xref: /openbmc/linux/fs/btrfs/scrub.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
20 
21 /*
22  * This is only the first step towards a full-features scrub. It reads all
23  * extent and super block and verifies the checksums. In case a bad checksum
24  * is found or the extent cannot be read, good data will be written back if
25  * any can be found.
26  *
27  * Future enhancements:
28  *  - In case an unrepairable extent is encountered, track which files are
29  *    affected and report them
30  *  - track and record media errors, throw out bad devices
31  *  - add a mode to also read unallocated space
32  */
33 
34 struct scrub_block;
35 struct scrub_ctx;
36 
37 /*
38  * the following three values only influence the performance.
39  * The last one configures the number of parallel and outstanding I/O
40  * operations. The first two values configure an upper limit for the number
41  * of (dynamically allocated) pages that are added to a bio.
42  */
43 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 
47 /*
48  * the following value times PAGE_SIZE needs to be large enough to match the
49  * largest node/leaf/sector size that shall be supported.
50  * Values larger than BTRFS_STRIPE_LEN are not supported.
51  */
52 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
53 
54 struct scrub_recover {
55 	refcount_t		refs;
56 	struct btrfs_bio	*bbio;
57 	u64			map_length;
58 };
59 
60 struct scrub_page {
61 	struct scrub_block	*sblock;
62 	struct page		*page;
63 	struct btrfs_device	*dev;
64 	struct list_head	list;
65 	u64			flags;  /* extent flags */
66 	u64			generation;
67 	u64			logical;
68 	u64			physical;
69 	u64			physical_for_dev_replace;
70 	atomic_t		refs;
71 	struct {
72 		unsigned int	mirror_num:8;
73 		unsigned int	have_csum:1;
74 		unsigned int	io_error:1;
75 	};
76 	u8			csum[BTRFS_CSUM_SIZE];
77 
78 	struct scrub_recover	*recover;
79 };
80 
81 struct scrub_bio {
82 	int			index;
83 	struct scrub_ctx	*sctx;
84 	struct btrfs_device	*dev;
85 	struct bio		*bio;
86 	blk_status_t		status;
87 	u64			logical;
88 	u64			physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94 	int			page_count;
95 	int			next_free;
96 	struct btrfs_work	work;
97 };
98 
99 struct scrub_block {
100 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 	int			page_count;
102 	atomic_t		outstanding_pages;
103 	refcount_t		refs; /* free mem on transition to zero */
104 	struct scrub_ctx	*sctx;
105 	struct scrub_parity	*sparity;
106 	struct {
107 		unsigned int	header_error:1;
108 		unsigned int	checksum_error:1;
109 		unsigned int	no_io_error_seen:1;
110 		unsigned int	generation_error:1; /* also sets header_error */
111 
112 		/* The following is for the data used to check parity */
113 		/* It is for the data with checksum */
114 		unsigned int	data_corrected:1;
115 	};
116 	struct btrfs_work	work;
117 };
118 
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 	struct scrub_ctx	*sctx;
122 
123 	struct btrfs_device	*scrub_dev;
124 
125 	u64			logic_start;
126 
127 	u64			logic_end;
128 
129 	int			nsectors;
130 
131 	u64			stripe_len;
132 
133 	refcount_t		refs;
134 
135 	struct list_head	spages;
136 
137 	/* Work of parity check and repair */
138 	struct btrfs_work	work;
139 
140 	/* Mark the parity blocks which have data */
141 	unsigned long		*dbitmap;
142 
143 	/*
144 	 * Mark the parity blocks which have data, but errors happen when
145 	 * read data or check data
146 	 */
147 	unsigned long		*ebitmap;
148 
149 	unsigned long		bitmap[0];
150 };
151 
152 struct scrub_ctx {
153 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154 	struct btrfs_fs_info	*fs_info;
155 	int			first_free;
156 	int			curr;
157 	atomic_t		bios_in_flight;
158 	atomic_t		workers_pending;
159 	spinlock_t		list_lock;
160 	wait_queue_head_t	list_wait;
161 	u16			csum_size;
162 	struct list_head	csum_list;
163 	atomic_t		cancel_req;
164 	int			readonly;
165 	int			pages_per_rd_bio;
166 
167 	int			is_dev_replace;
168 
169 	struct scrub_bio        *wr_curr_bio;
170 	struct mutex            wr_lock;
171 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 	struct btrfs_device     *wr_tgtdev;
173 	bool                    flush_all_writes;
174 
175 	/*
176 	 * statistics
177 	 */
178 	struct btrfs_scrub_progress stat;
179 	spinlock_t		stat_lock;
180 
181 	/*
182 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 	 * decrement bios_in_flight and workers_pending and then do a wakeup
184 	 * on the list_wait wait queue. We must ensure the main scrub task
185 	 * doesn't free the scrub context before or while the workers are
186 	 * doing the wakeup() call.
187 	 */
188 	refcount_t              refs;
189 };
190 
191 struct scrub_warning {
192 	struct btrfs_path	*path;
193 	u64			extent_item_size;
194 	const char		*errstr;
195 	u64			physical;
196 	u64			logical;
197 	struct btrfs_device	*dev;
198 };
199 
200 struct full_stripe_lock {
201 	struct rb_node node;
202 	u64 logical;
203 	u64 refs;
204 	struct mutex mutex;
205 };
206 
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211 				     struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 				struct scrub_block *sblock,
214 				int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217 					     struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219 					    struct scrub_block *sblock_good,
220 					    int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
223 					   int page_num);
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234 				    struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236 		       u64 physical, struct btrfs_device *dev, u64 flags,
237 		       u64 gen, int mirror_num, u8 *csum, int force,
238 		       u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 			       u64 extent_logical, u64 extent_len,
244 			       u64 *extent_physical,
245 			       struct btrfs_device **extent_dev,
246 			       int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 				    struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
255 
256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
257 {
258 	return page->recover &&
259 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
260 }
261 
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263 {
264 	refcount_inc(&sctx->refs);
265 	atomic_inc(&sctx->bios_in_flight);
266 }
267 
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270 	atomic_dec(&sctx->bios_in_flight);
271 	wake_up(&sctx->list_wait);
272 	scrub_put_ctx(sctx);
273 }
274 
275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
276 {
277 	while (atomic_read(&fs_info->scrub_pause_req)) {
278 		mutex_unlock(&fs_info->scrub_lock);
279 		wait_event(fs_info->scrub_pause_wait,
280 		   atomic_read(&fs_info->scrub_pause_req) == 0);
281 		mutex_lock(&fs_info->scrub_lock);
282 	}
283 }
284 
285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
286 {
287 	atomic_inc(&fs_info->scrubs_paused);
288 	wake_up(&fs_info->scrub_pause_wait);
289 }
290 
291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
292 {
293 	mutex_lock(&fs_info->scrub_lock);
294 	__scrub_blocked_if_needed(fs_info);
295 	atomic_dec(&fs_info->scrubs_paused);
296 	mutex_unlock(&fs_info->scrub_lock);
297 
298 	wake_up(&fs_info->scrub_pause_wait);
299 }
300 
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
302 {
303 	scrub_pause_on(fs_info);
304 	scrub_pause_off(fs_info);
305 }
306 
307 /*
308  * Insert new full stripe lock into full stripe locks tree
309  *
310  * Return pointer to existing or newly inserted full_stripe_lock structure if
311  * everything works well.
312  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
313  *
314  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
315  * function
316  */
317 static struct full_stripe_lock *insert_full_stripe_lock(
318 		struct btrfs_full_stripe_locks_tree *locks_root,
319 		u64 fstripe_logical)
320 {
321 	struct rb_node **p;
322 	struct rb_node *parent = NULL;
323 	struct full_stripe_lock *entry;
324 	struct full_stripe_lock *ret;
325 
326 	lockdep_assert_held(&locks_root->lock);
327 
328 	p = &locks_root->root.rb_node;
329 	while (*p) {
330 		parent = *p;
331 		entry = rb_entry(parent, struct full_stripe_lock, node);
332 		if (fstripe_logical < entry->logical) {
333 			p = &(*p)->rb_left;
334 		} else if (fstripe_logical > entry->logical) {
335 			p = &(*p)->rb_right;
336 		} else {
337 			entry->refs++;
338 			return entry;
339 		}
340 	}
341 
342 	/*
343 	 * Insert new lock.
344 	 */
345 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
346 	if (!ret)
347 		return ERR_PTR(-ENOMEM);
348 	ret->logical = fstripe_logical;
349 	ret->refs = 1;
350 	mutex_init(&ret->mutex);
351 
352 	rb_link_node(&ret->node, parent, p);
353 	rb_insert_color(&ret->node, &locks_root->root);
354 	return ret;
355 }
356 
357 /*
358  * Search for a full stripe lock of a block group
359  *
360  * Return pointer to existing full stripe lock if found
361  * Return NULL if not found
362  */
363 static struct full_stripe_lock *search_full_stripe_lock(
364 		struct btrfs_full_stripe_locks_tree *locks_root,
365 		u64 fstripe_logical)
366 {
367 	struct rb_node *node;
368 	struct full_stripe_lock *entry;
369 
370 	lockdep_assert_held(&locks_root->lock);
371 
372 	node = locks_root->root.rb_node;
373 	while (node) {
374 		entry = rb_entry(node, struct full_stripe_lock, node);
375 		if (fstripe_logical < entry->logical)
376 			node = node->rb_left;
377 		else if (fstripe_logical > entry->logical)
378 			node = node->rb_right;
379 		else
380 			return entry;
381 	}
382 	return NULL;
383 }
384 
385 /*
386  * Helper to get full stripe logical from a normal bytenr.
387  *
388  * Caller must ensure @cache is a RAID56 block group.
389  */
390 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
391 				   u64 bytenr)
392 {
393 	u64 ret;
394 
395 	/*
396 	 * Due to chunk item size limit, full stripe length should not be
397 	 * larger than U32_MAX. Just a sanity check here.
398 	 */
399 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
400 
401 	/*
402 	 * round_down() can only handle power of 2, while RAID56 full
403 	 * stripe length can be 64KiB * n, so we need to manually round down.
404 	 */
405 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
406 		cache->full_stripe_len + cache->key.objectid;
407 	return ret;
408 }
409 
410 /*
411  * Lock a full stripe to avoid concurrency of recovery and read
412  *
413  * It's only used for profiles with parities (RAID5/6), for other profiles it
414  * does nothing.
415  *
416  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
417  * So caller must call unlock_full_stripe() at the same context.
418  *
419  * Return <0 if encounters error.
420  */
421 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
422 			    bool *locked_ret)
423 {
424 	struct btrfs_block_group_cache *bg_cache;
425 	struct btrfs_full_stripe_locks_tree *locks_root;
426 	struct full_stripe_lock *existing;
427 	u64 fstripe_start;
428 	int ret = 0;
429 
430 	*locked_ret = false;
431 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
432 	if (!bg_cache) {
433 		ASSERT(0);
434 		return -ENOENT;
435 	}
436 
437 	/* Profiles not based on parity don't need full stripe lock */
438 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
439 		goto out;
440 	locks_root = &bg_cache->full_stripe_locks_root;
441 
442 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
443 
444 	/* Now insert the full stripe lock */
445 	mutex_lock(&locks_root->lock);
446 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
447 	mutex_unlock(&locks_root->lock);
448 	if (IS_ERR(existing)) {
449 		ret = PTR_ERR(existing);
450 		goto out;
451 	}
452 	mutex_lock(&existing->mutex);
453 	*locked_ret = true;
454 out:
455 	btrfs_put_block_group(bg_cache);
456 	return ret;
457 }
458 
459 /*
460  * Unlock a full stripe.
461  *
462  * NOTE: Caller must ensure it's the same context calling corresponding
463  * lock_full_stripe().
464  *
465  * Return 0 if we unlock full stripe without problem.
466  * Return <0 for error
467  */
468 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
469 			      bool locked)
470 {
471 	struct btrfs_block_group_cache *bg_cache;
472 	struct btrfs_full_stripe_locks_tree *locks_root;
473 	struct full_stripe_lock *fstripe_lock;
474 	u64 fstripe_start;
475 	bool freeit = false;
476 	int ret = 0;
477 
478 	/* If we didn't acquire full stripe lock, no need to continue */
479 	if (!locked)
480 		return 0;
481 
482 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
483 	if (!bg_cache) {
484 		ASSERT(0);
485 		return -ENOENT;
486 	}
487 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
488 		goto out;
489 
490 	locks_root = &bg_cache->full_stripe_locks_root;
491 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
492 
493 	mutex_lock(&locks_root->lock);
494 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
495 	/* Unpaired unlock_full_stripe() detected */
496 	if (!fstripe_lock) {
497 		WARN_ON(1);
498 		ret = -ENOENT;
499 		mutex_unlock(&locks_root->lock);
500 		goto out;
501 	}
502 
503 	if (fstripe_lock->refs == 0) {
504 		WARN_ON(1);
505 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
506 			fstripe_lock->logical);
507 	} else {
508 		fstripe_lock->refs--;
509 	}
510 
511 	if (fstripe_lock->refs == 0) {
512 		rb_erase(&fstripe_lock->node, &locks_root->root);
513 		freeit = true;
514 	}
515 	mutex_unlock(&locks_root->lock);
516 
517 	mutex_unlock(&fstripe_lock->mutex);
518 	if (freeit)
519 		kfree(fstripe_lock);
520 out:
521 	btrfs_put_block_group(bg_cache);
522 	return ret;
523 }
524 
525 static void scrub_free_csums(struct scrub_ctx *sctx)
526 {
527 	while (!list_empty(&sctx->csum_list)) {
528 		struct btrfs_ordered_sum *sum;
529 		sum = list_first_entry(&sctx->csum_list,
530 				       struct btrfs_ordered_sum, list);
531 		list_del(&sum->list);
532 		kfree(sum);
533 	}
534 }
535 
536 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
537 {
538 	int i;
539 
540 	if (!sctx)
541 		return;
542 
543 	/* this can happen when scrub is cancelled */
544 	if (sctx->curr != -1) {
545 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
546 
547 		for (i = 0; i < sbio->page_count; i++) {
548 			WARN_ON(!sbio->pagev[i]->page);
549 			scrub_block_put(sbio->pagev[i]->sblock);
550 		}
551 		bio_put(sbio->bio);
552 	}
553 
554 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
555 		struct scrub_bio *sbio = sctx->bios[i];
556 
557 		if (!sbio)
558 			break;
559 		kfree(sbio);
560 	}
561 
562 	kfree(sctx->wr_curr_bio);
563 	scrub_free_csums(sctx);
564 	kfree(sctx);
565 }
566 
567 static void scrub_put_ctx(struct scrub_ctx *sctx)
568 {
569 	if (refcount_dec_and_test(&sctx->refs))
570 		scrub_free_ctx(sctx);
571 }
572 
573 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
574 		struct btrfs_fs_info *fs_info, int is_dev_replace)
575 {
576 	struct scrub_ctx *sctx;
577 	int		i;
578 
579 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
580 	if (!sctx)
581 		goto nomem;
582 	refcount_set(&sctx->refs, 1);
583 	sctx->is_dev_replace = is_dev_replace;
584 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
585 	sctx->curr = -1;
586 	sctx->fs_info = fs_info;
587 	INIT_LIST_HEAD(&sctx->csum_list);
588 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
589 		struct scrub_bio *sbio;
590 
591 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
592 		if (!sbio)
593 			goto nomem;
594 		sctx->bios[i] = sbio;
595 
596 		sbio->index = i;
597 		sbio->sctx = sctx;
598 		sbio->page_count = 0;
599 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
600 				scrub_bio_end_io_worker, NULL, NULL);
601 
602 		if (i != SCRUB_BIOS_PER_SCTX - 1)
603 			sctx->bios[i]->next_free = i + 1;
604 		else
605 			sctx->bios[i]->next_free = -1;
606 	}
607 	sctx->first_free = 0;
608 	atomic_set(&sctx->bios_in_flight, 0);
609 	atomic_set(&sctx->workers_pending, 0);
610 	atomic_set(&sctx->cancel_req, 0);
611 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
612 
613 	spin_lock_init(&sctx->list_lock);
614 	spin_lock_init(&sctx->stat_lock);
615 	init_waitqueue_head(&sctx->list_wait);
616 
617 	WARN_ON(sctx->wr_curr_bio != NULL);
618 	mutex_init(&sctx->wr_lock);
619 	sctx->wr_curr_bio = NULL;
620 	if (is_dev_replace) {
621 		WARN_ON(!fs_info->dev_replace.tgtdev);
622 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
623 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
624 		sctx->flush_all_writes = false;
625 	}
626 
627 	return sctx;
628 
629 nomem:
630 	scrub_free_ctx(sctx);
631 	return ERR_PTR(-ENOMEM);
632 }
633 
634 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
635 				     void *warn_ctx)
636 {
637 	u64 isize;
638 	u32 nlink;
639 	int ret;
640 	int i;
641 	unsigned nofs_flag;
642 	struct extent_buffer *eb;
643 	struct btrfs_inode_item *inode_item;
644 	struct scrub_warning *swarn = warn_ctx;
645 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
646 	struct inode_fs_paths *ipath = NULL;
647 	struct btrfs_root *local_root;
648 	struct btrfs_key root_key;
649 	struct btrfs_key key;
650 
651 	root_key.objectid = root;
652 	root_key.type = BTRFS_ROOT_ITEM_KEY;
653 	root_key.offset = (u64)-1;
654 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
655 	if (IS_ERR(local_root)) {
656 		ret = PTR_ERR(local_root);
657 		goto err;
658 	}
659 
660 	/*
661 	 * this makes the path point to (inum INODE_ITEM ioff)
662 	 */
663 	key.objectid = inum;
664 	key.type = BTRFS_INODE_ITEM_KEY;
665 	key.offset = 0;
666 
667 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
668 	if (ret) {
669 		btrfs_release_path(swarn->path);
670 		goto err;
671 	}
672 
673 	eb = swarn->path->nodes[0];
674 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
675 					struct btrfs_inode_item);
676 	isize = btrfs_inode_size(eb, inode_item);
677 	nlink = btrfs_inode_nlink(eb, inode_item);
678 	btrfs_release_path(swarn->path);
679 
680 	/*
681 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
682 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
683 	 * not seem to be strictly necessary.
684 	 */
685 	nofs_flag = memalloc_nofs_save();
686 	ipath = init_ipath(4096, local_root, swarn->path);
687 	memalloc_nofs_restore(nofs_flag);
688 	if (IS_ERR(ipath)) {
689 		ret = PTR_ERR(ipath);
690 		ipath = NULL;
691 		goto err;
692 	}
693 	ret = paths_from_inode(inum, ipath);
694 
695 	if (ret < 0)
696 		goto err;
697 
698 	/*
699 	 * we deliberately ignore the bit ipath might have been too small to
700 	 * hold all of the paths here
701 	 */
702 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
703 		btrfs_warn_in_rcu(fs_info,
704 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
705 				  swarn->errstr, swarn->logical,
706 				  rcu_str_deref(swarn->dev->name),
707 				  swarn->physical,
708 				  root, inum, offset,
709 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
710 				  (char *)(unsigned long)ipath->fspath->val[i]);
711 
712 	free_ipath(ipath);
713 	return 0;
714 
715 err:
716 	btrfs_warn_in_rcu(fs_info,
717 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
718 			  swarn->errstr, swarn->logical,
719 			  rcu_str_deref(swarn->dev->name),
720 			  swarn->physical,
721 			  root, inum, offset, ret);
722 
723 	free_ipath(ipath);
724 	return 0;
725 }
726 
727 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
728 {
729 	struct btrfs_device *dev;
730 	struct btrfs_fs_info *fs_info;
731 	struct btrfs_path *path;
732 	struct btrfs_key found_key;
733 	struct extent_buffer *eb;
734 	struct btrfs_extent_item *ei;
735 	struct scrub_warning swarn;
736 	unsigned long ptr = 0;
737 	u64 extent_item_pos;
738 	u64 flags = 0;
739 	u64 ref_root;
740 	u32 item_size;
741 	u8 ref_level = 0;
742 	int ret;
743 
744 	WARN_ON(sblock->page_count < 1);
745 	dev = sblock->pagev[0]->dev;
746 	fs_info = sblock->sctx->fs_info;
747 
748 	path = btrfs_alloc_path();
749 	if (!path)
750 		return;
751 
752 	swarn.physical = sblock->pagev[0]->physical;
753 	swarn.logical = sblock->pagev[0]->logical;
754 	swarn.errstr = errstr;
755 	swarn.dev = NULL;
756 
757 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
758 				  &flags);
759 	if (ret < 0)
760 		goto out;
761 
762 	extent_item_pos = swarn.logical - found_key.objectid;
763 	swarn.extent_item_size = found_key.offset;
764 
765 	eb = path->nodes[0];
766 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
767 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
768 
769 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
770 		do {
771 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
772 						      item_size, &ref_root,
773 						      &ref_level);
774 			btrfs_warn_in_rcu(fs_info,
775 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
776 				errstr, swarn.logical,
777 				rcu_str_deref(dev->name),
778 				swarn.physical,
779 				ref_level ? "node" : "leaf",
780 				ret < 0 ? -1 : ref_level,
781 				ret < 0 ? -1 : ref_root);
782 		} while (ret != 1);
783 		btrfs_release_path(path);
784 	} else {
785 		btrfs_release_path(path);
786 		swarn.path = path;
787 		swarn.dev = dev;
788 		iterate_extent_inodes(fs_info, found_key.objectid,
789 					extent_item_pos, 1,
790 					scrub_print_warning_inode, &swarn, false);
791 	}
792 
793 out:
794 	btrfs_free_path(path);
795 }
796 
797 static inline void scrub_get_recover(struct scrub_recover *recover)
798 {
799 	refcount_inc(&recover->refs);
800 }
801 
802 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
803 				     struct scrub_recover *recover)
804 {
805 	if (refcount_dec_and_test(&recover->refs)) {
806 		btrfs_bio_counter_dec(fs_info);
807 		btrfs_put_bbio(recover->bbio);
808 		kfree(recover);
809 	}
810 }
811 
812 /*
813  * scrub_handle_errored_block gets called when either verification of the
814  * pages failed or the bio failed to read, e.g. with EIO. In the latter
815  * case, this function handles all pages in the bio, even though only one
816  * may be bad.
817  * The goal of this function is to repair the errored block by using the
818  * contents of one of the mirrors.
819  */
820 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
821 {
822 	struct scrub_ctx *sctx = sblock_to_check->sctx;
823 	struct btrfs_device *dev;
824 	struct btrfs_fs_info *fs_info;
825 	u64 logical;
826 	unsigned int failed_mirror_index;
827 	unsigned int is_metadata;
828 	unsigned int have_csum;
829 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
830 	struct scrub_block *sblock_bad;
831 	int ret;
832 	int mirror_index;
833 	int page_num;
834 	int success;
835 	bool full_stripe_locked;
836 	unsigned int nofs_flag;
837 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
838 				      DEFAULT_RATELIMIT_BURST);
839 
840 	BUG_ON(sblock_to_check->page_count < 1);
841 	fs_info = sctx->fs_info;
842 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
843 		/*
844 		 * if we find an error in a super block, we just report it.
845 		 * They will get written with the next transaction commit
846 		 * anyway
847 		 */
848 		spin_lock(&sctx->stat_lock);
849 		++sctx->stat.super_errors;
850 		spin_unlock(&sctx->stat_lock);
851 		return 0;
852 	}
853 	logical = sblock_to_check->pagev[0]->logical;
854 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
855 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
856 	is_metadata = !(sblock_to_check->pagev[0]->flags &
857 			BTRFS_EXTENT_FLAG_DATA);
858 	have_csum = sblock_to_check->pagev[0]->have_csum;
859 	dev = sblock_to_check->pagev[0]->dev;
860 
861 	/*
862 	 * We must use GFP_NOFS because the scrub task might be waiting for a
863 	 * worker task executing this function and in turn a transaction commit
864 	 * might be waiting the scrub task to pause (which needs to wait for all
865 	 * the worker tasks to complete before pausing).
866 	 * We do allocations in the workers through insert_full_stripe_lock()
867 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
868 	 * this function.
869 	 */
870 	nofs_flag = memalloc_nofs_save();
871 	/*
872 	 * For RAID5/6, race can happen for a different device scrub thread.
873 	 * For data corruption, Parity and Data threads will both try
874 	 * to recovery the data.
875 	 * Race can lead to doubly added csum error, or even unrecoverable
876 	 * error.
877 	 */
878 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
879 	if (ret < 0) {
880 		memalloc_nofs_restore(nofs_flag);
881 		spin_lock(&sctx->stat_lock);
882 		if (ret == -ENOMEM)
883 			sctx->stat.malloc_errors++;
884 		sctx->stat.read_errors++;
885 		sctx->stat.uncorrectable_errors++;
886 		spin_unlock(&sctx->stat_lock);
887 		return ret;
888 	}
889 
890 	/*
891 	 * read all mirrors one after the other. This includes to
892 	 * re-read the extent or metadata block that failed (that was
893 	 * the cause that this fixup code is called) another time,
894 	 * page by page this time in order to know which pages
895 	 * caused I/O errors and which ones are good (for all mirrors).
896 	 * It is the goal to handle the situation when more than one
897 	 * mirror contains I/O errors, but the errors do not
898 	 * overlap, i.e. the data can be repaired by selecting the
899 	 * pages from those mirrors without I/O error on the
900 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
901 	 * would be that mirror #1 has an I/O error on the first page,
902 	 * the second page is good, and mirror #2 has an I/O error on
903 	 * the second page, but the first page is good.
904 	 * Then the first page of the first mirror can be repaired by
905 	 * taking the first page of the second mirror, and the
906 	 * second page of the second mirror can be repaired by
907 	 * copying the contents of the 2nd page of the 1st mirror.
908 	 * One more note: if the pages of one mirror contain I/O
909 	 * errors, the checksum cannot be verified. In order to get
910 	 * the best data for repairing, the first attempt is to find
911 	 * a mirror without I/O errors and with a validated checksum.
912 	 * Only if this is not possible, the pages are picked from
913 	 * mirrors with I/O errors without considering the checksum.
914 	 * If the latter is the case, at the end, the checksum of the
915 	 * repaired area is verified in order to correctly maintain
916 	 * the statistics.
917 	 */
918 
919 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
920 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
921 	if (!sblocks_for_recheck) {
922 		spin_lock(&sctx->stat_lock);
923 		sctx->stat.malloc_errors++;
924 		sctx->stat.read_errors++;
925 		sctx->stat.uncorrectable_errors++;
926 		spin_unlock(&sctx->stat_lock);
927 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
928 		goto out;
929 	}
930 
931 	/* setup the context, map the logical blocks and alloc the pages */
932 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
933 	if (ret) {
934 		spin_lock(&sctx->stat_lock);
935 		sctx->stat.read_errors++;
936 		sctx->stat.uncorrectable_errors++;
937 		spin_unlock(&sctx->stat_lock);
938 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
939 		goto out;
940 	}
941 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
942 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
943 
944 	/* build and submit the bios for the failed mirror, check checksums */
945 	scrub_recheck_block(fs_info, sblock_bad, 1);
946 
947 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
948 	    sblock_bad->no_io_error_seen) {
949 		/*
950 		 * the error disappeared after reading page by page, or
951 		 * the area was part of a huge bio and other parts of the
952 		 * bio caused I/O errors, or the block layer merged several
953 		 * read requests into one and the error is caused by a
954 		 * different bio (usually one of the two latter cases is
955 		 * the cause)
956 		 */
957 		spin_lock(&sctx->stat_lock);
958 		sctx->stat.unverified_errors++;
959 		sblock_to_check->data_corrected = 1;
960 		spin_unlock(&sctx->stat_lock);
961 
962 		if (sctx->is_dev_replace)
963 			scrub_write_block_to_dev_replace(sblock_bad);
964 		goto out;
965 	}
966 
967 	if (!sblock_bad->no_io_error_seen) {
968 		spin_lock(&sctx->stat_lock);
969 		sctx->stat.read_errors++;
970 		spin_unlock(&sctx->stat_lock);
971 		if (__ratelimit(&_rs))
972 			scrub_print_warning("i/o error", sblock_to_check);
973 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
974 	} else if (sblock_bad->checksum_error) {
975 		spin_lock(&sctx->stat_lock);
976 		sctx->stat.csum_errors++;
977 		spin_unlock(&sctx->stat_lock);
978 		if (__ratelimit(&_rs))
979 			scrub_print_warning("checksum error", sblock_to_check);
980 		btrfs_dev_stat_inc_and_print(dev,
981 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
982 	} else if (sblock_bad->header_error) {
983 		spin_lock(&sctx->stat_lock);
984 		sctx->stat.verify_errors++;
985 		spin_unlock(&sctx->stat_lock);
986 		if (__ratelimit(&_rs))
987 			scrub_print_warning("checksum/header error",
988 					    sblock_to_check);
989 		if (sblock_bad->generation_error)
990 			btrfs_dev_stat_inc_and_print(dev,
991 				BTRFS_DEV_STAT_GENERATION_ERRS);
992 		else
993 			btrfs_dev_stat_inc_and_print(dev,
994 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
995 	}
996 
997 	if (sctx->readonly) {
998 		ASSERT(!sctx->is_dev_replace);
999 		goto out;
1000 	}
1001 
1002 	/*
1003 	 * now build and submit the bios for the other mirrors, check
1004 	 * checksums.
1005 	 * First try to pick the mirror which is completely without I/O
1006 	 * errors and also does not have a checksum error.
1007 	 * If one is found, and if a checksum is present, the full block
1008 	 * that is known to contain an error is rewritten. Afterwards
1009 	 * the block is known to be corrected.
1010 	 * If a mirror is found which is completely correct, and no
1011 	 * checksum is present, only those pages are rewritten that had
1012 	 * an I/O error in the block to be repaired, since it cannot be
1013 	 * determined, which copy of the other pages is better (and it
1014 	 * could happen otherwise that a correct page would be
1015 	 * overwritten by a bad one).
1016 	 */
1017 	for (mirror_index = 0; ;mirror_index++) {
1018 		struct scrub_block *sblock_other;
1019 
1020 		if (mirror_index == failed_mirror_index)
1021 			continue;
1022 
1023 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1024 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1025 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1026 				break;
1027 			if (!sblocks_for_recheck[mirror_index].page_count)
1028 				break;
1029 
1030 			sblock_other = sblocks_for_recheck + mirror_index;
1031 		} else {
1032 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1033 			int max_allowed = r->bbio->num_stripes -
1034 						r->bbio->num_tgtdevs;
1035 
1036 			if (mirror_index >= max_allowed)
1037 				break;
1038 			if (!sblocks_for_recheck[1].page_count)
1039 				break;
1040 
1041 			ASSERT(failed_mirror_index == 0);
1042 			sblock_other = sblocks_for_recheck + 1;
1043 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1044 		}
1045 
1046 		/* build and submit the bios, check checksums */
1047 		scrub_recheck_block(fs_info, sblock_other, 0);
1048 
1049 		if (!sblock_other->header_error &&
1050 		    !sblock_other->checksum_error &&
1051 		    sblock_other->no_io_error_seen) {
1052 			if (sctx->is_dev_replace) {
1053 				scrub_write_block_to_dev_replace(sblock_other);
1054 				goto corrected_error;
1055 			} else {
1056 				ret = scrub_repair_block_from_good_copy(
1057 						sblock_bad, sblock_other);
1058 				if (!ret)
1059 					goto corrected_error;
1060 			}
1061 		}
1062 	}
1063 
1064 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1065 		goto did_not_correct_error;
1066 
1067 	/*
1068 	 * In case of I/O errors in the area that is supposed to be
1069 	 * repaired, continue by picking good copies of those pages.
1070 	 * Select the good pages from mirrors to rewrite bad pages from
1071 	 * the area to fix. Afterwards verify the checksum of the block
1072 	 * that is supposed to be repaired. This verification step is
1073 	 * only done for the purpose of statistic counting and for the
1074 	 * final scrub report, whether errors remain.
1075 	 * A perfect algorithm could make use of the checksum and try
1076 	 * all possible combinations of pages from the different mirrors
1077 	 * until the checksum verification succeeds. For example, when
1078 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1079 	 * of mirror #2 is readable but the final checksum test fails,
1080 	 * then the 2nd page of mirror #3 could be tried, whether now
1081 	 * the final checksum succeeds. But this would be a rare
1082 	 * exception and is therefore not implemented. At least it is
1083 	 * avoided that the good copy is overwritten.
1084 	 * A more useful improvement would be to pick the sectors
1085 	 * without I/O error based on sector sizes (512 bytes on legacy
1086 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1087 	 * mirror could be repaired by taking 512 byte of a different
1088 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1089 	 * area are unreadable.
1090 	 */
1091 	success = 1;
1092 	for (page_num = 0; page_num < sblock_bad->page_count;
1093 	     page_num++) {
1094 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1095 		struct scrub_block *sblock_other = NULL;
1096 
1097 		/* skip no-io-error page in scrub */
1098 		if (!page_bad->io_error && !sctx->is_dev_replace)
1099 			continue;
1100 
1101 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1102 			/*
1103 			 * In case of dev replace, if raid56 rebuild process
1104 			 * didn't work out correct data, then copy the content
1105 			 * in sblock_bad to make sure target device is identical
1106 			 * to source device, instead of writing garbage data in
1107 			 * sblock_for_recheck array to target device.
1108 			 */
1109 			sblock_other = NULL;
1110 		} else if (page_bad->io_error) {
1111 			/* try to find no-io-error page in mirrors */
1112 			for (mirror_index = 0;
1113 			     mirror_index < BTRFS_MAX_MIRRORS &&
1114 			     sblocks_for_recheck[mirror_index].page_count > 0;
1115 			     mirror_index++) {
1116 				if (!sblocks_for_recheck[mirror_index].
1117 				    pagev[page_num]->io_error) {
1118 					sblock_other = sblocks_for_recheck +
1119 						       mirror_index;
1120 					break;
1121 				}
1122 			}
1123 			if (!sblock_other)
1124 				success = 0;
1125 		}
1126 
1127 		if (sctx->is_dev_replace) {
1128 			/*
1129 			 * did not find a mirror to fetch the page
1130 			 * from. scrub_write_page_to_dev_replace()
1131 			 * handles this case (page->io_error), by
1132 			 * filling the block with zeros before
1133 			 * submitting the write request
1134 			 */
1135 			if (!sblock_other)
1136 				sblock_other = sblock_bad;
1137 
1138 			if (scrub_write_page_to_dev_replace(sblock_other,
1139 							    page_num) != 0) {
1140 				atomic64_inc(
1141 					&fs_info->dev_replace.num_write_errors);
1142 				success = 0;
1143 			}
1144 		} else if (sblock_other) {
1145 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1146 							       sblock_other,
1147 							       page_num, 0);
1148 			if (0 == ret)
1149 				page_bad->io_error = 0;
1150 			else
1151 				success = 0;
1152 		}
1153 	}
1154 
1155 	if (success && !sctx->is_dev_replace) {
1156 		if (is_metadata || have_csum) {
1157 			/*
1158 			 * need to verify the checksum now that all
1159 			 * sectors on disk are repaired (the write
1160 			 * request for data to be repaired is on its way).
1161 			 * Just be lazy and use scrub_recheck_block()
1162 			 * which re-reads the data before the checksum
1163 			 * is verified, but most likely the data comes out
1164 			 * of the page cache.
1165 			 */
1166 			scrub_recheck_block(fs_info, sblock_bad, 1);
1167 			if (!sblock_bad->header_error &&
1168 			    !sblock_bad->checksum_error &&
1169 			    sblock_bad->no_io_error_seen)
1170 				goto corrected_error;
1171 			else
1172 				goto did_not_correct_error;
1173 		} else {
1174 corrected_error:
1175 			spin_lock(&sctx->stat_lock);
1176 			sctx->stat.corrected_errors++;
1177 			sblock_to_check->data_corrected = 1;
1178 			spin_unlock(&sctx->stat_lock);
1179 			btrfs_err_rl_in_rcu(fs_info,
1180 				"fixed up error at logical %llu on dev %s",
1181 				logical, rcu_str_deref(dev->name));
1182 		}
1183 	} else {
1184 did_not_correct_error:
1185 		spin_lock(&sctx->stat_lock);
1186 		sctx->stat.uncorrectable_errors++;
1187 		spin_unlock(&sctx->stat_lock);
1188 		btrfs_err_rl_in_rcu(fs_info,
1189 			"unable to fixup (regular) error at logical %llu on dev %s",
1190 			logical, rcu_str_deref(dev->name));
1191 	}
1192 
1193 out:
1194 	if (sblocks_for_recheck) {
1195 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1196 		     mirror_index++) {
1197 			struct scrub_block *sblock = sblocks_for_recheck +
1198 						     mirror_index;
1199 			struct scrub_recover *recover;
1200 			int page_index;
1201 
1202 			for (page_index = 0; page_index < sblock->page_count;
1203 			     page_index++) {
1204 				sblock->pagev[page_index]->sblock = NULL;
1205 				recover = sblock->pagev[page_index]->recover;
1206 				if (recover) {
1207 					scrub_put_recover(fs_info, recover);
1208 					sblock->pagev[page_index]->recover =
1209 									NULL;
1210 				}
1211 				scrub_page_put(sblock->pagev[page_index]);
1212 			}
1213 		}
1214 		kfree(sblocks_for_recheck);
1215 	}
1216 
1217 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1218 	memalloc_nofs_restore(nofs_flag);
1219 	if (ret < 0)
1220 		return ret;
1221 	return 0;
1222 }
1223 
1224 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1225 {
1226 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1227 		return 2;
1228 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1229 		return 3;
1230 	else
1231 		return (int)bbio->num_stripes;
1232 }
1233 
1234 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1235 						 u64 *raid_map,
1236 						 u64 mapped_length,
1237 						 int nstripes, int mirror,
1238 						 int *stripe_index,
1239 						 u64 *stripe_offset)
1240 {
1241 	int i;
1242 
1243 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1244 		/* RAID5/6 */
1245 		for (i = 0; i < nstripes; i++) {
1246 			if (raid_map[i] == RAID6_Q_STRIPE ||
1247 			    raid_map[i] == RAID5_P_STRIPE)
1248 				continue;
1249 
1250 			if (logical >= raid_map[i] &&
1251 			    logical < raid_map[i] + mapped_length)
1252 				break;
1253 		}
1254 
1255 		*stripe_index = i;
1256 		*stripe_offset = logical - raid_map[i];
1257 	} else {
1258 		/* The other RAID type */
1259 		*stripe_index = mirror;
1260 		*stripe_offset = 0;
1261 	}
1262 }
1263 
1264 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1265 				     struct scrub_block *sblocks_for_recheck)
1266 {
1267 	struct scrub_ctx *sctx = original_sblock->sctx;
1268 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1269 	u64 length = original_sblock->page_count * PAGE_SIZE;
1270 	u64 logical = original_sblock->pagev[0]->logical;
1271 	u64 generation = original_sblock->pagev[0]->generation;
1272 	u64 flags = original_sblock->pagev[0]->flags;
1273 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1274 	struct scrub_recover *recover;
1275 	struct btrfs_bio *bbio;
1276 	u64 sublen;
1277 	u64 mapped_length;
1278 	u64 stripe_offset;
1279 	int stripe_index;
1280 	int page_index = 0;
1281 	int mirror_index;
1282 	int nmirrors;
1283 	int ret;
1284 
1285 	/*
1286 	 * note: the two members refs and outstanding_pages
1287 	 * are not used (and not set) in the blocks that are used for
1288 	 * the recheck procedure
1289 	 */
1290 
1291 	while (length > 0) {
1292 		sublen = min_t(u64, length, PAGE_SIZE);
1293 		mapped_length = sublen;
1294 		bbio = NULL;
1295 
1296 		/*
1297 		 * with a length of PAGE_SIZE, each returned stripe
1298 		 * represents one mirror
1299 		 */
1300 		btrfs_bio_counter_inc_blocked(fs_info);
1301 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1302 				logical, &mapped_length, &bbio);
1303 		if (ret || !bbio || mapped_length < sublen) {
1304 			btrfs_put_bbio(bbio);
1305 			btrfs_bio_counter_dec(fs_info);
1306 			return -EIO;
1307 		}
1308 
1309 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1310 		if (!recover) {
1311 			btrfs_put_bbio(bbio);
1312 			btrfs_bio_counter_dec(fs_info);
1313 			return -ENOMEM;
1314 		}
1315 
1316 		refcount_set(&recover->refs, 1);
1317 		recover->bbio = bbio;
1318 		recover->map_length = mapped_length;
1319 
1320 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1321 
1322 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1323 
1324 		for (mirror_index = 0; mirror_index < nmirrors;
1325 		     mirror_index++) {
1326 			struct scrub_block *sblock;
1327 			struct scrub_page *page;
1328 
1329 			sblock = sblocks_for_recheck + mirror_index;
1330 			sblock->sctx = sctx;
1331 
1332 			page = kzalloc(sizeof(*page), GFP_NOFS);
1333 			if (!page) {
1334 leave_nomem:
1335 				spin_lock(&sctx->stat_lock);
1336 				sctx->stat.malloc_errors++;
1337 				spin_unlock(&sctx->stat_lock);
1338 				scrub_put_recover(fs_info, recover);
1339 				return -ENOMEM;
1340 			}
1341 			scrub_page_get(page);
1342 			sblock->pagev[page_index] = page;
1343 			page->sblock = sblock;
1344 			page->flags = flags;
1345 			page->generation = generation;
1346 			page->logical = logical;
1347 			page->have_csum = have_csum;
1348 			if (have_csum)
1349 				memcpy(page->csum,
1350 				       original_sblock->pagev[0]->csum,
1351 				       sctx->csum_size);
1352 
1353 			scrub_stripe_index_and_offset(logical,
1354 						      bbio->map_type,
1355 						      bbio->raid_map,
1356 						      mapped_length,
1357 						      bbio->num_stripes -
1358 						      bbio->num_tgtdevs,
1359 						      mirror_index,
1360 						      &stripe_index,
1361 						      &stripe_offset);
1362 			page->physical = bbio->stripes[stripe_index].physical +
1363 					 stripe_offset;
1364 			page->dev = bbio->stripes[stripe_index].dev;
1365 
1366 			BUG_ON(page_index >= original_sblock->page_count);
1367 			page->physical_for_dev_replace =
1368 				original_sblock->pagev[page_index]->
1369 				physical_for_dev_replace;
1370 			/* for missing devices, dev->bdev is NULL */
1371 			page->mirror_num = mirror_index + 1;
1372 			sblock->page_count++;
1373 			page->page = alloc_page(GFP_NOFS);
1374 			if (!page->page)
1375 				goto leave_nomem;
1376 
1377 			scrub_get_recover(recover);
1378 			page->recover = recover;
1379 		}
1380 		scrub_put_recover(fs_info, recover);
1381 		length -= sublen;
1382 		logical += sublen;
1383 		page_index++;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static void scrub_bio_wait_endio(struct bio *bio)
1390 {
1391 	complete(bio->bi_private);
1392 }
1393 
1394 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1395 					struct bio *bio,
1396 					struct scrub_page *page)
1397 {
1398 	DECLARE_COMPLETION_ONSTACK(done);
1399 	int ret;
1400 	int mirror_num;
1401 
1402 	bio->bi_iter.bi_sector = page->logical >> 9;
1403 	bio->bi_private = &done;
1404 	bio->bi_end_io = scrub_bio_wait_endio;
1405 
1406 	mirror_num = page->sblock->pagev[0]->mirror_num;
1407 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1408 				    page->recover->map_length,
1409 				    mirror_num, 0);
1410 	if (ret)
1411 		return ret;
1412 
1413 	wait_for_completion_io(&done);
1414 	return blk_status_to_errno(bio->bi_status);
1415 }
1416 
1417 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1418 					  struct scrub_block *sblock)
1419 {
1420 	struct scrub_page *first_page = sblock->pagev[0];
1421 	struct bio *bio;
1422 	int page_num;
1423 
1424 	/* All pages in sblock belong to the same stripe on the same device. */
1425 	ASSERT(first_page->dev);
1426 	if (!first_page->dev->bdev)
1427 		goto out;
1428 
1429 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1430 	bio_set_dev(bio, first_page->dev->bdev);
1431 
1432 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1433 		struct scrub_page *page = sblock->pagev[page_num];
1434 
1435 		WARN_ON(!page->page);
1436 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1437 	}
1438 
1439 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1440 		bio_put(bio);
1441 		goto out;
1442 	}
1443 
1444 	bio_put(bio);
1445 
1446 	scrub_recheck_block_checksum(sblock);
1447 
1448 	return;
1449 out:
1450 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1451 		sblock->pagev[page_num]->io_error = 1;
1452 
1453 	sblock->no_io_error_seen = 0;
1454 }
1455 
1456 /*
1457  * this function will check the on disk data for checksum errors, header
1458  * errors and read I/O errors. If any I/O errors happen, the exact pages
1459  * which are errored are marked as being bad. The goal is to enable scrub
1460  * to take those pages that are not errored from all the mirrors so that
1461  * the pages that are errored in the just handled mirror can be repaired.
1462  */
1463 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1464 				struct scrub_block *sblock,
1465 				int retry_failed_mirror)
1466 {
1467 	int page_num;
1468 
1469 	sblock->no_io_error_seen = 1;
1470 
1471 	/* short cut for raid56 */
1472 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1473 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1474 
1475 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1476 		struct bio *bio;
1477 		struct scrub_page *page = sblock->pagev[page_num];
1478 
1479 		if (page->dev->bdev == NULL) {
1480 			page->io_error = 1;
1481 			sblock->no_io_error_seen = 0;
1482 			continue;
1483 		}
1484 
1485 		WARN_ON(!page->page);
1486 		bio = btrfs_io_bio_alloc(1);
1487 		bio_set_dev(bio, page->dev->bdev);
1488 
1489 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1490 		bio->bi_iter.bi_sector = page->physical >> 9;
1491 		bio->bi_opf = REQ_OP_READ;
1492 
1493 		if (btrfsic_submit_bio_wait(bio)) {
1494 			page->io_error = 1;
1495 			sblock->no_io_error_seen = 0;
1496 		}
1497 
1498 		bio_put(bio);
1499 	}
1500 
1501 	if (sblock->no_io_error_seen)
1502 		scrub_recheck_block_checksum(sblock);
1503 }
1504 
1505 static inline int scrub_check_fsid(u8 fsid[],
1506 				   struct scrub_page *spage)
1507 {
1508 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1509 	int ret;
1510 
1511 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1512 	return !ret;
1513 }
1514 
1515 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1516 {
1517 	sblock->header_error = 0;
1518 	sblock->checksum_error = 0;
1519 	sblock->generation_error = 0;
1520 
1521 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1522 		scrub_checksum_data(sblock);
1523 	else
1524 		scrub_checksum_tree_block(sblock);
1525 }
1526 
1527 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1528 					     struct scrub_block *sblock_good)
1529 {
1530 	int page_num;
1531 	int ret = 0;
1532 
1533 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1534 		int ret_sub;
1535 
1536 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1537 							   sblock_good,
1538 							   page_num, 1);
1539 		if (ret_sub)
1540 			ret = ret_sub;
1541 	}
1542 
1543 	return ret;
1544 }
1545 
1546 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1547 					    struct scrub_block *sblock_good,
1548 					    int page_num, int force_write)
1549 {
1550 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1551 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1552 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1553 
1554 	BUG_ON(page_bad->page == NULL);
1555 	BUG_ON(page_good->page == NULL);
1556 	if (force_write || sblock_bad->header_error ||
1557 	    sblock_bad->checksum_error || page_bad->io_error) {
1558 		struct bio *bio;
1559 		int ret;
1560 
1561 		if (!page_bad->dev->bdev) {
1562 			btrfs_warn_rl(fs_info,
1563 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1564 			return -EIO;
1565 		}
1566 
1567 		bio = btrfs_io_bio_alloc(1);
1568 		bio_set_dev(bio, page_bad->dev->bdev);
1569 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1570 		bio->bi_opf = REQ_OP_WRITE;
1571 
1572 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1573 		if (PAGE_SIZE != ret) {
1574 			bio_put(bio);
1575 			return -EIO;
1576 		}
1577 
1578 		if (btrfsic_submit_bio_wait(bio)) {
1579 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1580 				BTRFS_DEV_STAT_WRITE_ERRS);
1581 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1582 			bio_put(bio);
1583 			return -EIO;
1584 		}
1585 		bio_put(bio);
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1592 {
1593 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1594 	int page_num;
1595 
1596 	/*
1597 	 * This block is used for the check of the parity on the source device,
1598 	 * so the data needn't be written into the destination device.
1599 	 */
1600 	if (sblock->sparity)
1601 		return;
1602 
1603 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1604 		int ret;
1605 
1606 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1607 		if (ret)
1608 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1609 	}
1610 }
1611 
1612 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1613 					   int page_num)
1614 {
1615 	struct scrub_page *spage = sblock->pagev[page_num];
1616 
1617 	BUG_ON(spage->page == NULL);
1618 	if (spage->io_error) {
1619 		void *mapped_buffer = kmap_atomic(spage->page);
1620 
1621 		clear_page(mapped_buffer);
1622 		flush_dcache_page(spage->page);
1623 		kunmap_atomic(mapped_buffer);
1624 	}
1625 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1626 }
1627 
1628 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1629 				    struct scrub_page *spage)
1630 {
1631 	struct scrub_bio *sbio;
1632 	int ret;
1633 
1634 	mutex_lock(&sctx->wr_lock);
1635 again:
1636 	if (!sctx->wr_curr_bio) {
1637 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1638 					      GFP_KERNEL);
1639 		if (!sctx->wr_curr_bio) {
1640 			mutex_unlock(&sctx->wr_lock);
1641 			return -ENOMEM;
1642 		}
1643 		sctx->wr_curr_bio->sctx = sctx;
1644 		sctx->wr_curr_bio->page_count = 0;
1645 	}
1646 	sbio = sctx->wr_curr_bio;
1647 	if (sbio->page_count == 0) {
1648 		struct bio *bio;
1649 
1650 		sbio->physical = spage->physical_for_dev_replace;
1651 		sbio->logical = spage->logical;
1652 		sbio->dev = sctx->wr_tgtdev;
1653 		bio = sbio->bio;
1654 		if (!bio) {
1655 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1656 			sbio->bio = bio;
1657 		}
1658 
1659 		bio->bi_private = sbio;
1660 		bio->bi_end_io = scrub_wr_bio_end_io;
1661 		bio_set_dev(bio, sbio->dev->bdev);
1662 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1663 		bio->bi_opf = REQ_OP_WRITE;
1664 		sbio->status = 0;
1665 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1666 		   spage->physical_for_dev_replace ||
1667 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1668 		   spage->logical) {
1669 		scrub_wr_submit(sctx);
1670 		goto again;
1671 	}
1672 
1673 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1674 	if (ret != PAGE_SIZE) {
1675 		if (sbio->page_count < 1) {
1676 			bio_put(sbio->bio);
1677 			sbio->bio = NULL;
1678 			mutex_unlock(&sctx->wr_lock);
1679 			return -EIO;
1680 		}
1681 		scrub_wr_submit(sctx);
1682 		goto again;
1683 	}
1684 
1685 	sbio->pagev[sbio->page_count] = spage;
1686 	scrub_page_get(spage);
1687 	sbio->page_count++;
1688 	if (sbio->page_count == sctx->pages_per_wr_bio)
1689 		scrub_wr_submit(sctx);
1690 	mutex_unlock(&sctx->wr_lock);
1691 
1692 	return 0;
1693 }
1694 
1695 static void scrub_wr_submit(struct scrub_ctx *sctx)
1696 {
1697 	struct scrub_bio *sbio;
1698 
1699 	if (!sctx->wr_curr_bio)
1700 		return;
1701 
1702 	sbio = sctx->wr_curr_bio;
1703 	sctx->wr_curr_bio = NULL;
1704 	WARN_ON(!sbio->bio->bi_disk);
1705 	scrub_pending_bio_inc(sctx);
1706 	/* process all writes in a single worker thread. Then the block layer
1707 	 * orders the requests before sending them to the driver which
1708 	 * doubled the write performance on spinning disks when measured
1709 	 * with Linux 3.5 */
1710 	btrfsic_submit_bio(sbio->bio);
1711 }
1712 
1713 static void scrub_wr_bio_end_io(struct bio *bio)
1714 {
1715 	struct scrub_bio *sbio = bio->bi_private;
1716 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1717 
1718 	sbio->status = bio->bi_status;
1719 	sbio->bio = bio;
1720 
1721 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1722 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1723 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1724 }
1725 
1726 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1727 {
1728 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1729 	struct scrub_ctx *sctx = sbio->sctx;
1730 	int i;
1731 
1732 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1733 	if (sbio->status) {
1734 		struct btrfs_dev_replace *dev_replace =
1735 			&sbio->sctx->fs_info->dev_replace;
1736 
1737 		for (i = 0; i < sbio->page_count; i++) {
1738 			struct scrub_page *spage = sbio->pagev[i];
1739 
1740 			spage->io_error = 1;
1741 			atomic64_inc(&dev_replace->num_write_errors);
1742 		}
1743 	}
1744 
1745 	for (i = 0; i < sbio->page_count; i++)
1746 		scrub_page_put(sbio->pagev[i]);
1747 
1748 	bio_put(sbio->bio);
1749 	kfree(sbio);
1750 	scrub_pending_bio_dec(sctx);
1751 }
1752 
1753 static int scrub_checksum(struct scrub_block *sblock)
1754 {
1755 	u64 flags;
1756 	int ret;
1757 
1758 	/*
1759 	 * No need to initialize these stats currently,
1760 	 * because this function only use return value
1761 	 * instead of these stats value.
1762 	 *
1763 	 * Todo:
1764 	 * always use stats
1765 	 */
1766 	sblock->header_error = 0;
1767 	sblock->generation_error = 0;
1768 	sblock->checksum_error = 0;
1769 
1770 	WARN_ON(sblock->page_count < 1);
1771 	flags = sblock->pagev[0]->flags;
1772 	ret = 0;
1773 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1774 		ret = scrub_checksum_data(sblock);
1775 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1776 		ret = scrub_checksum_tree_block(sblock);
1777 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1778 		(void)scrub_checksum_super(sblock);
1779 	else
1780 		WARN_ON(1);
1781 	if (ret)
1782 		scrub_handle_errored_block(sblock);
1783 
1784 	return ret;
1785 }
1786 
1787 static int scrub_checksum_data(struct scrub_block *sblock)
1788 {
1789 	struct scrub_ctx *sctx = sblock->sctx;
1790 	u8 csum[BTRFS_CSUM_SIZE];
1791 	u8 *on_disk_csum;
1792 	struct page *page;
1793 	void *buffer;
1794 	u32 crc = ~(u32)0;
1795 	u64 len;
1796 	int index;
1797 
1798 	BUG_ON(sblock->page_count < 1);
1799 	if (!sblock->pagev[0]->have_csum)
1800 		return 0;
1801 
1802 	on_disk_csum = sblock->pagev[0]->csum;
1803 	page = sblock->pagev[0]->page;
1804 	buffer = kmap_atomic(page);
1805 
1806 	len = sctx->fs_info->sectorsize;
1807 	index = 0;
1808 	for (;;) {
1809 		u64 l = min_t(u64, len, PAGE_SIZE);
1810 
1811 		crc = btrfs_csum_data(buffer, crc, l);
1812 		kunmap_atomic(buffer);
1813 		len -= l;
1814 		if (len == 0)
1815 			break;
1816 		index++;
1817 		BUG_ON(index >= sblock->page_count);
1818 		BUG_ON(!sblock->pagev[index]->page);
1819 		page = sblock->pagev[index]->page;
1820 		buffer = kmap_atomic(page);
1821 	}
1822 
1823 	btrfs_csum_final(crc, csum);
1824 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1825 		sblock->checksum_error = 1;
1826 
1827 	return sblock->checksum_error;
1828 }
1829 
1830 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1831 {
1832 	struct scrub_ctx *sctx = sblock->sctx;
1833 	struct btrfs_header *h;
1834 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1835 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1836 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1837 	struct page *page;
1838 	void *mapped_buffer;
1839 	u64 mapped_size;
1840 	void *p;
1841 	u32 crc = ~(u32)0;
1842 	u64 len;
1843 	int index;
1844 
1845 	BUG_ON(sblock->page_count < 1);
1846 	page = sblock->pagev[0]->page;
1847 	mapped_buffer = kmap_atomic(page);
1848 	h = (struct btrfs_header *)mapped_buffer;
1849 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1850 
1851 	/*
1852 	 * we don't use the getter functions here, as we
1853 	 * a) don't have an extent buffer and
1854 	 * b) the page is already kmapped
1855 	 */
1856 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1857 		sblock->header_error = 1;
1858 
1859 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1860 		sblock->header_error = 1;
1861 		sblock->generation_error = 1;
1862 	}
1863 
1864 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1865 		sblock->header_error = 1;
1866 
1867 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1868 		   BTRFS_UUID_SIZE))
1869 		sblock->header_error = 1;
1870 
1871 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1872 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1873 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1874 	index = 0;
1875 	for (;;) {
1876 		u64 l = min_t(u64, len, mapped_size);
1877 
1878 		crc = btrfs_csum_data(p, crc, l);
1879 		kunmap_atomic(mapped_buffer);
1880 		len -= l;
1881 		if (len == 0)
1882 			break;
1883 		index++;
1884 		BUG_ON(index >= sblock->page_count);
1885 		BUG_ON(!sblock->pagev[index]->page);
1886 		page = sblock->pagev[index]->page;
1887 		mapped_buffer = kmap_atomic(page);
1888 		mapped_size = PAGE_SIZE;
1889 		p = mapped_buffer;
1890 	}
1891 
1892 	btrfs_csum_final(crc, calculated_csum);
1893 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1894 		sblock->checksum_error = 1;
1895 
1896 	return sblock->header_error || sblock->checksum_error;
1897 }
1898 
1899 static int scrub_checksum_super(struct scrub_block *sblock)
1900 {
1901 	struct btrfs_super_block *s;
1902 	struct scrub_ctx *sctx = sblock->sctx;
1903 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1904 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1905 	struct page *page;
1906 	void *mapped_buffer;
1907 	u64 mapped_size;
1908 	void *p;
1909 	u32 crc = ~(u32)0;
1910 	int fail_gen = 0;
1911 	int fail_cor = 0;
1912 	u64 len;
1913 	int index;
1914 
1915 	BUG_ON(sblock->page_count < 1);
1916 	page = sblock->pagev[0]->page;
1917 	mapped_buffer = kmap_atomic(page);
1918 	s = (struct btrfs_super_block *)mapped_buffer;
1919 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1920 
1921 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1922 		++fail_cor;
1923 
1924 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1925 		++fail_gen;
1926 
1927 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1928 		++fail_cor;
1929 
1930 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1931 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1932 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1933 	index = 0;
1934 	for (;;) {
1935 		u64 l = min_t(u64, len, mapped_size);
1936 
1937 		crc = btrfs_csum_data(p, crc, l);
1938 		kunmap_atomic(mapped_buffer);
1939 		len -= l;
1940 		if (len == 0)
1941 			break;
1942 		index++;
1943 		BUG_ON(index >= sblock->page_count);
1944 		BUG_ON(!sblock->pagev[index]->page);
1945 		page = sblock->pagev[index]->page;
1946 		mapped_buffer = kmap_atomic(page);
1947 		mapped_size = PAGE_SIZE;
1948 		p = mapped_buffer;
1949 	}
1950 
1951 	btrfs_csum_final(crc, calculated_csum);
1952 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1953 		++fail_cor;
1954 
1955 	if (fail_cor + fail_gen) {
1956 		/*
1957 		 * if we find an error in a super block, we just report it.
1958 		 * They will get written with the next transaction commit
1959 		 * anyway
1960 		 */
1961 		spin_lock(&sctx->stat_lock);
1962 		++sctx->stat.super_errors;
1963 		spin_unlock(&sctx->stat_lock);
1964 		if (fail_cor)
1965 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1966 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1967 		else
1968 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1969 				BTRFS_DEV_STAT_GENERATION_ERRS);
1970 	}
1971 
1972 	return fail_cor + fail_gen;
1973 }
1974 
1975 static void scrub_block_get(struct scrub_block *sblock)
1976 {
1977 	refcount_inc(&sblock->refs);
1978 }
1979 
1980 static void scrub_block_put(struct scrub_block *sblock)
1981 {
1982 	if (refcount_dec_and_test(&sblock->refs)) {
1983 		int i;
1984 
1985 		if (sblock->sparity)
1986 			scrub_parity_put(sblock->sparity);
1987 
1988 		for (i = 0; i < sblock->page_count; i++)
1989 			scrub_page_put(sblock->pagev[i]);
1990 		kfree(sblock);
1991 	}
1992 }
1993 
1994 static void scrub_page_get(struct scrub_page *spage)
1995 {
1996 	atomic_inc(&spage->refs);
1997 }
1998 
1999 static void scrub_page_put(struct scrub_page *spage)
2000 {
2001 	if (atomic_dec_and_test(&spage->refs)) {
2002 		if (spage->page)
2003 			__free_page(spage->page);
2004 		kfree(spage);
2005 	}
2006 }
2007 
2008 static void scrub_submit(struct scrub_ctx *sctx)
2009 {
2010 	struct scrub_bio *sbio;
2011 
2012 	if (sctx->curr == -1)
2013 		return;
2014 
2015 	sbio = sctx->bios[sctx->curr];
2016 	sctx->curr = -1;
2017 	scrub_pending_bio_inc(sctx);
2018 	btrfsic_submit_bio(sbio->bio);
2019 }
2020 
2021 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2022 				    struct scrub_page *spage)
2023 {
2024 	struct scrub_block *sblock = spage->sblock;
2025 	struct scrub_bio *sbio;
2026 	int ret;
2027 
2028 again:
2029 	/*
2030 	 * grab a fresh bio or wait for one to become available
2031 	 */
2032 	while (sctx->curr == -1) {
2033 		spin_lock(&sctx->list_lock);
2034 		sctx->curr = sctx->first_free;
2035 		if (sctx->curr != -1) {
2036 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2037 			sctx->bios[sctx->curr]->next_free = -1;
2038 			sctx->bios[sctx->curr]->page_count = 0;
2039 			spin_unlock(&sctx->list_lock);
2040 		} else {
2041 			spin_unlock(&sctx->list_lock);
2042 			wait_event(sctx->list_wait, sctx->first_free != -1);
2043 		}
2044 	}
2045 	sbio = sctx->bios[sctx->curr];
2046 	if (sbio->page_count == 0) {
2047 		struct bio *bio;
2048 
2049 		sbio->physical = spage->physical;
2050 		sbio->logical = spage->logical;
2051 		sbio->dev = spage->dev;
2052 		bio = sbio->bio;
2053 		if (!bio) {
2054 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2055 			sbio->bio = bio;
2056 		}
2057 
2058 		bio->bi_private = sbio;
2059 		bio->bi_end_io = scrub_bio_end_io;
2060 		bio_set_dev(bio, sbio->dev->bdev);
2061 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2062 		bio->bi_opf = REQ_OP_READ;
2063 		sbio->status = 0;
2064 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2065 		   spage->physical ||
2066 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2067 		   spage->logical ||
2068 		   sbio->dev != spage->dev) {
2069 		scrub_submit(sctx);
2070 		goto again;
2071 	}
2072 
2073 	sbio->pagev[sbio->page_count] = spage;
2074 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2075 	if (ret != PAGE_SIZE) {
2076 		if (sbio->page_count < 1) {
2077 			bio_put(sbio->bio);
2078 			sbio->bio = NULL;
2079 			return -EIO;
2080 		}
2081 		scrub_submit(sctx);
2082 		goto again;
2083 	}
2084 
2085 	scrub_block_get(sblock); /* one for the page added to the bio */
2086 	atomic_inc(&sblock->outstanding_pages);
2087 	sbio->page_count++;
2088 	if (sbio->page_count == sctx->pages_per_rd_bio)
2089 		scrub_submit(sctx);
2090 
2091 	return 0;
2092 }
2093 
2094 static void scrub_missing_raid56_end_io(struct bio *bio)
2095 {
2096 	struct scrub_block *sblock = bio->bi_private;
2097 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2098 
2099 	if (bio->bi_status)
2100 		sblock->no_io_error_seen = 0;
2101 
2102 	bio_put(bio);
2103 
2104 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2105 }
2106 
2107 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2108 {
2109 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2110 	struct scrub_ctx *sctx = sblock->sctx;
2111 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2112 	u64 logical;
2113 	struct btrfs_device *dev;
2114 
2115 	logical = sblock->pagev[0]->logical;
2116 	dev = sblock->pagev[0]->dev;
2117 
2118 	if (sblock->no_io_error_seen)
2119 		scrub_recheck_block_checksum(sblock);
2120 
2121 	if (!sblock->no_io_error_seen) {
2122 		spin_lock(&sctx->stat_lock);
2123 		sctx->stat.read_errors++;
2124 		spin_unlock(&sctx->stat_lock);
2125 		btrfs_err_rl_in_rcu(fs_info,
2126 			"IO error rebuilding logical %llu for dev %s",
2127 			logical, rcu_str_deref(dev->name));
2128 	} else if (sblock->header_error || sblock->checksum_error) {
2129 		spin_lock(&sctx->stat_lock);
2130 		sctx->stat.uncorrectable_errors++;
2131 		spin_unlock(&sctx->stat_lock);
2132 		btrfs_err_rl_in_rcu(fs_info,
2133 			"failed to rebuild valid logical %llu for dev %s",
2134 			logical, rcu_str_deref(dev->name));
2135 	} else {
2136 		scrub_write_block_to_dev_replace(sblock);
2137 	}
2138 
2139 	scrub_block_put(sblock);
2140 
2141 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2142 		mutex_lock(&sctx->wr_lock);
2143 		scrub_wr_submit(sctx);
2144 		mutex_unlock(&sctx->wr_lock);
2145 	}
2146 
2147 	scrub_pending_bio_dec(sctx);
2148 }
2149 
2150 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2151 {
2152 	struct scrub_ctx *sctx = sblock->sctx;
2153 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2154 	u64 length = sblock->page_count * PAGE_SIZE;
2155 	u64 logical = sblock->pagev[0]->logical;
2156 	struct btrfs_bio *bbio = NULL;
2157 	struct bio *bio;
2158 	struct btrfs_raid_bio *rbio;
2159 	int ret;
2160 	int i;
2161 
2162 	btrfs_bio_counter_inc_blocked(fs_info);
2163 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2164 			&length, &bbio);
2165 	if (ret || !bbio || !bbio->raid_map)
2166 		goto bbio_out;
2167 
2168 	if (WARN_ON(!sctx->is_dev_replace ||
2169 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2170 		/*
2171 		 * We shouldn't be scrubbing a missing device. Even for dev
2172 		 * replace, we should only get here for RAID 5/6. We either
2173 		 * managed to mount something with no mirrors remaining or
2174 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2175 		 */
2176 		goto bbio_out;
2177 	}
2178 
2179 	bio = btrfs_io_bio_alloc(0);
2180 	bio->bi_iter.bi_sector = logical >> 9;
2181 	bio->bi_private = sblock;
2182 	bio->bi_end_io = scrub_missing_raid56_end_io;
2183 
2184 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2185 	if (!rbio)
2186 		goto rbio_out;
2187 
2188 	for (i = 0; i < sblock->page_count; i++) {
2189 		struct scrub_page *spage = sblock->pagev[i];
2190 
2191 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2192 	}
2193 
2194 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2195 			scrub_missing_raid56_worker, NULL, NULL);
2196 	scrub_block_get(sblock);
2197 	scrub_pending_bio_inc(sctx);
2198 	raid56_submit_missing_rbio(rbio);
2199 	return;
2200 
2201 rbio_out:
2202 	bio_put(bio);
2203 bbio_out:
2204 	btrfs_bio_counter_dec(fs_info);
2205 	btrfs_put_bbio(bbio);
2206 	spin_lock(&sctx->stat_lock);
2207 	sctx->stat.malloc_errors++;
2208 	spin_unlock(&sctx->stat_lock);
2209 }
2210 
2211 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2212 		       u64 physical, struct btrfs_device *dev, u64 flags,
2213 		       u64 gen, int mirror_num, u8 *csum, int force,
2214 		       u64 physical_for_dev_replace)
2215 {
2216 	struct scrub_block *sblock;
2217 	int index;
2218 
2219 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2220 	if (!sblock) {
2221 		spin_lock(&sctx->stat_lock);
2222 		sctx->stat.malloc_errors++;
2223 		spin_unlock(&sctx->stat_lock);
2224 		return -ENOMEM;
2225 	}
2226 
2227 	/* one ref inside this function, plus one for each page added to
2228 	 * a bio later on */
2229 	refcount_set(&sblock->refs, 1);
2230 	sblock->sctx = sctx;
2231 	sblock->no_io_error_seen = 1;
2232 
2233 	for (index = 0; len > 0; index++) {
2234 		struct scrub_page *spage;
2235 		u64 l = min_t(u64, len, PAGE_SIZE);
2236 
2237 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2238 		if (!spage) {
2239 leave_nomem:
2240 			spin_lock(&sctx->stat_lock);
2241 			sctx->stat.malloc_errors++;
2242 			spin_unlock(&sctx->stat_lock);
2243 			scrub_block_put(sblock);
2244 			return -ENOMEM;
2245 		}
2246 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2247 		scrub_page_get(spage);
2248 		sblock->pagev[index] = spage;
2249 		spage->sblock = sblock;
2250 		spage->dev = dev;
2251 		spage->flags = flags;
2252 		spage->generation = gen;
2253 		spage->logical = logical;
2254 		spage->physical = physical;
2255 		spage->physical_for_dev_replace = physical_for_dev_replace;
2256 		spage->mirror_num = mirror_num;
2257 		if (csum) {
2258 			spage->have_csum = 1;
2259 			memcpy(spage->csum, csum, sctx->csum_size);
2260 		} else {
2261 			spage->have_csum = 0;
2262 		}
2263 		sblock->page_count++;
2264 		spage->page = alloc_page(GFP_KERNEL);
2265 		if (!spage->page)
2266 			goto leave_nomem;
2267 		len -= l;
2268 		logical += l;
2269 		physical += l;
2270 		physical_for_dev_replace += l;
2271 	}
2272 
2273 	WARN_ON(sblock->page_count == 0);
2274 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2275 		/*
2276 		 * This case should only be hit for RAID 5/6 device replace. See
2277 		 * the comment in scrub_missing_raid56_pages() for details.
2278 		 */
2279 		scrub_missing_raid56_pages(sblock);
2280 	} else {
2281 		for (index = 0; index < sblock->page_count; index++) {
2282 			struct scrub_page *spage = sblock->pagev[index];
2283 			int ret;
2284 
2285 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2286 			if (ret) {
2287 				scrub_block_put(sblock);
2288 				return ret;
2289 			}
2290 		}
2291 
2292 		if (force)
2293 			scrub_submit(sctx);
2294 	}
2295 
2296 	/* last one frees, either here or in bio completion for last page */
2297 	scrub_block_put(sblock);
2298 	return 0;
2299 }
2300 
2301 static void scrub_bio_end_io(struct bio *bio)
2302 {
2303 	struct scrub_bio *sbio = bio->bi_private;
2304 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2305 
2306 	sbio->status = bio->bi_status;
2307 	sbio->bio = bio;
2308 
2309 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2310 }
2311 
2312 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2313 {
2314 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2315 	struct scrub_ctx *sctx = sbio->sctx;
2316 	int i;
2317 
2318 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2319 	if (sbio->status) {
2320 		for (i = 0; i < sbio->page_count; i++) {
2321 			struct scrub_page *spage = sbio->pagev[i];
2322 
2323 			spage->io_error = 1;
2324 			spage->sblock->no_io_error_seen = 0;
2325 		}
2326 	}
2327 
2328 	/* now complete the scrub_block items that have all pages completed */
2329 	for (i = 0; i < sbio->page_count; i++) {
2330 		struct scrub_page *spage = sbio->pagev[i];
2331 		struct scrub_block *sblock = spage->sblock;
2332 
2333 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2334 			scrub_block_complete(sblock);
2335 		scrub_block_put(sblock);
2336 	}
2337 
2338 	bio_put(sbio->bio);
2339 	sbio->bio = NULL;
2340 	spin_lock(&sctx->list_lock);
2341 	sbio->next_free = sctx->first_free;
2342 	sctx->first_free = sbio->index;
2343 	spin_unlock(&sctx->list_lock);
2344 
2345 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346 		mutex_lock(&sctx->wr_lock);
2347 		scrub_wr_submit(sctx);
2348 		mutex_unlock(&sctx->wr_lock);
2349 	}
2350 
2351 	scrub_pending_bio_dec(sctx);
2352 }
2353 
2354 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2355 				       unsigned long *bitmap,
2356 				       u64 start, u64 len)
2357 {
2358 	u64 offset;
2359 	u64 nsectors64;
2360 	u32 nsectors;
2361 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2362 
2363 	if (len >= sparity->stripe_len) {
2364 		bitmap_set(bitmap, 0, sparity->nsectors);
2365 		return;
2366 	}
2367 
2368 	start -= sparity->logic_start;
2369 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2370 	offset = div_u64(offset, sectorsize);
2371 	nsectors64 = div_u64(len, sectorsize);
2372 
2373 	ASSERT(nsectors64 < UINT_MAX);
2374 	nsectors = (u32)nsectors64;
2375 
2376 	if (offset + nsectors <= sparity->nsectors) {
2377 		bitmap_set(bitmap, offset, nsectors);
2378 		return;
2379 	}
2380 
2381 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2382 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2383 }
2384 
2385 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2386 						   u64 start, u64 len)
2387 {
2388 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2389 }
2390 
2391 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2392 						  u64 start, u64 len)
2393 {
2394 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2395 }
2396 
2397 static void scrub_block_complete(struct scrub_block *sblock)
2398 {
2399 	int corrupted = 0;
2400 
2401 	if (!sblock->no_io_error_seen) {
2402 		corrupted = 1;
2403 		scrub_handle_errored_block(sblock);
2404 	} else {
2405 		/*
2406 		 * if has checksum error, write via repair mechanism in
2407 		 * dev replace case, otherwise write here in dev replace
2408 		 * case.
2409 		 */
2410 		corrupted = scrub_checksum(sblock);
2411 		if (!corrupted && sblock->sctx->is_dev_replace)
2412 			scrub_write_block_to_dev_replace(sblock);
2413 	}
2414 
2415 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2416 		u64 start = sblock->pagev[0]->logical;
2417 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2418 			  PAGE_SIZE;
2419 
2420 		scrub_parity_mark_sectors_error(sblock->sparity,
2421 						start, end - start);
2422 	}
2423 }
2424 
2425 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2426 {
2427 	struct btrfs_ordered_sum *sum = NULL;
2428 	unsigned long index;
2429 	unsigned long num_sectors;
2430 
2431 	while (!list_empty(&sctx->csum_list)) {
2432 		sum = list_first_entry(&sctx->csum_list,
2433 				       struct btrfs_ordered_sum, list);
2434 		if (sum->bytenr > logical)
2435 			return 0;
2436 		if (sum->bytenr + sum->len > logical)
2437 			break;
2438 
2439 		++sctx->stat.csum_discards;
2440 		list_del(&sum->list);
2441 		kfree(sum);
2442 		sum = NULL;
2443 	}
2444 	if (!sum)
2445 		return 0;
2446 
2447 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2448 	ASSERT(index < UINT_MAX);
2449 
2450 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2451 	memcpy(csum, sum->sums + index, sctx->csum_size);
2452 	if (index == num_sectors - 1) {
2453 		list_del(&sum->list);
2454 		kfree(sum);
2455 	}
2456 	return 1;
2457 }
2458 
2459 /* scrub extent tries to collect up to 64 kB for each bio */
2460 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2461 			u64 logical, u64 len,
2462 			u64 physical, struct btrfs_device *dev, u64 flags,
2463 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2464 {
2465 	int ret;
2466 	u8 csum[BTRFS_CSUM_SIZE];
2467 	u32 blocksize;
2468 
2469 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2470 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2471 			blocksize = map->stripe_len;
2472 		else
2473 			blocksize = sctx->fs_info->sectorsize;
2474 		spin_lock(&sctx->stat_lock);
2475 		sctx->stat.data_extents_scrubbed++;
2476 		sctx->stat.data_bytes_scrubbed += len;
2477 		spin_unlock(&sctx->stat_lock);
2478 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2479 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2480 			blocksize = map->stripe_len;
2481 		else
2482 			blocksize = sctx->fs_info->nodesize;
2483 		spin_lock(&sctx->stat_lock);
2484 		sctx->stat.tree_extents_scrubbed++;
2485 		sctx->stat.tree_bytes_scrubbed += len;
2486 		spin_unlock(&sctx->stat_lock);
2487 	} else {
2488 		blocksize = sctx->fs_info->sectorsize;
2489 		WARN_ON(1);
2490 	}
2491 
2492 	while (len) {
2493 		u64 l = min_t(u64, len, blocksize);
2494 		int have_csum = 0;
2495 
2496 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2497 			/* push csums to sbio */
2498 			have_csum = scrub_find_csum(sctx, logical, csum);
2499 			if (have_csum == 0)
2500 				++sctx->stat.no_csum;
2501 		}
2502 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2503 				  mirror_num, have_csum ? csum : NULL, 0,
2504 				  physical_for_dev_replace);
2505 		if (ret)
2506 			return ret;
2507 		len -= l;
2508 		logical += l;
2509 		physical += l;
2510 		physical_for_dev_replace += l;
2511 	}
2512 	return 0;
2513 }
2514 
2515 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2516 				  u64 logical, u64 len,
2517 				  u64 physical, struct btrfs_device *dev,
2518 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2519 {
2520 	struct scrub_ctx *sctx = sparity->sctx;
2521 	struct scrub_block *sblock;
2522 	int index;
2523 
2524 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2525 	if (!sblock) {
2526 		spin_lock(&sctx->stat_lock);
2527 		sctx->stat.malloc_errors++;
2528 		spin_unlock(&sctx->stat_lock);
2529 		return -ENOMEM;
2530 	}
2531 
2532 	/* one ref inside this function, plus one for each page added to
2533 	 * a bio later on */
2534 	refcount_set(&sblock->refs, 1);
2535 	sblock->sctx = sctx;
2536 	sblock->no_io_error_seen = 1;
2537 	sblock->sparity = sparity;
2538 	scrub_parity_get(sparity);
2539 
2540 	for (index = 0; len > 0; index++) {
2541 		struct scrub_page *spage;
2542 		u64 l = min_t(u64, len, PAGE_SIZE);
2543 
2544 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2545 		if (!spage) {
2546 leave_nomem:
2547 			spin_lock(&sctx->stat_lock);
2548 			sctx->stat.malloc_errors++;
2549 			spin_unlock(&sctx->stat_lock);
2550 			scrub_block_put(sblock);
2551 			return -ENOMEM;
2552 		}
2553 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2554 		/* For scrub block */
2555 		scrub_page_get(spage);
2556 		sblock->pagev[index] = spage;
2557 		/* For scrub parity */
2558 		scrub_page_get(spage);
2559 		list_add_tail(&spage->list, &sparity->spages);
2560 		spage->sblock = sblock;
2561 		spage->dev = dev;
2562 		spage->flags = flags;
2563 		spage->generation = gen;
2564 		spage->logical = logical;
2565 		spage->physical = physical;
2566 		spage->mirror_num = mirror_num;
2567 		if (csum) {
2568 			spage->have_csum = 1;
2569 			memcpy(spage->csum, csum, sctx->csum_size);
2570 		} else {
2571 			spage->have_csum = 0;
2572 		}
2573 		sblock->page_count++;
2574 		spage->page = alloc_page(GFP_KERNEL);
2575 		if (!spage->page)
2576 			goto leave_nomem;
2577 		len -= l;
2578 		logical += l;
2579 		physical += l;
2580 	}
2581 
2582 	WARN_ON(sblock->page_count == 0);
2583 	for (index = 0; index < sblock->page_count; index++) {
2584 		struct scrub_page *spage = sblock->pagev[index];
2585 		int ret;
2586 
2587 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2588 		if (ret) {
2589 			scrub_block_put(sblock);
2590 			return ret;
2591 		}
2592 	}
2593 
2594 	/* last one frees, either here or in bio completion for last page */
2595 	scrub_block_put(sblock);
2596 	return 0;
2597 }
2598 
2599 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2600 				   u64 logical, u64 len,
2601 				   u64 physical, struct btrfs_device *dev,
2602 				   u64 flags, u64 gen, int mirror_num)
2603 {
2604 	struct scrub_ctx *sctx = sparity->sctx;
2605 	int ret;
2606 	u8 csum[BTRFS_CSUM_SIZE];
2607 	u32 blocksize;
2608 
2609 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2610 		scrub_parity_mark_sectors_error(sparity, logical, len);
2611 		return 0;
2612 	}
2613 
2614 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2615 		blocksize = sparity->stripe_len;
2616 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2617 		blocksize = sparity->stripe_len;
2618 	} else {
2619 		blocksize = sctx->fs_info->sectorsize;
2620 		WARN_ON(1);
2621 	}
2622 
2623 	while (len) {
2624 		u64 l = min_t(u64, len, blocksize);
2625 		int have_csum = 0;
2626 
2627 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628 			/* push csums to sbio */
2629 			have_csum = scrub_find_csum(sctx, logical, csum);
2630 			if (have_csum == 0)
2631 				goto skip;
2632 		}
2633 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2634 					     flags, gen, mirror_num,
2635 					     have_csum ? csum : NULL);
2636 		if (ret)
2637 			return ret;
2638 skip:
2639 		len -= l;
2640 		logical += l;
2641 		physical += l;
2642 	}
2643 	return 0;
2644 }
2645 
2646 /*
2647  * Given a physical address, this will calculate it's
2648  * logical offset. if this is a parity stripe, it will return
2649  * the most left data stripe's logical offset.
2650  *
2651  * return 0 if it is a data stripe, 1 means parity stripe.
2652  */
2653 static int get_raid56_logic_offset(u64 physical, int num,
2654 				   struct map_lookup *map, u64 *offset,
2655 				   u64 *stripe_start)
2656 {
2657 	int i;
2658 	int j = 0;
2659 	u64 stripe_nr;
2660 	u64 last_offset;
2661 	u32 stripe_index;
2662 	u32 rot;
2663 
2664 	last_offset = (physical - map->stripes[num].physical) *
2665 		      nr_data_stripes(map);
2666 	if (stripe_start)
2667 		*stripe_start = last_offset;
2668 
2669 	*offset = last_offset;
2670 	for (i = 0; i < nr_data_stripes(map); i++) {
2671 		*offset = last_offset + i * map->stripe_len;
2672 
2673 		stripe_nr = div64_u64(*offset, map->stripe_len);
2674 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2675 
2676 		/* Work out the disk rotation on this stripe-set */
2677 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2678 		/* calculate which stripe this data locates */
2679 		rot += i;
2680 		stripe_index = rot % map->num_stripes;
2681 		if (stripe_index == num)
2682 			return 0;
2683 		if (stripe_index < num)
2684 			j++;
2685 	}
2686 	*offset = last_offset + j * map->stripe_len;
2687 	return 1;
2688 }
2689 
2690 static void scrub_free_parity(struct scrub_parity *sparity)
2691 {
2692 	struct scrub_ctx *sctx = sparity->sctx;
2693 	struct scrub_page *curr, *next;
2694 	int nbits;
2695 
2696 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2697 	if (nbits) {
2698 		spin_lock(&sctx->stat_lock);
2699 		sctx->stat.read_errors += nbits;
2700 		sctx->stat.uncorrectable_errors += nbits;
2701 		spin_unlock(&sctx->stat_lock);
2702 	}
2703 
2704 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2705 		list_del_init(&curr->list);
2706 		scrub_page_put(curr);
2707 	}
2708 
2709 	kfree(sparity);
2710 }
2711 
2712 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2713 {
2714 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2715 						    work);
2716 	struct scrub_ctx *sctx = sparity->sctx;
2717 
2718 	scrub_free_parity(sparity);
2719 	scrub_pending_bio_dec(sctx);
2720 }
2721 
2722 static void scrub_parity_bio_endio(struct bio *bio)
2723 {
2724 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2725 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2726 
2727 	if (bio->bi_status)
2728 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2729 			  sparity->nsectors);
2730 
2731 	bio_put(bio);
2732 
2733 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2734 			scrub_parity_bio_endio_worker, NULL, NULL);
2735 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2736 }
2737 
2738 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2739 {
2740 	struct scrub_ctx *sctx = sparity->sctx;
2741 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2742 	struct bio *bio;
2743 	struct btrfs_raid_bio *rbio;
2744 	struct btrfs_bio *bbio = NULL;
2745 	u64 length;
2746 	int ret;
2747 
2748 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2749 			   sparity->nsectors))
2750 		goto out;
2751 
2752 	length = sparity->logic_end - sparity->logic_start;
2753 
2754 	btrfs_bio_counter_inc_blocked(fs_info);
2755 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2756 			       &length, &bbio);
2757 	if (ret || !bbio || !bbio->raid_map)
2758 		goto bbio_out;
2759 
2760 	bio = btrfs_io_bio_alloc(0);
2761 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2762 	bio->bi_private = sparity;
2763 	bio->bi_end_io = scrub_parity_bio_endio;
2764 
2765 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2766 					      length, sparity->scrub_dev,
2767 					      sparity->dbitmap,
2768 					      sparity->nsectors);
2769 	if (!rbio)
2770 		goto rbio_out;
2771 
2772 	scrub_pending_bio_inc(sctx);
2773 	raid56_parity_submit_scrub_rbio(rbio);
2774 	return;
2775 
2776 rbio_out:
2777 	bio_put(bio);
2778 bbio_out:
2779 	btrfs_bio_counter_dec(fs_info);
2780 	btrfs_put_bbio(bbio);
2781 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2782 		  sparity->nsectors);
2783 	spin_lock(&sctx->stat_lock);
2784 	sctx->stat.malloc_errors++;
2785 	spin_unlock(&sctx->stat_lock);
2786 out:
2787 	scrub_free_parity(sparity);
2788 }
2789 
2790 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2791 {
2792 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2793 }
2794 
2795 static void scrub_parity_get(struct scrub_parity *sparity)
2796 {
2797 	refcount_inc(&sparity->refs);
2798 }
2799 
2800 static void scrub_parity_put(struct scrub_parity *sparity)
2801 {
2802 	if (!refcount_dec_and_test(&sparity->refs))
2803 		return;
2804 
2805 	scrub_parity_check_and_repair(sparity);
2806 }
2807 
2808 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2809 						  struct map_lookup *map,
2810 						  struct btrfs_device *sdev,
2811 						  struct btrfs_path *path,
2812 						  u64 logic_start,
2813 						  u64 logic_end)
2814 {
2815 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2816 	struct btrfs_root *root = fs_info->extent_root;
2817 	struct btrfs_root *csum_root = fs_info->csum_root;
2818 	struct btrfs_extent_item *extent;
2819 	struct btrfs_bio *bbio = NULL;
2820 	u64 flags;
2821 	int ret;
2822 	int slot;
2823 	struct extent_buffer *l;
2824 	struct btrfs_key key;
2825 	u64 generation;
2826 	u64 extent_logical;
2827 	u64 extent_physical;
2828 	u64 extent_len;
2829 	u64 mapped_length;
2830 	struct btrfs_device *extent_dev;
2831 	struct scrub_parity *sparity;
2832 	int nsectors;
2833 	int bitmap_len;
2834 	int extent_mirror_num;
2835 	int stop_loop = 0;
2836 
2837 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2838 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2839 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2840 			  GFP_NOFS);
2841 	if (!sparity) {
2842 		spin_lock(&sctx->stat_lock);
2843 		sctx->stat.malloc_errors++;
2844 		spin_unlock(&sctx->stat_lock);
2845 		return -ENOMEM;
2846 	}
2847 
2848 	sparity->stripe_len = map->stripe_len;
2849 	sparity->nsectors = nsectors;
2850 	sparity->sctx = sctx;
2851 	sparity->scrub_dev = sdev;
2852 	sparity->logic_start = logic_start;
2853 	sparity->logic_end = logic_end;
2854 	refcount_set(&sparity->refs, 1);
2855 	INIT_LIST_HEAD(&sparity->spages);
2856 	sparity->dbitmap = sparity->bitmap;
2857 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2858 
2859 	ret = 0;
2860 	while (logic_start < logic_end) {
2861 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2862 			key.type = BTRFS_METADATA_ITEM_KEY;
2863 		else
2864 			key.type = BTRFS_EXTENT_ITEM_KEY;
2865 		key.objectid = logic_start;
2866 		key.offset = (u64)-1;
2867 
2868 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2869 		if (ret < 0)
2870 			goto out;
2871 
2872 		if (ret > 0) {
2873 			ret = btrfs_previous_extent_item(root, path, 0);
2874 			if (ret < 0)
2875 				goto out;
2876 			if (ret > 0) {
2877 				btrfs_release_path(path);
2878 				ret = btrfs_search_slot(NULL, root, &key,
2879 							path, 0, 0);
2880 				if (ret < 0)
2881 					goto out;
2882 			}
2883 		}
2884 
2885 		stop_loop = 0;
2886 		while (1) {
2887 			u64 bytes;
2888 
2889 			l = path->nodes[0];
2890 			slot = path->slots[0];
2891 			if (slot >= btrfs_header_nritems(l)) {
2892 				ret = btrfs_next_leaf(root, path);
2893 				if (ret == 0)
2894 					continue;
2895 				if (ret < 0)
2896 					goto out;
2897 
2898 				stop_loop = 1;
2899 				break;
2900 			}
2901 			btrfs_item_key_to_cpu(l, &key, slot);
2902 
2903 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2904 			    key.type != BTRFS_METADATA_ITEM_KEY)
2905 				goto next;
2906 
2907 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2908 				bytes = fs_info->nodesize;
2909 			else
2910 				bytes = key.offset;
2911 
2912 			if (key.objectid + bytes <= logic_start)
2913 				goto next;
2914 
2915 			if (key.objectid >= logic_end) {
2916 				stop_loop = 1;
2917 				break;
2918 			}
2919 
2920 			while (key.objectid >= logic_start + map->stripe_len)
2921 				logic_start += map->stripe_len;
2922 
2923 			extent = btrfs_item_ptr(l, slot,
2924 						struct btrfs_extent_item);
2925 			flags = btrfs_extent_flags(l, extent);
2926 			generation = btrfs_extent_generation(l, extent);
2927 
2928 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2929 			    (key.objectid < logic_start ||
2930 			     key.objectid + bytes >
2931 			     logic_start + map->stripe_len)) {
2932 				btrfs_err(fs_info,
2933 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2934 					  key.objectid, logic_start);
2935 				spin_lock(&sctx->stat_lock);
2936 				sctx->stat.uncorrectable_errors++;
2937 				spin_unlock(&sctx->stat_lock);
2938 				goto next;
2939 			}
2940 again:
2941 			extent_logical = key.objectid;
2942 			extent_len = bytes;
2943 
2944 			if (extent_logical < logic_start) {
2945 				extent_len -= logic_start - extent_logical;
2946 				extent_logical = logic_start;
2947 			}
2948 
2949 			if (extent_logical + extent_len >
2950 			    logic_start + map->stripe_len)
2951 				extent_len = logic_start + map->stripe_len -
2952 					     extent_logical;
2953 
2954 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2955 						       extent_len);
2956 
2957 			mapped_length = extent_len;
2958 			bbio = NULL;
2959 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2960 					extent_logical, &mapped_length, &bbio,
2961 					0);
2962 			if (!ret) {
2963 				if (!bbio || mapped_length < extent_len)
2964 					ret = -EIO;
2965 			}
2966 			if (ret) {
2967 				btrfs_put_bbio(bbio);
2968 				goto out;
2969 			}
2970 			extent_physical = bbio->stripes[0].physical;
2971 			extent_mirror_num = bbio->mirror_num;
2972 			extent_dev = bbio->stripes[0].dev;
2973 			btrfs_put_bbio(bbio);
2974 
2975 			ret = btrfs_lookup_csums_range(csum_root,
2976 						extent_logical,
2977 						extent_logical + extent_len - 1,
2978 						&sctx->csum_list, 1);
2979 			if (ret)
2980 				goto out;
2981 
2982 			ret = scrub_extent_for_parity(sparity, extent_logical,
2983 						      extent_len,
2984 						      extent_physical,
2985 						      extent_dev, flags,
2986 						      generation,
2987 						      extent_mirror_num);
2988 
2989 			scrub_free_csums(sctx);
2990 
2991 			if (ret)
2992 				goto out;
2993 
2994 			if (extent_logical + extent_len <
2995 			    key.objectid + bytes) {
2996 				logic_start += map->stripe_len;
2997 
2998 				if (logic_start >= logic_end) {
2999 					stop_loop = 1;
3000 					break;
3001 				}
3002 
3003 				if (logic_start < key.objectid + bytes) {
3004 					cond_resched();
3005 					goto again;
3006 				}
3007 			}
3008 next:
3009 			path->slots[0]++;
3010 		}
3011 
3012 		btrfs_release_path(path);
3013 
3014 		if (stop_loop)
3015 			break;
3016 
3017 		logic_start += map->stripe_len;
3018 	}
3019 out:
3020 	if (ret < 0)
3021 		scrub_parity_mark_sectors_error(sparity, logic_start,
3022 						logic_end - logic_start);
3023 	scrub_parity_put(sparity);
3024 	scrub_submit(sctx);
3025 	mutex_lock(&sctx->wr_lock);
3026 	scrub_wr_submit(sctx);
3027 	mutex_unlock(&sctx->wr_lock);
3028 
3029 	btrfs_release_path(path);
3030 	return ret < 0 ? ret : 0;
3031 }
3032 
3033 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3034 					   struct map_lookup *map,
3035 					   struct btrfs_device *scrub_dev,
3036 					   int num, u64 base, u64 length)
3037 {
3038 	struct btrfs_path *path, *ppath;
3039 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3040 	struct btrfs_root *root = fs_info->extent_root;
3041 	struct btrfs_root *csum_root = fs_info->csum_root;
3042 	struct btrfs_extent_item *extent;
3043 	struct blk_plug plug;
3044 	u64 flags;
3045 	int ret;
3046 	int slot;
3047 	u64 nstripes;
3048 	struct extent_buffer *l;
3049 	u64 physical;
3050 	u64 logical;
3051 	u64 logic_end;
3052 	u64 physical_end;
3053 	u64 generation;
3054 	int mirror_num;
3055 	struct reada_control *reada1;
3056 	struct reada_control *reada2;
3057 	struct btrfs_key key;
3058 	struct btrfs_key key_end;
3059 	u64 increment = map->stripe_len;
3060 	u64 offset;
3061 	u64 extent_logical;
3062 	u64 extent_physical;
3063 	u64 extent_len;
3064 	u64 stripe_logical;
3065 	u64 stripe_end;
3066 	struct btrfs_device *extent_dev;
3067 	int extent_mirror_num;
3068 	int stop_loop = 0;
3069 
3070 	physical = map->stripes[num].physical;
3071 	offset = 0;
3072 	nstripes = div64_u64(length, map->stripe_len);
3073 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3074 		offset = map->stripe_len * num;
3075 		increment = map->stripe_len * map->num_stripes;
3076 		mirror_num = 1;
3077 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3078 		int factor = map->num_stripes / map->sub_stripes;
3079 		offset = map->stripe_len * (num / map->sub_stripes);
3080 		increment = map->stripe_len * factor;
3081 		mirror_num = num % map->sub_stripes + 1;
3082 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3083 		increment = map->stripe_len;
3084 		mirror_num = num % map->num_stripes + 1;
3085 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3086 		increment = map->stripe_len;
3087 		mirror_num = num % map->num_stripes + 1;
3088 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3089 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3090 		increment = map->stripe_len * nr_data_stripes(map);
3091 		mirror_num = 1;
3092 	} else {
3093 		increment = map->stripe_len;
3094 		mirror_num = 1;
3095 	}
3096 
3097 	path = btrfs_alloc_path();
3098 	if (!path)
3099 		return -ENOMEM;
3100 
3101 	ppath = btrfs_alloc_path();
3102 	if (!ppath) {
3103 		btrfs_free_path(path);
3104 		return -ENOMEM;
3105 	}
3106 
3107 	/*
3108 	 * work on commit root. The related disk blocks are static as
3109 	 * long as COW is applied. This means, it is save to rewrite
3110 	 * them to repair disk errors without any race conditions
3111 	 */
3112 	path->search_commit_root = 1;
3113 	path->skip_locking = 1;
3114 
3115 	ppath->search_commit_root = 1;
3116 	ppath->skip_locking = 1;
3117 	/*
3118 	 * trigger the readahead for extent tree csum tree and wait for
3119 	 * completion. During readahead, the scrub is officially paused
3120 	 * to not hold off transaction commits
3121 	 */
3122 	logical = base + offset;
3123 	physical_end = physical + nstripes * map->stripe_len;
3124 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3125 		get_raid56_logic_offset(physical_end, num,
3126 					map, &logic_end, NULL);
3127 		logic_end += base;
3128 	} else {
3129 		logic_end = logical + increment * nstripes;
3130 	}
3131 	wait_event(sctx->list_wait,
3132 		   atomic_read(&sctx->bios_in_flight) == 0);
3133 	scrub_blocked_if_needed(fs_info);
3134 
3135 	/* FIXME it might be better to start readahead at commit root */
3136 	key.objectid = logical;
3137 	key.type = BTRFS_EXTENT_ITEM_KEY;
3138 	key.offset = (u64)0;
3139 	key_end.objectid = logic_end;
3140 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3141 	key_end.offset = (u64)-1;
3142 	reada1 = btrfs_reada_add(root, &key, &key_end);
3143 
3144 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3145 	key.type = BTRFS_EXTENT_CSUM_KEY;
3146 	key.offset = logical;
3147 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3148 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3149 	key_end.offset = logic_end;
3150 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3151 
3152 	if (!IS_ERR(reada1))
3153 		btrfs_reada_wait(reada1);
3154 	if (!IS_ERR(reada2))
3155 		btrfs_reada_wait(reada2);
3156 
3157 
3158 	/*
3159 	 * collect all data csums for the stripe to avoid seeking during
3160 	 * the scrub. This might currently (crc32) end up to be about 1MB
3161 	 */
3162 	blk_start_plug(&plug);
3163 
3164 	/*
3165 	 * now find all extents for each stripe and scrub them
3166 	 */
3167 	ret = 0;
3168 	while (physical < physical_end) {
3169 		/*
3170 		 * canceled?
3171 		 */
3172 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3173 		    atomic_read(&sctx->cancel_req)) {
3174 			ret = -ECANCELED;
3175 			goto out;
3176 		}
3177 		/*
3178 		 * check to see if we have to pause
3179 		 */
3180 		if (atomic_read(&fs_info->scrub_pause_req)) {
3181 			/* push queued extents */
3182 			sctx->flush_all_writes = true;
3183 			scrub_submit(sctx);
3184 			mutex_lock(&sctx->wr_lock);
3185 			scrub_wr_submit(sctx);
3186 			mutex_unlock(&sctx->wr_lock);
3187 			wait_event(sctx->list_wait,
3188 				   atomic_read(&sctx->bios_in_flight) == 0);
3189 			sctx->flush_all_writes = false;
3190 			scrub_blocked_if_needed(fs_info);
3191 		}
3192 
3193 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3194 			ret = get_raid56_logic_offset(physical, num, map,
3195 						      &logical,
3196 						      &stripe_logical);
3197 			logical += base;
3198 			if (ret) {
3199 				/* it is parity strip */
3200 				stripe_logical += base;
3201 				stripe_end = stripe_logical + increment;
3202 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3203 							  ppath, stripe_logical,
3204 							  stripe_end);
3205 				if (ret)
3206 					goto out;
3207 				goto skip;
3208 			}
3209 		}
3210 
3211 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3212 			key.type = BTRFS_METADATA_ITEM_KEY;
3213 		else
3214 			key.type = BTRFS_EXTENT_ITEM_KEY;
3215 		key.objectid = logical;
3216 		key.offset = (u64)-1;
3217 
3218 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3219 		if (ret < 0)
3220 			goto out;
3221 
3222 		if (ret > 0) {
3223 			ret = btrfs_previous_extent_item(root, path, 0);
3224 			if (ret < 0)
3225 				goto out;
3226 			if (ret > 0) {
3227 				/* there's no smaller item, so stick with the
3228 				 * larger one */
3229 				btrfs_release_path(path);
3230 				ret = btrfs_search_slot(NULL, root, &key,
3231 							path, 0, 0);
3232 				if (ret < 0)
3233 					goto out;
3234 			}
3235 		}
3236 
3237 		stop_loop = 0;
3238 		while (1) {
3239 			u64 bytes;
3240 
3241 			l = path->nodes[0];
3242 			slot = path->slots[0];
3243 			if (slot >= btrfs_header_nritems(l)) {
3244 				ret = btrfs_next_leaf(root, path);
3245 				if (ret == 0)
3246 					continue;
3247 				if (ret < 0)
3248 					goto out;
3249 
3250 				stop_loop = 1;
3251 				break;
3252 			}
3253 			btrfs_item_key_to_cpu(l, &key, slot);
3254 
3255 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3256 			    key.type != BTRFS_METADATA_ITEM_KEY)
3257 				goto next;
3258 
3259 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3260 				bytes = fs_info->nodesize;
3261 			else
3262 				bytes = key.offset;
3263 
3264 			if (key.objectid + bytes <= logical)
3265 				goto next;
3266 
3267 			if (key.objectid >= logical + map->stripe_len) {
3268 				/* out of this device extent */
3269 				if (key.objectid >= logic_end)
3270 					stop_loop = 1;
3271 				break;
3272 			}
3273 
3274 			extent = btrfs_item_ptr(l, slot,
3275 						struct btrfs_extent_item);
3276 			flags = btrfs_extent_flags(l, extent);
3277 			generation = btrfs_extent_generation(l, extent);
3278 
3279 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3280 			    (key.objectid < logical ||
3281 			     key.objectid + bytes >
3282 			     logical + map->stripe_len)) {
3283 				btrfs_err(fs_info,
3284 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3285 				       key.objectid, logical);
3286 				spin_lock(&sctx->stat_lock);
3287 				sctx->stat.uncorrectable_errors++;
3288 				spin_unlock(&sctx->stat_lock);
3289 				goto next;
3290 			}
3291 
3292 again:
3293 			extent_logical = key.objectid;
3294 			extent_len = bytes;
3295 
3296 			/*
3297 			 * trim extent to this stripe
3298 			 */
3299 			if (extent_logical < logical) {
3300 				extent_len -= logical - extent_logical;
3301 				extent_logical = logical;
3302 			}
3303 			if (extent_logical + extent_len >
3304 			    logical + map->stripe_len) {
3305 				extent_len = logical + map->stripe_len -
3306 					     extent_logical;
3307 			}
3308 
3309 			extent_physical = extent_logical - logical + physical;
3310 			extent_dev = scrub_dev;
3311 			extent_mirror_num = mirror_num;
3312 			if (sctx->is_dev_replace)
3313 				scrub_remap_extent(fs_info, extent_logical,
3314 						   extent_len, &extent_physical,
3315 						   &extent_dev,
3316 						   &extent_mirror_num);
3317 
3318 			ret = btrfs_lookup_csums_range(csum_root,
3319 						       extent_logical,
3320 						       extent_logical +
3321 						       extent_len - 1,
3322 						       &sctx->csum_list, 1);
3323 			if (ret)
3324 				goto out;
3325 
3326 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3327 					   extent_physical, extent_dev, flags,
3328 					   generation, extent_mirror_num,
3329 					   extent_logical - logical + physical);
3330 
3331 			scrub_free_csums(sctx);
3332 
3333 			if (ret)
3334 				goto out;
3335 
3336 			if (extent_logical + extent_len <
3337 			    key.objectid + bytes) {
3338 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3339 					/*
3340 					 * loop until we find next data stripe
3341 					 * or we have finished all stripes.
3342 					 */
3343 loop:
3344 					physical += map->stripe_len;
3345 					ret = get_raid56_logic_offset(physical,
3346 							num, map, &logical,
3347 							&stripe_logical);
3348 					logical += base;
3349 
3350 					if (ret && physical < physical_end) {
3351 						stripe_logical += base;
3352 						stripe_end = stripe_logical +
3353 								increment;
3354 						ret = scrub_raid56_parity(sctx,
3355 							map, scrub_dev, ppath,
3356 							stripe_logical,
3357 							stripe_end);
3358 						if (ret)
3359 							goto out;
3360 						goto loop;
3361 					}
3362 				} else {
3363 					physical += map->stripe_len;
3364 					logical += increment;
3365 				}
3366 				if (logical < key.objectid + bytes) {
3367 					cond_resched();
3368 					goto again;
3369 				}
3370 
3371 				if (physical >= physical_end) {
3372 					stop_loop = 1;
3373 					break;
3374 				}
3375 			}
3376 next:
3377 			path->slots[0]++;
3378 		}
3379 		btrfs_release_path(path);
3380 skip:
3381 		logical += increment;
3382 		physical += map->stripe_len;
3383 		spin_lock(&sctx->stat_lock);
3384 		if (stop_loop)
3385 			sctx->stat.last_physical = map->stripes[num].physical +
3386 						   length;
3387 		else
3388 			sctx->stat.last_physical = physical;
3389 		spin_unlock(&sctx->stat_lock);
3390 		if (stop_loop)
3391 			break;
3392 	}
3393 out:
3394 	/* push queued extents */
3395 	scrub_submit(sctx);
3396 	mutex_lock(&sctx->wr_lock);
3397 	scrub_wr_submit(sctx);
3398 	mutex_unlock(&sctx->wr_lock);
3399 
3400 	blk_finish_plug(&plug);
3401 	btrfs_free_path(path);
3402 	btrfs_free_path(ppath);
3403 	return ret < 0 ? ret : 0;
3404 }
3405 
3406 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3407 					  struct btrfs_device *scrub_dev,
3408 					  u64 chunk_offset, u64 length,
3409 					  u64 dev_offset,
3410 					  struct btrfs_block_group_cache *cache)
3411 {
3412 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3413 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3414 	struct map_lookup *map;
3415 	struct extent_map *em;
3416 	int i;
3417 	int ret = 0;
3418 
3419 	read_lock(&map_tree->map_tree.lock);
3420 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3421 	read_unlock(&map_tree->map_tree.lock);
3422 
3423 	if (!em) {
3424 		/*
3425 		 * Might have been an unused block group deleted by the cleaner
3426 		 * kthread or relocation.
3427 		 */
3428 		spin_lock(&cache->lock);
3429 		if (!cache->removed)
3430 			ret = -EINVAL;
3431 		spin_unlock(&cache->lock);
3432 
3433 		return ret;
3434 	}
3435 
3436 	map = em->map_lookup;
3437 	if (em->start != chunk_offset)
3438 		goto out;
3439 
3440 	if (em->len < length)
3441 		goto out;
3442 
3443 	for (i = 0; i < map->num_stripes; ++i) {
3444 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3445 		    map->stripes[i].physical == dev_offset) {
3446 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3447 					   chunk_offset, length);
3448 			if (ret)
3449 				goto out;
3450 		}
3451 	}
3452 out:
3453 	free_extent_map(em);
3454 
3455 	return ret;
3456 }
3457 
3458 static noinline_for_stack
3459 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3460 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3461 {
3462 	struct btrfs_dev_extent *dev_extent = NULL;
3463 	struct btrfs_path *path;
3464 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3465 	struct btrfs_root *root = fs_info->dev_root;
3466 	u64 length;
3467 	u64 chunk_offset;
3468 	int ret = 0;
3469 	int ro_set;
3470 	int slot;
3471 	struct extent_buffer *l;
3472 	struct btrfs_key key;
3473 	struct btrfs_key found_key;
3474 	struct btrfs_block_group_cache *cache;
3475 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3476 
3477 	path = btrfs_alloc_path();
3478 	if (!path)
3479 		return -ENOMEM;
3480 
3481 	path->reada = READA_FORWARD;
3482 	path->search_commit_root = 1;
3483 	path->skip_locking = 1;
3484 
3485 	key.objectid = scrub_dev->devid;
3486 	key.offset = 0ull;
3487 	key.type = BTRFS_DEV_EXTENT_KEY;
3488 
3489 	while (1) {
3490 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3491 		if (ret < 0)
3492 			break;
3493 		if (ret > 0) {
3494 			if (path->slots[0] >=
3495 			    btrfs_header_nritems(path->nodes[0])) {
3496 				ret = btrfs_next_leaf(root, path);
3497 				if (ret < 0)
3498 					break;
3499 				if (ret > 0) {
3500 					ret = 0;
3501 					break;
3502 				}
3503 			} else {
3504 				ret = 0;
3505 			}
3506 		}
3507 
3508 		l = path->nodes[0];
3509 		slot = path->slots[0];
3510 
3511 		btrfs_item_key_to_cpu(l, &found_key, slot);
3512 
3513 		if (found_key.objectid != scrub_dev->devid)
3514 			break;
3515 
3516 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3517 			break;
3518 
3519 		if (found_key.offset >= end)
3520 			break;
3521 
3522 		if (found_key.offset < key.offset)
3523 			break;
3524 
3525 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3526 		length = btrfs_dev_extent_length(l, dev_extent);
3527 
3528 		if (found_key.offset + length <= start)
3529 			goto skip;
3530 
3531 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3532 
3533 		/*
3534 		 * get a reference on the corresponding block group to prevent
3535 		 * the chunk from going away while we scrub it
3536 		 */
3537 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3538 
3539 		/* some chunks are removed but not committed to disk yet,
3540 		 * continue scrubbing */
3541 		if (!cache)
3542 			goto skip;
3543 
3544 		/*
3545 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3546 		 * to avoid deadlock caused by:
3547 		 * btrfs_inc_block_group_ro()
3548 		 * -> btrfs_wait_for_commit()
3549 		 * -> btrfs_commit_transaction()
3550 		 * -> btrfs_scrub_pause()
3551 		 */
3552 		scrub_pause_on(fs_info);
3553 		ret = btrfs_inc_block_group_ro(cache);
3554 		if (!ret && sctx->is_dev_replace) {
3555 			/*
3556 			 * If we are doing a device replace wait for any tasks
3557 			 * that started delalloc right before we set the block
3558 			 * group to RO mode, as they might have just allocated
3559 			 * an extent from it or decided they could do a nocow
3560 			 * write. And if any such tasks did that, wait for their
3561 			 * ordered extents to complete and then commit the
3562 			 * current transaction, so that we can later see the new
3563 			 * extent items in the extent tree - the ordered extents
3564 			 * create delayed data references (for cow writes) when
3565 			 * they complete, which will be run and insert the
3566 			 * corresponding extent items into the extent tree when
3567 			 * we commit the transaction they used when running
3568 			 * inode.c:btrfs_finish_ordered_io(). We later use
3569 			 * the commit root of the extent tree to find extents
3570 			 * to copy from the srcdev into the tgtdev, and we don't
3571 			 * want to miss any new extents.
3572 			 */
3573 			btrfs_wait_block_group_reservations(cache);
3574 			btrfs_wait_nocow_writers(cache);
3575 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3576 						       cache->key.objectid,
3577 						       cache->key.offset);
3578 			if (ret > 0) {
3579 				struct btrfs_trans_handle *trans;
3580 
3581 				trans = btrfs_join_transaction(root);
3582 				if (IS_ERR(trans))
3583 					ret = PTR_ERR(trans);
3584 				else
3585 					ret = btrfs_commit_transaction(trans);
3586 				if (ret) {
3587 					scrub_pause_off(fs_info);
3588 					btrfs_put_block_group(cache);
3589 					break;
3590 				}
3591 			}
3592 		}
3593 		scrub_pause_off(fs_info);
3594 
3595 		if (ret == 0) {
3596 			ro_set = 1;
3597 		} else if (ret == -ENOSPC) {
3598 			/*
3599 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3600 			 * failed in creating new chunk for metadata.
3601 			 * It is not a problem for scrub/replace, because
3602 			 * metadata are always cowed, and our scrub paused
3603 			 * commit_transactions.
3604 			 */
3605 			ro_set = 0;
3606 		} else {
3607 			btrfs_warn(fs_info,
3608 				   "failed setting block group ro: %d", ret);
3609 			btrfs_put_block_group(cache);
3610 			break;
3611 		}
3612 
3613 		down_write(&fs_info->dev_replace.rwsem);
3614 		dev_replace->cursor_right = found_key.offset + length;
3615 		dev_replace->cursor_left = found_key.offset;
3616 		dev_replace->item_needs_writeback = 1;
3617 		up_write(&dev_replace->rwsem);
3618 
3619 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3620 				  found_key.offset, cache);
3621 
3622 		/*
3623 		 * flush, submit all pending read and write bios, afterwards
3624 		 * wait for them.
3625 		 * Note that in the dev replace case, a read request causes
3626 		 * write requests that are submitted in the read completion
3627 		 * worker. Therefore in the current situation, it is required
3628 		 * that all write requests are flushed, so that all read and
3629 		 * write requests are really completed when bios_in_flight
3630 		 * changes to 0.
3631 		 */
3632 		sctx->flush_all_writes = true;
3633 		scrub_submit(sctx);
3634 		mutex_lock(&sctx->wr_lock);
3635 		scrub_wr_submit(sctx);
3636 		mutex_unlock(&sctx->wr_lock);
3637 
3638 		wait_event(sctx->list_wait,
3639 			   atomic_read(&sctx->bios_in_flight) == 0);
3640 
3641 		scrub_pause_on(fs_info);
3642 
3643 		/*
3644 		 * must be called before we decrease @scrub_paused.
3645 		 * make sure we don't block transaction commit while
3646 		 * we are waiting pending workers finished.
3647 		 */
3648 		wait_event(sctx->list_wait,
3649 			   atomic_read(&sctx->workers_pending) == 0);
3650 		sctx->flush_all_writes = false;
3651 
3652 		scrub_pause_off(fs_info);
3653 
3654 		down_write(&fs_info->dev_replace.rwsem);
3655 		dev_replace->cursor_left = dev_replace->cursor_right;
3656 		dev_replace->item_needs_writeback = 1;
3657 		up_write(&fs_info->dev_replace.rwsem);
3658 
3659 		if (ro_set)
3660 			btrfs_dec_block_group_ro(cache);
3661 
3662 		/*
3663 		 * We might have prevented the cleaner kthread from deleting
3664 		 * this block group if it was already unused because we raced
3665 		 * and set it to RO mode first. So add it back to the unused
3666 		 * list, otherwise it might not ever be deleted unless a manual
3667 		 * balance is triggered or it becomes used and unused again.
3668 		 */
3669 		spin_lock(&cache->lock);
3670 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3671 		    btrfs_block_group_used(&cache->item) == 0) {
3672 			spin_unlock(&cache->lock);
3673 			btrfs_mark_bg_unused(cache);
3674 		} else {
3675 			spin_unlock(&cache->lock);
3676 		}
3677 
3678 		btrfs_put_block_group(cache);
3679 		if (ret)
3680 			break;
3681 		if (sctx->is_dev_replace &&
3682 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3683 			ret = -EIO;
3684 			break;
3685 		}
3686 		if (sctx->stat.malloc_errors > 0) {
3687 			ret = -ENOMEM;
3688 			break;
3689 		}
3690 skip:
3691 		key.offset = found_key.offset + length;
3692 		btrfs_release_path(path);
3693 	}
3694 
3695 	btrfs_free_path(path);
3696 
3697 	return ret;
3698 }
3699 
3700 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3701 					   struct btrfs_device *scrub_dev)
3702 {
3703 	int	i;
3704 	u64	bytenr;
3705 	u64	gen;
3706 	int	ret;
3707 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3708 
3709 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3710 		return -EIO;
3711 
3712 	/* Seed devices of a new filesystem has their own generation. */
3713 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3714 		gen = scrub_dev->generation;
3715 	else
3716 		gen = fs_info->last_trans_committed;
3717 
3718 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3719 		bytenr = btrfs_sb_offset(i);
3720 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3721 		    scrub_dev->commit_total_bytes)
3722 			break;
3723 
3724 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3725 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3726 				  NULL, 1, bytenr);
3727 		if (ret)
3728 			return ret;
3729 	}
3730 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3731 
3732 	return 0;
3733 }
3734 
3735 /*
3736  * get a reference count on fs_info->scrub_workers. start worker if necessary
3737  */
3738 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3739 						int is_dev_replace)
3740 {
3741 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3742 	int max_active = fs_info->thread_pool_size;
3743 
3744 	lockdep_assert_held(&fs_info->scrub_lock);
3745 
3746 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3747 		ASSERT(fs_info->scrub_workers == NULL);
3748 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3749 				flags, is_dev_replace ? 1 : max_active, 4);
3750 		if (!fs_info->scrub_workers)
3751 			goto fail_scrub_workers;
3752 
3753 		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3754 		fs_info->scrub_wr_completion_workers =
3755 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3756 					      max_active, 2);
3757 		if (!fs_info->scrub_wr_completion_workers)
3758 			goto fail_scrub_wr_completion_workers;
3759 
3760 		ASSERT(fs_info->scrub_parity_workers == NULL);
3761 		fs_info->scrub_parity_workers =
3762 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3763 					      max_active, 2);
3764 		if (!fs_info->scrub_parity_workers)
3765 			goto fail_scrub_parity_workers;
3766 
3767 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3768 	} else {
3769 		refcount_inc(&fs_info->scrub_workers_refcnt);
3770 	}
3771 	return 0;
3772 
3773 fail_scrub_parity_workers:
3774 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3775 fail_scrub_wr_completion_workers:
3776 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3777 fail_scrub_workers:
3778 	return -ENOMEM;
3779 }
3780 
3781 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3782 		    u64 end, struct btrfs_scrub_progress *progress,
3783 		    int readonly, int is_dev_replace)
3784 {
3785 	struct scrub_ctx *sctx;
3786 	int ret;
3787 	struct btrfs_device *dev;
3788 	unsigned int nofs_flag;
3789 	struct btrfs_workqueue *scrub_workers = NULL;
3790 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3791 	struct btrfs_workqueue *scrub_parity = NULL;
3792 
3793 	if (btrfs_fs_closing(fs_info))
3794 		return -EAGAIN;
3795 
3796 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3797 		/*
3798 		 * in this case scrub is unable to calculate the checksum
3799 		 * the way scrub is implemented. Do not handle this
3800 		 * situation at all because it won't ever happen.
3801 		 */
3802 		btrfs_err(fs_info,
3803 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3804 		       fs_info->nodesize,
3805 		       BTRFS_STRIPE_LEN);
3806 		return -EINVAL;
3807 	}
3808 
3809 	if (fs_info->sectorsize != PAGE_SIZE) {
3810 		/* not supported for data w/o checksums */
3811 		btrfs_err_rl(fs_info,
3812 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3813 		       fs_info->sectorsize, PAGE_SIZE);
3814 		return -EINVAL;
3815 	}
3816 
3817 	if (fs_info->nodesize >
3818 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3819 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3820 		/*
3821 		 * would exhaust the array bounds of pagev member in
3822 		 * struct scrub_block
3823 		 */
3824 		btrfs_err(fs_info,
3825 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3826 		       fs_info->nodesize,
3827 		       SCRUB_MAX_PAGES_PER_BLOCK,
3828 		       fs_info->sectorsize,
3829 		       SCRUB_MAX_PAGES_PER_BLOCK);
3830 		return -EINVAL;
3831 	}
3832 
3833 	/* Allocate outside of device_list_mutex */
3834 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3835 	if (IS_ERR(sctx))
3836 		return PTR_ERR(sctx);
3837 
3838 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3839 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3840 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3841 		     !is_dev_replace)) {
3842 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843 		ret = -ENODEV;
3844 		goto out_free_ctx;
3845 	}
3846 
3847 	if (!is_dev_replace && !readonly &&
3848 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3849 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3850 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3851 				rcu_str_deref(dev->name));
3852 		ret = -EROFS;
3853 		goto out_free_ctx;
3854 	}
3855 
3856 	mutex_lock(&fs_info->scrub_lock);
3857 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3858 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3859 		mutex_unlock(&fs_info->scrub_lock);
3860 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3861 		ret = -EIO;
3862 		goto out_free_ctx;
3863 	}
3864 
3865 	down_read(&fs_info->dev_replace.rwsem);
3866 	if (dev->scrub_ctx ||
3867 	    (!is_dev_replace &&
3868 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3869 		up_read(&fs_info->dev_replace.rwsem);
3870 		mutex_unlock(&fs_info->scrub_lock);
3871 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3872 		ret = -EINPROGRESS;
3873 		goto out_free_ctx;
3874 	}
3875 	up_read(&fs_info->dev_replace.rwsem);
3876 
3877 	ret = scrub_workers_get(fs_info, is_dev_replace);
3878 	if (ret) {
3879 		mutex_unlock(&fs_info->scrub_lock);
3880 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3881 		goto out_free_ctx;
3882 	}
3883 
3884 	sctx->readonly = readonly;
3885 	dev->scrub_ctx = sctx;
3886 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3887 
3888 	/*
3889 	 * checking @scrub_pause_req here, we can avoid
3890 	 * race between committing transaction and scrubbing.
3891 	 */
3892 	__scrub_blocked_if_needed(fs_info);
3893 	atomic_inc(&fs_info->scrubs_running);
3894 	mutex_unlock(&fs_info->scrub_lock);
3895 
3896 	/*
3897 	 * In order to avoid deadlock with reclaim when there is a transaction
3898 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3899 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3900 	 * invoked by our callees. The pausing request is done when the
3901 	 * transaction commit starts, and it blocks the transaction until scrub
3902 	 * is paused (done at specific points at scrub_stripe() or right above
3903 	 * before incrementing fs_info->scrubs_running).
3904 	 */
3905 	nofs_flag = memalloc_nofs_save();
3906 	if (!is_dev_replace) {
3907 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3908 		/*
3909 		 * by holding device list mutex, we can
3910 		 * kick off writing super in log tree sync.
3911 		 */
3912 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3913 		ret = scrub_supers(sctx, dev);
3914 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3915 	}
3916 
3917 	if (!ret)
3918 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3919 	memalloc_nofs_restore(nofs_flag);
3920 
3921 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3922 	atomic_dec(&fs_info->scrubs_running);
3923 	wake_up(&fs_info->scrub_pause_wait);
3924 
3925 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3926 
3927 	if (progress)
3928 		memcpy(progress, &sctx->stat, sizeof(*progress));
3929 
3930 	if (!is_dev_replace)
3931 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3932 			ret ? "not finished" : "finished", devid, ret);
3933 
3934 	mutex_lock(&fs_info->scrub_lock);
3935 	dev->scrub_ctx = NULL;
3936 	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3937 		scrub_workers = fs_info->scrub_workers;
3938 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3939 		scrub_parity = fs_info->scrub_parity_workers;
3940 
3941 		fs_info->scrub_workers = NULL;
3942 		fs_info->scrub_wr_completion_workers = NULL;
3943 		fs_info->scrub_parity_workers = NULL;
3944 	}
3945 	mutex_unlock(&fs_info->scrub_lock);
3946 
3947 	btrfs_destroy_workqueue(scrub_workers);
3948 	btrfs_destroy_workqueue(scrub_wr_comp);
3949 	btrfs_destroy_workqueue(scrub_parity);
3950 	scrub_put_ctx(sctx);
3951 
3952 	return ret;
3953 
3954 out_free_ctx:
3955 	scrub_free_ctx(sctx);
3956 
3957 	return ret;
3958 }
3959 
3960 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3961 {
3962 	mutex_lock(&fs_info->scrub_lock);
3963 	atomic_inc(&fs_info->scrub_pause_req);
3964 	while (atomic_read(&fs_info->scrubs_paused) !=
3965 	       atomic_read(&fs_info->scrubs_running)) {
3966 		mutex_unlock(&fs_info->scrub_lock);
3967 		wait_event(fs_info->scrub_pause_wait,
3968 			   atomic_read(&fs_info->scrubs_paused) ==
3969 			   atomic_read(&fs_info->scrubs_running));
3970 		mutex_lock(&fs_info->scrub_lock);
3971 	}
3972 	mutex_unlock(&fs_info->scrub_lock);
3973 }
3974 
3975 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3976 {
3977 	atomic_dec(&fs_info->scrub_pause_req);
3978 	wake_up(&fs_info->scrub_pause_wait);
3979 }
3980 
3981 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3982 {
3983 	mutex_lock(&fs_info->scrub_lock);
3984 	if (!atomic_read(&fs_info->scrubs_running)) {
3985 		mutex_unlock(&fs_info->scrub_lock);
3986 		return -ENOTCONN;
3987 	}
3988 
3989 	atomic_inc(&fs_info->scrub_cancel_req);
3990 	while (atomic_read(&fs_info->scrubs_running)) {
3991 		mutex_unlock(&fs_info->scrub_lock);
3992 		wait_event(fs_info->scrub_pause_wait,
3993 			   atomic_read(&fs_info->scrubs_running) == 0);
3994 		mutex_lock(&fs_info->scrub_lock);
3995 	}
3996 	atomic_dec(&fs_info->scrub_cancel_req);
3997 	mutex_unlock(&fs_info->scrub_lock);
3998 
3999 	return 0;
4000 }
4001 
4002 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4003 {
4004 	struct btrfs_fs_info *fs_info = dev->fs_info;
4005 	struct scrub_ctx *sctx;
4006 
4007 	mutex_lock(&fs_info->scrub_lock);
4008 	sctx = dev->scrub_ctx;
4009 	if (!sctx) {
4010 		mutex_unlock(&fs_info->scrub_lock);
4011 		return -ENOTCONN;
4012 	}
4013 	atomic_inc(&sctx->cancel_req);
4014 	while (dev->scrub_ctx) {
4015 		mutex_unlock(&fs_info->scrub_lock);
4016 		wait_event(fs_info->scrub_pause_wait,
4017 			   dev->scrub_ctx == NULL);
4018 		mutex_lock(&fs_info->scrub_lock);
4019 	}
4020 	mutex_unlock(&fs_info->scrub_lock);
4021 
4022 	return 0;
4023 }
4024 
4025 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4026 			 struct btrfs_scrub_progress *progress)
4027 {
4028 	struct btrfs_device *dev;
4029 	struct scrub_ctx *sctx = NULL;
4030 
4031 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4032 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4033 	if (dev)
4034 		sctx = dev->scrub_ctx;
4035 	if (sctx)
4036 		memcpy(progress, &sctx->stat, sizeof(*progress));
4037 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4038 
4039 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4040 }
4041 
4042 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4043 			       u64 extent_logical, u64 extent_len,
4044 			       u64 *extent_physical,
4045 			       struct btrfs_device **extent_dev,
4046 			       int *extent_mirror_num)
4047 {
4048 	u64 mapped_length;
4049 	struct btrfs_bio *bbio = NULL;
4050 	int ret;
4051 
4052 	mapped_length = extent_len;
4053 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4054 			      &mapped_length, &bbio, 0);
4055 	if (ret || !bbio || mapped_length < extent_len ||
4056 	    !bbio->stripes[0].dev->bdev) {
4057 		btrfs_put_bbio(bbio);
4058 		return;
4059 	}
4060 
4061 	*extent_physical = bbio->stripes[0].physical;
4062 	*extent_mirror_num = bbio->mirror_num;
4063 	*extent_dev = bbio->stripes[0].dev;
4064 	btrfs_put_bbio(bbio);
4065 }
4066