1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "volumes.h" 12 #include "disk-io.h" 13 #include "ordered-data.h" 14 #include "transaction.h" 15 #include "backref.h" 16 #include "extent_io.h" 17 #include "dev-replace.h" 18 #include "check-integrity.h" 19 #include "rcu-string.h" 20 #include "raid56.h" 21 #include "block-group.h" 22 23 /* 24 * This is only the first step towards a full-features scrub. It reads all 25 * extent and super block and verifies the checksums. In case a bad checksum 26 * is found or the extent cannot be read, good data will be written back if 27 * any can be found. 28 * 29 * Future enhancements: 30 * - In case an unrepairable extent is encountered, track which files are 31 * affected and report them 32 * - track and record media errors, throw out bad devices 33 * - add a mode to also read unallocated space 34 */ 35 36 struct scrub_block; 37 struct scrub_ctx; 38 39 /* 40 * the following three values only influence the performance. 41 * The last one configures the number of parallel and outstanding I/O 42 * operations. The first two values configure an upper limit for the number 43 * of (dynamically allocated) pages that are added to a bio. 44 */ 45 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 46 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 47 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 48 49 /* 50 * the following value times PAGE_SIZE needs to be large enough to match the 51 * largest node/leaf/sector size that shall be supported. 52 * Values larger than BTRFS_STRIPE_LEN are not supported. 53 */ 54 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 55 56 struct scrub_recover { 57 refcount_t refs; 58 struct btrfs_bio *bbio; 59 u64 map_length; 60 }; 61 62 struct scrub_page { 63 struct scrub_block *sblock; 64 struct page *page; 65 struct btrfs_device *dev; 66 struct list_head list; 67 u64 flags; /* extent flags */ 68 u64 generation; 69 u64 logical; 70 u64 physical; 71 u64 physical_for_dev_replace; 72 atomic_t refs; 73 struct { 74 unsigned int mirror_num:8; 75 unsigned int have_csum:1; 76 unsigned int io_error:1; 77 }; 78 u8 csum[BTRFS_CSUM_SIZE]; 79 80 struct scrub_recover *recover; 81 }; 82 83 struct scrub_bio { 84 int index; 85 struct scrub_ctx *sctx; 86 struct btrfs_device *dev; 87 struct bio *bio; 88 blk_status_t status; 89 u64 logical; 90 u64 physical; 91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 93 #else 94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 95 #endif 96 int page_count; 97 int next_free; 98 struct btrfs_work work; 99 }; 100 101 struct scrub_block { 102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 103 int page_count; 104 atomic_t outstanding_pages; 105 refcount_t refs; /* free mem on transition to zero */ 106 struct scrub_ctx *sctx; 107 struct scrub_parity *sparity; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 114 /* The following is for the data used to check parity */ 115 /* It is for the data with checksum */ 116 unsigned int data_corrected:1; 117 }; 118 struct btrfs_work work; 119 }; 120 121 /* Used for the chunks with parity stripe such RAID5/6 */ 122 struct scrub_parity { 123 struct scrub_ctx *sctx; 124 125 struct btrfs_device *scrub_dev; 126 127 u64 logic_start; 128 129 u64 logic_end; 130 131 int nsectors; 132 133 u64 stripe_len; 134 135 refcount_t refs; 136 137 struct list_head spages; 138 139 /* Work of parity check and repair */ 140 struct btrfs_work work; 141 142 /* Mark the parity blocks which have data */ 143 unsigned long *dbitmap; 144 145 /* 146 * Mark the parity blocks which have data, but errors happen when 147 * read data or check data 148 */ 149 unsigned long *ebitmap; 150 151 unsigned long bitmap[0]; 152 }; 153 154 struct scrub_ctx { 155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 156 struct btrfs_fs_info *fs_info; 157 int first_free; 158 int curr; 159 atomic_t bios_in_flight; 160 atomic_t workers_pending; 161 spinlock_t list_lock; 162 wait_queue_head_t list_wait; 163 u16 csum_size; 164 struct list_head csum_list; 165 atomic_t cancel_req; 166 int readonly; 167 int pages_per_rd_bio; 168 169 int is_dev_replace; 170 171 struct scrub_bio *wr_curr_bio; 172 struct mutex wr_lock; 173 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 174 struct btrfs_device *wr_tgtdev; 175 bool flush_all_writes; 176 177 /* 178 * statistics 179 */ 180 struct btrfs_scrub_progress stat; 181 spinlock_t stat_lock; 182 183 /* 184 * Use a ref counter to avoid use-after-free issues. Scrub workers 185 * decrement bios_in_flight and workers_pending and then do a wakeup 186 * on the list_wait wait queue. We must ensure the main scrub task 187 * doesn't free the scrub context before or while the workers are 188 * doing the wakeup() call. 189 */ 190 refcount_t refs; 191 }; 192 193 struct scrub_warning { 194 struct btrfs_path *path; 195 u64 extent_item_size; 196 const char *errstr; 197 u64 physical; 198 u64 logical; 199 struct btrfs_device *dev; 200 }; 201 202 struct full_stripe_lock { 203 struct rb_node node; 204 u64 logical; 205 u64 refs; 206 struct mutex mutex; 207 }; 208 209 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 210 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 211 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 212 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 213 struct scrub_block *sblocks_for_recheck); 214 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 215 struct scrub_block *sblock, 216 int retry_failed_mirror); 217 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 218 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 219 struct scrub_block *sblock_good); 220 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 221 struct scrub_block *sblock_good, 222 int page_num, int force_write); 223 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 224 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 225 int page_num); 226 static int scrub_checksum_data(struct scrub_block *sblock); 227 static int scrub_checksum_tree_block(struct scrub_block *sblock); 228 static int scrub_checksum_super(struct scrub_block *sblock); 229 static void scrub_block_get(struct scrub_block *sblock); 230 static void scrub_block_put(struct scrub_block *sblock); 231 static void scrub_page_get(struct scrub_page *spage); 232 static void scrub_page_put(struct scrub_page *spage); 233 static void scrub_parity_get(struct scrub_parity *sparity); 234 static void scrub_parity_put(struct scrub_parity *sparity); 235 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 236 struct scrub_page *spage); 237 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 238 u64 physical, struct btrfs_device *dev, u64 flags, 239 u64 gen, int mirror_num, u8 *csum, int force, 240 u64 physical_for_dev_replace); 241 static void scrub_bio_end_io(struct bio *bio); 242 static void scrub_bio_end_io_worker(struct btrfs_work *work); 243 static void scrub_block_complete(struct scrub_block *sblock); 244 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 245 u64 extent_logical, u64 extent_len, 246 u64 *extent_physical, 247 struct btrfs_device **extent_dev, 248 int *extent_mirror_num); 249 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 250 struct scrub_page *spage); 251 static void scrub_wr_submit(struct scrub_ctx *sctx); 252 static void scrub_wr_bio_end_io(struct bio *bio); 253 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 254 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 255 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 256 static void scrub_put_ctx(struct scrub_ctx *sctx); 257 258 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 259 { 260 return page->recover && 261 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 262 } 263 264 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 265 { 266 refcount_inc(&sctx->refs); 267 atomic_inc(&sctx->bios_in_flight); 268 } 269 270 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 271 { 272 atomic_dec(&sctx->bios_in_flight); 273 wake_up(&sctx->list_wait); 274 scrub_put_ctx(sctx); 275 } 276 277 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 278 { 279 while (atomic_read(&fs_info->scrub_pause_req)) { 280 mutex_unlock(&fs_info->scrub_lock); 281 wait_event(fs_info->scrub_pause_wait, 282 atomic_read(&fs_info->scrub_pause_req) == 0); 283 mutex_lock(&fs_info->scrub_lock); 284 } 285 } 286 287 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 288 { 289 atomic_inc(&fs_info->scrubs_paused); 290 wake_up(&fs_info->scrub_pause_wait); 291 } 292 293 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 294 { 295 mutex_lock(&fs_info->scrub_lock); 296 __scrub_blocked_if_needed(fs_info); 297 atomic_dec(&fs_info->scrubs_paused); 298 mutex_unlock(&fs_info->scrub_lock); 299 300 wake_up(&fs_info->scrub_pause_wait); 301 } 302 303 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 304 { 305 scrub_pause_on(fs_info); 306 scrub_pause_off(fs_info); 307 } 308 309 /* 310 * Insert new full stripe lock into full stripe locks tree 311 * 312 * Return pointer to existing or newly inserted full_stripe_lock structure if 313 * everything works well. 314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 315 * 316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 317 * function 318 */ 319 static struct full_stripe_lock *insert_full_stripe_lock( 320 struct btrfs_full_stripe_locks_tree *locks_root, 321 u64 fstripe_logical) 322 { 323 struct rb_node **p; 324 struct rb_node *parent = NULL; 325 struct full_stripe_lock *entry; 326 struct full_stripe_lock *ret; 327 328 lockdep_assert_held(&locks_root->lock); 329 330 p = &locks_root->root.rb_node; 331 while (*p) { 332 parent = *p; 333 entry = rb_entry(parent, struct full_stripe_lock, node); 334 if (fstripe_logical < entry->logical) { 335 p = &(*p)->rb_left; 336 } else if (fstripe_logical > entry->logical) { 337 p = &(*p)->rb_right; 338 } else { 339 entry->refs++; 340 return entry; 341 } 342 } 343 344 /* 345 * Insert new lock. 346 */ 347 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 348 if (!ret) 349 return ERR_PTR(-ENOMEM); 350 ret->logical = fstripe_logical; 351 ret->refs = 1; 352 mutex_init(&ret->mutex); 353 354 rb_link_node(&ret->node, parent, p); 355 rb_insert_color(&ret->node, &locks_root->root); 356 return ret; 357 } 358 359 /* 360 * Search for a full stripe lock of a block group 361 * 362 * Return pointer to existing full stripe lock if found 363 * Return NULL if not found 364 */ 365 static struct full_stripe_lock *search_full_stripe_lock( 366 struct btrfs_full_stripe_locks_tree *locks_root, 367 u64 fstripe_logical) 368 { 369 struct rb_node *node; 370 struct full_stripe_lock *entry; 371 372 lockdep_assert_held(&locks_root->lock); 373 374 node = locks_root->root.rb_node; 375 while (node) { 376 entry = rb_entry(node, struct full_stripe_lock, node); 377 if (fstripe_logical < entry->logical) 378 node = node->rb_left; 379 else if (fstripe_logical > entry->logical) 380 node = node->rb_right; 381 else 382 return entry; 383 } 384 return NULL; 385 } 386 387 /* 388 * Helper to get full stripe logical from a normal bytenr. 389 * 390 * Caller must ensure @cache is a RAID56 block group. 391 */ 392 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 393 u64 bytenr) 394 { 395 u64 ret; 396 397 /* 398 * Due to chunk item size limit, full stripe length should not be 399 * larger than U32_MAX. Just a sanity check here. 400 */ 401 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 402 403 /* 404 * round_down() can only handle power of 2, while RAID56 full 405 * stripe length can be 64KiB * n, so we need to manually round down. 406 */ 407 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 408 cache->full_stripe_len + cache->key.objectid; 409 return ret; 410 } 411 412 /* 413 * Lock a full stripe to avoid concurrency of recovery and read 414 * 415 * It's only used for profiles with parities (RAID5/6), for other profiles it 416 * does nothing. 417 * 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 419 * So caller must call unlock_full_stripe() at the same context. 420 * 421 * Return <0 if encounters error. 422 */ 423 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 424 bool *locked_ret) 425 { 426 struct btrfs_block_group_cache *bg_cache; 427 struct btrfs_full_stripe_locks_tree *locks_root; 428 struct full_stripe_lock *existing; 429 u64 fstripe_start; 430 int ret = 0; 431 432 *locked_ret = false; 433 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 434 if (!bg_cache) { 435 ASSERT(0); 436 return -ENOENT; 437 } 438 439 /* Profiles not based on parity don't need full stripe lock */ 440 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 441 goto out; 442 locks_root = &bg_cache->full_stripe_locks_root; 443 444 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 445 446 /* Now insert the full stripe lock */ 447 mutex_lock(&locks_root->lock); 448 existing = insert_full_stripe_lock(locks_root, fstripe_start); 449 mutex_unlock(&locks_root->lock); 450 if (IS_ERR(existing)) { 451 ret = PTR_ERR(existing); 452 goto out; 453 } 454 mutex_lock(&existing->mutex); 455 *locked_ret = true; 456 out: 457 btrfs_put_block_group(bg_cache); 458 return ret; 459 } 460 461 /* 462 * Unlock a full stripe. 463 * 464 * NOTE: Caller must ensure it's the same context calling corresponding 465 * lock_full_stripe(). 466 * 467 * Return 0 if we unlock full stripe without problem. 468 * Return <0 for error 469 */ 470 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 471 bool locked) 472 { 473 struct btrfs_block_group_cache *bg_cache; 474 struct btrfs_full_stripe_locks_tree *locks_root; 475 struct full_stripe_lock *fstripe_lock; 476 u64 fstripe_start; 477 bool freeit = false; 478 int ret = 0; 479 480 /* If we didn't acquire full stripe lock, no need to continue */ 481 if (!locked) 482 return 0; 483 484 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 485 if (!bg_cache) { 486 ASSERT(0); 487 return -ENOENT; 488 } 489 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 490 goto out; 491 492 locks_root = &bg_cache->full_stripe_locks_root; 493 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 494 495 mutex_lock(&locks_root->lock); 496 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 497 /* Unpaired unlock_full_stripe() detected */ 498 if (!fstripe_lock) { 499 WARN_ON(1); 500 ret = -ENOENT; 501 mutex_unlock(&locks_root->lock); 502 goto out; 503 } 504 505 if (fstripe_lock->refs == 0) { 506 WARN_ON(1); 507 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 508 fstripe_lock->logical); 509 } else { 510 fstripe_lock->refs--; 511 } 512 513 if (fstripe_lock->refs == 0) { 514 rb_erase(&fstripe_lock->node, &locks_root->root); 515 freeit = true; 516 } 517 mutex_unlock(&locks_root->lock); 518 519 mutex_unlock(&fstripe_lock->mutex); 520 if (freeit) 521 kfree(fstripe_lock); 522 out: 523 btrfs_put_block_group(bg_cache); 524 return ret; 525 } 526 527 static void scrub_free_csums(struct scrub_ctx *sctx) 528 { 529 while (!list_empty(&sctx->csum_list)) { 530 struct btrfs_ordered_sum *sum; 531 sum = list_first_entry(&sctx->csum_list, 532 struct btrfs_ordered_sum, list); 533 list_del(&sum->list); 534 kfree(sum); 535 } 536 } 537 538 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 539 { 540 int i; 541 542 if (!sctx) 543 return; 544 545 /* this can happen when scrub is cancelled */ 546 if (sctx->curr != -1) { 547 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 548 549 for (i = 0; i < sbio->page_count; i++) { 550 WARN_ON(!sbio->pagev[i]->page); 551 scrub_block_put(sbio->pagev[i]->sblock); 552 } 553 bio_put(sbio->bio); 554 } 555 556 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 557 struct scrub_bio *sbio = sctx->bios[i]; 558 559 if (!sbio) 560 break; 561 kfree(sbio); 562 } 563 564 kfree(sctx->wr_curr_bio); 565 scrub_free_csums(sctx); 566 kfree(sctx); 567 } 568 569 static void scrub_put_ctx(struct scrub_ctx *sctx) 570 { 571 if (refcount_dec_and_test(&sctx->refs)) 572 scrub_free_ctx(sctx); 573 } 574 575 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 576 struct btrfs_fs_info *fs_info, int is_dev_replace) 577 { 578 struct scrub_ctx *sctx; 579 int i; 580 581 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 582 if (!sctx) 583 goto nomem; 584 refcount_set(&sctx->refs, 1); 585 sctx->is_dev_replace = is_dev_replace; 586 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 587 sctx->curr = -1; 588 sctx->fs_info = fs_info; 589 INIT_LIST_HEAD(&sctx->csum_list); 590 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 591 struct scrub_bio *sbio; 592 593 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 594 if (!sbio) 595 goto nomem; 596 sctx->bios[i] = sbio; 597 598 sbio->index = i; 599 sbio->sctx = sctx; 600 sbio->page_count = 0; 601 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 602 scrub_bio_end_io_worker, NULL, NULL); 603 604 if (i != SCRUB_BIOS_PER_SCTX - 1) 605 sctx->bios[i]->next_free = i + 1; 606 else 607 sctx->bios[i]->next_free = -1; 608 } 609 sctx->first_free = 0; 610 atomic_set(&sctx->bios_in_flight, 0); 611 atomic_set(&sctx->workers_pending, 0); 612 atomic_set(&sctx->cancel_req, 0); 613 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 614 615 spin_lock_init(&sctx->list_lock); 616 spin_lock_init(&sctx->stat_lock); 617 init_waitqueue_head(&sctx->list_wait); 618 619 WARN_ON(sctx->wr_curr_bio != NULL); 620 mutex_init(&sctx->wr_lock); 621 sctx->wr_curr_bio = NULL; 622 if (is_dev_replace) { 623 WARN_ON(!fs_info->dev_replace.tgtdev); 624 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 625 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 626 sctx->flush_all_writes = false; 627 } 628 629 return sctx; 630 631 nomem: 632 scrub_free_ctx(sctx); 633 return ERR_PTR(-ENOMEM); 634 } 635 636 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 637 void *warn_ctx) 638 { 639 u64 isize; 640 u32 nlink; 641 int ret; 642 int i; 643 unsigned nofs_flag; 644 struct extent_buffer *eb; 645 struct btrfs_inode_item *inode_item; 646 struct scrub_warning *swarn = warn_ctx; 647 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 648 struct inode_fs_paths *ipath = NULL; 649 struct btrfs_root *local_root; 650 struct btrfs_key root_key; 651 struct btrfs_key key; 652 653 root_key.objectid = root; 654 root_key.type = BTRFS_ROOT_ITEM_KEY; 655 root_key.offset = (u64)-1; 656 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 657 if (IS_ERR(local_root)) { 658 ret = PTR_ERR(local_root); 659 goto err; 660 } 661 662 /* 663 * this makes the path point to (inum INODE_ITEM ioff) 664 */ 665 key.objectid = inum; 666 key.type = BTRFS_INODE_ITEM_KEY; 667 key.offset = 0; 668 669 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 670 if (ret) { 671 btrfs_release_path(swarn->path); 672 goto err; 673 } 674 675 eb = swarn->path->nodes[0]; 676 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 677 struct btrfs_inode_item); 678 isize = btrfs_inode_size(eb, inode_item); 679 nlink = btrfs_inode_nlink(eb, inode_item); 680 btrfs_release_path(swarn->path); 681 682 /* 683 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 684 * uses GFP_NOFS in this context, so we keep it consistent but it does 685 * not seem to be strictly necessary. 686 */ 687 nofs_flag = memalloc_nofs_save(); 688 ipath = init_ipath(4096, local_root, swarn->path); 689 memalloc_nofs_restore(nofs_flag); 690 if (IS_ERR(ipath)) { 691 ret = PTR_ERR(ipath); 692 ipath = NULL; 693 goto err; 694 } 695 ret = paths_from_inode(inum, ipath); 696 697 if (ret < 0) 698 goto err; 699 700 /* 701 * we deliberately ignore the bit ipath might have been too small to 702 * hold all of the paths here 703 */ 704 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 705 btrfs_warn_in_rcu(fs_info, 706 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 707 swarn->errstr, swarn->logical, 708 rcu_str_deref(swarn->dev->name), 709 swarn->physical, 710 root, inum, offset, 711 min(isize - offset, (u64)PAGE_SIZE), nlink, 712 (char *)(unsigned long)ipath->fspath->val[i]); 713 714 free_ipath(ipath); 715 return 0; 716 717 err: 718 btrfs_warn_in_rcu(fs_info, 719 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 720 swarn->errstr, swarn->logical, 721 rcu_str_deref(swarn->dev->name), 722 swarn->physical, 723 root, inum, offset, ret); 724 725 free_ipath(ipath); 726 return 0; 727 } 728 729 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 730 { 731 struct btrfs_device *dev; 732 struct btrfs_fs_info *fs_info; 733 struct btrfs_path *path; 734 struct btrfs_key found_key; 735 struct extent_buffer *eb; 736 struct btrfs_extent_item *ei; 737 struct scrub_warning swarn; 738 unsigned long ptr = 0; 739 u64 extent_item_pos; 740 u64 flags = 0; 741 u64 ref_root; 742 u32 item_size; 743 u8 ref_level = 0; 744 int ret; 745 746 WARN_ON(sblock->page_count < 1); 747 dev = sblock->pagev[0]->dev; 748 fs_info = sblock->sctx->fs_info; 749 750 path = btrfs_alloc_path(); 751 if (!path) 752 return; 753 754 swarn.physical = sblock->pagev[0]->physical; 755 swarn.logical = sblock->pagev[0]->logical; 756 swarn.errstr = errstr; 757 swarn.dev = NULL; 758 759 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 760 &flags); 761 if (ret < 0) 762 goto out; 763 764 extent_item_pos = swarn.logical - found_key.objectid; 765 swarn.extent_item_size = found_key.offset; 766 767 eb = path->nodes[0]; 768 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 769 item_size = btrfs_item_size_nr(eb, path->slots[0]); 770 771 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 772 do { 773 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 774 item_size, &ref_root, 775 &ref_level); 776 btrfs_warn_in_rcu(fs_info, 777 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 778 errstr, swarn.logical, 779 rcu_str_deref(dev->name), 780 swarn.physical, 781 ref_level ? "node" : "leaf", 782 ret < 0 ? -1 : ref_level, 783 ret < 0 ? -1 : ref_root); 784 } while (ret != 1); 785 btrfs_release_path(path); 786 } else { 787 btrfs_release_path(path); 788 swarn.path = path; 789 swarn.dev = dev; 790 iterate_extent_inodes(fs_info, found_key.objectid, 791 extent_item_pos, 1, 792 scrub_print_warning_inode, &swarn, false); 793 } 794 795 out: 796 btrfs_free_path(path); 797 } 798 799 static inline void scrub_get_recover(struct scrub_recover *recover) 800 { 801 refcount_inc(&recover->refs); 802 } 803 804 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 805 struct scrub_recover *recover) 806 { 807 if (refcount_dec_and_test(&recover->refs)) { 808 btrfs_bio_counter_dec(fs_info); 809 btrfs_put_bbio(recover->bbio); 810 kfree(recover); 811 } 812 } 813 814 /* 815 * scrub_handle_errored_block gets called when either verification of the 816 * pages failed or the bio failed to read, e.g. with EIO. In the latter 817 * case, this function handles all pages in the bio, even though only one 818 * may be bad. 819 * The goal of this function is to repair the errored block by using the 820 * contents of one of the mirrors. 821 */ 822 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 823 { 824 struct scrub_ctx *sctx = sblock_to_check->sctx; 825 struct btrfs_device *dev; 826 struct btrfs_fs_info *fs_info; 827 u64 logical; 828 unsigned int failed_mirror_index; 829 unsigned int is_metadata; 830 unsigned int have_csum; 831 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 832 struct scrub_block *sblock_bad; 833 int ret; 834 int mirror_index; 835 int page_num; 836 int success; 837 bool full_stripe_locked; 838 unsigned int nofs_flag; 839 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 840 DEFAULT_RATELIMIT_BURST); 841 842 BUG_ON(sblock_to_check->page_count < 1); 843 fs_info = sctx->fs_info; 844 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 845 /* 846 * if we find an error in a super block, we just report it. 847 * They will get written with the next transaction commit 848 * anyway 849 */ 850 spin_lock(&sctx->stat_lock); 851 ++sctx->stat.super_errors; 852 spin_unlock(&sctx->stat_lock); 853 return 0; 854 } 855 logical = sblock_to_check->pagev[0]->logical; 856 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 857 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 858 is_metadata = !(sblock_to_check->pagev[0]->flags & 859 BTRFS_EXTENT_FLAG_DATA); 860 have_csum = sblock_to_check->pagev[0]->have_csum; 861 dev = sblock_to_check->pagev[0]->dev; 862 863 /* 864 * We must use GFP_NOFS because the scrub task might be waiting for a 865 * worker task executing this function and in turn a transaction commit 866 * might be waiting the scrub task to pause (which needs to wait for all 867 * the worker tasks to complete before pausing). 868 * We do allocations in the workers through insert_full_stripe_lock() 869 * and scrub_add_page_to_wr_bio(), which happens down the call chain of 870 * this function. 871 */ 872 nofs_flag = memalloc_nofs_save(); 873 /* 874 * For RAID5/6, race can happen for a different device scrub thread. 875 * For data corruption, Parity and Data threads will both try 876 * to recovery the data. 877 * Race can lead to doubly added csum error, or even unrecoverable 878 * error. 879 */ 880 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 881 if (ret < 0) { 882 memalloc_nofs_restore(nofs_flag); 883 spin_lock(&sctx->stat_lock); 884 if (ret == -ENOMEM) 885 sctx->stat.malloc_errors++; 886 sctx->stat.read_errors++; 887 sctx->stat.uncorrectable_errors++; 888 spin_unlock(&sctx->stat_lock); 889 return ret; 890 } 891 892 /* 893 * read all mirrors one after the other. This includes to 894 * re-read the extent or metadata block that failed (that was 895 * the cause that this fixup code is called) another time, 896 * page by page this time in order to know which pages 897 * caused I/O errors and which ones are good (for all mirrors). 898 * It is the goal to handle the situation when more than one 899 * mirror contains I/O errors, but the errors do not 900 * overlap, i.e. the data can be repaired by selecting the 901 * pages from those mirrors without I/O error on the 902 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 903 * would be that mirror #1 has an I/O error on the first page, 904 * the second page is good, and mirror #2 has an I/O error on 905 * the second page, but the first page is good. 906 * Then the first page of the first mirror can be repaired by 907 * taking the first page of the second mirror, and the 908 * second page of the second mirror can be repaired by 909 * copying the contents of the 2nd page of the 1st mirror. 910 * One more note: if the pages of one mirror contain I/O 911 * errors, the checksum cannot be verified. In order to get 912 * the best data for repairing, the first attempt is to find 913 * a mirror without I/O errors and with a validated checksum. 914 * Only if this is not possible, the pages are picked from 915 * mirrors with I/O errors without considering the checksum. 916 * If the latter is the case, at the end, the checksum of the 917 * repaired area is verified in order to correctly maintain 918 * the statistics. 919 */ 920 921 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 922 sizeof(*sblocks_for_recheck), GFP_KERNEL); 923 if (!sblocks_for_recheck) { 924 spin_lock(&sctx->stat_lock); 925 sctx->stat.malloc_errors++; 926 sctx->stat.read_errors++; 927 sctx->stat.uncorrectable_errors++; 928 spin_unlock(&sctx->stat_lock); 929 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 930 goto out; 931 } 932 933 /* setup the context, map the logical blocks and alloc the pages */ 934 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 935 if (ret) { 936 spin_lock(&sctx->stat_lock); 937 sctx->stat.read_errors++; 938 sctx->stat.uncorrectable_errors++; 939 spin_unlock(&sctx->stat_lock); 940 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 941 goto out; 942 } 943 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 944 sblock_bad = sblocks_for_recheck + failed_mirror_index; 945 946 /* build and submit the bios for the failed mirror, check checksums */ 947 scrub_recheck_block(fs_info, sblock_bad, 1); 948 949 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 950 sblock_bad->no_io_error_seen) { 951 /* 952 * the error disappeared after reading page by page, or 953 * the area was part of a huge bio and other parts of the 954 * bio caused I/O errors, or the block layer merged several 955 * read requests into one and the error is caused by a 956 * different bio (usually one of the two latter cases is 957 * the cause) 958 */ 959 spin_lock(&sctx->stat_lock); 960 sctx->stat.unverified_errors++; 961 sblock_to_check->data_corrected = 1; 962 spin_unlock(&sctx->stat_lock); 963 964 if (sctx->is_dev_replace) 965 scrub_write_block_to_dev_replace(sblock_bad); 966 goto out; 967 } 968 969 if (!sblock_bad->no_io_error_seen) { 970 spin_lock(&sctx->stat_lock); 971 sctx->stat.read_errors++; 972 spin_unlock(&sctx->stat_lock); 973 if (__ratelimit(&_rs)) 974 scrub_print_warning("i/o error", sblock_to_check); 975 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 976 } else if (sblock_bad->checksum_error) { 977 spin_lock(&sctx->stat_lock); 978 sctx->stat.csum_errors++; 979 spin_unlock(&sctx->stat_lock); 980 if (__ratelimit(&_rs)) 981 scrub_print_warning("checksum error", sblock_to_check); 982 btrfs_dev_stat_inc_and_print(dev, 983 BTRFS_DEV_STAT_CORRUPTION_ERRS); 984 } else if (sblock_bad->header_error) { 985 spin_lock(&sctx->stat_lock); 986 sctx->stat.verify_errors++; 987 spin_unlock(&sctx->stat_lock); 988 if (__ratelimit(&_rs)) 989 scrub_print_warning("checksum/header error", 990 sblock_to_check); 991 if (sblock_bad->generation_error) 992 btrfs_dev_stat_inc_and_print(dev, 993 BTRFS_DEV_STAT_GENERATION_ERRS); 994 else 995 btrfs_dev_stat_inc_and_print(dev, 996 BTRFS_DEV_STAT_CORRUPTION_ERRS); 997 } 998 999 if (sctx->readonly) { 1000 ASSERT(!sctx->is_dev_replace); 1001 goto out; 1002 } 1003 1004 /* 1005 * now build and submit the bios for the other mirrors, check 1006 * checksums. 1007 * First try to pick the mirror which is completely without I/O 1008 * errors and also does not have a checksum error. 1009 * If one is found, and if a checksum is present, the full block 1010 * that is known to contain an error is rewritten. Afterwards 1011 * the block is known to be corrected. 1012 * If a mirror is found which is completely correct, and no 1013 * checksum is present, only those pages are rewritten that had 1014 * an I/O error in the block to be repaired, since it cannot be 1015 * determined, which copy of the other pages is better (and it 1016 * could happen otherwise that a correct page would be 1017 * overwritten by a bad one). 1018 */ 1019 for (mirror_index = 0; ;mirror_index++) { 1020 struct scrub_block *sblock_other; 1021 1022 if (mirror_index == failed_mirror_index) 1023 continue; 1024 1025 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1026 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1027 if (mirror_index >= BTRFS_MAX_MIRRORS) 1028 break; 1029 if (!sblocks_for_recheck[mirror_index].page_count) 1030 break; 1031 1032 sblock_other = sblocks_for_recheck + mirror_index; 1033 } else { 1034 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1035 int max_allowed = r->bbio->num_stripes - 1036 r->bbio->num_tgtdevs; 1037 1038 if (mirror_index >= max_allowed) 1039 break; 1040 if (!sblocks_for_recheck[1].page_count) 1041 break; 1042 1043 ASSERT(failed_mirror_index == 0); 1044 sblock_other = sblocks_for_recheck + 1; 1045 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1046 } 1047 1048 /* build and submit the bios, check checksums */ 1049 scrub_recheck_block(fs_info, sblock_other, 0); 1050 1051 if (!sblock_other->header_error && 1052 !sblock_other->checksum_error && 1053 sblock_other->no_io_error_seen) { 1054 if (sctx->is_dev_replace) { 1055 scrub_write_block_to_dev_replace(sblock_other); 1056 goto corrected_error; 1057 } else { 1058 ret = scrub_repair_block_from_good_copy( 1059 sblock_bad, sblock_other); 1060 if (!ret) 1061 goto corrected_error; 1062 } 1063 } 1064 } 1065 1066 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1067 goto did_not_correct_error; 1068 1069 /* 1070 * In case of I/O errors in the area that is supposed to be 1071 * repaired, continue by picking good copies of those pages. 1072 * Select the good pages from mirrors to rewrite bad pages from 1073 * the area to fix. Afterwards verify the checksum of the block 1074 * that is supposed to be repaired. This verification step is 1075 * only done for the purpose of statistic counting and for the 1076 * final scrub report, whether errors remain. 1077 * A perfect algorithm could make use of the checksum and try 1078 * all possible combinations of pages from the different mirrors 1079 * until the checksum verification succeeds. For example, when 1080 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1081 * of mirror #2 is readable but the final checksum test fails, 1082 * then the 2nd page of mirror #3 could be tried, whether now 1083 * the final checksum succeeds. But this would be a rare 1084 * exception and is therefore not implemented. At least it is 1085 * avoided that the good copy is overwritten. 1086 * A more useful improvement would be to pick the sectors 1087 * without I/O error based on sector sizes (512 bytes on legacy 1088 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1089 * mirror could be repaired by taking 512 byte of a different 1090 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1091 * area are unreadable. 1092 */ 1093 success = 1; 1094 for (page_num = 0; page_num < sblock_bad->page_count; 1095 page_num++) { 1096 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1097 struct scrub_block *sblock_other = NULL; 1098 1099 /* skip no-io-error page in scrub */ 1100 if (!page_bad->io_error && !sctx->is_dev_replace) 1101 continue; 1102 1103 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1104 /* 1105 * In case of dev replace, if raid56 rebuild process 1106 * didn't work out correct data, then copy the content 1107 * in sblock_bad to make sure target device is identical 1108 * to source device, instead of writing garbage data in 1109 * sblock_for_recheck array to target device. 1110 */ 1111 sblock_other = NULL; 1112 } else if (page_bad->io_error) { 1113 /* try to find no-io-error page in mirrors */ 1114 for (mirror_index = 0; 1115 mirror_index < BTRFS_MAX_MIRRORS && 1116 sblocks_for_recheck[mirror_index].page_count > 0; 1117 mirror_index++) { 1118 if (!sblocks_for_recheck[mirror_index]. 1119 pagev[page_num]->io_error) { 1120 sblock_other = sblocks_for_recheck + 1121 mirror_index; 1122 break; 1123 } 1124 } 1125 if (!sblock_other) 1126 success = 0; 1127 } 1128 1129 if (sctx->is_dev_replace) { 1130 /* 1131 * did not find a mirror to fetch the page 1132 * from. scrub_write_page_to_dev_replace() 1133 * handles this case (page->io_error), by 1134 * filling the block with zeros before 1135 * submitting the write request 1136 */ 1137 if (!sblock_other) 1138 sblock_other = sblock_bad; 1139 1140 if (scrub_write_page_to_dev_replace(sblock_other, 1141 page_num) != 0) { 1142 atomic64_inc( 1143 &fs_info->dev_replace.num_write_errors); 1144 success = 0; 1145 } 1146 } else if (sblock_other) { 1147 ret = scrub_repair_page_from_good_copy(sblock_bad, 1148 sblock_other, 1149 page_num, 0); 1150 if (0 == ret) 1151 page_bad->io_error = 0; 1152 else 1153 success = 0; 1154 } 1155 } 1156 1157 if (success && !sctx->is_dev_replace) { 1158 if (is_metadata || have_csum) { 1159 /* 1160 * need to verify the checksum now that all 1161 * sectors on disk are repaired (the write 1162 * request for data to be repaired is on its way). 1163 * Just be lazy and use scrub_recheck_block() 1164 * which re-reads the data before the checksum 1165 * is verified, but most likely the data comes out 1166 * of the page cache. 1167 */ 1168 scrub_recheck_block(fs_info, sblock_bad, 1); 1169 if (!sblock_bad->header_error && 1170 !sblock_bad->checksum_error && 1171 sblock_bad->no_io_error_seen) 1172 goto corrected_error; 1173 else 1174 goto did_not_correct_error; 1175 } else { 1176 corrected_error: 1177 spin_lock(&sctx->stat_lock); 1178 sctx->stat.corrected_errors++; 1179 sblock_to_check->data_corrected = 1; 1180 spin_unlock(&sctx->stat_lock); 1181 btrfs_err_rl_in_rcu(fs_info, 1182 "fixed up error at logical %llu on dev %s", 1183 logical, rcu_str_deref(dev->name)); 1184 } 1185 } else { 1186 did_not_correct_error: 1187 spin_lock(&sctx->stat_lock); 1188 sctx->stat.uncorrectable_errors++; 1189 spin_unlock(&sctx->stat_lock); 1190 btrfs_err_rl_in_rcu(fs_info, 1191 "unable to fixup (regular) error at logical %llu on dev %s", 1192 logical, rcu_str_deref(dev->name)); 1193 } 1194 1195 out: 1196 if (sblocks_for_recheck) { 1197 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1198 mirror_index++) { 1199 struct scrub_block *sblock = sblocks_for_recheck + 1200 mirror_index; 1201 struct scrub_recover *recover; 1202 int page_index; 1203 1204 for (page_index = 0; page_index < sblock->page_count; 1205 page_index++) { 1206 sblock->pagev[page_index]->sblock = NULL; 1207 recover = sblock->pagev[page_index]->recover; 1208 if (recover) { 1209 scrub_put_recover(fs_info, recover); 1210 sblock->pagev[page_index]->recover = 1211 NULL; 1212 } 1213 scrub_page_put(sblock->pagev[page_index]); 1214 } 1215 } 1216 kfree(sblocks_for_recheck); 1217 } 1218 1219 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1220 memalloc_nofs_restore(nofs_flag); 1221 if (ret < 0) 1222 return ret; 1223 return 0; 1224 } 1225 1226 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1227 { 1228 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1229 return 2; 1230 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1231 return 3; 1232 else 1233 return (int)bbio->num_stripes; 1234 } 1235 1236 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1237 u64 *raid_map, 1238 u64 mapped_length, 1239 int nstripes, int mirror, 1240 int *stripe_index, 1241 u64 *stripe_offset) 1242 { 1243 int i; 1244 1245 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1246 /* RAID5/6 */ 1247 for (i = 0; i < nstripes; i++) { 1248 if (raid_map[i] == RAID6_Q_STRIPE || 1249 raid_map[i] == RAID5_P_STRIPE) 1250 continue; 1251 1252 if (logical >= raid_map[i] && 1253 logical < raid_map[i] + mapped_length) 1254 break; 1255 } 1256 1257 *stripe_index = i; 1258 *stripe_offset = logical - raid_map[i]; 1259 } else { 1260 /* The other RAID type */ 1261 *stripe_index = mirror; 1262 *stripe_offset = 0; 1263 } 1264 } 1265 1266 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1267 struct scrub_block *sblocks_for_recheck) 1268 { 1269 struct scrub_ctx *sctx = original_sblock->sctx; 1270 struct btrfs_fs_info *fs_info = sctx->fs_info; 1271 u64 length = original_sblock->page_count * PAGE_SIZE; 1272 u64 logical = original_sblock->pagev[0]->logical; 1273 u64 generation = original_sblock->pagev[0]->generation; 1274 u64 flags = original_sblock->pagev[0]->flags; 1275 u64 have_csum = original_sblock->pagev[0]->have_csum; 1276 struct scrub_recover *recover; 1277 struct btrfs_bio *bbio; 1278 u64 sublen; 1279 u64 mapped_length; 1280 u64 stripe_offset; 1281 int stripe_index; 1282 int page_index = 0; 1283 int mirror_index; 1284 int nmirrors; 1285 int ret; 1286 1287 /* 1288 * note: the two members refs and outstanding_pages 1289 * are not used (and not set) in the blocks that are used for 1290 * the recheck procedure 1291 */ 1292 1293 while (length > 0) { 1294 sublen = min_t(u64, length, PAGE_SIZE); 1295 mapped_length = sublen; 1296 bbio = NULL; 1297 1298 /* 1299 * with a length of PAGE_SIZE, each returned stripe 1300 * represents one mirror 1301 */ 1302 btrfs_bio_counter_inc_blocked(fs_info); 1303 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1304 logical, &mapped_length, &bbio); 1305 if (ret || !bbio || mapped_length < sublen) { 1306 btrfs_put_bbio(bbio); 1307 btrfs_bio_counter_dec(fs_info); 1308 return -EIO; 1309 } 1310 1311 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1312 if (!recover) { 1313 btrfs_put_bbio(bbio); 1314 btrfs_bio_counter_dec(fs_info); 1315 return -ENOMEM; 1316 } 1317 1318 refcount_set(&recover->refs, 1); 1319 recover->bbio = bbio; 1320 recover->map_length = mapped_length; 1321 1322 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1323 1324 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1325 1326 for (mirror_index = 0; mirror_index < nmirrors; 1327 mirror_index++) { 1328 struct scrub_block *sblock; 1329 struct scrub_page *page; 1330 1331 sblock = sblocks_for_recheck + mirror_index; 1332 sblock->sctx = sctx; 1333 1334 page = kzalloc(sizeof(*page), GFP_NOFS); 1335 if (!page) { 1336 leave_nomem: 1337 spin_lock(&sctx->stat_lock); 1338 sctx->stat.malloc_errors++; 1339 spin_unlock(&sctx->stat_lock); 1340 scrub_put_recover(fs_info, recover); 1341 return -ENOMEM; 1342 } 1343 scrub_page_get(page); 1344 sblock->pagev[page_index] = page; 1345 page->sblock = sblock; 1346 page->flags = flags; 1347 page->generation = generation; 1348 page->logical = logical; 1349 page->have_csum = have_csum; 1350 if (have_csum) 1351 memcpy(page->csum, 1352 original_sblock->pagev[0]->csum, 1353 sctx->csum_size); 1354 1355 scrub_stripe_index_and_offset(logical, 1356 bbio->map_type, 1357 bbio->raid_map, 1358 mapped_length, 1359 bbio->num_stripes - 1360 bbio->num_tgtdevs, 1361 mirror_index, 1362 &stripe_index, 1363 &stripe_offset); 1364 page->physical = bbio->stripes[stripe_index].physical + 1365 stripe_offset; 1366 page->dev = bbio->stripes[stripe_index].dev; 1367 1368 BUG_ON(page_index >= original_sblock->page_count); 1369 page->physical_for_dev_replace = 1370 original_sblock->pagev[page_index]-> 1371 physical_for_dev_replace; 1372 /* for missing devices, dev->bdev is NULL */ 1373 page->mirror_num = mirror_index + 1; 1374 sblock->page_count++; 1375 page->page = alloc_page(GFP_NOFS); 1376 if (!page->page) 1377 goto leave_nomem; 1378 1379 scrub_get_recover(recover); 1380 page->recover = recover; 1381 } 1382 scrub_put_recover(fs_info, recover); 1383 length -= sublen; 1384 logical += sublen; 1385 page_index++; 1386 } 1387 1388 return 0; 1389 } 1390 1391 static void scrub_bio_wait_endio(struct bio *bio) 1392 { 1393 complete(bio->bi_private); 1394 } 1395 1396 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1397 struct bio *bio, 1398 struct scrub_page *page) 1399 { 1400 DECLARE_COMPLETION_ONSTACK(done); 1401 int ret; 1402 int mirror_num; 1403 1404 bio->bi_iter.bi_sector = page->logical >> 9; 1405 bio->bi_private = &done; 1406 bio->bi_end_io = scrub_bio_wait_endio; 1407 1408 mirror_num = page->sblock->pagev[0]->mirror_num; 1409 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1410 page->recover->map_length, 1411 mirror_num, 0); 1412 if (ret) 1413 return ret; 1414 1415 wait_for_completion_io(&done); 1416 return blk_status_to_errno(bio->bi_status); 1417 } 1418 1419 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1420 struct scrub_block *sblock) 1421 { 1422 struct scrub_page *first_page = sblock->pagev[0]; 1423 struct bio *bio; 1424 int page_num; 1425 1426 /* All pages in sblock belong to the same stripe on the same device. */ 1427 ASSERT(first_page->dev); 1428 if (!first_page->dev->bdev) 1429 goto out; 1430 1431 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); 1432 bio_set_dev(bio, first_page->dev->bdev); 1433 1434 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1435 struct scrub_page *page = sblock->pagev[page_num]; 1436 1437 WARN_ON(!page->page); 1438 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1439 } 1440 1441 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1442 bio_put(bio); 1443 goto out; 1444 } 1445 1446 bio_put(bio); 1447 1448 scrub_recheck_block_checksum(sblock); 1449 1450 return; 1451 out: 1452 for (page_num = 0; page_num < sblock->page_count; page_num++) 1453 sblock->pagev[page_num]->io_error = 1; 1454 1455 sblock->no_io_error_seen = 0; 1456 } 1457 1458 /* 1459 * this function will check the on disk data for checksum errors, header 1460 * errors and read I/O errors. If any I/O errors happen, the exact pages 1461 * which are errored are marked as being bad. The goal is to enable scrub 1462 * to take those pages that are not errored from all the mirrors so that 1463 * the pages that are errored in the just handled mirror can be repaired. 1464 */ 1465 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1466 struct scrub_block *sblock, 1467 int retry_failed_mirror) 1468 { 1469 int page_num; 1470 1471 sblock->no_io_error_seen = 1; 1472 1473 /* short cut for raid56 */ 1474 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1475 return scrub_recheck_block_on_raid56(fs_info, sblock); 1476 1477 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1478 struct bio *bio; 1479 struct scrub_page *page = sblock->pagev[page_num]; 1480 1481 if (page->dev->bdev == NULL) { 1482 page->io_error = 1; 1483 sblock->no_io_error_seen = 0; 1484 continue; 1485 } 1486 1487 WARN_ON(!page->page); 1488 bio = btrfs_io_bio_alloc(1); 1489 bio_set_dev(bio, page->dev->bdev); 1490 1491 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1492 bio->bi_iter.bi_sector = page->physical >> 9; 1493 bio->bi_opf = REQ_OP_READ; 1494 1495 if (btrfsic_submit_bio_wait(bio)) { 1496 page->io_error = 1; 1497 sblock->no_io_error_seen = 0; 1498 } 1499 1500 bio_put(bio); 1501 } 1502 1503 if (sblock->no_io_error_seen) 1504 scrub_recheck_block_checksum(sblock); 1505 } 1506 1507 static inline int scrub_check_fsid(u8 fsid[], 1508 struct scrub_page *spage) 1509 { 1510 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1511 int ret; 1512 1513 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1514 return !ret; 1515 } 1516 1517 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1518 { 1519 sblock->header_error = 0; 1520 sblock->checksum_error = 0; 1521 sblock->generation_error = 0; 1522 1523 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1524 scrub_checksum_data(sblock); 1525 else 1526 scrub_checksum_tree_block(sblock); 1527 } 1528 1529 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1530 struct scrub_block *sblock_good) 1531 { 1532 int page_num; 1533 int ret = 0; 1534 1535 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1536 int ret_sub; 1537 1538 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1539 sblock_good, 1540 page_num, 1); 1541 if (ret_sub) 1542 ret = ret_sub; 1543 } 1544 1545 return ret; 1546 } 1547 1548 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1549 struct scrub_block *sblock_good, 1550 int page_num, int force_write) 1551 { 1552 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1553 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1554 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1555 1556 BUG_ON(page_bad->page == NULL); 1557 BUG_ON(page_good->page == NULL); 1558 if (force_write || sblock_bad->header_error || 1559 sblock_bad->checksum_error || page_bad->io_error) { 1560 struct bio *bio; 1561 int ret; 1562 1563 if (!page_bad->dev->bdev) { 1564 btrfs_warn_rl(fs_info, 1565 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1566 return -EIO; 1567 } 1568 1569 bio = btrfs_io_bio_alloc(1); 1570 bio_set_dev(bio, page_bad->dev->bdev); 1571 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1572 bio->bi_opf = REQ_OP_WRITE; 1573 1574 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1575 if (PAGE_SIZE != ret) { 1576 bio_put(bio); 1577 return -EIO; 1578 } 1579 1580 if (btrfsic_submit_bio_wait(bio)) { 1581 btrfs_dev_stat_inc_and_print(page_bad->dev, 1582 BTRFS_DEV_STAT_WRITE_ERRS); 1583 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1584 bio_put(bio); 1585 return -EIO; 1586 } 1587 bio_put(bio); 1588 } 1589 1590 return 0; 1591 } 1592 1593 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1594 { 1595 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1596 int page_num; 1597 1598 /* 1599 * This block is used for the check of the parity on the source device, 1600 * so the data needn't be written into the destination device. 1601 */ 1602 if (sblock->sparity) 1603 return; 1604 1605 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1606 int ret; 1607 1608 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1609 if (ret) 1610 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1611 } 1612 } 1613 1614 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1615 int page_num) 1616 { 1617 struct scrub_page *spage = sblock->pagev[page_num]; 1618 1619 BUG_ON(spage->page == NULL); 1620 if (spage->io_error) { 1621 void *mapped_buffer = kmap_atomic(spage->page); 1622 1623 clear_page(mapped_buffer); 1624 flush_dcache_page(spage->page); 1625 kunmap_atomic(mapped_buffer); 1626 } 1627 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1628 } 1629 1630 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1631 struct scrub_page *spage) 1632 { 1633 struct scrub_bio *sbio; 1634 int ret; 1635 1636 mutex_lock(&sctx->wr_lock); 1637 again: 1638 if (!sctx->wr_curr_bio) { 1639 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1640 GFP_KERNEL); 1641 if (!sctx->wr_curr_bio) { 1642 mutex_unlock(&sctx->wr_lock); 1643 return -ENOMEM; 1644 } 1645 sctx->wr_curr_bio->sctx = sctx; 1646 sctx->wr_curr_bio->page_count = 0; 1647 } 1648 sbio = sctx->wr_curr_bio; 1649 if (sbio->page_count == 0) { 1650 struct bio *bio; 1651 1652 sbio->physical = spage->physical_for_dev_replace; 1653 sbio->logical = spage->logical; 1654 sbio->dev = sctx->wr_tgtdev; 1655 bio = sbio->bio; 1656 if (!bio) { 1657 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1658 sbio->bio = bio; 1659 } 1660 1661 bio->bi_private = sbio; 1662 bio->bi_end_io = scrub_wr_bio_end_io; 1663 bio_set_dev(bio, sbio->dev->bdev); 1664 bio->bi_iter.bi_sector = sbio->physical >> 9; 1665 bio->bi_opf = REQ_OP_WRITE; 1666 sbio->status = 0; 1667 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1668 spage->physical_for_dev_replace || 1669 sbio->logical + sbio->page_count * PAGE_SIZE != 1670 spage->logical) { 1671 scrub_wr_submit(sctx); 1672 goto again; 1673 } 1674 1675 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1676 if (ret != PAGE_SIZE) { 1677 if (sbio->page_count < 1) { 1678 bio_put(sbio->bio); 1679 sbio->bio = NULL; 1680 mutex_unlock(&sctx->wr_lock); 1681 return -EIO; 1682 } 1683 scrub_wr_submit(sctx); 1684 goto again; 1685 } 1686 1687 sbio->pagev[sbio->page_count] = spage; 1688 scrub_page_get(spage); 1689 sbio->page_count++; 1690 if (sbio->page_count == sctx->pages_per_wr_bio) 1691 scrub_wr_submit(sctx); 1692 mutex_unlock(&sctx->wr_lock); 1693 1694 return 0; 1695 } 1696 1697 static void scrub_wr_submit(struct scrub_ctx *sctx) 1698 { 1699 struct scrub_bio *sbio; 1700 1701 if (!sctx->wr_curr_bio) 1702 return; 1703 1704 sbio = sctx->wr_curr_bio; 1705 sctx->wr_curr_bio = NULL; 1706 WARN_ON(!sbio->bio->bi_disk); 1707 scrub_pending_bio_inc(sctx); 1708 /* process all writes in a single worker thread. Then the block layer 1709 * orders the requests before sending them to the driver which 1710 * doubled the write performance on spinning disks when measured 1711 * with Linux 3.5 */ 1712 btrfsic_submit_bio(sbio->bio); 1713 } 1714 1715 static void scrub_wr_bio_end_io(struct bio *bio) 1716 { 1717 struct scrub_bio *sbio = bio->bi_private; 1718 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1719 1720 sbio->status = bio->bi_status; 1721 sbio->bio = bio; 1722 1723 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1724 scrub_wr_bio_end_io_worker, NULL, NULL); 1725 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1726 } 1727 1728 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1729 { 1730 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1731 struct scrub_ctx *sctx = sbio->sctx; 1732 int i; 1733 1734 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1735 if (sbio->status) { 1736 struct btrfs_dev_replace *dev_replace = 1737 &sbio->sctx->fs_info->dev_replace; 1738 1739 for (i = 0; i < sbio->page_count; i++) { 1740 struct scrub_page *spage = sbio->pagev[i]; 1741 1742 spage->io_error = 1; 1743 atomic64_inc(&dev_replace->num_write_errors); 1744 } 1745 } 1746 1747 for (i = 0; i < sbio->page_count; i++) 1748 scrub_page_put(sbio->pagev[i]); 1749 1750 bio_put(sbio->bio); 1751 kfree(sbio); 1752 scrub_pending_bio_dec(sctx); 1753 } 1754 1755 static int scrub_checksum(struct scrub_block *sblock) 1756 { 1757 u64 flags; 1758 int ret; 1759 1760 /* 1761 * No need to initialize these stats currently, 1762 * because this function only use return value 1763 * instead of these stats value. 1764 * 1765 * Todo: 1766 * always use stats 1767 */ 1768 sblock->header_error = 0; 1769 sblock->generation_error = 0; 1770 sblock->checksum_error = 0; 1771 1772 WARN_ON(sblock->page_count < 1); 1773 flags = sblock->pagev[0]->flags; 1774 ret = 0; 1775 if (flags & BTRFS_EXTENT_FLAG_DATA) 1776 ret = scrub_checksum_data(sblock); 1777 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1778 ret = scrub_checksum_tree_block(sblock); 1779 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1780 (void)scrub_checksum_super(sblock); 1781 else 1782 WARN_ON(1); 1783 if (ret) 1784 scrub_handle_errored_block(sblock); 1785 1786 return ret; 1787 } 1788 1789 static int scrub_checksum_data(struct scrub_block *sblock) 1790 { 1791 struct scrub_ctx *sctx = sblock->sctx; 1792 struct btrfs_fs_info *fs_info = sctx->fs_info; 1793 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1794 u8 csum[BTRFS_CSUM_SIZE]; 1795 u8 *on_disk_csum; 1796 struct page *page; 1797 void *buffer; 1798 u64 len; 1799 int index; 1800 1801 BUG_ON(sblock->page_count < 1); 1802 if (!sblock->pagev[0]->have_csum) 1803 return 0; 1804 1805 shash->tfm = fs_info->csum_shash; 1806 crypto_shash_init(shash); 1807 1808 on_disk_csum = sblock->pagev[0]->csum; 1809 page = sblock->pagev[0]->page; 1810 buffer = kmap_atomic(page); 1811 1812 len = sctx->fs_info->sectorsize; 1813 index = 0; 1814 for (;;) { 1815 u64 l = min_t(u64, len, PAGE_SIZE); 1816 1817 crypto_shash_update(shash, buffer, l); 1818 kunmap_atomic(buffer); 1819 len -= l; 1820 if (len == 0) 1821 break; 1822 index++; 1823 BUG_ON(index >= sblock->page_count); 1824 BUG_ON(!sblock->pagev[index]->page); 1825 page = sblock->pagev[index]->page; 1826 buffer = kmap_atomic(page); 1827 } 1828 1829 crypto_shash_final(shash, csum); 1830 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1831 sblock->checksum_error = 1; 1832 1833 return sblock->checksum_error; 1834 } 1835 1836 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1837 { 1838 struct scrub_ctx *sctx = sblock->sctx; 1839 struct btrfs_header *h; 1840 struct btrfs_fs_info *fs_info = sctx->fs_info; 1841 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1842 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1843 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1844 struct page *page; 1845 void *mapped_buffer; 1846 u64 mapped_size; 1847 void *p; 1848 u64 len; 1849 int index; 1850 1851 shash->tfm = fs_info->csum_shash; 1852 crypto_shash_init(shash); 1853 1854 BUG_ON(sblock->page_count < 1); 1855 page = sblock->pagev[0]->page; 1856 mapped_buffer = kmap_atomic(page); 1857 h = (struct btrfs_header *)mapped_buffer; 1858 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1859 1860 /* 1861 * we don't use the getter functions here, as we 1862 * a) don't have an extent buffer and 1863 * b) the page is already kmapped 1864 */ 1865 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1866 sblock->header_error = 1; 1867 1868 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 1869 sblock->header_error = 1; 1870 sblock->generation_error = 1; 1871 } 1872 1873 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1874 sblock->header_error = 1; 1875 1876 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1877 BTRFS_UUID_SIZE)) 1878 sblock->header_error = 1; 1879 1880 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 1881 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1882 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1883 index = 0; 1884 for (;;) { 1885 u64 l = min_t(u64, len, mapped_size); 1886 1887 crypto_shash_update(shash, p, l); 1888 kunmap_atomic(mapped_buffer); 1889 len -= l; 1890 if (len == 0) 1891 break; 1892 index++; 1893 BUG_ON(index >= sblock->page_count); 1894 BUG_ON(!sblock->pagev[index]->page); 1895 page = sblock->pagev[index]->page; 1896 mapped_buffer = kmap_atomic(page); 1897 mapped_size = PAGE_SIZE; 1898 p = mapped_buffer; 1899 } 1900 1901 crypto_shash_final(shash, calculated_csum); 1902 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1903 sblock->checksum_error = 1; 1904 1905 return sblock->header_error || sblock->checksum_error; 1906 } 1907 1908 static int scrub_checksum_super(struct scrub_block *sblock) 1909 { 1910 struct btrfs_super_block *s; 1911 struct scrub_ctx *sctx = sblock->sctx; 1912 struct btrfs_fs_info *fs_info = sctx->fs_info; 1913 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1914 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1915 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1916 struct page *page; 1917 void *mapped_buffer; 1918 u64 mapped_size; 1919 void *p; 1920 int fail_gen = 0; 1921 int fail_cor = 0; 1922 u64 len; 1923 int index; 1924 1925 shash->tfm = fs_info->csum_shash; 1926 crypto_shash_init(shash); 1927 1928 BUG_ON(sblock->page_count < 1); 1929 page = sblock->pagev[0]->page; 1930 mapped_buffer = kmap_atomic(page); 1931 s = (struct btrfs_super_block *)mapped_buffer; 1932 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1933 1934 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1935 ++fail_cor; 1936 1937 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1938 ++fail_gen; 1939 1940 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1941 ++fail_cor; 1942 1943 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1944 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1945 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1946 index = 0; 1947 for (;;) { 1948 u64 l = min_t(u64, len, mapped_size); 1949 1950 crypto_shash_update(shash, p, l); 1951 kunmap_atomic(mapped_buffer); 1952 len -= l; 1953 if (len == 0) 1954 break; 1955 index++; 1956 BUG_ON(index >= sblock->page_count); 1957 BUG_ON(!sblock->pagev[index]->page); 1958 page = sblock->pagev[index]->page; 1959 mapped_buffer = kmap_atomic(page); 1960 mapped_size = PAGE_SIZE; 1961 p = mapped_buffer; 1962 } 1963 1964 crypto_shash_final(shash, calculated_csum); 1965 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1966 ++fail_cor; 1967 1968 if (fail_cor + fail_gen) { 1969 /* 1970 * if we find an error in a super block, we just report it. 1971 * They will get written with the next transaction commit 1972 * anyway 1973 */ 1974 spin_lock(&sctx->stat_lock); 1975 ++sctx->stat.super_errors; 1976 spin_unlock(&sctx->stat_lock); 1977 if (fail_cor) 1978 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1979 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1980 else 1981 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1982 BTRFS_DEV_STAT_GENERATION_ERRS); 1983 } 1984 1985 return fail_cor + fail_gen; 1986 } 1987 1988 static void scrub_block_get(struct scrub_block *sblock) 1989 { 1990 refcount_inc(&sblock->refs); 1991 } 1992 1993 static void scrub_block_put(struct scrub_block *sblock) 1994 { 1995 if (refcount_dec_and_test(&sblock->refs)) { 1996 int i; 1997 1998 if (sblock->sparity) 1999 scrub_parity_put(sblock->sparity); 2000 2001 for (i = 0; i < sblock->page_count; i++) 2002 scrub_page_put(sblock->pagev[i]); 2003 kfree(sblock); 2004 } 2005 } 2006 2007 static void scrub_page_get(struct scrub_page *spage) 2008 { 2009 atomic_inc(&spage->refs); 2010 } 2011 2012 static void scrub_page_put(struct scrub_page *spage) 2013 { 2014 if (atomic_dec_and_test(&spage->refs)) { 2015 if (spage->page) 2016 __free_page(spage->page); 2017 kfree(spage); 2018 } 2019 } 2020 2021 static void scrub_submit(struct scrub_ctx *sctx) 2022 { 2023 struct scrub_bio *sbio; 2024 2025 if (sctx->curr == -1) 2026 return; 2027 2028 sbio = sctx->bios[sctx->curr]; 2029 sctx->curr = -1; 2030 scrub_pending_bio_inc(sctx); 2031 btrfsic_submit_bio(sbio->bio); 2032 } 2033 2034 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2035 struct scrub_page *spage) 2036 { 2037 struct scrub_block *sblock = spage->sblock; 2038 struct scrub_bio *sbio; 2039 int ret; 2040 2041 again: 2042 /* 2043 * grab a fresh bio or wait for one to become available 2044 */ 2045 while (sctx->curr == -1) { 2046 spin_lock(&sctx->list_lock); 2047 sctx->curr = sctx->first_free; 2048 if (sctx->curr != -1) { 2049 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2050 sctx->bios[sctx->curr]->next_free = -1; 2051 sctx->bios[sctx->curr]->page_count = 0; 2052 spin_unlock(&sctx->list_lock); 2053 } else { 2054 spin_unlock(&sctx->list_lock); 2055 wait_event(sctx->list_wait, sctx->first_free != -1); 2056 } 2057 } 2058 sbio = sctx->bios[sctx->curr]; 2059 if (sbio->page_count == 0) { 2060 struct bio *bio; 2061 2062 sbio->physical = spage->physical; 2063 sbio->logical = spage->logical; 2064 sbio->dev = spage->dev; 2065 bio = sbio->bio; 2066 if (!bio) { 2067 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2068 sbio->bio = bio; 2069 } 2070 2071 bio->bi_private = sbio; 2072 bio->bi_end_io = scrub_bio_end_io; 2073 bio_set_dev(bio, sbio->dev->bdev); 2074 bio->bi_iter.bi_sector = sbio->physical >> 9; 2075 bio->bi_opf = REQ_OP_READ; 2076 sbio->status = 0; 2077 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2078 spage->physical || 2079 sbio->logical + sbio->page_count * PAGE_SIZE != 2080 spage->logical || 2081 sbio->dev != spage->dev) { 2082 scrub_submit(sctx); 2083 goto again; 2084 } 2085 2086 sbio->pagev[sbio->page_count] = spage; 2087 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2088 if (ret != PAGE_SIZE) { 2089 if (sbio->page_count < 1) { 2090 bio_put(sbio->bio); 2091 sbio->bio = NULL; 2092 return -EIO; 2093 } 2094 scrub_submit(sctx); 2095 goto again; 2096 } 2097 2098 scrub_block_get(sblock); /* one for the page added to the bio */ 2099 atomic_inc(&sblock->outstanding_pages); 2100 sbio->page_count++; 2101 if (sbio->page_count == sctx->pages_per_rd_bio) 2102 scrub_submit(sctx); 2103 2104 return 0; 2105 } 2106 2107 static void scrub_missing_raid56_end_io(struct bio *bio) 2108 { 2109 struct scrub_block *sblock = bio->bi_private; 2110 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2111 2112 if (bio->bi_status) 2113 sblock->no_io_error_seen = 0; 2114 2115 bio_put(bio); 2116 2117 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2118 } 2119 2120 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2121 { 2122 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2123 struct scrub_ctx *sctx = sblock->sctx; 2124 struct btrfs_fs_info *fs_info = sctx->fs_info; 2125 u64 logical; 2126 struct btrfs_device *dev; 2127 2128 logical = sblock->pagev[0]->logical; 2129 dev = sblock->pagev[0]->dev; 2130 2131 if (sblock->no_io_error_seen) 2132 scrub_recheck_block_checksum(sblock); 2133 2134 if (!sblock->no_io_error_seen) { 2135 spin_lock(&sctx->stat_lock); 2136 sctx->stat.read_errors++; 2137 spin_unlock(&sctx->stat_lock); 2138 btrfs_err_rl_in_rcu(fs_info, 2139 "IO error rebuilding logical %llu for dev %s", 2140 logical, rcu_str_deref(dev->name)); 2141 } else if (sblock->header_error || sblock->checksum_error) { 2142 spin_lock(&sctx->stat_lock); 2143 sctx->stat.uncorrectable_errors++; 2144 spin_unlock(&sctx->stat_lock); 2145 btrfs_err_rl_in_rcu(fs_info, 2146 "failed to rebuild valid logical %llu for dev %s", 2147 logical, rcu_str_deref(dev->name)); 2148 } else { 2149 scrub_write_block_to_dev_replace(sblock); 2150 } 2151 2152 scrub_block_put(sblock); 2153 2154 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2155 mutex_lock(&sctx->wr_lock); 2156 scrub_wr_submit(sctx); 2157 mutex_unlock(&sctx->wr_lock); 2158 } 2159 2160 scrub_pending_bio_dec(sctx); 2161 } 2162 2163 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2164 { 2165 struct scrub_ctx *sctx = sblock->sctx; 2166 struct btrfs_fs_info *fs_info = sctx->fs_info; 2167 u64 length = sblock->page_count * PAGE_SIZE; 2168 u64 logical = sblock->pagev[0]->logical; 2169 struct btrfs_bio *bbio = NULL; 2170 struct bio *bio; 2171 struct btrfs_raid_bio *rbio; 2172 int ret; 2173 int i; 2174 2175 btrfs_bio_counter_inc_blocked(fs_info); 2176 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2177 &length, &bbio); 2178 if (ret || !bbio || !bbio->raid_map) 2179 goto bbio_out; 2180 2181 if (WARN_ON(!sctx->is_dev_replace || 2182 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2183 /* 2184 * We shouldn't be scrubbing a missing device. Even for dev 2185 * replace, we should only get here for RAID 5/6. We either 2186 * managed to mount something with no mirrors remaining or 2187 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2188 */ 2189 goto bbio_out; 2190 } 2191 2192 bio = btrfs_io_bio_alloc(0); 2193 bio->bi_iter.bi_sector = logical >> 9; 2194 bio->bi_private = sblock; 2195 bio->bi_end_io = scrub_missing_raid56_end_io; 2196 2197 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2198 if (!rbio) 2199 goto rbio_out; 2200 2201 for (i = 0; i < sblock->page_count; i++) { 2202 struct scrub_page *spage = sblock->pagev[i]; 2203 2204 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2205 } 2206 2207 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2208 scrub_missing_raid56_worker, NULL, NULL); 2209 scrub_block_get(sblock); 2210 scrub_pending_bio_inc(sctx); 2211 raid56_submit_missing_rbio(rbio); 2212 return; 2213 2214 rbio_out: 2215 bio_put(bio); 2216 bbio_out: 2217 btrfs_bio_counter_dec(fs_info); 2218 btrfs_put_bbio(bbio); 2219 spin_lock(&sctx->stat_lock); 2220 sctx->stat.malloc_errors++; 2221 spin_unlock(&sctx->stat_lock); 2222 } 2223 2224 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2225 u64 physical, struct btrfs_device *dev, u64 flags, 2226 u64 gen, int mirror_num, u8 *csum, int force, 2227 u64 physical_for_dev_replace) 2228 { 2229 struct scrub_block *sblock; 2230 int index; 2231 2232 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2233 if (!sblock) { 2234 spin_lock(&sctx->stat_lock); 2235 sctx->stat.malloc_errors++; 2236 spin_unlock(&sctx->stat_lock); 2237 return -ENOMEM; 2238 } 2239 2240 /* one ref inside this function, plus one for each page added to 2241 * a bio later on */ 2242 refcount_set(&sblock->refs, 1); 2243 sblock->sctx = sctx; 2244 sblock->no_io_error_seen = 1; 2245 2246 for (index = 0; len > 0; index++) { 2247 struct scrub_page *spage; 2248 u64 l = min_t(u64, len, PAGE_SIZE); 2249 2250 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2251 if (!spage) { 2252 leave_nomem: 2253 spin_lock(&sctx->stat_lock); 2254 sctx->stat.malloc_errors++; 2255 spin_unlock(&sctx->stat_lock); 2256 scrub_block_put(sblock); 2257 return -ENOMEM; 2258 } 2259 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2260 scrub_page_get(spage); 2261 sblock->pagev[index] = spage; 2262 spage->sblock = sblock; 2263 spage->dev = dev; 2264 spage->flags = flags; 2265 spage->generation = gen; 2266 spage->logical = logical; 2267 spage->physical = physical; 2268 spage->physical_for_dev_replace = physical_for_dev_replace; 2269 spage->mirror_num = mirror_num; 2270 if (csum) { 2271 spage->have_csum = 1; 2272 memcpy(spage->csum, csum, sctx->csum_size); 2273 } else { 2274 spage->have_csum = 0; 2275 } 2276 sblock->page_count++; 2277 spage->page = alloc_page(GFP_KERNEL); 2278 if (!spage->page) 2279 goto leave_nomem; 2280 len -= l; 2281 logical += l; 2282 physical += l; 2283 physical_for_dev_replace += l; 2284 } 2285 2286 WARN_ON(sblock->page_count == 0); 2287 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2288 /* 2289 * This case should only be hit for RAID 5/6 device replace. See 2290 * the comment in scrub_missing_raid56_pages() for details. 2291 */ 2292 scrub_missing_raid56_pages(sblock); 2293 } else { 2294 for (index = 0; index < sblock->page_count; index++) { 2295 struct scrub_page *spage = sblock->pagev[index]; 2296 int ret; 2297 2298 ret = scrub_add_page_to_rd_bio(sctx, spage); 2299 if (ret) { 2300 scrub_block_put(sblock); 2301 return ret; 2302 } 2303 } 2304 2305 if (force) 2306 scrub_submit(sctx); 2307 } 2308 2309 /* last one frees, either here or in bio completion for last page */ 2310 scrub_block_put(sblock); 2311 return 0; 2312 } 2313 2314 static void scrub_bio_end_io(struct bio *bio) 2315 { 2316 struct scrub_bio *sbio = bio->bi_private; 2317 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2318 2319 sbio->status = bio->bi_status; 2320 sbio->bio = bio; 2321 2322 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2323 } 2324 2325 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2326 { 2327 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2328 struct scrub_ctx *sctx = sbio->sctx; 2329 int i; 2330 2331 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2332 if (sbio->status) { 2333 for (i = 0; i < sbio->page_count; i++) { 2334 struct scrub_page *spage = sbio->pagev[i]; 2335 2336 spage->io_error = 1; 2337 spage->sblock->no_io_error_seen = 0; 2338 } 2339 } 2340 2341 /* now complete the scrub_block items that have all pages completed */ 2342 for (i = 0; i < sbio->page_count; i++) { 2343 struct scrub_page *spage = sbio->pagev[i]; 2344 struct scrub_block *sblock = spage->sblock; 2345 2346 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2347 scrub_block_complete(sblock); 2348 scrub_block_put(sblock); 2349 } 2350 2351 bio_put(sbio->bio); 2352 sbio->bio = NULL; 2353 spin_lock(&sctx->list_lock); 2354 sbio->next_free = sctx->first_free; 2355 sctx->first_free = sbio->index; 2356 spin_unlock(&sctx->list_lock); 2357 2358 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2359 mutex_lock(&sctx->wr_lock); 2360 scrub_wr_submit(sctx); 2361 mutex_unlock(&sctx->wr_lock); 2362 } 2363 2364 scrub_pending_bio_dec(sctx); 2365 } 2366 2367 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2368 unsigned long *bitmap, 2369 u64 start, u64 len) 2370 { 2371 u64 offset; 2372 u64 nsectors64; 2373 u32 nsectors; 2374 int sectorsize = sparity->sctx->fs_info->sectorsize; 2375 2376 if (len >= sparity->stripe_len) { 2377 bitmap_set(bitmap, 0, sparity->nsectors); 2378 return; 2379 } 2380 2381 start -= sparity->logic_start; 2382 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2383 offset = div_u64(offset, sectorsize); 2384 nsectors64 = div_u64(len, sectorsize); 2385 2386 ASSERT(nsectors64 < UINT_MAX); 2387 nsectors = (u32)nsectors64; 2388 2389 if (offset + nsectors <= sparity->nsectors) { 2390 bitmap_set(bitmap, offset, nsectors); 2391 return; 2392 } 2393 2394 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2395 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2396 } 2397 2398 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2399 u64 start, u64 len) 2400 { 2401 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2402 } 2403 2404 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2405 u64 start, u64 len) 2406 { 2407 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2408 } 2409 2410 static void scrub_block_complete(struct scrub_block *sblock) 2411 { 2412 int corrupted = 0; 2413 2414 if (!sblock->no_io_error_seen) { 2415 corrupted = 1; 2416 scrub_handle_errored_block(sblock); 2417 } else { 2418 /* 2419 * if has checksum error, write via repair mechanism in 2420 * dev replace case, otherwise write here in dev replace 2421 * case. 2422 */ 2423 corrupted = scrub_checksum(sblock); 2424 if (!corrupted && sblock->sctx->is_dev_replace) 2425 scrub_write_block_to_dev_replace(sblock); 2426 } 2427 2428 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2429 u64 start = sblock->pagev[0]->logical; 2430 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2431 PAGE_SIZE; 2432 2433 scrub_parity_mark_sectors_error(sblock->sparity, 2434 start, end - start); 2435 } 2436 } 2437 2438 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2439 { 2440 struct btrfs_ordered_sum *sum = NULL; 2441 unsigned long index; 2442 unsigned long num_sectors; 2443 2444 while (!list_empty(&sctx->csum_list)) { 2445 sum = list_first_entry(&sctx->csum_list, 2446 struct btrfs_ordered_sum, list); 2447 if (sum->bytenr > logical) 2448 return 0; 2449 if (sum->bytenr + sum->len > logical) 2450 break; 2451 2452 ++sctx->stat.csum_discards; 2453 list_del(&sum->list); 2454 kfree(sum); 2455 sum = NULL; 2456 } 2457 if (!sum) 2458 return 0; 2459 2460 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2461 ASSERT(index < UINT_MAX); 2462 2463 num_sectors = sum->len / sctx->fs_info->sectorsize; 2464 memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size); 2465 if (index == num_sectors - 1) { 2466 list_del(&sum->list); 2467 kfree(sum); 2468 } 2469 return 1; 2470 } 2471 2472 /* scrub extent tries to collect up to 64 kB for each bio */ 2473 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2474 u64 logical, u64 len, 2475 u64 physical, struct btrfs_device *dev, u64 flags, 2476 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2477 { 2478 int ret; 2479 u8 csum[BTRFS_CSUM_SIZE]; 2480 u32 blocksize; 2481 2482 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2483 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2484 blocksize = map->stripe_len; 2485 else 2486 blocksize = sctx->fs_info->sectorsize; 2487 spin_lock(&sctx->stat_lock); 2488 sctx->stat.data_extents_scrubbed++; 2489 sctx->stat.data_bytes_scrubbed += len; 2490 spin_unlock(&sctx->stat_lock); 2491 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2492 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2493 blocksize = map->stripe_len; 2494 else 2495 blocksize = sctx->fs_info->nodesize; 2496 spin_lock(&sctx->stat_lock); 2497 sctx->stat.tree_extents_scrubbed++; 2498 sctx->stat.tree_bytes_scrubbed += len; 2499 spin_unlock(&sctx->stat_lock); 2500 } else { 2501 blocksize = sctx->fs_info->sectorsize; 2502 WARN_ON(1); 2503 } 2504 2505 while (len) { 2506 u64 l = min_t(u64, len, blocksize); 2507 int have_csum = 0; 2508 2509 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2510 /* push csums to sbio */ 2511 have_csum = scrub_find_csum(sctx, logical, csum); 2512 if (have_csum == 0) 2513 ++sctx->stat.no_csum; 2514 } 2515 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2516 mirror_num, have_csum ? csum : NULL, 0, 2517 physical_for_dev_replace); 2518 if (ret) 2519 return ret; 2520 len -= l; 2521 logical += l; 2522 physical += l; 2523 physical_for_dev_replace += l; 2524 } 2525 return 0; 2526 } 2527 2528 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2529 u64 logical, u64 len, 2530 u64 physical, struct btrfs_device *dev, 2531 u64 flags, u64 gen, int mirror_num, u8 *csum) 2532 { 2533 struct scrub_ctx *sctx = sparity->sctx; 2534 struct scrub_block *sblock; 2535 int index; 2536 2537 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2538 if (!sblock) { 2539 spin_lock(&sctx->stat_lock); 2540 sctx->stat.malloc_errors++; 2541 spin_unlock(&sctx->stat_lock); 2542 return -ENOMEM; 2543 } 2544 2545 /* one ref inside this function, plus one for each page added to 2546 * a bio later on */ 2547 refcount_set(&sblock->refs, 1); 2548 sblock->sctx = sctx; 2549 sblock->no_io_error_seen = 1; 2550 sblock->sparity = sparity; 2551 scrub_parity_get(sparity); 2552 2553 for (index = 0; len > 0; index++) { 2554 struct scrub_page *spage; 2555 u64 l = min_t(u64, len, PAGE_SIZE); 2556 2557 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2558 if (!spage) { 2559 leave_nomem: 2560 spin_lock(&sctx->stat_lock); 2561 sctx->stat.malloc_errors++; 2562 spin_unlock(&sctx->stat_lock); 2563 scrub_block_put(sblock); 2564 return -ENOMEM; 2565 } 2566 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2567 /* For scrub block */ 2568 scrub_page_get(spage); 2569 sblock->pagev[index] = spage; 2570 /* For scrub parity */ 2571 scrub_page_get(spage); 2572 list_add_tail(&spage->list, &sparity->spages); 2573 spage->sblock = sblock; 2574 spage->dev = dev; 2575 spage->flags = flags; 2576 spage->generation = gen; 2577 spage->logical = logical; 2578 spage->physical = physical; 2579 spage->mirror_num = mirror_num; 2580 if (csum) { 2581 spage->have_csum = 1; 2582 memcpy(spage->csum, csum, sctx->csum_size); 2583 } else { 2584 spage->have_csum = 0; 2585 } 2586 sblock->page_count++; 2587 spage->page = alloc_page(GFP_KERNEL); 2588 if (!spage->page) 2589 goto leave_nomem; 2590 len -= l; 2591 logical += l; 2592 physical += l; 2593 } 2594 2595 WARN_ON(sblock->page_count == 0); 2596 for (index = 0; index < sblock->page_count; index++) { 2597 struct scrub_page *spage = sblock->pagev[index]; 2598 int ret; 2599 2600 ret = scrub_add_page_to_rd_bio(sctx, spage); 2601 if (ret) { 2602 scrub_block_put(sblock); 2603 return ret; 2604 } 2605 } 2606 2607 /* last one frees, either here or in bio completion for last page */ 2608 scrub_block_put(sblock); 2609 return 0; 2610 } 2611 2612 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2613 u64 logical, u64 len, 2614 u64 physical, struct btrfs_device *dev, 2615 u64 flags, u64 gen, int mirror_num) 2616 { 2617 struct scrub_ctx *sctx = sparity->sctx; 2618 int ret; 2619 u8 csum[BTRFS_CSUM_SIZE]; 2620 u32 blocksize; 2621 2622 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2623 scrub_parity_mark_sectors_error(sparity, logical, len); 2624 return 0; 2625 } 2626 2627 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2628 blocksize = sparity->stripe_len; 2629 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2630 blocksize = sparity->stripe_len; 2631 } else { 2632 blocksize = sctx->fs_info->sectorsize; 2633 WARN_ON(1); 2634 } 2635 2636 while (len) { 2637 u64 l = min_t(u64, len, blocksize); 2638 int have_csum = 0; 2639 2640 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2641 /* push csums to sbio */ 2642 have_csum = scrub_find_csum(sctx, logical, csum); 2643 if (have_csum == 0) 2644 goto skip; 2645 } 2646 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2647 flags, gen, mirror_num, 2648 have_csum ? csum : NULL); 2649 if (ret) 2650 return ret; 2651 skip: 2652 len -= l; 2653 logical += l; 2654 physical += l; 2655 } 2656 return 0; 2657 } 2658 2659 /* 2660 * Given a physical address, this will calculate it's 2661 * logical offset. if this is a parity stripe, it will return 2662 * the most left data stripe's logical offset. 2663 * 2664 * return 0 if it is a data stripe, 1 means parity stripe. 2665 */ 2666 static int get_raid56_logic_offset(u64 physical, int num, 2667 struct map_lookup *map, u64 *offset, 2668 u64 *stripe_start) 2669 { 2670 int i; 2671 int j = 0; 2672 u64 stripe_nr; 2673 u64 last_offset; 2674 u32 stripe_index; 2675 u32 rot; 2676 const int data_stripes = nr_data_stripes(map); 2677 2678 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2679 if (stripe_start) 2680 *stripe_start = last_offset; 2681 2682 *offset = last_offset; 2683 for (i = 0; i < data_stripes; i++) { 2684 *offset = last_offset + i * map->stripe_len; 2685 2686 stripe_nr = div64_u64(*offset, map->stripe_len); 2687 stripe_nr = div_u64(stripe_nr, data_stripes); 2688 2689 /* Work out the disk rotation on this stripe-set */ 2690 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2691 /* calculate which stripe this data locates */ 2692 rot += i; 2693 stripe_index = rot % map->num_stripes; 2694 if (stripe_index == num) 2695 return 0; 2696 if (stripe_index < num) 2697 j++; 2698 } 2699 *offset = last_offset + j * map->stripe_len; 2700 return 1; 2701 } 2702 2703 static void scrub_free_parity(struct scrub_parity *sparity) 2704 { 2705 struct scrub_ctx *sctx = sparity->sctx; 2706 struct scrub_page *curr, *next; 2707 int nbits; 2708 2709 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2710 if (nbits) { 2711 spin_lock(&sctx->stat_lock); 2712 sctx->stat.read_errors += nbits; 2713 sctx->stat.uncorrectable_errors += nbits; 2714 spin_unlock(&sctx->stat_lock); 2715 } 2716 2717 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2718 list_del_init(&curr->list); 2719 scrub_page_put(curr); 2720 } 2721 2722 kfree(sparity); 2723 } 2724 2725 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2726 { 2727 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2728 work); 2729 struct scrub_ctx *sctx = sparity->sctx; 2730 2731 scrub_free_parity(sparity); 2732 scrub_pending_bio_dec(sctx); 2733 } 2734 2735 static void scrub_parity_bio_endio(struct bio *bio) 2736 { 2737 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2738 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2739 2740 if (bio->bi_status) 2741 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2742 sparity->nsectors); 2743 2744 bio_put(bio); 2745 2746 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2747 scrub_parity_bio_endio_worker, NULL, NULL); 2748 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2749 } 2750 2751 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2752 { 2753 struct scrub_ctx *sctx = sparity->sctx; 2754 struct btrfs_fs_info *fs_info = sctx->fs_info; 2755 struct bio *bio; 2756 struct btrfs_raid_bio *rbio; 2757 struct btrfs_bio *bbio = NULL; 2758 u64 length; 2759 int ret; 2760 2761 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2762 sparity->nsectors)) 2763 goto out; 2764 2765 length = sparity->logic_end - sparity->logic_start; 2766 2767 btrfs_bio_counter_inc_blocked(fs_info); 2768 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2769 &length, &bbio); 2770 if (ret || !bbio || !bbio->raid_map) 2771 goto bbio_out; 2772 2773 bio = btrfs_io_bio_alloc(0); 2774 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2775 bio->bi_private = sparity; 2776 bio->bi_end_io = scrub_parity_bio_endio; 2777 2778 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 2779 length, sparity->scrub_dev, 2780 sparity->dbitmap, 2781 sparity->nsectors); 2782 if (!rbio) 2783 goto rbio_out; 2784 2785 scrub_pending_bio_inc(sctx); 2786 raid56_parity_submit_scrub_rbio(rbio); 2787 return; 2788 2789 rbio_out: 2790 bio_put(bio); 2791 bbio_out: 2792 btrfs_bio_counter_dec(fs_info); 2793 btrfs_put_bbio(bbio); 2794 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2795 sparity->nsectors); 2796 spin_lock(&sctx->stat_lock); 2797 sctx->stat.malloc_errors++; 2798 spin_unlock(&sctx->stat_lock); 2799 out: 2800 scrub_free_parity(sparity); 2801 } 2802 2803 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2804 { 2805 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2806 } 2807 2808 static void scrub_parity_get(struct scrub_parity *sparity) 2809 { 2810 refcount_inc(&sparity->refs); 2811 } 2812 2813 static void scrub_parity_put(struct scrub_parity *sparity) 2814 { 2815 if (!refcount_dec_and_test(&sparity->refs)) 2816 return; 2817 2818 scrub_parity_check_and_repair(sparity); 2819 } 2820 2821 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2822 struct map_lookup *map, 2823 struct btrfs_device *sdev, 2824 struct btrfs_path *path, 2825 u64 logic_start, 2826 u64 logic_end) 2827 { 2828 struct btrfs_fs_info *fs_info = sctx->fs_info; 2829 struct btrfs_root *root = fs_info->extent_root; 2830 struct btrfs_root *csum_root = fs_info->csum_root; 2831 struct btrfs_extent_item *extent; 2832 struct btrfs_bio *bbio = NULL; 2833 u64 flags; 2834 int ret; 2835 int slot; 2836 struct extent_buffer *l; 2837 struct btrfs_key key; 2838 u64 generation; 2839 u64 extent_logical; 2840 u64 extent_physical; 2841 u64 extent_len; 2842 u64 mapped_length; 2843 struct btrfs_device *extent_dev; 2844 struct scrub_parity *sparity; 2845 int nsectors; 2846 int bitmap_len; 2847 int extent_mirror_num; 2848 int stop_loop = 0; 2849 2850 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 2851 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2852 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2853 GFP_NOFS); 2854 if (!sparity) { 2855 spin_lock(&sctx->stat_lock); 2856 sctx->stat.malloc_errors++; 2857 spin_unlock(&sctx->stat_lock); 2858 return -ENOMEM; 2859 } 2860 2861 sparity->stripe_len = map->stripe_len; 2862 sparity->nsectors = nsectors; 2863 sparity->sctx = sctx; 2864 sparity->scrub_dev = sdev; 2865 sparity->logic_start = logic_start; 2866 sparity->logic_end = logic_end; 2867 refcount_set(&sparity->refs, 1); 2868 INIT_LIST_HEAD(&sparity->spages); 2869 sparity->dbitmap = sparity->bitmap; 2870 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2871 2872 ret = 0; 2873 while (logic_start < logic_end) { 2874 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2875 key.type = BTRFS_METADATA_ITEM_KEY; 2876 else 2877 key.type = BTRFS_EXTENT_ITEM_KEY; 2878 key.objectid = logic_start; 2879 key.offset = (u64)-1; 2880 2881 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2882 if (ret < 0) 2883 goto out; 2884 2885 if (ret > 0) { 2886 ret = btrfs_previous_extent_item(root, path, 0); 2887 if (ret < 0) 2888 goto out; 2889 if (ret > 0) { 2890 btrfs_release_path(path); 2891 ret = btrfs_search_slot(NULL, root, &key, 2892 path, 0, 0); 2893 if (ret < 0) 2894 goto out; 2895 } 2896 } 2897 2898 stop_loop = 0; 2899 while (1) { 2900 u64 bytes; 2901 2902 l = path->nodes[0]; 2903 slot = path->slots[0]; 2904 if (slot >= btrfs_header_nritems(l)) { 2905 ret = btrfs_next_leaf(root, path); 2906 if (ret == 0) 2907 continue; 2908 if (ret < 0) 2909 goto out; 2910 2911 stop_loop = 1; 2912 break; 2913 } 2914 btrfs_item_key_to_cpu(l, &key, slot); 2915 2916 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2917 key.type != BTRFS_METADATA_ITEM_KEY) 2918 goto next; 2919 2920 if (key.type == BTRFS_METADATA_ITEM_KEY) 2921 bytes = fs_info->nodesize; 2922 else 2923 bytes = key.offset; 2924 2925 if (key.objectid + bytes <= logic_start) 2926 goto next; 2927 2928 if (key.objectid >= logic_end) { 2929 stop_loop = 1; 2930 break; 2931 } 2932 2933 while (key.objectid >= logic_start + map->stripe_len) 2934 logic_start += map->stripe_len; 2935 2936 extent = btrfs_item_ptr(l, slot, 2937 struct btrfs_extent_item); 2938 flags = btrfs_extent_flags(l, extent); 2939 generation = btrfs_extent_generation(l, extent); 2940 2941 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2942 (key.objectid < logic_start || 2943 key.objectid + bytes > 2944 logic_start + map->stripe_len)) { 2945 btrfs_err(fs_info, 2946 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2947 key.objectid, logic_start); 2948 spin_lock(&sctx->stat_lock); 2949 sctx->stat.uncorrectable_errors++; 2950 spin_unlock(&sctx->stat_lock); 2951 goto next; 2952 } 2953 again: 2954 extent_logical = key.objectid; 2955 extent_len = bytes; 2956 2957 if (extent_logical < logic_start) { 2958 extent_len -= logic_start - extent_logical; 2959 extent_logical = logic_start; 2960 } 2961 2962 if (extent_logical + extent_len > 2963 logic_start + map->stripe_len) 2964 extent_len = logic_start + map->stripe_len - 2965 extent_logical; 2966 2967 scrub_parity_mark_sectors_data(sparity, extent_logical, 2968 extent_len); 2969 2970 mapped_length = extent_len; 2971 bbio = NULL; 2972 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 2973 extent_logical, &mapped_length, &bbio, 2974 0); 2975 if (!ret) { 2976 if (!bbio || mapped_length < extent_len) 2977 ret = -EIO; 2978 } 2979 if (ret) { 2980 btrfs_put_bbio(bbio); 2981 goto out; 2982 } 2983 extent_physical = bbio->stripes[0].physical; 2984 extent_mirror_num = bbio->mirror_num; 2985 extent_dev = bbio->stripes[0].dev; 2986 btrfs_put_bbio(bbio); 2987 2988 ret = btrfs_lookup_csums_range(csum_root, 2989 extent_logical, 2990 extent_logical + extent_len - 1, 2991 &sctx->csum_list, 1); 2992 if (ret) 2993 goto out; 2994 2995 ret = scrub_extent_for_parity(sparity, extent_logical, 2996 extent_len, 2997 extent_physical, 2998 extent_dev, flags, 2999 generation, 3000 extent_mirror_num); 3001 3002 scrub_free_csums(sctx); 3003 3004 if (ret) 3005 goto out; 3006 3007 if (extent_logical + extent_len < 3008 key.objectid + bytes) { 3009 logic_start += map->stripe_len; 3010 3011 if (logic_start >= logic_end) { 3012 stop_loop = 1; 3013 break; 3014 } 3015 3016 if (logic_start < key.objectid + bytes) { 3017 cond_resched(); 3018 goto again; 3019 } 3020 } 3021 next: 3022 path->slots[0]++; 3023 } 3024 3025 btrfs_release_path(path); 3026 3027 if (stop_loop) 3028 break; 3029 3030 logic_start += map->stripe_len; 3031 } 3032 out: 3033 if (ret < 0) 3034 scrub_parity_mark_sectors_error(sparity, logic_start, 3035 logic_end - logic_start); 3036 scrub_parity_put(sparity); 3037 scrub_submit(sctx); 3038 mutex_lock(&sctx->wr_lock); 3039 scrub_wr_submit(sctx); 3040 mutex_unlock(&sctx->wr_lock); 3041 3042 btrfs_release_path(path); 3043 return ret < 0 ? ret : 0; 3044 } 3045 3046 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3047 struct map_lookup *map, 3048 struct btrfs_device *scrub_dev, 3049 int num, u64 base, u64 length) 3050 { 3051 struct btrfs_path *path, *ppath; 3052 struct btrfs_fs_info *fs_info = sctx->fs_info; 3053 struct btrfs_root *root = fs_info->extent_root; 3054 struct btrfs_root *csum_root = fs_info->csum_root; 3055 struct btrfs_extent_item *extent; 3056 struct blk_plug plug; 3057 u64 flags; 3058 int ret; 3059 int slot; 3060 u64 nstripes; 3061 struct extent_buffer *l; 3062 u64 physical; 3063 u64 logical; 3064 u64 logic_end; 3065 u64 physical_end; 3066 u64 generation; 3067 int mirror_num; 3068 struct reada_control *reada1; 3069 struct reada_control *reada2; 3070 struct btrfs_key key; 3071 struct btrfs_key key_end; 3072 u64 increment = map->stripe_len; 3073 u64 offset; 3074 u64 extent_logical; 3075 u64 extent_physical; 3076 u64 extent_len; 3077 u64 stripe_logical; 3078 u64 stripe_end; 3079 struct btrfs_device *extent_dev; 3080 int extent_mirror_num; 3081 int stop_loop = 0; 3082 3083 physical = map->stripes[num].physical; 3084 offset = 0; 3085 nstripes = div64_u64(length, map->stripe_len); 3086 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3087 offset = map->stripe_len * num; 3088 increment = map->stripe_len * map->num_stripes; 3089 mirror_num = 1; 3090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3091 int factor = map->num_stripes / map->sub_stripes; 3092 offset = map->stripe_len * (num / map->sub_stripes); 3093 increment = map->stripe_len * factor; 3094 mirror_num = num % map->sub_stripes + 1; 3095 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 3096 increment = map->stripe_len; 3097 mirror_num = num % map->num_stripes + 1; 3098 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3099 increment = map->stripe_len; 3100 mirror_num = num % map->num_stripes + 1; 3101 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3102 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3103 increment = map->stripe_len * nr_data_stripes(map); 3104 mirror_num = 1; 3105 } else { 3106 increment = map->stripe_len; 3107 mirror_num = 1; 3108 } 3109 3110 path = btrfs_alloc_path(); 3111 if (!path) 3112 return -ENOMEM; 3113 3114 ppath = btrfs_alloc_path(); 3115 if (!ppath) { 3116 btrfs_free_path(path); 3117 return -ENOMEM; 3118 } 3119 3120 /* 3121 * work on commit root. The related disk blocks are static as 3122 * long as COW is applied. This means, it is save to rewrite 3123 * them to repair disk errors without any race conditions 3124 */ 3125 path->search_commit_root = 1; 3126 path->skip_locking = 1; 3127 3128 ppath->search_commit_root = 1; 3129 ppath->skip_locking = 1; 3130 /* 3131 * trigger the readahead for extent tree csum tree and wait for 3132 * completion. During readahead, the scrub is officially paused 3133 * to not hold off transaction commits 3134 */ 3135 logical = base + offset; 3136 physical_end = physical + nstripes * map->stripe_len; 3137 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3138 get_raid56_logic_offset(physical_end, num, 3139 map, &logic_end, NULL); 3140 logic_end += base; 3141 } else { 3142 logic_end = logical + increment * nstripes; 3143 } 3144 wait_event(sctx->list_wait, 3145 atomic_read(&sctx->bios_in_flight) == 0); 3146 scrub_blocked_if_needed(fs_info); 3147 3148 /* FIXME it might be better to start readahead at commit root */ 3149 key.objectid = logical; 3150 key.type = BTRFS_EXTENT_ITEM_KEY; 3151 key.offset = (u64)0; 3152 key_end.objectid = logic_end; 3153 key_end.type = BTRFS_METADATA_ITEM_KEY; 3154 key_end.offset = (u64)-1; 3155 reada1 = btrfs_reada_add(root, &key, &key_end); 3156 3157 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3158 key.type = BTRFS_EXTENT_CSUM_KEY; 3159 key.offset = logical; 3160 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3161 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3162 key_end.offset = logic_end; 3163 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3164 3165 if (!IS_ERR(reada1)) 3166 btrfs_reada_wait(reada1); 3167 if (!IS_ERR(reada2)) 3168 btrfs_reada_wait(reada2); 3169 3170 3171 /* 3172 * collect all data csums for the stripe to avoid seeking during 3173 * the scrub. This might currently (crc32) end up to be about 1MB 3174 */ 3175 blk_start_plug(&plug); 3176 3177 /* 3178 * now find all extents for each stripe and scrub them 3179 */ 3180 ret = 0; 3181 while (physical < physical_end) { 3182 /* 3183 * canceled? 3184 */ 3185 if (atomic_read(&fs_info->scrub_cancel_req) || 3186 atomic_read(&sctx->cancel_req)) { 3187 ret = -ECANCELED; 3188 goto out; 3189 } 3190 /* 3191 * check to see if we have to pause 3192 */ 3193 if (atomic_read(&fs_info->scrub_pause_req)) { 3194 /* push queued extents */ 3195 sctx->flush_all_writes = true; 3196 scrub_submit(sctx); 3197 mutex_lock(&sctx->wr_lock); 3198 scrub_wr_submit(sctx); 3199 mutex_unlock(&sctx->wr_lock); 3200 wait_event(sctx->list_wait, 3201 atomic_read(&sctx->bios_in_flight) == 0); 3202 sctx->flush_all_writes = false; 3203 scrub_blocked_if_needed(fs_info); 3204 } 3205 3206 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3207 ret = get_raid56_logic_offset(physical, num, map, 3208 &logical, 3209 &stripe_logical); 3210 logical += base; 3211 if (ret) { 3212 /* it is parity strip */ 3213 stripe_logical += base; 3214 stripe_end = stripe_logical + increment; 3215 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3216 ppath, stripe_logical, 3217 stripe_end); 3218 if (ret) 3219 goto out; 3220 goto skip; 3221 } 3222 } 3223 3224 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3225 key.type = BTRFS_METADATA_ITEM_KEY; 3226 else 3227 key.type = BTRFS_EXTENT_ITEM_KEY; 3228 key.objectid = logical; 3229 key.offset = (u64)-1; 3230 3231 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3232 if (ret < 0) 3233 goto out; 3234 3235 if (ret > 0) { 3236 ret = btrfs_previous_extent_item(root, path, 0); 3237 if (ret < 0) 3238 goto out; 3239 if (ret > 0) { 3240 /* there's no smaller item, so stick with the 3241 * larger one */ 3242 btrfs_release_path(path); 3243 ret = btrfs_search_slot(NULL, root, &key, 3244 path, 0, 0); 3245 if (ret < 0) 3246 goto out; 3247 } 3248 } 3249 3250 stop_loop = 0; 3251 while (1) { 3252 u64 bytes; 3253 3254 l = path->nodes[0]; 3255 slot = path->slots[0]; 3256 if (slot >= btrfs_header_nritems(l)) { 3257 ret = btrfs_next_leaf(root, path); 3258 if (ret == 0) 3259 continue; 3260 if (ret < 0) 3261 goto out; 3262 3263 stop_loop = 1; 3264 break; 3265 } 3266 btrfs_item_key_to_cpu(l, &key, slot); 3267 3268 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3269 key.type != BTRFS_METADATA_ITEM_KEY) 3270 goto next; 3271 3272 if (key.type == BTRFS_METADATA_ITEM_KEY) 3273 bytes = fs_info->nodesize; 3274 else 3275 bytes = key.offset; 3276 3277 if (key.objectid + bytes <= logical) 3278 goto next; 3279 3280 if (key.objectid >= logical + map->stripe_len) { 3281 /* out of this device extent */ 3282 if (key.objectid >= logic_end) 3283 stop_loop = 1; 3284 break; 3285 } 3286 3287 extent = btrfs_item_ptr(l, slot, 3288 struct btrfs_extent_item); 3289 flags = btrfs_extent_flags(l, extent); 3290 generation = btrfs_extent_generation(l, extent); 3291 3292 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3293 (key.objectid < logical || 3294 key.objectid + bytes > 3295 logical + map->stripe_len)) { 3296 btrfs_err(fs_info, 3297 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3298 key.objectid, logical); 3299 spin_lock(&sctx->stat_lock); 3300 sctx->stat.uncorrectable_errors++; 3301 spin_unlock(&sctx->stat_lock); 3302 goto next; 3303 } 3304 3305 again: 3306 extent_logical = key.objectid; 3307 extent_len = bytes; 3308 3309 /* 3310 * trim extent to this stripe 3311 */ 3312 if (extent_logical < logical) { 3313 extent_len -= logical - extent_logical; 3314 extent_logical = logical; 3315 } 3316 if (extent_logical + extent_len > 3317 logical + map->stripe_len) { 3318 extent_len = logical + map->stripe_len - 3319 extent_logical; 3320 } 3321 3322 extent_physical = extent_logical - logical + physical; 3323 extent_dev = scrub_dev; 3324 extent_mirror_num = mirror_num; 3325 if (sctx->is_dev_replace) 3326 scrub_remap_extent(fs_info, extent_logical, 3327 extent_len, &extent_physical, 3328 &extent_dev, 3329 &extent_mirror_num); 3330 3331 ret = btrfs_lookup_csums_range(csum_root, 3332 extent_logical, 3333 extent_logical + 3334 extent_len - 1, 3335 &sctx->csum_list, 1); 3336 if (ret) 3337 goto out; 3338 3339 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3340 extent_physical, extent_dev, flags, 3341 generation, extent_mirror_num, 3342 extent_logical - logical + physical); 3343 3344 scrub_free_csums(sctx); 3345 3346 if (ret) 3347 goto out; 3348 3349 if (extent_logical + extent_len < 3350 key.objectid + bytes) { 3351 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3352 /* 3353 * loop until we find next data stripe 3354 * or we have finished all stripes. 3355 */ 3356 loop: 3357 physical += map->stripe_len; 3358 ret = get_raid56_logic_offset(physical, 3359 num, map, &logical, 3360 &stripe_logical); 3361 logical += base; 3362 3363 if (ret && physical < physical_end) { 3364 stripe_logical += base; 3365 stripe_end = stripe_logical + 3366 increment; 3367 ret = scrub_raid56_parity(sctx, 3368 map, scrub_dev, ppath, 3369 stripe_logical, 3370 stripe_end); 3371 if (ret) 3372 goto out; 3373 goto loop; 3374 } 3375 } else { 3376 physical += map->stripe_len; 3377 logical += increment; 3378 } 3379 if (logical < key.objectid + bytes) { 3380 cond_resched(); 3381 goto again; 3382 } 3383 3384 if (physical >= physical_end) { 3385 stop_loop = 1; 3386 break; 3387 } 3388 } 3389 next: 3390 path->slots[0]++; 3391 } 3392 btrfs_release_path(path); 3393 skip: 3394 logical += increment; 3395 physical += map->stripe_len; 3396 spin_lock(&sctx->stat_lock); 3397 if (stop_loop) 3398 sctx->stat.last_physical = map->stripes[num].physical + 3399 length; 3400 else 3401 sctx->stat.last_physical = physical; 3402 spin_unlock(&sctx->stat_lock); 3403 if (stop_loop) 3404 break; 3405 } 3406 out: 3407 /* push queued extents */ 3408 scrub_submit(sctx); 3409 mutex_lock(&sctx->wr_lock); 3410 scrub_wr_submit(sctx); 3411 mutex_unlock(&sctx->wr_lock); 3412 3413 blk_finish_plug(&plug); 3414 btrfs_free_path(path); 3415 btrfs_free_path(ppath); 3416 return ret < 0 ? ret : 0; 3417 } 3418 3419 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3420 struct btrfs_device *scrub_dev, 3421 u64 chunk_offset, u64 length, 3422 u64 dev_offset, 3423 struct btrfs_block_group_cache *cache) 3424 { 3425 struct btrfs_fs_info *fs_info = sctx->fs_info; 3426 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3427 struct map_lookup *map; 3428 struct extent_map *em; 3429 int i; 3430 int ret = 0; 3431 3432 read_lock(&map_tree->lock); 3433 em = lookup_extent_mapping(map_tree, chunk_offset, 1); 3434 read_unlock(&map_tree->lock); 3435 3436 if (!em) { 3437 /* 3438 * Might have been an unused block group deleted by the cleaner 3439 * kthread or relocation. 3440 */ 3441 spin_lock(&cache->lock); 3442 if (!cache->removed) 3443 ret = -EINVAL; 3444 spin_unlock(&cache->lock); 3445 3446 return ret; 3447 } 3448 3449 map = em->map_lookup; 3450 if (em->start != chunk_offset) 3451 goto out; 3452 3453 if (em->len < length) 3454 goto out; 3455 3456 for (i = 0; i < map->num_stripes; ++i) { 3457 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3458 map->stripes[i].physical == dev_offset) { 3459 ret = scrub_stripe(sctx, map, scrub_dev, i, 3460 chunk_offset, length); 3461 if (ret) 3462 goto out; 3463 } 3464 } 3465 out: 3466 free_extent_map(em); 3467 3468 return ret; 3469 } 3470 3471 static noinline_for_stack 3472 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3473 struct btrfs_device *scrub_dev, u64 start, u64 end) 3474 { 3475 struct btrfs_dev_extent *dev_extent = NULL; 3476 struct btrfs_path *path; 3477 struct btrfs_fs_info *fs_info = sctx->fs_info; 3478 struct btrfs_root *root = fs_info->dev_root; 3479 u64 length; 3480 u64 chunk_offset; 3481 int ret = 0; 3482 int ro_set; 3483 int slot; 3484 struct extent_buffer *l; 3485 struct btrfs_key key; 3486 struct btrfs_key found_key; 3487 struct btrfs_block_group_cache *cache; 3488 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3489 3490 path = btrfs_alloc_path(); 3491 if (!path) 3492 return -ENOMEM; 3493 3494 path->reada = READA_FORWARD; 3495 path->search_commit_root = 1; 3496 path->skip_locking = 1; 3497 3498 key.objectid = scrub_dev->devid; 3499 key.offset = 0ull; 3500 key.type = BTRFS_DEV_EXTENT_KEY; 3501 3502 while (1) { 3503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3504 if (ret < 0) 3505 break; 3506 if (ret > 0) { 3507 if (path->slots[0] >= 3508 btrfs_header_nritems(path->nodes[0])) { 3509 ret = btrfs_next_leaf(root, path); 3510 if (ret < 0) 3511 break; 3512 if (ret > 0) { 3513 ret = 0; 3514 break; 3515 } 3516 } else { 3517 ret = 0; 3518 } 3519 } 3520 3521 l = path->nodes[0]; 3522 slot = path->slots[0]; 3523 3524 btrfs_item_key_to_cpu(l, &found_key, slot); 3525 3526 if (found_key.objectid != scrub_dev->devid) 3527 break; 3528 3529 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3530 break; 3531 3532 if (found_key.offset >= end) 3533 break; 3534 3535 if (found_key.offset < key.offset) 3536 break; 3537 3538 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3539 length = btrfs_dev_extent_length(l, dev_extent); 3540 3541 if (found_key.offset + length <= start) 3542 goto skip; 3543 3544 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3545 3546 /* 3547 * get a reference on the corresponding block group to prevent 3548 * the chunk from going away while we scrub it 3549 */ 3550 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3551 3552 /* some chunks are removed but not committed to disk yet, 3553 * continue scrubbing */ 3554 if (!cache) 3555 goto skip; 3556 3557 /* 3558 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3559 * to avoid deadlock caused by: 3560 * btrfs_inc_block_group_ro() 3561 * -> btrfs_wait_for_commit() 3562 * -> btrfs_commit_transaction() 3563 * -> btrfs_scrub_pause() 3564 */ 3565 scrub_pause_on(fs_info); 3566 ret = btrfs_inc_block_group_ro(cache); 3567 if (!ret && sctx->is_dev_replace) { 3568 /* 3569 * If we are doing a device replace wait for any tasks 3570 * that started delalloc right before we set the block 3571 * group to RO mode, as they might have just allocated 3572 * an extent from it or decided they could do a nocow 3573 * write. And if any such tasks did that, wait for their 3574 * ordered extents to complete and then commit the 3575 * current transaction, so that we can later see the new 3576 * extent items in the extent tree - the ordered extents 3577 * create delayed data references (for cow writes) when 3578 * they complete, which will be run and insert the 3579 * corresponding extent items into the extent tree when 3580 * we commit the transaction they used when running 3581 * inode.c:btrfs_finish_ordered_io(). We later use 3582 * the commit root of the extent tree to find extents 3583 * to copy from the srcdev into the tgtdev, and we don't 3584 * want to miss any new extents. 3585 */ 3586 btrfs_wait_block_group_reservations(cache); 3587 btrfs_wait_nocow_writers(cache); 3588 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, 3589 cache->key.objectid, 3590 cache->key.offset); 3591 if (ret > 0) { 3592 struct btrfs_trans_handle *trans; 3593 3594 trans = btrfs_join_transaction(root); 3595 if (IS_ERR(trans)) 3596 ret = PTR_ERR(trans); 3597 else 3598 ret = btrfs_commit_transaction(trans); 3599 if (ret) { 3600 scrub_pause_off(fs_info); 3601 btrfs_put_block_group(cache); 3602 break; 3603 } 3604 } 3605 } 3606 scrub_pause_off(fs_info); 3607 3608 if (ret == 0) { 3609 ro_set = 1; 3610 } else if (ret == -ENOSPC) { 3611 /* 3612 * btrfs_inc_block_group_ro return -ENOSPC when it 3613 * failed in creating new chunk for metadata. 3614 * It is not a problem for scrub/replace, because 3615 * metadata are always cowed, and our scrub paused 3616 * commit_transactions. 3617 */ 3618 ro_set = 0; 3619 } else { 3620 btrfs_warn(fs_info, 3621 "failed setting block group ro: %d", ret); 3622 btrfs_put_block_group(cache); 3623 break; 3624 } 3625 3626 down_write(&fs_info->dev_replace.rwsem); 3627 dev_replace->cursor_right = found_key.offset + length; 3628 dev_replace->cursor_left = found_key.offset; 3629 dev_replace->item_needs_writeback = 1; 3630 up_write(&dev_replace->rwsem); 3631 3632 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3633 found_key.offset, cache); 3634 3635 /* 3636 * flush, submit all pending read and write bios, afterwards 3637 * wait for them. 3638 * Note that in the dev replace case, a read request causes 3639 * write requests that are submitted in the read completion 3640 * worker. Therefore in the current situation, it is required 3641 * that all write requests are flushed, so that all read and 3642 * write requests are really completed when bios_in_flight 3643 * changes to 0. 3644 */ 3645 sctx->flush_all_writes = true; 3646 scrub_submit(sctx); 3647 mutex_lock(&sctx->wr_lock); 3648 scrub_wr_submit(sctx); 3649 mutex_unlock(&sctx->wr_lock); 3650 3651 wait_event(sctx->list_wait, 3652 atomic_read(&sctx->bios_in_flight) == 0); 3653 3654 scrub_pause_on(fs_info); 3655 3656 /* 3657 * must be called before we decrease @scrub_paused. 3658 * make sure we don't block transaction commit while 3659 * we are waiting pending workers finished. 3660 */ 3661 wait_event(sctx->list_wait, 3662 atomic_read(&sctx->workers_pending) == 0); 3663 sctx->flush_all_writes = false; 3664 3665 scrub_pause_off(fs_info); 3666 3667 down_write(&fs_info->dev_replace.rwsem); 3668 dev_replace->cursor_left = dev_replace->cursor_right; 3669 dev_replace->item_needs_writeback = 1; 3670 up_write(&fs_info->dev_replace.rwsem); 3671 3672 if (ro_set) 3673 btrfs_dec_block_group_ro(cache); 3674 3675 /* 3676 * We might have prevented the cleaner kthread from deleting 3677 * this block group if it was already unused because we raced 3678 * and set it to RO mode first. So add it back to the unused 3679 * list, otherwise it might not ever be deleted unless a manual 3680 * balance is triggered or it becomes used and unused again. 3681 */ 3682 spin_lock(&cache->lock); 3683 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3684 btrfs_block_group_used(&cache->item) == 0) { 3685 spin_unlock(&cache->lock); 3686 btrfs_mark_bg_unused(cache); 3687 } else { 3688 spin_unlock(&cache->lock); 3689 } 3690 3691 btrfs_put_block_group(cache); 3692 if (ret) 3693 break; 3694 if (sctx->is_dev_replace && 3695 atomic64_read(&dev_replace->num_write_errors) > 0) { 3696 ret = -EIO; 3697 break; 3698 } 3699 if (sctx->stat.malloc_errors > 0) { 3700 ret = -ENOMEM; 3701 break; 3702 } 3703 skip: 3704 key.offset = found_key.offset + length; 3705 btrfs_release_path(path); 3706 } 3707 3708 btrfs_free_path(path); 3709 3710 return ret; 3711 } 3712 3713 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3714 struct btrfs_device *scrub_dev) 3715 { 3716 int i; 3717 u64 bytenr; 3718 u64 gen; 3719 int ret; 3720 struct btrfs_fs_info *fs_info = sctx->fs_info; 3721 3722 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3723 return -EIO; 3724 3725 /* Seed devices of a new filesystem has their own generation. */ 3726 if (scrub_dev->fs_devices != fs_info->fs_devices) 3727 gen = scrub_dev->generation; 3728 else 3729 gen = fs_info->last_trans_committed; 3730 3731 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3732 bytenr = btrfs_sb_offset(i); 3733 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3734 scrub_dev->commit_total_bytes) 3735 break; 3736 3737 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3738 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3739 NULL, 1, bytenr); 3740 if (ret) 3741 return ret; 3742 } 3743 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3744 3745 return 0; 3746 } 3747 3748 /* 3749 * get a reference count on fs_info->scrub_workers. start worker if necessary 3750 */ 3751 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3752 int is_dev_replace) 3753 { 3754 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3755 int max_active = fs_info->thread_pool_size; 3756 3757 lockdep_assert_held(&fs_info->scrub_lock); 3758 3759 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 3760 ASSERT(fs_info->scrub_workers == NULL); 3761 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", 3762 flags, is_dev_replace ? 1 : max_active, 4); 3763 if (!fs_info->scrub_workers) 3764 goto fail_scrub_workers; 3765 3766 ASSERT(fs_info->scrub_wr_completion_workers == NULL); 3767 fs_info->scrub_wr_completion_workers = 3768 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 3769 max_active, 2); 3770 if (!fs_info->scrub_wr_completion_workers) 3771 goto fail_scrub_wr_completion_workers; 3772 3773 ASSERT(fs_info->scrub_parity_workers == NULL); 3774 fs_info->scrub_parity_workers = 3775 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 3776 max_active, 2); 3777 if (!fs_info->scrub_parity_workers) 3778 goto fail_scrub_parity_workers; 3779 3780 refcount_set(&fs_info->scrub_workers_refcnt, 1); 3781 } else { 3782 refcount_inc(&fs_info->scrub_workers_refcnt); 3783 } 3784 return 0; 3785 3786 fail_scrub_parity_workers: 3787 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3788 fail_scrub_wr_completion_workers: 3789 btrfs_destroy_workqueue(fs_info->scrub_workers); 3790 fail_scrub_workers: 3791 return -ENOMEM; 3792 } 3793 3794 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3795 u64 end, struct btrfs_scrub_progress *progress, 3796 int readonly, int is_dev_replace) 3797 { 3798 struct scrub_ctx *sctx; 3799 int ret; 3800 struct btrfs_device *dev; 3801 unsigned int nofs_flag; 3802 struct btrfs_workqueue *scrub_workers = NULL; 3803 struct btrfs_workqueue *scrub_wr_comp = NULL; 3804 struct btrfs_workqueue *scrub_parity = NULL; 3805 3806 if (btrfs_fs_closing(fs_info)) 3807 return -EAGAIN; 3808 3809 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 3810 /* 3811 * in this case scrub is unable to calculate the checksum 3812 * the way scrub is implemented. Do not handle this 3813 * situation at all because it won't ever happen. 3814 */ 3815 btrfs_err(fs_info, 3816 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3817 fs_info->nodesize, 3818 BTRFS_STRIPE_LEN); 3819 return -EINVAL; 3820 } 3821 3822 if (fs_info->sectorsize != PAGE_SIZE) { 3823 /* not supported for data w/o checksums */ 3824 btrfs_err_rl(fs_info, 3825 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 3826 fs_info->sectorsize, PAGE_SIZE); 3827 return -EINVAL; 3828 } 3829 3830 if (fs_info->nodesize > 3831 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3832 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3833 /* 3834 * would exhaust the array bounds of pagev member in 3835 * struct scrub_block 3836 */ 3837 btrfs_err(fs_info, 3838 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3839 fs_info->nodesize, 3840 SCRUB_MAX_PAGES_PER_BLOCK, 3841 fs_info->sectorsize, 3842 SCRUB_MAX_PAGES_PER_BLOCK); 3843 return -EINVAL; 3844 } 3845 3846 /* Allocate outside of device_list_mutex */ 3847 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 3848 if (IS_ERR(sctx)) 3849 return PTR_ERR(sctx); 3850 3851 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3852 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 3853 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 3854 !is_dev_replace)) { 3855 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3856 ret = -ENODEV; 3857 goto out_free_ctx; 3858 } 3859 3860 if (!is_dev_replace && !readonly && 3861 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 3862 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3863 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable", 3864 rcu_str_deref(dev->name)); 3865 ret = -EROFS; 3866 goto out_free_ctx; 3867 } 3868 3869 mutex_lock(&fs_info->scrub_lock); 3870 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3871 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 3872 mutex_unlock(&fs_info->scrub_lock); 3873 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3874 ret = -EIO; 3875 goto out_free_ctx; 3876 } 3877 3878 down_read(&fs_info->dev_replace.rwsem); 3879 if (dev->scrub_ctx || 3880 (!is_dev_replace && 3881 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3882 up_read(&fs_info->dev_replace.rwsem); 3883 mutex_unlock(&fs_info->scrub_lock); 3884 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3885 ret = -EINPROGRESS; 3886 goto out_free_ctx; 3887 } 3888 up_read(&fs_info->dev_replace.rwsem); 3889 3890 ret = scrub_workers_get(fs_info, is_dev_replace); 3891 if (ret) { 3892 mutex_unlock(&fs_info->scrub_lock); 3893 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3894 goto out_free_ctx; 3895 } 3896 3897 sctx->readonly = readonly; 3898 dev->scrub_ctx = sctx; 3899 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3900 3901 /* 3902 * checking @scrub_pause_req here, we can avoid 3903 * race between committing transaction and scrubbing. 3904 */ 3905 __scrub_blocked_if_needed(fs_info); 3906 atomic_inc(&fs_info->scrubs_running); 3907 mutex_unlock(&fs_info->scrub_lock); 3908 3909 /* 3910 * In order to avoid deadlock with reclaim when there is a transaction 3911 * trying to pause scrub, make sure we use GFP_NOFS for all the 3912 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() 3913 * invoked by our callees. The pausing request is done when the 3914 * transaction commit starts, and it blocks the transaction until scrub 3915 * is paused (done at specific points at scrub_stripe() or right above 3916 * before incrementing fs_info->scrubs_running). 3917 */ 3918 nofs_flag = memalloc_nofs_save(); 3919 if (!is_dev_replace) { 3920 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 3921 /* 3922 * by holding device list mutex, we can 3923 * kick off writing super in log tree sync. 3924 */ 3925 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3926 ret = scrub_supers(sctx, dev); 3927 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3928 } 3929 3930 if (!ret) 3931 ret = scrub_enumerate_chunks(sctx, dev, start, end); 3932 memalloc_nofs_restore(nofs_flag); 3933 3934 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3935 atomic_dec(&fs_info->scrubs_running); 3936 wake_up(&fs_info->scrub_pause_wait); 3937 3938 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3939 3940 if (progress) 3941 memcpy(progress, &sctx->stat, sizeof(*progress)); 3942 3943 if (!is_dev_replace) 3944 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 3945 ret ? "not finished" : "finished", devid, ret); 3946 3947 mutex_lock(&fs_info->scrub_lock); 3948 dev->scrub_ctx = NULL; 3949 if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) { 3950 scrub_workers = fs_info->scrub_workers; 3951 scrub_wr_comp = fs_info->scrub_wr_completion_workers; 3952 scrub_parity = fs_info->scrub_parity_workers; 3953 3954 fs_info->scrub_workers = NULL; 3955 fs_info->scrub_wr_completion_workers = NULL; 3956 fs_info->scrub_parity_workers = NULL; 3957 } 3958 mutex_unlock(&fs_info->scrub_lock); 3959 3960 btrfs_destroy_workqueue(scrub_workers); 3961 btrfs_destroy_workqueue(scrub_wr_comp); 3962 btrfs_destroy_workqueue(scrub_parity); 3963 scrub_put_ctx(sctx); 3964 3965 return ret; 3966 3967 out_free_ctx: 3968 scrub_free_ctx(sctx); 3969 3970 return ret; 3971 } 3972 3973 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3974 { 3975 mutex_lock(&fs_info->scrub_lock); 3976 atomic_inc(&fs_info->scrub_pause_req); 3977 while (atomic_read(&fs_info->scrubs_paused) != 3978 atomic_read(&fs_info->scrubs_running)) { 3979 mutex_unlock(&fs_info->scrub_lock); 3980 wait_event(fs_info->scrub_pause_wait, 3981 atomic_read(&fs_info->scrubs_paused) == 3982 atomic_read(&fs_info->scrubs_running)); 3983 mutex_lock(&fs_info->scrub_lock); 3984 } 3985 mutex_unlock(&fs_info->scrub_lock); 3986 } 3987 3988 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3989 { 3990 atomic_dec(&fs_info->scrub_pause_req); 3991 wake_up(&fs_info->scrub_pause_wait); 3992 } 3993 3994 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3995 { 3996 mutex_lock(&fs_info->scrub_lock); 3997 if (!atomic_read(&fs_info->scrubs_running)) { 3998 mutex_unlock(&fs_info->scrub_lock); 3999 return -ENOTCONN; 4000 } 4001 4002 atomic_inc(&fs_info->scrub_cancel_req); 4003 while (atomic_read(&fs_info->scrubs_running)) { 4004 mutex_unlock(&fs_info->scrub_lock); 4005 wait_event(fs_info->scrub_pause_wait, 4006 atomic_read(&fs_info->scrubs_running) == 0); 4007 mutex_lock(&fs_info->scrub_lock); 4008 } 4009 atomic_dec(&fs_info->scrub_cancel_req); 4010 mutex_unlock(&fs_info->scrub_lock); 4011 4012 return 0; 4013 } 4014 4015 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4016 { 4017 struct btrfs_fs_info *fs_info = dev->fs_info; 4018 struct scrub_ctx *sctx; 4019 4020 mutex_lock(&fs_info->scrub_lock); 4021 sctx = dev->scrub_ctx; 4022 if (!sctx) { 4023 mutex_unlock(&fs_info->scrub_lock); 4024 return -ENOTCONN; 4025 } 4026 atomic_inc(&sctx->cancel_req); 4027 while (dev->scrub_ctx) { 4028 mutex_unlock(&fs_info->scrub_lock); 4029 wait_event(fs_info->scrub_pause_wait, 4030 dev->scrub_ctx == NULL); 4031 mutex_lock(&fs_info->scrub_lock); 4032 } 4033 mutex_unlock(&fs_info->scrub_lock); 4034 4035 return 0; 4036 } 4037 4038 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4039 struct btrfs_scrub_progress *progress) 4040 { 4041 struct btrfs_device *dev; 4042 struct scrub_ctx *sctx = NULL; 4043 4044 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4045 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 4046 if (dev) 4047 sctx = dev->scrub_ctx; 4048 if (sctx) 4049 memcpy(progress, &sctx->stat, sizeof(*progress)); 4050 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4051 4052 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4053 } 4054 4055 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4056 u64 extent_logical, u64 extent_len, 4057 u64 *extent_physical, 4058 struct btrfs_device **extent_dev, 4059 int *extent_mirror_num) 4060 { 4061 u64 mapped_length; 4062 struct btrfs_bio *bbio = NULL; 4063 int ret; 4064 4065 mapped_length = extent_len; 4066 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4067 &mapped_length, &bbio, 0); 4068 if (ret || !bbio || mapped_length < extent_len || 4069 !bbio->stripes[0].dev->bdev) { 4070 btrfs_put_bbio(bbio); 4071 return; 4072 } 4073 4074 *extent_physical = bbio->stripes[0].physical; 4075 *extent_mirror_num = bbio->mirror_num; 4076 *extent_dev = bbio->stripes[0].dev; 4077 btrfs_put_bbio(bbio); 4078 } 4079