblock->pagev[0]->have_csum)
2101 		return 0;
2102 
2103 	on_disk_csum = sblock->pagev[0]->csum;
2104 	page = sblock->pagev[0]->page;
2105 	buffer = kmap_atomic(page);
2106 
2107 	len = sctx->fs_info->sectorsize;
2108 	index = 0;
2109 	for (;;) {
2110 		u64 l = min_t(u64, len, PAGE_SIZE);
2111 
2112 		crc = btrfs_csum_data(buffer, crc, l);
2113 		kunmap_atomic(buffer);
2114 		len -= l;
2115 		if (len == 0)
2116 			break;
2117 		index++;
2118 		BUG_ON(index >= sblock->page_count);
2119 		BUG_ON(!sblock->pagev[index]->page);
2120 		page = sblock->pagev[index]->page;
2121 		buffer = kmap_atomic(page);
2122 	}
2123 
2124 	btrfs_csum_final(crc, csum);
2125 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126 		sblock->checksum_error = 1;
2127 
2128 	return sblock->checksum_error;
2129 }
2130 
2131 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2132 {
2133 	struct scrub_ctx *sctx = sblock->sctx;
2134 	struct btrfs_header *h;
2135 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2136 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2137 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2138 	struct page *page;
2139 	void *mapped_buffer;
2140 	u64 mapped_size;
2141 	void *p;
2142 	u32 crc = ~(u32)0;
2143 	u64 len;
2144 	int index;
2145 
2146 	BUG_ON(sblock->page_count < 1);
2147 	page = sblock->pagev[0]->page;
2148 	mapped_buffer = kmap_atomic(page);
2149 	h = (struct btrfs_header *)mapped_buffer;
2150 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2151 
2152 	/*
2153 	 * we don't use the getter functions here, as we
2154 	 * a) don't have an extent buffer and
2155 	 * b) the page is already kmapped
2156 	 */
2157 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158 		sblock->header_error = 1;
2159 
2160 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161 		sblock->header_error = 1;
2162 		sblock->generation_error = 1;
2163 	}
2164 
2165 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166 		sblock->header_error = 1;
2167 
2168 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2169 		   BTRFS_UUID_SIZE))
2170 		sblock->header_error = 1;
2171 
2172 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2173 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2175 	index = 0;
2176 	for (;;) {
2177 		u64 l = min_t(u64, len, mapped_size);
2178 
2179 		crc = btrfs_csum_data(p, crc, l);
2180 		kunmap_atomic(mapped_buffer);
2181 		len -= l;
2182 		if (len == 0)
2183 			break;
2184 		index++;
2185 		BUG_ON(index >= sblock->page_count);
2186 		BUG_ON(!sblock->pagev[index]->page);
2187 		page = sblock->pagev[index]->page;
2188 		mapped_buffer = kmap_atomic(page);
2189 		mapped_size = PAGE_SIZE;
2190 		p = mapped_buffer;
2191 	}
2192 
2193 	btrfs_csum_final(crc, calculated_csum);
2194 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195 		sblock->checksum_error = 1;
2196 
2197 	return sblock->header_error || sblock->checksum_error;
2198 }
2199 
2200 static int scrub_checksum_super(struct scrub_block *sblock)
2201 {
2202 	struct btrfs_super_block *s;
2203 	struct scrub_ctx *sctx = sblock->sctx;
2204 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2205 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2206 	struct page *page;
2207 	void *mapped_buffer;
2208 	u64 mapped_size;
2209 	void *p;
2210 	u32 crc = ~(u32)0;
2211 	int fail_gen = 0;
2212 	int fail_cor = 0;
2213 	u64 len;
2214 	int index;
2215 
2216 	BUG_ON(sblock->page_count < 1);
2217 	page = sblock->pagev[0]->page;
2218 	mapped_buffer = kmap_atomic(page);
2219 	s = (struct btrfs_super_block *)mapped_buffer;
2220 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2221 
2222 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223 		++fail_cor;
2224 
2225 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226 		++fail_gen;
2227 
2228 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229 		++fail_cor;
2230 
2231 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2234 	index = 0;
2235 	for (;;) {
2236 		u64 l = min_t(u64, len, mapped_size);
2237 
2238 		crc = btrfs_csum_data(p, crc, l);
2239 		kunmap_atomic(mapped_buffer);
2240 		len -= l;
2241 		if (len == 0)
2242 			break;
2243 		index++;
2244 		BUG_ON(index >= sblock->page_count);
2245 		BUG_ON(!sblock->pagev[index]->page);
2246 		page = sblock->pagev[index]->page;
2247 		mapped_buffer = kmap_atomic(page);
2248 		mapped_size = PAGE_SIZE;
2249 		p = mapped_buffer;
2250 	}
2251 
2252 	btrfs_csum_final(crc, calculated_csum);
2253 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254 		++fail_cor;
2255 
2256 	if (fail_cor + fail_gen) {
2257 		/*
2258 		 * if we find an error in a super block, we just report it.
2259 		 * They will get written with the next transaction commit
2260 		 * anyway
2261 		 */
2262 		spin_lock(&sctx->stat_lock);
2263 		++sctx->stat.super_errors;
2264 		spin_unlock(&sctx->stat_lock);
2265 		if (fail_cor)
2266 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2268 		else
2269 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270 				BTRFS_DEV_STAT_GENERATION_ERRS);
2271 	}
2272 
2273 	return fail_cor + fail_gen;
2274 }
2275 
2276 static void scrub_block_get(struct scrub_block *sblock)
2277 {
2278 	refcount_inc(&sblock->refs);
2279 }
2280 
2281 static void scrub_block_put(struct scrub_block *sblock)
2282 {
2283 	if (refcount_dec_and_test(&sblock->refs)) {
2284 		int i;
2285 
2286 		if (sblock->sparity)
2287 			scrub_parity_put(sblock->sparity);
2288 
2289 		for (i = 0; i < sblock->page_count; i++)
2290 			scrub_page_put(sblock->pagev[i]);
2291 		kfree(sblock);
2292 	}
2293 }
2294 
2295 static void scrub_page_get(struct scrub_page *spage)
2296 {
2297 	atomic_inc(&spage->refs);
2298 }
2299 
2300 static void scrub_page_put(struct scrub_page *spage)
2301 {
2302 	if (atomic_dec_and_test(&spage->refs)) {
2303 		if (spage->page)
2304 			__free_page(spage->page);
2305 		kfree(spage);
2306 	}
2307 }
2308 
2309 static void scrub_submit(struct scrub_ctx *sctx)
2310 {
2311 	struct scrub_bio *sbio;
2312 
2313 	if (sctx->curr == -1)
2314 		return;
2315 
2316 	sbio = sctx->bios[sctx->curr];
2317 	sctx->curr = -1;
2318 	scrub_pending_bio_inc(sctx);
2319 	btrfsic_submit_bio(sbio->bio);
2320 }
2321 
2322 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323 				    struct scrub_page *spage)
2324 {
2325 	struct scrub_block *sblock = spage->sblock;
2326 	struct scrub_bio *sbio;
2327 	int ret;
2328 
2329 again:
2330 	/*
2331 	 * grab a fresh bio or wait for one to become available
2332 	 */
2333 	while (sctx->curr == -1) {
2334 		spin_lock(&sctx->list_lock);
2335 		sctx->curr = sctx->first_free;
2336 		if (sctx->curr != -1) {
2337 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338 			sctx->bios[sctx->curr]->next_free = -1;
2339 			sctx->bios[sctx->curr]->page_count = 0;
2340 			spin_unlock(&sctx->list_lock);
2341 		} else {
2342 			spin_unlock(&sctx->list_lock);
2343 			wait_event(sctx->list_wait, sctx->first_free != -1);
2344 		}
2345 	}
2346 	sbio = sctx->bios[sctx->curr];
2347 	if (sbio->page_count == 0) {
2348 		struct bio *bio;
2349 
2350 		sbio->physical = spage->physical;
2351 		sbio->logical = spage->logical;
2352 		sbio->dev = spage->dev;
2353 		bio = sbio->bio;
2354 		if (!bio) {
2355 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2356 			sbio->bio = bio;
2357 		}
2358 
2359 		bio->bi_private = sbio;
2360 		bio->bi_end_io = scrub_bio_end_io;
2361 		bio_set_dev(bio, sbio->dev->bdev);
2362 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2363 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364 		sbio->status = 0;
2365 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2366 		   spage->physical ||
2367 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2368 		   spage->logical ||
2369 		   sbio->dev != spage->dev) {
2370 		scrub_submit(sctx);
2371 		goto again;
2372 	}
2373 
2374 	sbio->pagev[sbio->page_count] = spage;
2375 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376 	if (ret != PAGE_SIZE) {
2377 		if (sbio->page_count < 1) {
2378 			bio_put(sbio->bio);
2379 			sbio->bio = NULL;
2380 			return -EIO;
2381 		}
2382 		scrub_submit(sctx);
2383 		goto again;
2384 	}
2385 
2386 	scrub_block_get(sblock); /* one for the page added to the bio */
2387 	atomic_inc(&sblock->outstanding_pages);
2388 	sbio->page_count++;
2389 	if (sbio->page_count == sctx->pages_per_rd_bio)
2390 		scrub_submit(sctx);
2391 
2392 	return 0;
2393 }
2394 
2395 static void scrub_missing_raid56_end_io(struct bio *bio)
2396 {
2397 	struct scrub_block *sblock = bio->bi_private;
2398 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399 
2400 	if (bio->bi_status)
2401 		sblock->no_io_error_seen = 0;
2402 
2403 	bio_put(bio);
2404 
2405 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2406 }
2407 
2408 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2409 {
2410 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411 	struct scrub_ctx *sctx = sblock->sctx;
2412 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2413 	u64 logical;
2414 	struct btrfs_device *dev;
2415 
2416 	logical = sblock->pagev[0]->logical;
2417 	dev = sblock->pagev[0]->dev;
2418 
2419 	if (sblock->no_io_error_seen)
2420 		scrub_recheck_block_checksum(sblock);
2421 
2422 	if (!sblock->no_io_error_seen) {
2423 		spin_lock(&sctx->stat_lock);
2424 		sctx->stat.read_errors++;
2425 		spin_unlock(&sctx->stat_lock);
2426 		btrfs_err_rl_in_rcu(fs_info,
2427 			"IO error rebuilding logical %llu for dev %s",
2428 			logical, rcu_str_deref(dev->name));
2429 	} else if (sblock->header_error || sblock->checksum_error) {
2430 		spin_lock(&sctx->stat_lock);
2431 		sctx->stat.uncorrectable_errors++;
2432 		spin_unlock(&sctx->stat_lock);
2433 		btrfs_err_rl_in_rcu(fs_info,
2434 			"failed to rebuild valid logical %llu for dev %s",
2435 			logical, rcu_str_deref(dev->name));
2436 	} else {
2437 		scrub_write_block_to_dev_replace(sblock);
2438 	}
2439 
2440 	scrub_block_put(sblock);
2441 
2442 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443 		mutex_lock(&sctx->wr_lock);
2444 		scrub_wr_submit(sctx);
2445 		mutex_unlock(&sctx->wr_lock);
2446 	}
2447 
2448 	scrub_pending_bio_dec(sctx);
2449 }
2450 
2451 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2452 {
2453 	struct scrub_ctx *sctx = sblock->sctx;
2454 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455 	u64 length = sblock->page_count * PAGE_SIZE;
2456 	u64 logical = sblock->pagev[0]->logical;
2457 	struct btrfs_bio *bbio = NULL;
2458 	struct bio *bio;
2459 	struct btrfs_raid_bio *rbio;
2460 	int ret;
2461 	int i;
2462 
2463 	btrfs_bio_counter_inc_blocked(fs_info);
2464 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465 			&length, &bbio);
2466 	if (ret || !bbio || !bbio->raid_map)
2467 		goto bbio_out;
2468 
2469 	if (WARN_ON(!sctx->is_dev_replace ||
2470 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2471 		/*
2472 		 * We shouldn't be scrubbing a missing device. Even for dev
2473 		 * replace, we should only get here for RAID 5/6. We either
2474 		 * managed to mount something with no mirrors remaining or
2475 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2476 		 */
2477 		goto bbio_out;
2478 	}
2479 
2480 	bio = btrfs_io_bio_alloc(0);
2481 	bio->bi_iter.bi_sector = logical >> 9;
2482 	bio->bi_private = sblock;
2483 	bio->bi_end_io = scrub_missing_raid56_end_io;
2484 
2485 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486 	if (!rbio)
2487 		goto rbio_out;
2488 
2489 	for (i = 0; i < sblock->page_count; i++) {
2490 		struct scrub_page *spage = sblock->pagev[i];
2491 
2492 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2493 	}
2494 
2495 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496 			scrub_missing_raid56_worker, NULL, NULL);
2497 	scrub_block_get(sblock);
2498 	scrub_pending_bio_inc(sctx);
2499 	raid56_submit_missing_rbio(rbio);
2500 	return;
2501 
2502 rbio_out:
2503 	bio_put(bio);
2504 bbio_out:
2505 	btrfs_bio_counter_dec(fs_info);
2506 	btrfs_put_bbio(bbio);
2507 	spin_lock(&sctx->stat_lock);
2508 	sctx->stat.malloc_errors++;
2509 	spin_unlock(&sctx->stat_lock);
2510 }
2511 
2512 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513 		       u64 physical, struct btrfs_device *dev, u64 flags,
2514 		       u64 gen, int mirror_num, u8 *csum, int force,
2515 		       u64 physical_for_dev_replace)
2516 {
2517 	struct scrub_block *sblock;
2518 	int index;
2519 
2520 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521 	if (!sblock) {
2522 		spin_lock(&sctx->stat_lock);
2523 		sctx->stat.malloc_errors++;
2524 		spin_unlock(&sctx->stat_lock);
2525 		return -ENOMEM;
2526 	}
2527 
2528 	/* one ref inside this function, plus one for each page added to
2529 	 * a bio later on */
2530 	refcount_set(&sblock->refs, 1);
2531 	sblock->sctx = sctx;
2532 	sblock->no_io_error_seen = 1;
2533 
2534 	for (index = 0; len > 0; index++) {
2535 		struct scrub_page *spage;
2536 		u64 l = min_t(u64, len, PAGE_SIZE);
2537 
2538 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539 		if (!spage) {
2540 leave_nomem:
2541 			spin_lock(&sctx->stat_lock);
2542 			sctx->stat.malloc_errors++;
2543 			spin_unlock(&sctx->stat_lock);
2544 			scrub_block_put(sblock);
2545 			return -ENOMEM;
2546 		}
2547 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548 		scrub_page_get(spage);
2549 		sblock->pagev[index] = spage;
2550 		spage->sblock = sblock;
2551 		spage->dev = dev;
2552 		spage->flags = flags;
2553 		spage->generation = gen;
2554 		spage->logical = logical;
2555 		spage->physical = physical;
2556 		spage->physical_for_dev_replace = physical_for_dev_replace;
2557 		spage->mirror_num = mirror_num;
2558 		if (csum) {
2559 			spage->have_csum = 1;
2560 			memcpy(spage->csum, csum, sctx->csum_size);
2561 		} else {
2562 			spage->have_csum = 0;
2563 		}
2564 		sblock->page_count++;
2565 		spage->page = alloc_page(GFP_KERNEL);
2566 		if (!spage->page)
2567 			goto leave_nomem;
2568 		len -= l;
2569 		logical += l;
2570 		physical += l;
2571 		physical_for_dev_replace += l;
2572 	}
2573 
2574 	WARN_ON(sblock->page_count == 0);
2575 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576 		/*
2577 		 * This case should only be hit for RAID 5/6 device replace. See
2578 		 * the comment in scrub_missing_raid56_pages() for details.
2579 		 */
2580 		scrub_missing_raid56_pages(sblock);
2581 	} else {
2582 		for (index = 0; index < sblock->page_count; index++) {
2583 			struct scrub_page *spage = sblock->pagev[index];
2584 			int ret;
2585 
2586 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2587 			if (ret) {
2588 				scrub_block_put(sblock);
2589 				return ret;
2590 			}
2591 		}
2592 
2593 		if (force)
2594 			scrub_submit(sctx);
2595 	}
2596 
2597 	/* last one frees, either here or in bio completion for last page */
2598 	scrub_block_put(sblock);
2599 	return 0;
2600 }
2601 
2602 static void scrub_bio_end_io(struct bio *bio)
2603 {
2604 	struct scrub_bio *sbio = bio->bi_private;
2605 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2606 
2607 	sbio->status = bio->bi_status;
2608 	sbio->bio = bio;
2609 
2610 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611 }
2612 
2613 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2614 {
2615 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616 	struct scrub_ctx *sctx = sbio->sctx;
2617 	int i;
2618 
2619 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620 	if (sbio->status) {
2621 		for (i = 0; i < sbio->page_count; i++) {
2622 			struct scrub_page *spage = sbio->pagev[i];
2623 
2624 			spage->io_error = 1;
2625 			spage->sblock->no_io_error_seen = 0;
2626 		}
2627 	}
2628 
2629 	/* now complete the scrub_block items that have all pages completed */
2630 	for (i = 0; i < sbio->page_count; i++) {
2631 		struct scrub_page *spage = sbio->pagev[i];
2632 		struct scrub_block *sblock = spage->sblock;
2633 
2634 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2635 			scrub_block_complete(sblock);
2636 		scrub_block_put(sblock);
2637 	}
2638 
2639 	bio_put(sbio->bio);
2640 	sbio->bio = NULL;
2641 	spin_lock(&sctx->list_lock);
2642 	sbio->next_free = sctx->first_free;
2643 	sctx->first_free = sbio->index;
2644 	spin_unlock(&sctx->list_lock);
2645 
2646 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647 		mutex_lock(&sctx->wr_lock);
2648 		scrub_wr_submit(sctx);
2649 		mutex_unlock(&sctx->wr_lock);
2650 	}
2651 
2652 	scrub_pending_bio_dec(sctx);
2653 }
2654 
2655 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656 				       unsigned long *bitmap,
2657 				       u64 start, u64 len)
2658 {
2659 	u64 offset;
2660 	u64 nsectors64;
2661 	u32 nsectors;
2662 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2663 
2664 	if (len >= sparity->stripe_len) {
2665 		bitmap_set(bitmap, 0, sparity->nsectors);
2666 		return;
2667 	}
2668 
2669 	start -= sparity->logic_start;
2670 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671 	offset = div_u64(offset, sectorsize);
2672 	nsectors64 = div_u64(len, sectorsize);
2673 
2674 	ASSERT(nsectors64 < UINT_MAX);
2675 	nsectors = (u32)nsectors64;
2676 
2677 	if (offset + nsectors <= sparity->nsectors) {
2678 		bitmap_set(bitmap, offset, nsectors);
2679 		return;
2680 	}
2681 
2682 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2684 }
2685 
2686 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2687 						   u64 start, u64 len)
2688 {
2689 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2690 }
2691 
2692 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2693 						  u64 start, u64 len)
2694 {
2695 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2696 }
2697 
2698 static void scrub_block_complete(struct scrub_block *sblock)
2699 {
2700 	int corrupted = 0;
2701 
2702 	if (!sblock->no_io_error_seen) {
2703 		corrupted = 1;
2704 		scrub_handle_errored_block(sblock);
2705 	} else {
2706 		/*
2707 		 * if has checksum error, write via repair mechanism in
2708 		 * dev replace case, otherwise write here in dev replace
2709 		 * case.
2710 		 */
2711 		corrupted = scrub_checksum(sblock);
2712 		if (!corrupted && sblock->sctx->is_dev_replace)
2713 			scrub_write_block_to_dev_replace(sblock);
2714 	}
2715 
2716 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717 		u64 start = sblock->pagev[0]->logical;
2718 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2719 			  PAGE_SIZE;
2720 
2721 		scrub_parity_mark_sectors_error(sblock->sparity,
2722 						start, end - start);
2723 	}
2724 }
2725 
2726 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2727 {
2728 	struct btrfs_ordered_sum *sum = NULL;
2729 	unsigned long index;
2730 	unsigned long num_sectors;
2731 
2732 	while (!list_empty(&sctx->csum_list)) {
2733 		sum = list_first_entry(&sctx->csum_list,
2734 				       struct btrfs_ordered_sum, list);
2735 		if (sum->bytenr > logical)
2736 			return 0;
2737 		if (sum->bytenr + sum->len > logical)
2738 			break;
2739 
2740 		++sctx->stat.csum_discards;
2741 		list_del(&sum->list);
2742 		kfree(sum);
2743 		sum = NULL;
2744 	}
2745 	if (!sum)
2746 		return 0;
2747 
2748 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749 	ASSERT(index < UINT_MAX);
2750 
2751 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2752 	memcpy(csum, sum->sums + index, sctx->csum_size);
2753 	if (index == num_sectors - 1) {
2754 		list_del(&sum->list);
2755 		kfree(sum);
2756 	}
2757 	return 1;
2758 }
2759 
2760 /* scrub extent tries to collect up to 64 kB for each bio */
2761 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762 			u64 logical, u64 len,
2763 			u64 physical, struct btrfs_device *dev, u64 flags,
2764 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2765 {
2766 	int ret;
2767 	u8 csum[BTRFS_CSUM_SIZE];
2768 	u32 blocksize;
2769 
2770 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772 			blocksize = map->stripe_len;
2773 		else
2774 			blocksize = sctx->fs_info->sectorsize;
2775 		spin_lock(&sctx->stat_lock);
2776 		sctx->stat.data_extents_scrubbed++;
2777 		sctx->stat.data_bytes_scrubbed += len;
2778 		spin_unlock(&sctx->stat_lock);
2779 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781 			blocksize = map->stripe_len;
2782 		else
2783 			blocksize = sctx->fs_info->nodesize;
2784 		spin_lock(&sctx->stat_lock);
2785 		sctx->stat.tree_extents_scrubbed++;
2786 		sctx->stat.tree_bytes_scrubbed += len;
2787 		spin_unlock(&sctx->stat_lock);
2788 	} else {
2789 		blocksize = sctx->fs_info->sectorsize;
2790 		WARN_ON(1);
2791 	}
2792 
2793 	while (len) {
2794 		u64 l = min_t(u64, len, blocksize);
2795 		int have_csum = 0;
2796 
2797 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798 			/* push csums to sbio */
2799 			have_csum = scrub_find_csum(sctx, logical, csum);
2800 			if (have_csum == 0)
2801 				++sctx->stat.no_csum;
2802 			if (0 && sctx->is_dev_replace && !have_csum) {
2803 				ret = copy_nocow_pages(sctx, logical, l,
2804 						       mirror_num,
2805 						      physical_for_dev_replace);
2806 				goto behind_scrub_pages;
2807 			}
2808 		}
2809 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810 				  mirror_num, have_csum ? csum : NULL, 0,
2811 				  physical_for_dev_replace);
2812 behind_scrub_pages:
2813 		if (ret)
2814 			return ret;
2815 		len -= l;
2816 		logical += l;
2817 		physical += l;
2818 		physical_for_dev_replace += l;
2819 	}
2820 	return 0;
2821 }
2822 
2823 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824 				  u64 logical, u64 len,
2825 				  u64 physical, struct btrfs_device *dev,
2826 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2827 {
2828 	struct scrub_ctx *sctx = sparity->sctx;
2829 	struct scrub_block *sblock;
2830 	int index;
2831 
2832 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833 	if (!sblock) {
2834 		spin_lock(&sctx->stat_lock);
2835 		sctx->stat.malloc_errors++;
2836 		spin_unlock(&sctx->stat_lock);
2837 		return -ENOMEM;
2838 	}
2839 
2840 	/* one ref inside this function, plus one for each page added to
2841 	 * a bio later on */
2842 	refcount_set(&sblock->refs, 1);
2843 	sblock->sctx = sctx;
2844 	sblock->no_io_error_seen = 1;
2845 	sblock->sparity = sparity;
2846 	scrub_parity_get(sparity);
2847 
2848 	for (index = 0; len > 0; index++) {
2849 		struct scrub_page *spage;
2850 		u64 l = min_t(u64, len, PAGE_SIZE);
2851 
2852 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853 		if (!spage) {
2854 leave_nomem:
2855 			spin_lock(&sctx->stat_lock);
2856 			sctx->stat.malloc_errors++;
2857 			spin_unlock(&sctx->stat_lock);
2858 			scrub_block_put(sblock);
2859 			return -ENOMEM;
2860 		}
2861 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862 		/* For scrub block */
2863 		scrub_page_get(spage);
2864 		sblock->pagev[index] = spage;
2865 		/* For scrub parity */
2866 		scrub_page_get(spage);
2867 		list_add_tail(&spage->list, &sparity->spages);
2868 		spage->sblock = sblock;
2869 		spage->dev = dev;
2870 		spage->flags = flags;
2871 		spage->generation = gen;
2872 		spage->logical = logical;
2873 		spage->physical = physical;
2874 		spage->mirror_num = mirror_num;
2875 		if (csum) {
2876 			spage->have_csum = 1;
2877 			memcpy(spage->csum, csum, sctx->csum_size);
2878 		} else {
2879 			spage->have_csum = 0;
2880 		}
2881 		sblock->page_count++;
2882 		spage->page = alloc_page(GFP_KERNEL);
2883 		if (!spage->page)
2884 			goto leave_nomem;
2885 		len -= l;
2886 		logical += l;
2887 		physical += l;
2888 	}
2889 
2890 	WARN_ON(sblock->page_count == 0);
2891 	for (index = 0; index < sblock->page_count; index++) {
2892 		struct scrub_page *spage = sblock->pagev[index];
2893 		int ret;
2894 
2895 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2896 		if (ret) {
2897 			scrub_block_put(sblock);
2898 			return ret;
2899 		}
2900 	}
2901 
2902 	/* last one frees, either here or in bio completion for last page */
2903 	scrub_block_put(sblock);
2904 	return 0;
2905 }
2906 
2907 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908 				   u64 logical, u64 len,
2909 				   u64 physical, struct btrfs_device *dev,
2910 				   u64 flags, u64 gen, int mirror_num)
2911 {
2912 	struct scrub_ctx *sctx = sparity->sctx;
2913 	int ret;
2914 	u8 csum[BTRFS_CSUM_SIZE];
2915 	u32 blocksize;
2916 
2917 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918 		scrub_parity_mark_sectors_error(sparity, logical, len);
2919 		return 0;
2920 	}
2921 
2922 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923 		blocksize = sparity->stripe_len;
2924 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925 		blocksize = sparity->stripe_len;
2926 	} else {
2927 		blocksize = sctx->fs_info->sectorsize;
2928 		WARN_ON(1);
2929 	}
2930 
2931 	while (len) {
2932 		u64 l = min_t(u64, len, blocksize);
2933 		int have_csum = 0;
2934 
2935 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936 			/* push csums to sbio */
2937 			have_csum = scrub_find_csum(sctx, logical, csum);
2938 			if (have_csum == 0)
2939 				goto skip;
2940 		}
2941 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942 					     flags, gen, mirror_num,
2943 					     have_csum ? csum : NULL);
2944 		if (ret)
2945 			return ret;
2946 skip:
2947 		len -= l;
2948 		logical += l;
2949 		physical += l;
2950 	}
2951 	return 0;
2952 }
2953 
2954 /*
2955  * Given a physical address, this will calculate it's
2956  * logical offset. if this is a parity stripe, it will return
2957  * the most left data stripe's logical offset.
2958  *
2959  * return 0 if it is a data stripe, 1 means parity stripe.
2960  */
2961 static int get_raid56_logic_offset(u64 physical, int num,
2962 				   struct map_lookup *map, u64 *offset,
2963 				   u64 *stripe_start)
2964 {
2965 	int i;
2966 	int j = 0;
2967 	u64 stripe_nr;
2968 	u64 last_offset;
2969 	u32 stripe_index;
2970 	u32 rot;
2971 
2972 	last_offset = (physical - map->stripes[num].physical) *
2973 		      nr_data_stripes(map);
2974 	if (stripe_start)
2975 		*stripe_start = last_offset;
2976 
2977 	*offset = last_offset;
2978 	for (i = 0; i < nr_data_stripes(map); i++) {
2979 		*offset = last_offset + i * map->stripe_len;
2980 
2981 		stripe_nr = div64_u64(*offset, map->stripe_len);
2982 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2983 
2984 		/* Work out the disk rotation on this stripe-set */
2985 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986 		/* calculate which stripe this data locates */
2987 		rot += i;
2988 		stripe_index = rot % map->num_stripes;
2989 		if (stripe_index == num)
2990 			return 0;
2991 		if (stripe_index < num)
2992 			j++;
2993 	}
2994 	*offset = last_offset + j * map->stripe_len;
2995 	return 1;
2996 }
2997 
2998 static void scrub_free_parity(struct scrub_parity *sparity)
2999 {
3000 	struct scrub_ctx *sctx = sparity->sctx;
3001 	struct scrub_page *curr, *next;
3002 	int nbits;
3003 
3004 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3005 	if (nbits) {
3006 		spin_lock(&sctx->stat_lock);
3007 		sctx->stat.read_errors += nbits;
3008 		sctx->stat.uncorrectable_errors += nbits;
3009 		spin_unlock(&sctx->stat_lock);
3010 	}
3011 
3012 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013 		list_del_init(&curr->list);
3014 		scrub_page_put(curr);
3015 	}
3016 
3017 	kfree(sparity);
3018 }
3019 
3020 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3021 {
3022 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3023 						    work);
3024 	struct scrub_ctx *sctx = sparity->sctx;
3025 
3026 	scrub_free_parity(sparity);
3027 	scrub_pending_bio_dec(sctx);
3028 }
3029 
3030 static void scrub_parity_bio_endio(struct bio *bio)
3031 {
3032 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3034 
3035 	if (bio->bi_status)
3036 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3037 			  sparity->nsectors);
3038 
3039 	bio_put(bio);
3040 
3041 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042 			scrub_parity_bio_endio_worker, NULL, NULL);
3043 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044 }
3045 
3046 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3047 {
3048 	struct scrub_ctx *sctx = sparity->sctx;
3049 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050 	struct bio *bio;
3051 	struct btrfs_raid_bio *rbio;
3052 	struct btrfs_bio *bbio = NULL;
3053 	u64 length;
3054 	int ret;
3055 
3056 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3057 			   sparity->nsectors))
3058 		goto out;
3059 
3060 	length = sparity->logic_end - sparity->logic_start;
3061 
3062 	btrfs_bio_counter_inc_blocked(fs_info);
3063 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064 			       &length, &bbio);
3065 	if (ret || !bbio || !bbio->raid_map)
3066 		goto bbio_out;
3067 
3068 	bio = btrfs_io_bio_alloc(0);
3069 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070 	bio->bi_private = sparity;
3071 	bio->bi_end_io = scrub_parity_bio_endio;
3072 
3073 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074 					      length, sparity->scrub_dev,
3075 					      sparity->dbitmap,
3076 					      sparity->nsectors);
3077 	if (!rbio)
3078 		goto rbio_out;
3079 
3080 	scrub_pending_bio_inc(sctx);
3081 	raid56_parity_submit_scrub_rbio(rbio);
3082 	return;
3083 
3084 rbio_out:
3085 	bio_put(bio);
3086 bbio_out:
3087 	btrfs_bio_counter_dec(fs_info);
3088 	btrfs_put_bbio(bbio);
3089 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3090 		  sparity->nsectors);
3091 	spin_lock(&sctx->stat_lock);
3092 	sctx->stat.malloc_errors++;
3093 	spin_unlock(&sctx->stat_lock);
3094 out:
3095 	scrub_free_parity(sparity);
3096 }
3097 
3098 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3099 {
3100 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101 }
3102 
3103 static void scrub_parity_get(struct scrub_parity *sparity)
3104 {
3105 	refcount_inc(&sparity->refs);
3106 }
3107 
3108 static void scrub_parity_put(struct scrub_parity *sparity)
3109 {
3110 	if (!refcount_dec_and_test(&sparity->refs))
3111 		return;
3112 
3113 	scrub_parity_check_and_repair(sparity);
3114 }
3115 
3116 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117 						  struct map_lookup *map,
3118 						  struct btrfs_device *sdev,
3119 						  struct btrfs_path *path,
3120 						  u64 logic_start,
3121 						  u64 logic_end)
3122 {
3123 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3124 	struct btrfs_root *root = fs_info->extent_root;
3125 	struct btrfs_root *csum_root = fs_info->csum_root;
3126 	struct btrfs_extent_item *extent;
3127 	struct btrfs_bio *bbio = NULL;
3128 	u64 flags;
3129 	int ret;
3130 	int slot;
3131 	struct extent_buffer *l;
3132 	struct btrfs_key key;
3133 	u64 generation;
3134 	u64 extent_logical;
3135 	u64 extent_physical;
3136 	u64 extent_len;
3137 	u64 mapped_length;
3138 	struct btrfs_device *extent_dev;
3139 	struct scrub_parity *sparity;
3140 	int nsectors;
3141 	int bitmap_len;
3142 	int extent_mirror_num;
3143 	int stop_loop = 0;
3144 
3145 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3148 			  GFP_NOFS);
3149 	if (!sparity) {
3150 		spin_lock(&sctx->stat_lock);
3151 		sctx->stat.malloc_errors++;
3152 		spin_unlock(&sctx->stat_lock);
3153 		return -ENOMEM;
3154 	}
3155 
3156 	sparity->stripe_len = map->stripe_len;
3157 	sparity->nsectors = nsectors;
3158 	sparity->sctx = sctx;
3159 	sparity->scrub_dev = sdev;
3160 	sparity->logic_start = logic_start;
3161 	sparity->logic_end = logic_end;
3162 	refcount_set(&sparity->refs, 1);
3163 	INIT_LIST_HEAD(&sparity->spages);
3164 	sparity->dbitmap = sparity->bitmap;
3165 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3166 
3167 	ret = 0;
3168 	while (logic_start < logic_end) {
3169 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170 			key.type = BTRFS_METADATA_ITEM_KEY;
3171 		else
3172 			key.type = BTRFS_EXTENT_ITEM_KEY;
3173 		key.objectid = logic_start;
3174 		key.offset = (u64)-1;
3175 
3176 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177 		if (ret < 0)
3178 			goto out;
3179 
3180 		if (ret > 0) {
3181 			ret = btrfs_previous_extent_item(root, path, 0);
3182 			if (ret < 0)
3183 				goto out;
3184 			if (ret > 0) {
3185 				btrfs_release_path(path);
3186 				ret = btrfs_search_slot(NULL, root, &key,
3187 							path, 0, 0);
3188 				if (ret < 0)
3189 					goto out;
3190 			}
3191 		}
3192 
3193 		stop_loop = 0;
3194 		while (1) {
3195 			u64 bytes;
3196 
3197 			l = path->nodes[0];
3198 			slot = path->slots[0];
3199 			if (slot >= btrfs_header_nritems(l)) {
3200 				ret = btrfs_next_leaf(root, path);
3201 				if (ret == 0)
3202 					continue;
3203 				if (ret < 0)
3204 					goto out;
3205 
3206 				stop_loop = 1;
3207 				break;
3208 			}
3209 			btrfs_item_key_to_cpu(l, &key, slot);
3210 
3211 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212 			    key.type != BTRFS_METADATA_ITEM_KEY)
3213 				goto next;
3214 
3215 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3216 				bytes = fs_info->nodesize;
3217 			else
3218 				bytes = key.offset;
3219 
3220 			if (key.objectid + bytes <= logic_start)
3221 				goto next;
3222 
3223 			if (key.objectid >= logic_end) {
3224 				stop_loop = 1;
3225 				break;
3226 			}
3227 
3228 			while (key.objectid >= logic_start + map->stripe_len)
3229 				logic_start += map->stripe_len;
3230 
3231 			extent = btrfs_item_ptr(l, slot,
3232 						struct btrfs_extent_item);
3233 			flags = btrfs_extent_flags(l, extent);
3234 			generation = btrfs_extent_generation(l, extent);
3235 
3236 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237 			    (key.objectid < logic_start ||
3238 			     key.objectid + bytes >
3239 			     logic_start + map->stripe_len)) {
3240 				btrfs_err(fs_info,
3241 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242 					  key.objectid, logic_start);
3243 				spin_lock(&sctx->stat_lock);
3244 				sctx->stat.uncorrectable_errors++;
3245 				spin_unlock(&sctx->stat_lock);
3246 				goto next;
3247 			}
3248 again:
3249 			extent_logical = key.objectid;
3250 			extent_len = bytes;
3251 
3252 			if (extent_logical < logic_start) {
3253 				extent_len -= logic_start - extent_logical;
3254 				extent_logical = logic_start;
3255 			}
3256 
3257 			if (extent_logical + extent_len >
3258 			    logic_start + map->stripe_len)
3259 				extent_len = logic_start + map->stripe_len -
3260 					     extent_logical;
3261 
3262 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3263 						       extent_len);
3264 
3265 			mapped_length = extent_len;
3266 			bbio = NULL;
3267 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268 					extent_logical, &mapped_length, &bbio,
3269 					0);
3270 			if (!ret) {
3271 				if (!bbio || mapped_length < extent_len)
3272 					ret = -EIO;
3273 			}
3274 			if (ret) {
3275 				btrfs_put_bbio(bbio);
3276 				goto out;
3277 			}
3278 			extent_physical = bbio->stripes[0].physical;
3279 			extent_mirror_num = bbio->mirror_num;
3280 			extent_dev = bbio->stripes[0].dev;
3281 			btrfs_put_bbio(bbio);
3282 
3283 			ret = btrfs_lookup_csums_range(csum_root,
3284 						extent_logical,
3285 						extent_logical + extent_len - 1,
3286 						&sctx->csum_list, 1);
3287 			if (ret)
3288 				goto out;
3289 
3290 			ret = scrub_extent_for_parity(sparity, extent_logical,
3291 						      extent_len,
3292 						      extent_physical,
3293 						      extent_dev, flags,
3294 						      generation,
3295 						      extent_mirror_num);
3296 
3297 			scrub_free_csums(sctx);
3298 
3299 			if (ret)
3300 				goto out;
3301 
3302 			if (extent_logical + extent_len <
3303 			    key.objectid + bytes) {
3304 				logic_start += map->stripe_len;
3305 
3306 				if (logic_start >= logic_end) {
3307 					stop_loop = 1;
3308 					break;
3309 				}
3310 
3311 				if (logic_start < key.objectid + bytes) {
3312 					cond_resched();
3313 					goto again;
3314 				}
3315 			}
3316 next:
3317 			path->slots[0]++;
3318 		}
3319 
3320 		btrfs_release_path(path);
3321 
3322 		if (stop_loop)
3323 			break;
3324 
3325 		logic_start += map->stripe_len;
3326 	}
3327 out:
3328 	if (ret < 0)
3329 		scrub_parity_mark_sectors_error(sparity, logic_start,
3330 						logic_end - logic_start);
3331 	scrub_parity_put(sparity);
3332 	scrub_submit(sctx);
3333 	mutex_lock(&sctx->wr_lock);
3334 	scrub_wr_submit(sctx);
3335 	mutex_unlock(&sctx->wr_lock);
3336 
3337 	btrfs_release_path(path);
3338 	return ret < 0 ? ret : 0;
3339 }
3340 
3341 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342 					   struct map_lookup *map,
3343 					   struct btrfs_device *scrub_dev,
3344 					   int num, u64 base, u64 length,
3345 					   int is_dev_replace)
3346 {
3347 	struct btrfs_path *path, *ppath;
3348 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3349 	struct btrfs_root *root = fs_info->extent_root;
3350 	struct btrfs_root *csum_root = fs_info->csum_root;
3351 	struct btrfs_extent_item *extent;
3352 	struct blk_plug plug;
3353 	u64 flags;
3354 	int ret;
3355 	int slot;
3356 	u64 nstripes;
3357 	struct extent_buffer *l;
3358 	u64 physical;
3359 	u64 logical;
3360 	u64 logic_end;
3361 	u64 physical_end;
3362 	u64 generation;
3363 	int mirror_num;
3364 	struct reada_control *reada1;
3365 	struct reada_control *reada2;
3366 	struct btrfs_key key;
3367 	struct btrfs_key key_end;
3368 	u64 increment = map->stripe_len;
3369 	u64 offset;
3370 	u64 extent_logical;
3371 	u64 extent_physical;
3372 	u64 extent_len;
3373 	u64 stripe_logical;
3374 	u64 stripe_end;
3375 	struct btrfs_device *extent_dev;
3376 	int extent_mirror_num;
3377 	int stop_loop = 0;
3378 
3379 	physical = map->stripes[num].physical;
3380 	offset = 0;
3381 	nstripes = div64_u64(length, map->stripe_len);
3382 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383 		offset = map->stripe_len * num;
3384 		increment = map->stripe_len * map->num_stripes;
3385 		mirror_num = 1;
3386 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387 		int factor = map->num_stripes / map->sub_stripes;
3388 		offset = map->stripe_len * (num / map->sub_stripes);
3389 		increment = map->stripe_len * factor;
3390 		mirror_num = num % map->sub_stripes + 1;
3391 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392 		increment = map->stripe_len;
3393 		mirror_num = num % map->num_stripes + 1;
3394 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395 		increment = map->stripe_len;
3396 		mirror_num = num % map->num_stripes + 1;
3397 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399 		increment = map->stripe_len * nr_data_stripes(map);
3400 		mirror_num = 1;
3401 	} else {
3402 		increment = map->stripe_len;
3403 		mirror_num = 1;
3404 	}
3405 
3406 	path = btrfs_alloc_path();
3407 	if (!path)
3408 		return -ENOMEM;
3409 
3410 	ppath = btrfs_alloc_path();
3411 	if (!ppath) {
3412 		btrfs_free_path(path);
3413 		return -ENOMEM;
3414 	}
3415 
3416 	/*
3417 	 * work on commit root. The related disk blocks are static as
3418 	 * long as COW is applied. This means, it is save to rewrite
3419 	 * them to repair disk errors without any race conditions
3420 	 */
3421 	path->search_commit_root = 1;
3422 	path->skip_locking = 1;
3423 
3424 	ppath->search_commit_root = 1;
3425 	ppath->skip_locking = 1;
3426 	/*
3427 	 * trigger the readahead for extent tree csum tree and wait for
3428 	 * completion. During readahead, the scrub is officially paused
3429 	 * to not hold off transaction commits
3430 	 */
3431 	logical = base + offset;
3432 	physical_end = physical + nstripes * map->stripe_len;
3433 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434 		get_raid56_logic_offset(physical_end, num,
3435 					map, &logic_end, NULL);
3436 		logic_end += base;
3437 	} else {
3438 		logic_end = logical + increment * nstripes;
3439 	}
3440 	wait_event(sctx->list_wait,
3441 		   atomic_read(&sctx->bios_in_flight) == 0);
3442 	scrub_blocked_if_needed(fs_info);
3443 
3444 	/* FIXME it might be better to start readahead at commit root */
3445 	key.objectid = logical;
3446 	key.type = BTRFS_EXTENT_ITEM_KEY;
3447 	key.offset = (u64)0;
3448 	key_end.objectid = logic_end;
3449 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3450 	key_end.offset = (u64)-1;
3451 	reada1 = btrfs_reada_add(root, &key, &key_end);
3452 
3453 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454 	key.type = BTRFS_EXTENT_CSUM_KEY;
3455 	key.offset = logical;
3456 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458 	key_end.offset = logic_end;
3459 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3460 
3461 	if (!IS_ERR(reada1))
3462 		btrfs_reada_wait(reada1);
3463 	if (!IS_ERR(reada2))
3464 		btrfs_reada_wait(reada2);
3465 
3466 
3467 	/*
3468 	 * collect all data csums for the stripe to avoid seeking during
3469 	 * the scrub. This might currently (crc32) end up to be about 1MB
3470 	 */
3471 	blk_start_plug(&plug);
3472 
3473 	/*
3474 	 * now find all extents for each stripe and scrub them
3475 	 */
3476 	ret = 0;
3477 	while (physical < physical_end) {
3478 		/*
3479 		 * canceled?
3480 		 */
3481 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3482 		    atomic_read(&sctx->cancel_req)) {
3483 			ret = -ECANCELED;
3484 			goto out;
3485 		}
3486 		/*
3487 		 * check to see if we have to pause
3488 		 */
3489 		if (atomic_read(&fs_info->scrub_pause_req)) {
3490 			/* push queued extents */
3491 			sctx->flush_all_writes = true;
3492 			scrub_submit(sctx);
3493 			mutex_lock(&sctx->wr_lock);
3494 			scrub_wr_submit(sctx);
3495 			mutex_unlock(&sctx->wr_lock);
3496 			wait_event(sctx->list_wait,
3497 				   atomic_read(&sctx->bios_in_flight) == 0);
3498 			sctx->flush_all_writes = false;
3499 			scrub_blocked_if_needed(fs_info);
3500 		}
3501 
3502 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503 			ret = get_raid56_logic_offset(physical, num, map,
3504 						      &logical,
3505 						      &stripe_logical);
3506 			logical += base;
3507 			if (ret) {
3508 				/* it is parity strip */
3509 				stripe_logical += base;
3510 				stripe_end = stripe_logical + increment;
3511 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512 							  ppath, stripe_logical,
3513 							  stripe_end);
3514 				if (ret)
3515 					goto out;
3516 				goto skip;
3517 			}
3518 		}
3519 
3520 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521 			key.type = BTRFS_METADATA_ITEM_KEY;
3522 		else
3523 			key.type = BTRFS_EXTENT_ITEM_KEY;
3524 		key.objectid = logical;
3525 		key.offset = (u64)-1;
3526 
3527 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528 		if (ret < 0)
3529 			goto out;
3530 
3531 		if (ret > 0) {
3532 			ret = btrfs_previous_extent_item(root, path, 0);
3533 			if (ret < 0)
3534 				goto out;
3535 			if (ret > 0) {
3536 				/* there's no smaller item, so stick with the
3537 				 * larger one */
3538 				btrfs_release_path(path);
3539 				ret = btrfs_search_slot(NULL, root, &key,
3540 							path, 0, 0);
3541 				if (ret < 0)
3542 					goto out;
3543 			}
3544 		}
3545 
3546 		stop_loop = 0;
3547 		while (1) {
3548 			u64 bytes;
3549 
3550 			l = path->nodes[0];
3551 			slot = path->slots[0];
3552 			if (slot >= btrfs_header_nritems(l)) {
3553 				ret = btrfs_next_leaf(root, path);
3554 				if (ret == 0)
3555 					continue;
3556 				if (ret < 0)
3557 					goto out;
3558 
3559 				stop_loop = 1;
3560 				break;
3561 			}
3562 			btrfs_item_key_to_cpu(l, &key, slot);
3563 
3564 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565 			    key.type != BTRFS_METADATA_ITEM_KEY)
3566 				goto next;
3567 
3568 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3569 				bytes = fs_info->nodesize;
3570 			else
3571 				bytes = key.offset;
3572 
3573 			if (key.objectid + bytes <= logical)
3574 				goto next;
3575 
3576 			if (key.objectid >= logical + map->stripe_len) {
3577 				/* out of this device extent */
3578 				if (key.objectid >= logic_end)
3579 					stop_loop = 1;
3580 				break;
3581 			}
3582 
3583 			extent = btrfs_item_ptr(l, slot,
3584 						struct btrfs_extent_item);
3585 			flags = btrfs_extent_flags(l, extent);
3586 			generation = btrfs_extent_generation(l, extent);
3587 
3588 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589 			    (key.objectid < logical ||
3590 			     key.objectid + bytes >
3591 			     logical + map->stripe_len)) {
3592 				btrfs_err(fs_info,
3593 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594 				       key.objectid, logical);
3595 				spin_lock(&sctx->stat_lock);
3596 				sctx->stat.uncorrectable_errors++;
3597 				spin_unlock(&sctx->stat_lock);
3598 				goto next;
3599 			}
3600 
3601 again:
3602 			extent_logical = key.objectid;
3603 			extent_len = bytes;
3604 
3605 			/*
3606 			 * trim extent to this stripe
3607 			 */
3608 			if (extent_logical < logical) {
3609 				extent_len -= logical - extent_logical;
3610 				extent_logical = logical;
3611 			}
3612 			if (extent_logical + extent_len >
3613 			    logical + map->stripe_len) {
3614 				extent_len = logical + map->stripe_len -
3615 					     extent_logical;
3616 			}
3617 
3618 			extent_physical = extent_logical - logical + physical;
3619 			extent_dev = scrub_dev;
3620 			extent_mirror_num = mirror_num;
3621 			if (is_dev_replace)
3622 				scrub_remap_extent(fs_info, extent_logical,
3623 						   extent_len, &extent_physical,
3624 						   &extent_dev,
3625 						   &extent_mirror_num);
3626 
3627 			ret = btrfs_lookup_csums_range(csum_root,
3628 						       extent_logical,
3629 						       extent_logical +
3630 						       extent_len - 1,
3631 						       &sctx->csum_list, 1);
3632 			if (ret)
3633 				goto out;
3634 
3635 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636 					   extent_physical, extent_dev, flags,
3637 					   generation, extent_mirror_num,
3638 					   extent_logical - logical + physical);
3639 
3640 			scrub_free_csums(sctx);
3641 
3642 			if (ret)
3643 				goto out;
3644 
3645 			if (extent_logical + extent_len <
3646 			    key.objectid + bytes) {
3647 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3648 					/*
3649 					 * loop until we find next data stripe
3650 					 * or we have finished all stripes.
3651 					 */
3652 loop:
3653 					physical += map->stripe_len;
3654 					ret = get_raid56_logic_offset(physical,
3655 							num, map, &logical,
3656 							&stripe_logical);
3657 					logical += base;
3658 
3659 					if (ret && physical < physical_end) {
3660 						stripe_logical += base;
3661 						stripe_end = stripe_logical +
3662 								increment;
3663 						ret = scrub_raid56_parity(sctx,
3664 							map, scrub_dev, ppath,
3665 							stripe_logical,
3666 							stripe_end);
3667 						if (ret)
3668 							goto out;
3669 						goto loop;
3670 					}
3671 				} else {
3672 					physical += map->stripe_len;
3673 					logical += increment;
3674 				}
3675 				if (logical < key.objectid + bytes) {
3676 					cond_resched();
3677 					goto again;
3678 				}
3679 
3680 				if (physical >= physical_end) {
3681 					stop_loop = 1;
3682 					break;
3683 				}
3684 			}
3685 next:
3686 			path->slots[0]++;
3687 		}
3688 		btrfs_release_path(path);
3689 skip:
3690 		logical += increment;
3691 		physical += map->stripe_len;
3692 		spin_lock(&sctx->stat_lock);
3693 		if (stop_loop)
3694 			sctx->stat.last_physical = map->stripes[num].physical +
3695 						   length;
3696 		else
3697 			sctx->stat.last_physical = physical;
3698 		spin_unlock(&sctx->stat_lock);
3699 		if (stop_loop)
3700 			break;
3701 	}
3702 out:
3703 	/* push queued extents */
3704 	scrub_submit(sctx);
3705 	mutex_lock(&sctx->wr_lock);
3706 	scrub_wr_submit(sctx);
3707 	mutex_unlock(&sctx->wr_lock);
3708 
3709 	blk_finish_plug(&plug);
3710 	btrfs_free_path(path);
3711 	btrfs_free_path(ppath);
3712 	return ret < 0 ? ret : 0;
3713 }
3714 
3715 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716 					  struct btrfs_device *scrub_dev,
3717 					  u64 chunk_offset, u64 length,
3718 					  u64 dev_offset,
3719 					  struct btrfs_block_group_cache *cache,
3720 					  int is_dev_replace)
3721 {
3722 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3723 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724 	struct map_lookup *map;
3725 	struct extent_map *em;
3726 	int i;
3727 	int ret = 0;
3728 
3729 	read_lock(&map_tree->map_tree.lock);
3730 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731 	read_unlock(&map_tree->map_tree.lock);
3732 
3733 	if (!em) {
3734 		/*
3735 		 * Might have been an unused block group deleted by the cleaner
3736 		 * kthread or relocation.
3737 		 */
3738 		spin_lock(&cache->lock);
3739 		if (!cache->removed)
3740 			ret = -EINVAL;
3741 		spin_unlock(&cache->lock);
3742 
3743 		return ret;
3744 	}
3745 
3746 	map = em->map_lookup;
3747 	if (em->start != chunk_offset)
3748 		goto out;
3749 
3750 	if (em->len < length)
3751 		goto out;
3752 
3753 	for (i = 0; i < map->num_stripes; ++i) {
3754 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755 		    map->stripes[i].physical == dev_offset) {
3756 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3757 					   chunk_offset, length,
3758 					   is_dev_replace);
3759 			if (ret)
3760 				goto out;
3761 		}
3762 	}
3763 out:
3764 	free_extent_map(em);
3765 
3766 	return ret;
3767 }
3768 
3769 static noinline_for_stack
3770 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3772 			   int is_dev_replace)
3773 {
3774 	struct btrfs_dev_extent *dev_extent = NULL;
3775 	struct btrfs_path *path;
3776 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3777 	struct btrfs_root *root = fs_info->dev_root;
3778 	u64 length;
3779 	u64 chunk_offset;
3780 	int ret = 0;
3781 	int ro_set;
3782 	int slot;
3783 	struct extent_buffer *l;
3784 	struct btrfs_key key;
3785 	struct btrfs_key found_key;
3786 	struct btrfs_block_group_cache *cache;
3787 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3788 
3789 	path = btrfs_alloc_path();
3790 	if (!path)
3791 		return -ENOMEM;
3792 
3793 	path->reada = READA_FORWARD;
3794 	path->search_commit_root = 1;
3795 	path->skip_locking = 1;
3796 
3797 	key.objectid = scrub_dev->devid;
3798 	key.offset = 0ull;
3799 	key.type = BTRFS_DEV_EXTENT_KEY;
3800 
3801 	while (1) {
3802 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3803 		if (ret < 0)
3804 			break;
3805 		if (ret > 0) {
3806 			if (path->slots[0] >=
3807 			    btrfs_header_nritems(path->nodes[0])) {
3808 				ret = btrfs_next_leaf(root, path);
3809 				if (ret < 0)
3810 					break;
3811 				if (ret > 0) {
3812 					ret = 0;
3813 					break;
3814 				}
3815 			} else {
3816 				ret = 0;
3817 			}
3818 		}
3819 
3820 		l = path->nodes[0];
3821 		slot = path->slots[0];
3822 
3823 		btrfs_item_key_to_cpu(l, &found_key, slot);
3824 
3825 		if (found_key.objectid != scrub_dev->devid)
3826 			break;
3827 
3828 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3829 			break;
3830 
3831 		if (found_key.offset >= end)
3832 			break;
3833 
3834 		if (found_key.offset < key.offset)
3835 			break;
3836 
3837 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838 		length = btrfs_dev_extent_length(l, dev_extent);
3839 
3840 		if (found_key.offset + length <= start)
3841 			goto skip;
3842 
3843 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3844 
3845 		/*
3846 		 * get a reference on the corresponding block group to prevent
3847 		 * the chunk from going away while we scrub it
3848 		 */
3849 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850 
3851 		/* some chunks are removed but not committed to disk yet,
3852 		 * continue scrubbing */
3853 		if (!cache)
3854 			goto skip;
3855 
3856 		/*
3857 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858 		 * to avoid deadlock caused by:
3859 		 * btrfs_inc_block_group_ro()
3860 		 * -> btrfs_wait_for_commit()
3861 		 * -> btrfs_commit_transaction()
3862 		 * -> btrfs_scrub_pause()
3863 		 */
3864 		scrub_pause_on(fs_info);
3865 		ret = btrfs_inc_block_group_ro(fs_info, cache);
3866 		if (!ret && is_dev_replace) {
3867 			/*
3868 			 * If we are doing a device replace wait for any tasks
3869 			 * that started dellaloc right before we set the block
3870 			 * group to RO mode, as they might have just allocated
3871 			 * an extent from it or decided they could do a nocow
3872 			 * write. And if any such tasks did that, wait for their
3873 			 * ordered extents to complete and then commit the
3874 			 * current transaction, so that we can later see the new
3875 			 * extent items in the extent tree - the ordered extents
3876 			 * create delayed data references (for cow writes) when
3877 			 * they complete, which will be run and insert the
3878 			 * corresponding extent items into the extent tree when
3879 			 * we commit the transaction they used when running
3880 			 * inode.c:btrfs_finish_ordered_io(). We later use
3881 			 * the commit root of the extent tree to find extents
3882 			 * to copy from the srcdev into the tgtdev, and we don't
3883 			 * want to miss any new extents.
3884 			 */
3885 			btrfs_wait_block_group_reservations(cache);
3886 			btrfs_wait_nocow_writers(cache);
3887 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888 						       cache->key.objectid,
3889 						       cache->key.offset);
3890 			if (ret > 0) {
3891 				struct btrfs_trans_handle *trans;
3892 
3893 				trans = btrfs_join_transaction(root);
3894 				if (IS_ERR(trans))
3895 					ret = PTR_ERR(trans);
3896 				else
3897 					ret = btrfs_commit_transaction(trans);
3898 				if (ret) {
3899 					scrub_pause_off(fs_info);
3900 					btrfs_put_block_group(cache);
3901 					break;
3902 				}
3903 			}
3904 		}
3905 		scrub_pause_off(fs_info);
3906 
3907 		if (ret == 0) {
3908 			ro_set = 1;
3909 		} else if (ret == -ENOSPC) {
3910 			/*
3911 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3912 			 * failed in creating new chunk for metadata.
3913 			 * It is not a problem for scrub/replace, because
3914 			 * metadata are always cowed, and our scrub paused
3915 			 * commit_transactions.
3916 			 */
3917 			ro_set = 0;
3918 		} else {
3919 			btrfs_warn(fs_info,
3920 				   "failed setting block group ro: %d", ret);
3921 			btrfs_put_block_group(cache);
3922 			break;
3923 		}
3924 
3925 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926 		dev_replace->cursor_right = found_key.offset + length;
3927 		dev_replace->cursor_left = found_key.offset;
3928 		dev_replace->item_needs_writeback = 1;
3929 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931 				  found_key.offset, cache, is_dev_replace);
3932 
3933 		/*
3934 		 * flush, submit all pending read and write bios, afterwards
3935 		 * wait for them.
3936 		 * Note that in the dev replace case, a read request causes
3937 		 * write requests that are submitted in the read completion
3938 		 * worker. Therefore in the current situation, it is required
3939 		 * that all write requests are flushed, so that all read and
3940 		 * write requests are really completed when bios_in_flight
3941 		 * changes to 0.
3942 		 */
3943 		sctx->flush_all_writes = true;
3944 		scrub_submit(sctx);
3945 		mutex_lock(&sctx->wr_lock);
3946 		scrub_wr_submit(sctx);
3947 		mutex_unlock(&sctx->wr_lock);
3948 
3949 		wait_event(sctx->list_wait,
3950 			   atomic_read(&sctx->bios_in_flight) == 0);
3951 
3952 		scrub_pause_on(fs_info);
3953 
3954 		/*
3955 		 * must be called before we decrease @scrub_paused.
3956 		 * make sure we don't block transaction commit while
3957 		 * we are waiting pending workers finished.
3958 		 */
3959 		wait_event(sctx->list_wait,
3960 			   atomic_read(&sctx->workers_pending) == 0);
3961 		sctx->flush_all_writes = false;
3962 
3963 		scrub_pause_off(fs_info);
3964 
3965 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966 		dev_replace->cursor_left = dev_replace->cursor_right;
3967 		dev_replace->item_needs_writeback = 1;
3968 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969 
3970 		if (ro_set)
3971 			btrfs_dec_block_group_ro(cache);
3972 
3973 		/*
3974 		 * We might have prevented the cleaner kthread from deleting
3975 		 * this block group if it was already unused because we raced
3976 		 * and set it to RO mode first. So add it back to the unused
3977 		 * list, otherwise it might not ever be deleted unless a manual
3978 		 * balance is triggered or it becomes used and unused again.
3979 		 */
3980 		spin_lock(&cache->lock);
3981 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982 		    btrfs_block_group_used(&cache->item) == 0) {
3983 			spin_unlock(&cache->lock);
3984 			spin_lock(&fs_info->unused_bgs_lock);
3985 			if (list_empty(&cache->bg_list)) {
3986 				btrfs_get_block_group(cache);
3987 				trace_btrfs_add_unused_block_group(cache);
3988 				list_add_tail(&cache->bg_list,
3989 					      &fs_info->unused_bgs);
3990 			}
3991 			spin_unlock(&fs_info->unused_bgs_lock);
3992 		} else {
3993 			spin_unlock(&cache->lock);
3994 		}
3995 
3996 		btrfs_put_block_group(cache);
3997 		if (ret)
3998 			break;
3999 		if (is_dev_replace &&
4000 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4001 			ret = -EIO;
4002 			break;
4003 		}
4004 		if (sctx->stat.malloc_errors > 0) {
4005 			ret = -ENOMEM;
4006 			break;
4007 		}
4008 skip:
4009 		key.offset = found_key.offset + length;
4010 		btrfs_release_path(path);
4011 	}
4012 
4013 	btrfs_free_path(path);
4014 
4015 	return ret;
4016 }
4017 
4018 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4019 					   struct btrfs_device *scrub_dev)
4020 {
4021 	int	i;
4022 	u64	bytenr;
4023 	u64	gen;
4024 	int	ret;
4025 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4026 
4027 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4028 		return -EIO;
4029 
4030 	/* Seed devices of a new filesystem has their own generation. */
4031 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4032 		gen = scrub_dev->generation;
4033 	else
4034 		gen = fs_info->last_trans_committed;
4035 
4036 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4037 		bytenr = btrfs_sb_offset(i);
4038 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4039 		    scrub_dev->commit_total_bytes)
4040 			break;
4041 
4042 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4043 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4044 				  NULL, 1, bytenr);
4045 		if (ret)
4046 			return ret;
4047 	}
4048 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4049 
4050 	return 0;
4051 }
4052 
4053 /*
4054  * get a reference count on fs_info->scrub_workers. start worker if necessary
4055  */
4056 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4057 						int is_dev_replace)
4058 {
4059 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4060 	int max_active = fs_info->thread_pool_size;
4061 
4062 	if (fs_info->scrub_workers_refcnt == 0) {
4063 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4064 				flags, is_dev_replace ? 1 : max_active, 4);
4065 		if (!fs_info->scrub_workers)
4066 			goto fail_scrub_workers;
4067 
4068 		fs_info->scrub_wr_completion_workers =
4069 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4070 					      max_active, 2);
4071 		if (!fs_info->scrub_wr_completion_workers)
4072 			goto fail_scrub_wr_completion_workers;
4073 
4074 		fs_info->scrub_nocow_workers =
4075 			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4076 		if (!fs_info->scrub_nocow_workers)
4077 			goto fail_scrub_nocow_workers;
4078 		fs_info->scrub_parity_workers =
4079 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4080 					      max_active, 2);
4081 		if (!fs_info->scrub_parity_workers)
4082 			goto fail_scrub_parity_workers;
4083 	}
4084 	++fs_info->scrub_workers_refcnt;
4085 	return 0;
4086 
4087 fail_scrub_parity_workers:
4088 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4089 fail_scrub_nocow_workers:
4090 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4091 fail_scrub_wr_completion_workers:
4092 	btrfs_destroy_workqueue(fs_info->scrub_workers);
4093 fail_scrub_workers:
4094 	return -ENOMEM;
4095 }
4096 
4097 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4098 {
4099 	if (--fs_info->scrub_workers_refcnt == 0) {
4100 		btrfs_destroy_workqueue(fs_info->scrub_workers);
4101 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4102 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4103 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4104 	}
4105 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4106 }
4107 
4108 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4109 		    u64 end, struct btrfs_scrub_progress *progress,
4110 		    int readonly, int is_dev_replace)
4111 {
4112 	struct scrub_ctx *sctx;
4113 	int ret;
4114 	struct btrfs_device *dev;
4115 	struct rcu_string *name;
4116 
4117 	if (btrfs_fs_closing(fs_info))
4118 		return -EINVAL;
4119 
4120 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4121 		/*
4122 		 * in this case scrub is unable to calculate the checksum
4123 		 * the way scrub is implemented. Do not handle this
4124 		 * situation at all because it won't ever happen.
4125 		 */
4126 		btrfs_err(fs_info,
4127 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4128 		       fs_info->nodesize,
4129 		       BTRFS_STRIPE_LEN);
4130 		return -EINVAL;
4131 	}
4132 
4133 	if (fs_info->sectorsize != PAGE_SIZE) {
4134 		/* not supported for data w/o checksums */
4135 		btrfs_err_rl(fs_info,
4136 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4137 		       fs_info->sectorsize, PAGE_SIZE);
4138 		return -EINVAL;
4139 	}
4140 
4141 	if (fs_info->nodesize >
4142 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4143 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4144 		/*
4145 		 * would exhaust the array bounds of pagev member in
4146 		 * struct scrub_block
4147 		 */
4148 		btrfs_err(fs_info,
4149 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4150 		       fs_info->nodesize,
4151 		       SCRUB_MAX_PAGES_PER_BLOCK,
4152 		       fs_info->sectorsize,
4153 		       SCRUB_MAX_PAGES_PER_BLOCK);
4154 		return -EINVAL;
4155 	}
4156 
4157 
4158 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4159 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4160 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4161 		     !is_dev_replace)) {
4162 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4163 		return -ENODEV;
4164 	}
4165 
4166 	if (!is_dev_replace && !readonly &&
4167 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4168 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4169 		rcu_read_lock();
4170 		name = rcu_dereference(dev->name);
4171 		btrfs_err(fs_info, "scrub: device %s is not writable",
4172 			  name->str);
4173 		rcu_read_unlock();
4174 		return -EROFS;
4175 	}
4176 
4177 	mutex_lock(&fs_info->scrub_lock);
4178 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4179 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4180 		mutex_unlock(&fs_info->scrub_lock);
4181 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4182 		return -EIO;
4183 	}
4184 
4185 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4186 	if (dev->scrub_ctx ||
4187 	    (!is_dev_replace &&
4188 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4189 		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4190 		mutex_unlock(&fs_info->scrub_lock);
4191 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4192 		return -EINPROGRESS;
4193 	}
4194 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4195 
4196 	ret = scrub_workers_get(fs_info, is_dev_replace);
4197 	if (ret) {
4198 		mutex_unlock(&fs_info->scrub_lock);
4199 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4200 		return ret;
4201 	}
4202 
4203 	sctx = scrub_setup_ctx(dev, is_dev_replace);
4204 	if (IS_ERR(sctx)) {
4205 		mutex_unlock(&fs_info->scrub_lock);
4206 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4207 		scrub_workers_put(fs_info);
4208 		return PTR_ERR(sctx);
4209 	}
4210 	sctx->readonly = readonly;
4211 	dev->scrub_ctx = sctx;
4212 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4213 
4214 	/*
4215 	 * checking @scrub_pause_req here, we can avoid
4216 	 * race between committing transaction and scrubbing.
4217 	 */
4218 	__scrub_blocked_if_needed(fs_info);
4219 	atomic_inc(&fs_info->scrubs_running);
4220 	mutex_unlock(&fs_info->scrub_lock);
4221 
4222 	if (!is_dev_replace) {
4223 		/*
4224 		 * by holding device list mutex, we can
4225 		 * kick off writing super in log tree sync.
4226 		 */
4227 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4228 		ret = scrub_supers(sctx, dev);
4229 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4230 	}
4231 
4232 	if (!ret)
4233 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4234 					     is_dev_replace);
4235 
4236 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4237 	atomic_dec(&fs_info->scrubs_running);
4238 	wake_up(&fs_info->scrub_pause_wait);
4239 
4240 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4241 
4242 	if (progress)
4243 		memcpy(progress, &sctx->stat, sizeof(*progress));
4244 
4245 	mutex_lock(&fs_info->scrub_lock);
4246 	dev->scrub_ctx = NULL;
4247 	scrub_workers_put(fs_info);
4248 	mutex_unlock(&fs_info->scrub_lock);
4249 
4250 	scrub_put_ctx(sctx);
4251 
4252 	return ret;
4253 }
4254 
4255 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4256 {
4257 	mutex_lock(&fs_info->scrub_lock);
4258 	atomic_inc(&fs_info->scrub_pause_req);
4259 	while (atomic_read(&fs_info->scrubs_paused) !=
4260 	       atomic_read(&fs_info->scrubs_running)) {
4261 		mutex_unlock(&fs_info->scrub_lock);
4262 		wait_event(fs_info->scrub_pause_wait,
4263 			   atomic_read(&fs_info->scrubs_paused) ==
4264 			   atomic_read(&fs_info->scrubs_running));
4265 		mutex_lock(&fs_info->scrub_lock);
4266 	}
4267 	mutex_unlock(&fs_info->scrub_lock);
4268 }
4269 
4270 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4271 {
4272 	atomic_dec(&fs_info->scrub_pause_req);
4273 	wake_up(&fs_info->scrub_pause_wait);
4274 }
4275 
4276 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4277 {
4278 	mutex_lock(&fs_info->scrub_lock);
4279 	if (!atomic_read(&fs_info->scrubs_running)) {
4280 		mutex_unlock(&fs_info->scrub_lock);
4281 		return -ENOTCONN;
4282 	}
4283 
4284 	atomic_inc(&fs_info->scrub_cancel_req);
4285 	while (atomic_read(&fs_info->scrubs_running)) {
4286 		mutex_unlock(&fs_info->scrub_lock);
4287 		wait_event(fs_info->scrub_pause_wait,
4288 			   atomic_read(&fs_info->scrubs_running) == 0);
4289 		mutex_lock(&fs_info->scrub_lock);
4290 	}
4291 	atomic_dec(&fs_info->scrub_cancel_req);
4292 	mutex_unlock(&fs_info->scrub_lock);
4293 
4294 	return 0;
4295 }
4296 
4297 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4298 			   struct btrfs_device *dev)
4299 {
4300 	struct scrub_ctx *sctx;
4301 
4302 	mutex_lock(&fs_info->scrub_lock);
4303 	sctx = dev->scrub_ctx;
4304 	if (!sctx) {
4305 		mutex_unlock(&fs_info->scrub_lock);
4306 		return -ENOTCONN;
4307 	}
4308 	atomic_inc(&sctx->cancel_req);
4309 	while (dev->scrub_ctx) {
4310 		mutex_unlock(&fs_info->scrub_lock);
4311 		wait_event(fs_info->scrub_pause_wait,
4312 			   dev->scrub_ctx == NULL);
4313 		mutex_lock(&fs_info->scrub_lock);
4314 	}
4315 	mutex_unlock(&fs_info->scrub_lock);
4316 
4317 	return 0;
4318 }
4319 
4320 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4321 			 struct btrfs_scrub_progress *progress)
4322 {
4323 	struct btrfs_device *dev;
4324 	struct scrub_ctx *sctx = NULL;
4325 
4326 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4327 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4328 	if (dev)
4329 		sctx = dev->scrub_ctx;
4330 	if (sctx)
4331 		memcpy(progress, &sctx->stat, sizeof(*progress));
4332 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4333 
4334 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4335 }
4336 
4337 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4338 			       u64 extent_logical, u64 extent_len,
4339 			       u64 *extent_physical,
4340 			       struct btrfs_device **extent_dev,
4341 			       int *extent_mirror_num)
4342 {
4343 	u64 mapped_length;
4344 	struct btrfs_bio *bbio = NULL;
4345 	int ret;
4346 
4347 	mapped_length = extent_len;
4348 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4349 			      &mapped_length, &bbio, 0);
4350 	if (ret || !bbio || mapped_length < extent_len ||
4351 	    !bbio->stripes[0].dev->bdev) {
4352 		btrfs_put_bbio(bbio);
4353 		return;
4354 	}
4355 
4356 	*extent_physical = bbio->stripes[0].physical;
4357 	*extent_mirror_num = bbio->mirror_num;
4358 	*extent_dev = bbio->stripes[0].dev;
4359 	btrfs_put_bbio(bbio);
4360 }
4361 
4362 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4363 			    int mirror_num, u64 physical_for_dev_replace)
4364 {
4365 	struct scrub_copy_nocow_ctx *nocow_ctx;
4366 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4367 
4368 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4369 	if (!nocow_ctx) {
4370 		spin_lock(&sctx->stat_lock);
4371 		sctx->stat.malloc_errors++;
4372 		spin_unlock(&sctx->stat_lock);
4373 		return -ENOMEM;
4374 	}
4375 
4376 	scrub_pending_trans_workers_inc(sctx);
4377 
4378 	nocow_ctx->sctx = sctx;
4379 	nocow_ctx->logical = logical;
4380 	nocow_ctx->len = len;
4381 	nocow_ctx->mirror_num = mirror_num;
4382 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4383 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4384 			copy_nocow_pages_worker, NULL, NULL);
4385 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4386 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4387 			 &nocow_ctx->work);
4388 
4389 	return 0;
4390 }
4391 
4392 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4393 {
4394 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4395 	struct scrub_nocow_inode *nocow_inode;
4396 
4397 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4398 	if (!nocow_inode)
4399 		return -ENOMEM;
4400 	nocow_inode->inum = inum;
4401 	nocow_inode->offset = offset;
4402 	nocow_inode->root = root;
4403 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4404 	return 0;
4405 }
4406 
4407 #define COPY_COMPLETE 1
4408 
4409 static void copy_nocow_pages_worker(struct btrfs_work *work)
4410 {
4411 	struct scrub_copy_nocow_ctx *nocow_ctx =
4412 		container_of(work, struct scrub_copy_nocow_ctx, work);
4413 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4414 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4415 	struct btrfs_root *root = fs_info->extent_root;
4416 	u64 logical = nocow_ctx->logical;
4417 	u64 len = nocow_ctx->len;
4418 	int mirror_num = nocow_ctx->mirror_num;
4419 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4420 	int ret;
4421 	struct btrfs_trans_handle *trans = NULL;
4422 	struct btrfs_path *path;
4423 	int not_written = 0;
4424 
4425 	path = btrfs_alloc_path();
4426 	if (!path) {
4427 		spin_lock(&sctx->stat_lock);
4428 		sctx->stat.malloc_errors++;
4429 		spin_unlock(&sctx->stat_lock);
4430 		not_written = 1;
4431 		goto out;
4432 	}
4433 
4434 	trans = btrfs_join_transaction(root);
4435 	if (IS_ERR(trans)) {
4436 		not_written = 1;
4437 		goto out;
4438 	}
4439 
4440 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4441 			record_inode_for_nocow, nocow_ctx, false);
4442 	if (ret != 0 && ret != -ENOENT) {
4443 		btrfs_warn(fs_info,
4444 			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4445 			   logical, physical_for_dev_replace, len, mirror_num,
4446 			   ret);
4447 		not_written = 1;
4448 		goto out;
4449 	}
4450 
4451 	btrfs_end_transaction(trans);
4452 	trans = NULL;
4453 	while (!list_empty(&nocow_ctx->inodes)) {
4454 		struct scrub_nocow_inode *entry;
4455 		entry = list_first_entry(&nocow_ctx->inodes,
4456 					 struct scrub_nocow_inode,
4457 					 list);
4458 		list_del_init(&entry->list);
4459 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4460 						 entry->root, nocow_ctx);
4461 		kfree(entry);
4462 		if (ret == COPY_COMPLETE) {
4463 			ret = 0;
4464 			break;
4465 		} else if (ret) {
4466 			break;
4467 		}
4468 	}
4469 out:
4470 	while (!list_empty(&nocow_ctx->inodes)) {
4471 		struct scrub_nocow_inode *entry;
4472 		entry = list_first_entry(&nocow_ctx->inodes,
4473 					 struct scrub_nocow_inode,
4474 					 list);
4475 		list_del_init(&entry->list);
4476 		kfree(entry);
4477 	}
4478 	if (trans && !IS_ERR(trans))
4479 		btrfs_end_transaction(trans);
4480 	if (not_written)
4481 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4482 					    num_uncorrectable_read_errors);
4483 
4484 	btrfs_free_path(path);
4485 	kfree(nocow_ctx);
4486 
4487 	scrub_pending_trans_workers_dec(sctx);
4488 }
4489 
4490 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4491 				 u64 logical)
4492 {
4493 	struct extent_state *cached_state = NULL;
4494 	struct btrfs_ordered_extent *ordered;
4495 	struct extent_io_tree *io_tree;
4496 	struct extent_map *em;
4497 	u64 lockstart = start, lockend = start + len - 1;
4498 	int ret = 0;
4499 
4500 	io_tree = &inode->io_tree;
4501 
4502 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4503 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4504 	if (ordered) {
4505 		btrfs_put_ordered_extent(ordered);
4506 		ret = 1;
4507 		goto out_unlock;
4508 	}
4509 
4510 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4511 	if (IS_ERR(em)) {
4512 		ret = PTR_ERR(em);
4513 		goto out_unlock;
4514 	}
4515 
4516 	/*
4517 	 * This extent does not actually cover the logical extent anymore,
4518 	 * move on to the next inode.
4519 	 */
4520 	if (em->block_start > logical ||
4521 	    em->block_start + em->block_len < logical + len ||
4522 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4523 		free_extent_map(em);
4524 		ret = 1;
4525 		goto out_unlock;
4526 	}
4527 	free_extent_map(em);
4528 
4529 out_unlock:
4530 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4531 	return ret;
4532 }
4533 
4534 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4535 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4536 {
4537 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4538 	struct btrfs_key key;
4539 	struct inode *inode;
4540 	struct page *page;
4541 	struct btrfs_root *local_root;
4542 	struct extent_io_tree *io_tree;
4543 	u64 physical_for_dev_replace;
4544 	u64 nocow_ctx_logical;
4545 	u64 len = nocow_ctx->len;
4546 	unsigned long index;
4547 	int srcu_index;
4548 	int ret = 0;
4549 	int err = 0;
4550 
4551 	key.objectid = root;
4552 	key.type = BTRFS_ROOT_ITEM_KEY;
4553 	key.offset = (u64)-1;
4554 
4555 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4556 
4557 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4558 	if (IS_ERR(local_root)) {
4559 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4560 		return PTR_ERR(local_root);
4561 	}
4562 
4563 	key.type = BTRFS_INODE_ITEM_KEY;
4564 	key.objectid = inum;
4565 	key.offset = 0;
4566 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4567 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4568 	if (IS_ERR(inode))
4569 		return PTR_ERR(inode);
4570 
4571 	/* Avoid truncate/dio/punch hole.. */
4572 	inode_lock(inode);
4573 	inode_dio_wait(inode);
4574 
4575 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4576 	io_tree = &BTRFS_I(inode)->io_tree;
4577 	nocow_ctx_logical = nocow_ctx->logical;
4578 
4579 	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4580 			nocow_ctx_logical);
4581 	if (ret) {
4582 		ret = ret > 0 ? 0 : ret;
4583 		goto out;
4584 	}
4585 
4586 	while (len >= PAGE_SIZE) {
4587 		index = offset >> PAGE_SHIFT;
4588 again:
4589 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4590 		if (!page) {
4591 			btrfs_err(fs_info, "find_or_create_page() failed");
4592 			ret = -ENOMEM;
4593 			goto out;
4594 		}
4595 
4596 		if (PageUptodate(page)) {
4597 			if (PageDirty(page))
4598 				goto next_page;
4599 		} else {
4600 			ClearPageError(page);
4601 			err = extent_read_full_page(io_tree, page,
4602 							   btrfs_get_extent,
4603 							   nocow_ctx->mirror_num);
4604 			if (err) {
4605 				ret = err;
4606 				goto next_page;
4607 			}
4608 
4609 			lock_page(page);
4610 			/*
4611 			 * If the page has been remove from the page cache,
4612 			 * the data on it is meaningless, because it may be
4613 			 * old one, the new data may be written into the new
4614 			 * page in the page cache.
4615 			 */
4616 			if (page->mapping != inode->i_mapping) {
4617 				unlock_page(page);
4618 				put_page(page);
4619 				goto again;
4620 			}
4621 			if (!PageUptodate(page)) {
4622 				ret = -EIO;
4623 				goto next_page;
4624 			}
4625 		}
4626 
4627 		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4628 					    nocow_ctx_logical);
4629 		if (ret) {
4630 			ret = ret > 0 ? 0 : ret;
4631 			goto next_page;
4632 		}
4633 
4634 		err = write_page_nocow(nocow_ctx->sctx,
4635 				       physical_for_dev_replace, page);
4636 		if (err)
4637 			ret = err;
4638 next_page:
4639 		unlock_page(page);
4640 		put_page(page);
4641 
4642 		if (ret)
4643 			break;
4644 
4645 		offset += PAGE_SIZE;
4646 		physical_for_dev_replace += PAGE_SIZE;
4647 		nocow_ctx_logical += PAGE_SIZE;
4648 		len -= PAGE_SIZE;
4649 	}
4650 	ret = COPY_COMPLETE;
4651 out:
4652 	inode_unlock(inode);
4653 	iput(inode);
4654 	return ret;
4655 }
4656 
4657 static int write_page_nocow(struct scrub_ctx *sctx,
4658 			    u64 physical_for_dev_replace, struct page *page)
4659 {
4660 	struct bio *bio;
4661 	struct btrfs_device *dev;
4662 
4663 	dev = sctx->wr_tgtdev;
4664 	if (!dev)
4665 		return -EIO;
4666 	if (!dev->bdev) {
4667 		btrfs_warn_rl(dev->fs_info,
4668 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4669 		return -EIO;
4670 	}
4671 	bio = btrfs_io_bio_alloc(1);
4672 	bio->bi_iter.bi_size = 0;
4673 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4674 	bio_set_dev(bio, dev->bdev);
4675 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4676 	/* bio_add_page won't fail on a freshly allocated bio */
4677 	bio_add_page(bio, page, PAGE_SIZE, 0);
4678 
4679 	if (btrfsic_submit_bio_wait(bio)) {
4680 		bio_put(bio);
4681 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4682 		return -EIO;
4683 	}
4684 
4685 	bio_put(bio);
4686 	return 0;
4687 }
4688