xref: /openbmc/linux/fs/btrfs/scrub.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	int			stripe_len;
144 
145 	atomic_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_fs_info	*fs_info;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	atomic_t                refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 				     struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 				struct scrub_block *sblock,
252 				int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 					     struct scrub_block *sblock_good);
256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 					    struct scrub_block *sblock_good,
258 					    int page_num, int force_write);
259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 					   int page_num);
262 static int scrub_checksum_data(struct scrub_block *sblock);
263 static int scrub_checksum_tree_block(struct scrub_block *sblock);
264 static int scrub_checksum_super(struct scrub_block *sblock);
265 static void scrub_block_get(struct scrub_block *sblock);
266 static void scrub_block_put(struct scrub_block *sblock);
267 static void scrub_page_get(struct scrub_page *spage);
268 static void scrub_page_put(struct scrub_page *spage);
269 static void scrub_parity_get(struct scrub_parity *sparity);
270 static void scrub_parity_put(struct scrub_parity *sparity);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 				    struct scrub_page *spage);
273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 		       u64 physical, struct btrfs_device *dev, u64 flags,
275 		       u64 gen, int mirror_num, u8 *csum, int force,
276 		       u64 physical_for_dev_replace);
277 static void scrub_bio_end_io(struct bio *bio);
278 static void scrub_bio_end_io_worker(struct btrfs_work *work);
279 static void scrub_block_complete(struct scrub_block *sblock);
280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 			       u64 extent_logical, u64 extent_len,
282 			       u64 *extent_physical,
283 			       struct btrfs_device **extent_dev,
284 			       int *extent_mirror_num);
285 static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
286 			      struct btrfs_device *dev,
287 			      int is_dev_replace);
288 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
289 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
290 				    struct scrub_page *spage);
291 static void scrub_wr_submit(struct scrub_ctx *sctx);
292 static void scrub_wr_bio_end_io(struct bio *bio);
293 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
294 static int write_page_nocow(struct scrub_ctx *sctx,
295 			    u64 physical_for_dev_replace, struct page *page);
296 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
297 				      struct scrub_copy_nocow_ctx *ctx);
298 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
299 			    int mirror_num, u64 physical_for_dev_replace);
300 static void copy_nocow_pages_worker(struct btrfs_work *work);
301 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
303 static void scrub_put_ctx(struct scrub_ctx *sctx);
304 
305 
306 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
307 {
308 	atomic_inc(&sctx->refs);
309 	atomic_inc(&sctx->bios_in_flight);
310 }
311 
312 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
313 {
314 	atomic_dec(&sctx->bios_in_flight);
315 	wake_up(&sctx->list_wait);
316 	scrub_put_ctx(sctx);
317 }
318 
319 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
320 {
321 	while (atomic_read(&fs_info->scrub_pause_req)) {
322 		mutex_unlock(&fs_info->scrub_lock);
323 		wait_event(fs_info->scrub_pause_wait,
324 		   atomic_read(&fs_info->scrub_pause_req) == 0);
325 		mutex_lock(&fs_info->scrub_lock);
326 	}
327 }
328 
329 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
330 {
331 	atomic_inc(&fs_info->scrubs_paused);
332 	wake_up(&fs_info->scrub_pause_wait);
333 }
334 
335 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
336 {
337 	mutex_lock(&fs_info->scrub_lock);
338 	__scrub_blocked_if_needed(fs_info);
339 	atomic_dec(&fs_info->scrubs_paused);
340 	mutex_unlock(&fs_info->scrub_lock);
341 
342 	wake_up(&fs_info->scrub_pause_wait);
343 }
344 
345 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
346 {
347 	scrub_pause_on(fs_info);
348 	scrub_pause_off(fs_info);
349 }
350 
351 /*
352  * used for workers that require transaction commits (i.e., for the
353  * NOCOW case)
354  */
355 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
356 {
357 	struct btrfs_fs_info *fs_info = sctx->fs_info;
358 
359 	atomic_inc(&sctx->refs);
360 	/*
361 	 * increment scrubs_running to prevent cancel requests from
362 	 * completing as long as a worker is running. we must also
363 	 * increment scrubs_paused to prevent deadlocking on pause
364 	 * requests used for transactions commits (as the worker uses a
365 	 * transaction context). it is safe to regard the worker
366 	 * as paused for all matters practical. effectively, we only
367 	 * avoid cancellation requests from completing.
368 	 */
369 	mutex_lock(&fs_info->scrub_lock);
370 	atomic_inc(&fs_info->scrubs_running);
371 	atomic_inc(&fs_info->scrubs_paused);
372 	mutex_unlock(&fs_info->scrub_lock);
373 
374 	/*
375 	 * check if @scrubs_running=@scrubs_paused condition
376 	 * inside wait_event() is not an atomic operation.
377 	 * which means we may inc/dec @scrub_running/paused
378 	 * at any time. Let's wake up @scrub_pause_wait as
379 	 * much as we can to let commit transaction blocked less.
380 	 */
381 	wake_up(&fs_info->scrub_pause_wait);
382 
383 	atomic_inc(&sctx->workers_pending);
384 }
385 
386 /* used for workers that require transaction commits */
387 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
388 {
389 	struct btrfs_fs_info *fs_info = sctx->fs_info;
390 
391 	/*
392 	 * see scrub_pending_trans_workers_inc() why we're pretending
393 	 * to be paused in the scrub counters
394 	 */
395 	mutex_lock(&fs_info->scrub_lock);
396 	atomic_dec(&fs_info->scrubs_running);
397 	atomic_dec(&fs_info->scrubs_paused);
398 	mutex_unlock(&fs_info->scrub_lock);
399 	atomic_dec(&sctx->workers_pending);
400 	wake_up(&fs_info->scrub_pause_wait);
401 	wake_up(&sctx->list_wait);
402 	scrub_put_ctx(sctx);
403 }
404 
405 static void scrub_free_csums(struct scrub_ctx *sctx)
406 {
407 	while (!list_empty(&sctx->csum_list)) {
408 		struct btrfs_ordered_sum *sum;
409 		sum = list_first_entry(&sctx->csum_list,
410 				       struct btrfs_ordered_sum, list);
411 		list_del(&sum->list);
412 		kfree(sum);
413 	}
414 }
415 
416 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
417 {
418 	int i;
419 
420 	if (!sctx)
421 		return;
422 
423 	scrub_free_wr_ctx(&sctx->wr_ctx);
424 
425 	/* this can happen when scrub is cancelled */
426 	if (sctx->curr != -1) {
427 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
428 
429 		for (i = 0; i < sbio->page_count; i++) {
430 			WARN_ON(!sbio->pagev[i]->page);
431 			scrub_block_put(sbio->pagev[i]->sblock);
432 		}
433 		bio_put(sbio->bio);
434 	}
435 
436 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
437 		struct scrub_bio *sbio = sctx->bios[i];
438 
439 		if (!sbio)
440 			break;
441 		kfree(sbio);
442 	}
443 
444 	scrub_free_csums(sctx);
445 	kfree(sctx);
446 }
447 
448 static void scrub_put_ctx(struct scrub_ctx *sctx)
449 {
450 	if (atomic_dec_and_test(&sctx->refs))
451 		scrub_free_ctx(sctx);
452 }
453 
454 static noinline_for_stack
455 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
456 {
457 	struct scrub_ctx *sctx;
458 	int		i;
459 	struct btrfs_fs_info *fs_info = dev->fs_info;
460 	int ret;
461 
462 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
463 	if (!sctx)
464 		goto nomem;
465 	atomic_set(&sctx->refs, 1);
466 	sctx->is_dev_replace = is_dev_replace;
467 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
468 	sctx->curr = -1;
469 	sctx->fs_info = dev->fs_info;
470 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
471 		struct scrub_bio *sbio;
472 
473 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
474 		if (!sbio)
475 			goto nomem;
476 		sctx->bios[i] = sbio;
477 
478 		sbio->index = i;
479 		sbio->sctx = sctx;
480 		sbio->page_count = 0;
481 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
482 				scrub_bio_end_io_worker, NULL, NULL);
483 
484 		if (i != SCRUB_BIOS_PER_SCTX - 1)
485 			sctx->bios[i]->next_free = i + 1;
486 		else
487 			sctx->bios[i]->next_free = -1;
488 	}
489 	sctx->first_free = 0;
490 	sctx->nodesize = fs_info->nodesize;
491 	sctx->sectorsize = fs_info->sectorsize;
492 	atomic_set(&sctx->bios_in_flight, 0);
493 	atomic_set(&sctx->workers_pending, 0);
494 	atomic_set(&sctx->cancel_req, 0);
495 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
496 	INIT_LIST_HEAD(&sctx->csum_list);
497 
498 	spin_lock_init(&sctx->list_lock);
499 	spin_lock_init(&sctx->stat_lock);
500 	init_waitqueue_head(&sctx->list_wait);
501 
502 	ret = scrub_setup_wr_ctx(&sctx->wr_ctx,
503 				 fs_info->dev_replace.tgtdev, is_dev_replace);
504 	if (ret) {
505 		scrub_free_ctx(sctx);
506 		return ERR_PTR(ret);
507 	}
508 	return sctx;
509 
510 nomem:
511 	scrub_free_ctx(sctx);
512 	return ERR_PTR(-ENOMEM);
513 }
514 
515 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
516 				     void *warn_ctx)
517 {
518 	u64 isize;
519 	u32 nlink;
520 	int ret;
521 	int i;
522 	struct extent_buffer *eb;
523 	struct btrfs_inode_item *inode_item;
524 	struct scrub_warning *swarn = warn_ctx;
525 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
526 	struct inode_fs_paths *ipath = NULL;
527 	struct btrfs_root *local_root;
528 	struct btrfs_key root_key;
529 	struct btrfs_key key;
530 
531 	root_key.objectid = root;
532 	root_key.type = BTRFS_ROOT_ITEM_KEY;
533 	root_key.offset = (u64)-1;
534 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
535 	if (IS_ERR(local_root)) {
536 		ret = PTR_ERR(local_root);
537 		goto err;
538 	}
539 
540 	/*
541 	 * this makes the path point to (inum INODE_ITEM ioff)
542 	 */
543 	key.objectid = inum;
544 	key.type = BTRFS_INODE_ITEM_KEY;
545 	key.offset = 0;
546 
547 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
548 	if (ret) {
549 		btrfs_release_path(swarn->path);
550 		goto err;
551 	}
552 
553 	eb = swarn->path->nodes[0];
554 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
555 					struct btrfs_inode_item);
556 	isize = btrfs_inode_size(eb, inode_item);
557 	nlink = btrfs_inode_nlink(eb, inode_item);
558 	btrfs_release_path(swarn->path);
559 
560 	ipath = init_ipath(4096, local_root, swarn->path);
561 	if (IS_ERR(ipath)) {
562 		ret = PTR_ERR(ipath);
563 		ipath = NULL;
564 		goto err;
565 	}
566 	ret = paths_from_inode(inum, ipath);
567 
568 	if (ret < 0)
569 		goto err;
570 
571 	/*
572 	 * we deliberately ignore the bit ipath might have been too small to
573 	 * hold all of the paths here
574 	 */
575 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
576 		btrfs_warn_in_rcu(fs_info,
577 				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
578 				  swarn->errstr, swarn->logical,
579 				  rcu_str_deref(swarn->dev->name),
580 				  (unsigned long long)swarn->sector,
581 				  root, inum, offset,
582 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
583 				  (char *)(unsigned long)ipath->fspath->val[i]);
584 
585 	free_ipath(ipath);
586 	return 0;
587 
588 err:
589 	btrfs_warn_in_rcu(fs_info,
590 			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
591 			  swarn->errstr, swarn->logical,
592 			  rcu_str_deref(swarn->dev->name),
593 			  (unsigned long long)swarn->sector,
594 			  root, inum, offset, ret);
595 
596 	free_ipath(ipath);
597 	return 0;
598 }
599 
600 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601 {
602 	struct btrfs_device *dev;
603 	struct btrfs_fs_info *fs_info;
604 	struct btrfs_path *path;
605 	struct btrfs_key found_key;
606 	struct extent_buffer *eb;
607 	struct btrfs_extent_item *ei;
608 	struct scrub_warning swarn;
609 	unsigned long ptr = 0;
610 	u64 extent_item_pos;
611 	u64 flags = 0;
612 	u64 ref_root;
613 	u32 item_size;
614 	u8 ref_level = 0;
615 	int ret;
616 
617 	WARN_ON(sblock->page_count < 1);
618 	dev = sblock->pagev[0]->dev;
619 	fs_info = sblock->sctx->fs_info;
620 
621 	path = btrfs_alloc_path();
622 	if (!path)
623 		return;
624 
625 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 	swarn.logical = sblock->pagev[0]->logical;
627 	swarn.errstr = errstr;
628 	swarn.dev = NULL;
629 
630 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 				  &flags);
632 	if (ret < 0)
633 		goto out;
634 
635 	extent_item_pos = swarn.logical - found_key.objectid;
636 	swarn.extent_item_size = found_key.offset;
637 
638 	eb = path->nodes[0];
639 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
641 
642 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643 		do {
644 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 						      item_size, &ref_root,
646 						      &ref_level);
647 			btrfs_warn_in_rcu(fs_info,
648 				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
649 				errstr, swarn.logical,
650 				rcu_str_deref(dev->name),
651 				(unsigned long long)swarn.sector,
652 				ref_level ? "node" : "leaf",
653 				ret < 0 ? -1 : ref_level,
654 				ret < 0 ? -1 : ref_root);
655 		} while (ret != 1);
656 		btrfs_release_path(path);
657 	} else {
658 		btrfs_release_path(path);
659 		swarn.path = path;
660 		swarn.dev = dev;
661 		iterate_extent_inodes(fs_info, found_key.objectid,
662 					extent_item_pos, 1,
663 					scrub_print_warning_inode, &swarn);
664 	}
665 
666 out:
667 	btrfs_free_path(path);
668 }
669 
670 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
671 {
672 	struct page *page = NULL;
673 	unsigned long index;
674 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
675 	int ret;
676 	int corrected = 0;
677 	struct btrfs_key key;
678 	struct inode *inode = NULL;
679 	struct btrfs_fs_info *fs_info;
680 	u64 end = offset + PAGE_SIZE - 1;
681 	struct btrfs_root *local_root;
682 	int srcu_index;
683 
684 	key.objectid = root;
685 	key.type = BTRFS_ROOT_ITEM_KEY;
686 	key.offset = (u64)-1;
687 
688 	fs_info = fixup->root->fs_info;
689 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
690 
691 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
692 	if (IS_ERR(local_root)) {
693 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
694 		return PTR_ERR(local_root);
695 	}
696 
697 	key.type = BTRFS_INODE_ITEM_KEY;
698 	key.objectid = inum;
699 	key.offset = 0;
700 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
701 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
702 	if (IS_ERR(inode))
703 		return PTR_ERR(inode);
704 
705 	index = offset >> PAGE_SHIFT;
706 
707 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
708 	if (!page) {
709 		ret = -ENOMEM;
710 		goto out;
711 	}
712 
713 	if (PageUptodate(page)) {
714 		if (PageDirty(page)) {
715 			/*
716 			 * we need to write the data to the defect sector. the
717 			 * data that was in that sector is not in memory,
718 			 * because the page was modified. we must not write the
719 			 * modified page to that sector.
720 			 *
721 			 * TODO: what could be done here: wait for the delalloc
722 			 *       runner to write out that page (might involve
723 			 *       COW) and see whether the sector is still
724 			 *       referenced afterwards.
725 			 *
726 			 * For the meantime, we'll treat this error
727 			 * incorrectable, although there is a chance that a
728 			 * later scrub will find the bad sector again and that
729 			 * there's no dirty page in memory, then.
730 			 */
731 			ret = -EIO;
732 			goto out;
733 		}
734 		ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE,
735 					fixup->logical, page,
736 					offset - page_offset(page),
737 					fixup->mirror_num);
738 		unlock_page(page);
739 		corrected = !ret;
740 	} else {
741 		/*
742 		 * we need to get good data first. the general readpage path
743 		 * will call repair_io_failure for us, we just have to make
744 		 * sure we read the bad mirror.
745 		 */
746 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
747 					EXTENT_DAMAGED);
748 		if (ret) {
749 			/* set_extent_bits should give proper error */
750 			WARN_ON(ret > 0);
751 			if (ret > 0)
752 				ret = -EFAULT;
753 			goto out;
754 		}
755 
756 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
757 						btrfs_get_extent,
758 						fixup->mirror_num);
759 		wait_on_page_locked(page);
760 
761 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
762 						end, EXTENT_DAMAGED, 0, NULL);
763 		if (!corrected)
764 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
765 						EXTENT_DAMAGED);
766 	}
767 
768 out:
769 	if (page)
770 		put_page(page);
771 
772 	iput(inode);
773 
774 	if (ret < 0)
775 		return ret;
776 
777 	if (ret == 0 && corrected) {
778 		/*
779 		 * we only need to call readpage for one of the inodes belonging
780 		 * to this extent. so make iterate_extent_inodes stop
781 		 */
782 		return 1;
783 	}
784 
785 	return -EIO;
786 }
787 
788 static void scrub_fixup_nodatasum(struct btrfs_work *work)
789 {
790 	struct btrfs_fs_info *fs_info;
791 	int ret;
792 	struct scrub_fixup_nodatasum *fixup;
793 	struct scrub_ctx *sctx;
794 	struct btrfs_trans_handle *trans = NULL;
795 	struct btrfs_path *path;
796 	int uncorrectable = 0;
797 
798 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799 	sctx = fixup->sctx;
800 	fs_info = fixup->root->fs_info;
801 
802 	path = btrfs_alloc_path();
803 	if (!path) {
804 		spin_lock(&sctx->stat_lock);
805 		++sctx->stat.malloc_errors;
806 		spin_unlock(&sctx->stat_lock);
807 		uncorrectable = 1;
808 		goto out;
809 	}
810 
811 	trans = btrfs_join_transaction(fixup->root);
812 	if (IS_ERR(trans)) {
813 		uncorrectable = 1;
814 		goto out;
815 	}
816 
817 	/*
818 	 * the idea is to trigger a regular read through the standard path. we
819 	 * read a page from the (failed) logical address by specifying the
820 	 * corresponding copynum of the failed sector. thus, that readpage is
821 	 * expected to fail.
822 	 * that is the point where on-the-fly error correction will kick in
823 	 * (once it's finished) and rewrite the failed sector if a good copy
824 	 * can be found.
825 	 */
826 	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
827 					  scrub_fixup_readpage, fixup);
828 	if (ret < 0) {
829 		uncorrectable = 1;
830 		goto out;
831 	}
832 	WARN_ON(ret != 1);
833 
834 	spin_lock(&sctx->stat_lock);
835 	++sctx->stat.corrected_errors;
836 	spin_unlock(&sctx->stat_lock);
837 
838 out:
839 	if (trans && !IS_ERR(trans))
840 		btrfs_end_transaction(trans);
841 	if (uncorrectable) {
842 		spin_lock(&sctx->stat_lock);
843 		++sctx->stat.uncorrectable_errors;
844 		spin_unlock(&sctx->stat_lock);
845 		btrfs_dev_replace_stats_inc(
846 			&fs_info->dev_replace.num_uncorrectable_read_errors);
847 		btrfs_err_rl_in_rcu(fs_info,
848 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
849 			fixup->logical, rcu_str_deref(fixup->dev->name));
850 	}
851 
852 	btrfs_free_path(path);
853 	kfree(fixup);
854 
855 	scrub_pending_trans_workers_dec(sctx);
856 }
857 
858 static inline void scrub_get_recover(struct scrub_recover *recover)
859 {
860 	atomic_inc(&recover->refs);
861 }
862 
863 static inline void scrub_put_recover(struct scrub_recover *recover)
864 {
865 	if (atomic_dec_and_test(&recover->refs)) {
866 		btrfs_put_bbio(recover->bbio);
867 		kfree(recover);
868 	}
869 }
870 
871 /*
872  * scrub_handle_errored_block gets called when either verification of the
873  * pages failed or the bio failed to read, e.g. with EIO. In the latter
874  * case, this function handles all pages in the bio, even though only one
875  * may be bad.
876  * The goal of this function is to repair the errored block by using the
877  * contents of one of the mirrors.
878  */
879 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
880 {
881 	struct scrub_ctx *sctx = sblock_to_check->sctx;
882 	struct btrfs_device *dev;
883 	struct btrfs_fs_info *fs_info;
884 	u64 length;
885 	u64 logical;
886 	unsigned int failed_mirror_index;
887 	unsigned int is_metadata;
888 	unsigned int have_csum;
889 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
890 	struct scrub_block *sblock_bad;
891 	int ret;
892 	int mirror_index;
893 	int page_num;
894 	int success;
895 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
896 				      DEFAULT_RATELIMIT_BURST);
897 
898 	BUG_ON(sblock_to_check->page_count < 1);
899 	fs_info = sctx->fs_info;
900 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
901 		/*
902 		 * if we find an error in a super block, we just report it.
903 		 * They will get written with the next transaction commit
904 		 * anyway
905 		 */
906 		spin_lock(&sctx->stat_lock);
907 		++sctx->stat.super_errors;
908 		spin_unlock(&sctx->stat_lock);
909 		return 0;
910 	}
911 	length = sblock_to_check->page_count * PAGE_SIZE;
912 	logical = sblock_to_check->pagev[0]->logical;
913 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
914 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
915 	is_metadata = !(sblock_to_check->pagev[0]->flags &
916 			BTRFS_EXTENT_FLAG_DATA);
917 	have_csum = sblock_to_check->pagev[0]->have_csum;
918 	dev = sblock_to_check->pagev[0]->dev;
919 
920 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
921 		sblocks_for_recheck = NULL;
922 		goto nodatasum_case;
923 	}
924 
925 	/*
926 	 * read all mirrors one after the other. This includes to
927 	 * re-read the extent or metadata block that failed (that was
928 	 * the cause that this fixup code is called) another time,
929 	 * page by page this time in order to know which pages
930 	 * caused I/O errors and which ones are good (for all mirrors).
931 	 * It is the goal to handle the situation when more than one
932 	 * mirror contains I/O errors, but the errors do not
933 	 * overlap, i.e. the data can be repaired by selecting the
934 	 * pages from those mirrors without I/O error on the
935 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
936 	 * would be that mirror #1 has an I/O error on the first page,
937 	 * the second page is good, and mirror #2 has an I/O error on
938 	 * the second page, but the first page is good.
939 	 * Then the first page of the first mirror can be repaired by
940 	 * taking the first page of the second mirror, and the
941 	 * second page of the second mirror can be repaired by
942 	 * copying the contents of the 2nd page of the 1st mirror.
943 	 * One more note: if the pages of one mirror contain I/O
944 	 * errors, the checksum cannot be verified. In order to get
945 	 * the best data for repairing, the first attempt is to find
946 	 * a mirror without I/O errors and with a validated checksum.
947 	 * Only if this is not possible, the pages are picked from
948 	 * mirrors with I/O errors without considering the checksum.
949 	 * If the latter is the case, at the end, the checksum of the
950 	 * repaired area is verified in order to correctly maintain
951 	 * the statistics.
952 	 */
953 
954 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
955 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
956 	if (!sblocks_for_recheck) {
957 		spin_lock(&sctx->stat_lock);
958 		sctx->stat.malloc_errors++;
959 		sctx->stat.read_errors++;
960 		sctx->stat.uncorrectable_errors++;
961 		spin_unlock(&sctx->stat_lock);
962 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
963 		goto out;
964 	}
965 
966 	/* setup the context, map the logical blocks and alloc the pages */
967 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
968 	if (ret) {
969 		spin_lock(&sctx->stat_lock);
970 		sctx->stat.read_errors++;
971 		sctx->stat.uncorrectable_errors++;
972 		spin_unlock(&sctx->stat_lock);
973 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
974 		goto out;
975 	}
976 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
977 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
978 
979 	/* build and submit the bios for the failed mirror, check checksums */
980 	scrub_recheck_block(fs_info, sblock_bad, 1);
981 
982 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
983 	    sblock_bad->no_io_error_seen) {
984 		/*
985 		 * the error disappeared after reading page by page, or
986 		 * the area was part of a huge bio and other parts of the
987 		 * bio caused I/O errors, or the block layer merged several
988 		 * read requests into one and the error is caused by a
989 		 * different bio (usually one of the two latter cases is
990 		 * the cause)
991 		 */
992 		spin_lock(&sctx->stat_lock);
993 		sctx->stat.unverified_errors++;
994 		sblock_to_check->data_corrected = 1;
995 		spin_unlock(&sctx->stat_lock);
996 
997 		if (sctx->is_dev_replace)
998 			scrub_write_block_to_dev_replace(sblock_bad);
999 		goto out;
1000 	}
1001 
1002 	if (!sblock_bad->no_io_error_seen) {
1003 		spin_lock(&sctx->stat_lock);
1004 		sctx->stat.read_errors++;
1005 		spin_unlock(&sctx->stat_lock);
1006 		if (__ratelimit(&_rs))
1007 			scrub_print_warning("i/o error", sblock_to_check);
1008 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1009 	} else if (sblock_bad->checksum_error) {
1010 		spin_lock(&sctx->stat_lock);
1011 		sctx->stat.csum_errors++;
1012 		spin_unlock(&sctx->stat_lock);
1013 		if (__ratelimit(&_rs))
1014 			scrub_print_warning("checksum error", sblock_to_check);
1015 		btrfs_dev_stat_inc_and_print(dev,
1016 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1017 	} else if (sblock_bad->header_error) {
1018 		spin_lock(&sctx->stat_lock);
1019 		sctx->stat.verify_errors++;
1020 		spin_unlock(&sctx->stat_lock);
1021 		if (__ratelimit(&_rs))
1022 			scrub_print_warning("checksum/header error",
1023 					    sblock_to_check);
1024 		if (sblock_bad->generation_error)
1025 			btrfs_dev_stat_inc_and_print(dev,
1026 				BTRFS_DEV_STAT_GENERATION_ERRS);
1027 		else
1028 			btrfs_dev_stat_inc_and_print(dev,
1029 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1030 	}
1031 
1032 	if (sctx->readonly) {
1033 		ASSERT(!sctx->is_dev_replace);
1034 		goto out;
1035 	}
1036 
1037 	if (!is_metadata && !have_csum) {
1038 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1039 
1040 		WARN_ON(sctx->is_dev_replace);
1041 
1042 nodatasum_case:
1043 
1044 		/*
1045 		 * !is_metadata and !have_csum, this means that the data
1046 		 * might not be COWed, that it might be modified
1047 		 * concurrently. The general strategy to work on the
1048 		 * commit root does not help in the case when COW is not
1049 		 * used.
1050 		 */
1051 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1052 		if (!fixup_nodatasum)
1053 			goto did_not_correct_error;
1054 		fixup_nodatasum->sctx = sctx;
1055 		fixup_nodatasum->dev = dev;
1056 		fixup_nodatasum->logical = logical;
1057 		fixup_nodatasum->root = fs_info->extent_root;
1058 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1059 		scrub_pending_trans_workers_inc(sctx);
1060 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1061 				scrub_fixup_nodatasum, NULL, NULL);
1062 		btrfs_queue_work(fs_info->scrub_workers,
1063 				 &fixup_nodatasum->work);
1064 		goto out;
1065 	}
1066 
1067 	/*
1068 	 * now build and submit the bios for the other mirrors, check
1069 	 * checksums.
1070 	 * First try to pick the mirror which is completely without I/O
1071 	 * errors and also does not have a checksum error.
1072 	 * If one is found, and if a checksum is present, the full block
1073 	 * that is known to contain an error is rewritten. Afterwards
1074 	 * the block is known to be corrected.
1075 	 * If a mirror is found which is completely correct, and no
1076 	 * checksum is present, only those pages are rewritten that had
1077 	 * an I/O error in the block to be repaired, since it cannot be
1078 	 * determined, which copy of the other pages is better (and it
1079 	 * could happen otherwise that a correct page would be
1080 	 * overwritten by a bad one).
1081 	 */
1082 	for (mirror_index = 0;
1083 	     mirror_index < BTRFS_MAX_MIRRORS &&
1084 	     sblocks_for_recheck[mirror_index].page_count > 0;
1085 	     mirror_index++) {
1086 		struct scrub_block *sblock_other;
1087 
1088 		if (mirror_index == failed_mirror_index)
1089 			continue;
1090 		sblock_other = sblocks_for_recheck + mirror_index;
1091 
1092 		/* build and submit the bios, check checksums */
1093 		scrub_recheck_block(fs_info, sblock_other, 0);
1094 
1095 		if (!sblock_other->header_error &&
1096 		    !sblock_other->checksum_error &&
1097 		    sblock_other->no_io_error_seen) {
1098 			if (sctx->is_dev_replace) {
1099 				scrub_write_block_to_dev_replace(sblock_other);
1100 				goto corrected_error;
1101 			} else {
1102 				ret = scrub_repair_block_from_good_copy(
1103 						sblock_bad, sblock_other);
1104 				if (!ret)
1105 					goto corrected_error;
1106 			}
1107 		}
1108 	}
1109 
1110 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1111 		goto did_not_correct_error;
1112 
1113 	/*
1114 	 * In case of I/O errors in the area that is supposed to be
1115 	 * repaired, continue by picking good copies of those pages.
1116 	 * Select the good pages from mirrors to rewrite bad pages from
1117 	 * the area to fix. Afterwards verify the checksum of the block
1118 	 * that is supposed to be repaired. This verification step is
1119 	 * only done for the purpose of statistic counting and for the
1120 	 * final scrub report, whether errors remain.
1121 	 * A perfect algorithm could make use of the checksum and try
1122 	 * all possible combinations of pages from the different mirrors
1123 	 * until the checksum verification succeeds. For example, when
1124 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1125 	 * of mirror #2 is readable but the final checksum test fails,
1126 	 * then the 2nd page of mirror #3 could be tried, whether now
1127 	 * the final checksum succeeds. But this would be a rare
1128 	 * exception and is therefore not implemented. At least it is
1129 	 * avoided that the good copy is overwritten.
1130 	 * A more useful improvement would be to pick the sectors
1131 	 * without I/O error based on sector sizes (512 bytes on legacy
1132 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1133 	 * mirror could be repaired by taking 512 byte of a different
1134 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1135 	 * area are unreadable.
1136 	 */
1137 	success = 1;
1138 	for (page_num = 0; page_num < sblock_bad->page_count;
1139 	     page_num++) {
1140 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1141 		struct scrub_block *sblock_other = NULL;
1142 
1143 		/* skip no-io-error page in scrub */
1144 		if (!page_bad->io_error && !sctx->is_dev_replace)
1145 			continue;
1146 
1147 		/* try to find no-io-error page in mirrors */
1148 		if (page_bad->io_error) {
1149 			for (mirror_index = 0;
1150 			     mirror_index < BTRFS_MAX_MIRRORS &&
1151 			     sblocks_for_recheck[mirror_index].page_count > 0;
1152 			     mirror_index++) {
1153 				if (!sblocks_for_recheck[mirror_index].
1154 				    pagev[page_num]->io_error) {
1155 					sblock_other = sblocks_for_recheck +
1156 						       mirror_index;
1157 					break;
1158 				}
1159 			}
1160 			if (!sblock_other)
1161 				success = 0;
1162 		}
1163 
1164 		if (sctx->is_dev_replace) {
1165 			/*
1166 			 * did not find a mirror to fetch the page
1167 			 * from. scrub_write_page_to_dev_replace()
1168 			 * handles this case (page->io_error), by
1169 			 * filling the block with zeros before
1170 			 * submitting the write request
1171 			 */
1172 			if (!sblock_other)
1173 				sblock_other = sblock_bad;
1174 
1175 			if (scrub_write_page_to_dev_replace(sblock_other,
1176 							    page_num) != 0) {
1177 				btrfs_dev_replace_stats_inc(
1178 					&fs_info->dev_replace.num_write_errors);
1179 				success = 0;
1180 			}
1181 		} else if (sblock_other) {
1182 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1183 							       sblock_other,
1184 							       page_num, 0);
1185 			if (0 == ret)
1186 				page_bad->io_error = 0;
1187 			else
1188 				success = 0;
1189 		}
1190 	}
1191 
1192 	if (success && !sctx->is_dev_replace) {
1193 		if (is_metadata || have_csum) {
1194 			/*
1195 			 * need to verify the checksum now that all
1196 			 * sectors on disk are repaired (the write
1197 			 * request for data to be repaired is on its way).
1198 			 * Just be lazy and use scrub_recheck_block()
1199 			 * which re-reads the data before the checksum
1200 			 * is verified, but most likely the data comes out
1201 			 * of the page cache.
1202 			 */
1203 			scrub_recheck_block(fs_info, sblock_bad, 1);
1204 			if (!sblock_bad->header_error &&
1205 			    !sblock_bad->checksum_error &&
1206 			    sblock_bad->no_io_error_seen)
1207 				goto corrected_error;
1208 			else
1209 				goto did_not_correct_error;
1210 		} else {
1211 corrected_error:
1212 			spin_lock(&sctx->stat_lock);
1213 			sctx->stat.corrected_errors++;
1214 			sblock_to_check->data_corrected = 1;
1215 			spin_unlock(&sctx->stat_lock);
1216 			btrfs_err_rl_in_rcu(fs_info,
1217 				"fixed up error at logical %llu on dev %s",
1218 				logical, rcu_str_deref(dev->name));
1219 		}
1220 	} else {
1221 did_not_correct_error:
1222 		spin_lock(&sctx->stat_lock);
1223 		sctx->stat.uncorrectable_errors++;
1224 		spin_unlock(&sctx->stat_lock);
1225 		btrfs_err_rl_in_rcu(fs_info,
1226 			"unable to fixup (regular) error at logical %llu on dev %s",
1227 			logical, rcu_str_deref(dev->name));
1228 	}
1229 
1230 out:
1231 	if (sblocks_for_recheck) {
1232 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1233 		     mirror_index++) {
1234 			struct scrub_block *sblock = sblocks_for_recheck +
1235 						     mirror_index;
1236 			struct scrub_recover *recover;
1237 			int page_index;
1238 
1239 			for (page_index = 0; page_index < sblock->page_count;
1240 			     page_index++) {
1241 				sblock->pagev[page_index]->sblock = NULL;
1242 				recover = sblock->pagev[page_index]->recover;
1243 				if (recover) {
1244 					scrub_put_recover(recover);
1245 					sblock->pagev[page_index]->recover =
1246 									NULL;
1247 				}
1248 				scrub_page_put(sblock->pagev[page_index]);
1249 			}
1250 		}
1251 		kfree(sblocks_for_recheck);
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1258 {
1259 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1260 		return 2;
1261 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1262 		return 3;
1263 	else
1264 		return (int)bbio->num_stripes;
1265 }
1266 
1267 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1268 						 u64 *raid_map,
1269 						 u64 mapped_length,
1270 						 int nstripes, int mirror,
1271 						 int *stripe_index,
1272 						 u64 *stripe_offset)
1273 {
1274 	int i;
1275 
1276 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1277 		/* RAID5/6 */
1278 		for (i = 0; i < nstripes; i++) {
1279 			if (raid_map[i] == RAID6_Q_STRIPE ||
1280 			    raid_map[i] == RAID5_P_STRIPE)
1281 				continue;
1282 
1283 			if (logical >= raid_map[i] &&
1284 			    logical < raid_map[i] + mapped_length)
1285 				break;
1286 		}
1287 
1288 		*stripe_index = i;
1289 		*stripe_offset = logical - raid_map[i];
1290 	} else {
1291 		/* The other RAID type */
1292 		*stripe_index = mirror;
1293 		*stripe_offset = 0;
1294 	}
1295 }
1296 
1297 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1298 				     struct scrub_block *sblocks_for_recheck)
1299 {
1300 	struct scrub_ctx *sctx = original_sblock->sctx;
1301 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1302 	u64 length = original_sblock->page_count * PAGE_SIZE;
1303 	u64 logical = original_sblock->pagev[0]->logical;
1304 	u64 generation = original_sblock->pagev[0]->generation;
1305 	u64 flags = original_sblock->pagev[0]->flags;
1306 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1307 	struct scrub_recover *recover;
1308 	struct btrfs_bio *bbio;
1309 	u64 sublen;
1310 	u64 mapped_length;
1311 	u64 stripe_offset;
1312 	int stripe_index;
1313 	int page_index = 0;
1314 	int mirror_index;
1315 	int nmirrors;
1316 	int ret;
1317 
1318 	/*
1319 	 * note: the two members refs and outstanding_pages
1320 	 * are not used (and not set) in the blocks that are used for
1321 	 * the recheck procedure
1322 	 */
1323 
1324 	while (length > 0) {
1325 		sublen = min_t(u64, length, PAGE_SIZE);
1326 		mapped_length = sublen;
1327 		bbio = NULL;
1328 
1329 		/*
1330 		 * with a length of PAGE_SIZE, each returned stripe
1331 		 * represents one mirror
1332 		 */
1333 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1334 				logical, &mapped_length, &bbio, 0, 1);
1335 		if (ret || !bbio || mapped_length < sublen) {
1336 			btrfs_put_bbio(bbio);
1337 			return -EIO;
1338 		}
1339 
1340 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1341 		if (!recover) {
1342 			btrfs_put_bbio(bbio);
1343 			return -ENOMEM;
1344 		}
1345 
1346 		atomic_set(&recover->refs, 1);
1347 		recover->bbio = bbio;
1348 		recover->map_length = mapped_length;
1349 
1350 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1351 
1352 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1353 
1354 		for (mirror_index = 0; mirror_index < nmirrors;
1355 		     mirror_index++) {
1356 			struct scrub_block *sblock;
1357 			struct scrub_page *page;
1358 
1359 			sblock = sblocks_for_recheck + mirror_index;
1360 			sblock->sctx = sctx;
1361 
1362 			page = kzalloc(sizeof(*page), GFP_NOFS);
1363 			if (!page) {
1364 leave_nomem:
1365 				spin_lock(&sctx->stat_lock);
1366 				sctx->stat.malloc_errors++;
1367 				spin_unlock(&sctx->stat_lock);
1368 				scrub_put_recover(recover);
1369 				return -ENOMEM;
1370 			}
1371 			scrub_page_get(page);
1372 			sblock->pagev[page_index] = page;
1373 			page->sblock = sblock;
1374 			page->flags = flags;
1375 			page->generation = generation;
1376 			page->logical = logical;
1377 			page->have_csum = have_csum;
1378 			if (have_csum)
1379 				memcpy(page->csum,
1380 				       original_sblock->pagev[0]->csum,
1381 				       sctx->csum_size);
1382 
1383 			scrub_stripe_index_and_offset(logical,
1384 						      bbio->map_type,
1385 						      bbio->raid_map,
1386 						      mapped_length,
1387 						      bbio->num_stripes -
1388 						      bbio->num_tgtdevs,
1389 						      mirror_index,
1390 						      &stripe_index,
1391 						      &stripe_offset);
1392 			page->physical = bbio->stripes[stripe_index].physical +
1393 					 stripe_offset;
1394 			page->dev = bbio->stripes[stripe_index].dev;
1395 
1396 			BUG_ON(page_index >= original_sblock->page_count);
1397 			page->physical_for_dev_replace =
1398 				original_sblock->pagev[page_index]->
1399 				physical_for_dev_replace;
1400 			/* for missing devices, dev->bdev is NULL */
1401 			page->mirror_num = mirror_index + 1;
1402 			sblock->page_count++;
1403 			page->page = alloc_page(GFP_NOFS);
1404 			if (!page->page)
1405 				goto leave_nomem;
1406 
1407 			scrub_get_recover(recover);
1408 			page->recover = recover;
1409 		}
1410 		scrub_put_recover(recover);
1411 		length -= sublen;
1412 		logical += sublen;
1413 		page_index++;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 struct scrub_bio_ret {
1420 	struct completion event;
1421 	int error;
1422 };
1423 
1424 static void scrub_bio_wait_endio(struct bio *bio)
1425 {
1426 	struct scrub_bio_ret *ret = bio->bi_private;
1427 
1428 	ret->error = bio->bi_error;
1429 	complete(&ret->event);
1430 }
1431 
1432 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1433 {
1434 	return page->recover &&
1435 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1436 }
1437 
1438 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1439 					struct bio *bio,
1440 					struct scrub_page *page)
1441 {
1442 	struct scrub_bio_ret done;
1443 	int ret;
1444 
1445 	init_completion(&done.event);
1446 	done.error = 0;
1447 	bio->bi_iter.bi_sector = page->logical >> 9;
1448 	bio->bi_private = &done;
1449 	bio->bi_end_io = scrub_bio_wait_endio;
1450 
1451 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1452 				    page->recover->map_length,
1453 				    page->mirror_num, 0);
1454 	if (ret)
1455 		return ret;
1456 
1457 	wait_for_completion(&done.event);
1458 	if (done.error)
1459 		return -EIO;
1460 
1461 	return 0;
1462 }
1463 
1464 /*
1465  * this function will check the on disk data for checksum errors, header
1466  * errors and read I/O errors. If any I/O errors happen, the exact pages
1467  * which are errored are marked as being bad. The goal is to enable scrub
1468  * to take those pages that are not errored from all the mirrors so that
1469  * the pages that are errored in the just handled mirror can be repaired.
1470  */
1471 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1472 				struct scrub_block *sblock,
1473 				int retry_failed_mirror)
1474 {
1475 	int page_num;
1476 
1477 	sblock->no_io_error_seen = 1;
1478 
1479 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1480 		struct bio *bio;
1481 		struct scrub_page *page = sblock->pagev[page_num];
1482 
1483 		if (page->dev->bdev == NULL) {
1484 			page->io_error = 1;
1485 			sblock->no_io_error_seen = 0;
1486 			continue;
1487 		}
1488 
1489 		WARN_ON(!page->page);
1490 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1491 		if (!bio) {
1492 			page->io_error = 1;
1493 			sblock->no_io_error_seen = 0;
1494 			continue;
1495 		}
1496 		bio->bi_bdev = page->dev->bdev;
1497 
1498 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1499 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1500 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1501 				sblock->no_io_error_seen = 0;
1502 		} else {
1503 			bio->bi_iter.bi_sector = page->physical >> 9;
1504 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1505 
1506 			if (btrfsic_submit_bio_wait(bio))
1507 				sblock->no_io_error_seen = 0;
1508 		}
1509 
1510 		bio_put(bio);
1511 	}
1512 
1513 	if (sblock->no_io_error_seen)
1514 		scrub_recheck_block_checksum(sblock);
1515 }
1516 
1517 static inline int scrub_check_fsid(u8 fsid[],
1518 				   struct scrub_page *spage)
1519 {
1520 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1521 	int ret;
1522 
1523 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1524 	return !ret;
1525 }
1526 
1527 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1528 {
1529 	sblock->header_error = 0;
1530 	sblock->checksum_error = 0;
1531 	sblock->generation_error = 0;
1532 
1533 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1534 		scrub_checksum_data(sblock);
1535 	else
1536 		scrub_checksum_tree_block(sblock);
1537 }
1538 
1539 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1540 					     struct scrub_block *sblock_good)
1541 {
1542 	int page_num;
1543 	int ret = 0;
1544 
1545 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1546 		int ret_sub;
1547 
1548 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1549 							   sblock_good,
1550 							   page_num, 1);
1551 		if (ret_sub)
1552 			ret = ret_sub;
1553 	}
1554 
1555 	return ret;
1556 }
1557 
1558 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1559 					    struct scrub_block *sblock_good,
1560 					    int page_num, int force_write)
1561 {
1562 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1563 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1564 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1565 
1566 	BUG_ON(page_bad->page == NULL);
1567 	BUG_ON(page_good->page == NULL);
1568 	if (force_write || sblock_bad->header_error ||
1569 	    sblock_bad->checksum_error || page_bad->io_error) {
1570 		struct bio *bio;
1571 		int ret;
1572 
1573 		if (!page_bad->dev->bdev) {
1574 			btrfs_warn_rl(fs_info,
1575 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1576 			return -EIO;
1577 		}
1578 
1579 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1580 		if (!bio)
1581 			return -EIO;
1582 		bio->bi_bdev = page_bad->dev->bdev;
1583 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1584 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1585 
1586 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1587 		if (PAGE_SIZE != ret) {
1588 			bio_put(bio);
1589 			return -EIO;
1590 		}
1591 
1592 		if (btrfsic_submit_bio_wait(bio)) {
1593 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1594 				BTRFS_DEV_STAT_WRITE_ERRS);
1595 			btrfs_dev_replace_stats_inc(
1596 				&fs_info->dev_replace.num_write_errors);
1597 			bio_put(bio);
1598 			return -EIO;
1599 		}
1600 		bio_put(bio);
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1607 {
1608 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1609 	int page_num;
1610 
1611 	/*
1612 	 * This block is used for the check of the parity on the source device,
1613 	 * so the data needn't be written into the destination device.
1614 	 */
1615 	if (sblock->sparity)
1616 		return;
1617 
1618 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1619 		int ret;
1620 
1621 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1622 		if (ret)
1623 			btrfs_dev_replace_stats_inc(
1624 				&fs_info->dev_replace.num_write_errors);
1625 	}
1626 }
1627 
1628 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1629 					   int page_num)
1630 {
1631 	struct scrub_page *spage = sblock->pagev[page_num];
1632 
1633 	BUG_ON(spage->page == NULL);
1634 	if (spage->io_error) {
1635 		void *mapped_buffer = kmap_atomic(spage->page);
1636 
1637 		memset(mapped_buffer, 0, PAGE_SIZE);
1638 		flush_dcache_page(spage->page);
1639 		kunmap_atomic(mapped_buffer);
1640 	}
1641 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1642 }
1643 
1644 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1645 				    struct scrub_page *spage)
1646 {
1647 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1648 	struct scrub_bio *sbio;
1649 	int ret;
1650 
1651 	mutex_lock(&wr_ctx->wr_lock);
1652 again:
1653 	if (!wr_ctx->wr_curr_bio) {
1654 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1655 					      GFP_KERNEL);
1656 		if (!wr_ctx->wr_curr_bio) {
1657 			mutex_unlock(&wr_ctx->wr_lock);
1658 			return -ENOMEM;
1659 		}
1660 		wr_ctx->wr_curr_bio->sctx = sctx;
1661 		wr_ctx->wr_curr_bio->page_count = 0;
1662 	}
1663 	sbio = wr_ctx->wr_curr_bio;
1664 	if (sbio->page_count == 0) {
1665 		struct bio *bio;
1666 
1667 		sbio->physical = spage->physical_for_dev_replace;
1668 		sbio->logical = spage->logical;
1669 		sbio->dev = wr_ctx->tgtdev;
1670 		bio = sbio->bio;
1671 		if (!bio) {
1672 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1673 					wr_ctx->pages_per_wr_bio);
1674 			if (!bio) {
1675 				mutex_unlock(&wr_ctx->wr_lock);
1676 				return -ENOMEM;
1677 			}
1678 			sbio->bio = bio;
1679 		}
1680 
1681 		bio->bi_private = sbio;
1682 		bio->bi_end_io = scrub_wr_bio_end_io;
1683 		bio->bi_bdev = sbio->dev->bdev;
1684 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1685 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1686 		sbio->err = 0;
1687 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1688 		   spage->physical_for_dev_replace ||
1689 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1690 		   spage->logical) {
1691 		scrub_wr_submit(sctx);
1692 		goto again;
1693 	}
1694 
1695 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1696 	if (ret != PAGE_SIZE) {
1697 		if (sbio->page_count < 1) {
1698 			bio_put(sbio->bio);
1699 			sbio->bio = NULL;
1700 			mutex_unlock(&wr_ctx->wr_lock);
1701 			return -EIO;
1702 		}
1703 		scrub_wr_submit(sctx);
1704 		goto again;
1705 	}
1706 
1707 	sbio->pagev[sbio->page_count] = spage;
1708 	scrub_page_get(spage);
1709 	sbio->page_count++;
1710 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1711 		scrub_wr_submit(sctx);
1712 	mutex_unlock(&wr_ctx->wr_lock);
1713 
1714 	return 0;
1715 }
1716 
1717 static void scrub_wr_submit(struct scrub_ctx *sctx)
1718 {
1719 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1720 	struct scrub_bio *sbio;
1721 
1722 	if (!wr_ctx->wr_curr_bio)
1723 		return;
1724 
1725 	sbio = wr_ctx->wr_curr_bio;
1726 	wr_ctx->wr_curr_bio = NULL;
1727 	WARN_ON(!sbio->bio->bi_bdev);
1728 	scrub_pending_bio_inc(sctx);
1729 	/* process all writes in a single worker thread. Then the block layer
1730 	 * orders the requests before sending them to the driver which
1731 	 * doubled the write performance on spinning disks when measured
1732 	 * with Linux 3.5 */
1733 	btrfsic_submit_bio(sbio->bio);
1734 }
1735 
1736 static void scrub_wr_bio_end_io(struct bio *bio)
1737 {
1738 	struct scrub_bio *sbio = bio->bi_private;
1739 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1740 
1741 	sbio->err = bio->bi_error;
1742 	sbio->bio = bio;
1743 
1744 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1745 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1746 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1747 }
1748 
1749 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1750 {
1751 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1752 	struct scrub_ctx *sctx = sbio->sctx;
1753 	int i;
1754 
1755 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1756 	if (sbio->err) {
1757 		struct btrfs_dev_replace *dev_replace =
1758 			&sbio->sctx->fs_info->dev_replace;
1759 
1760 		for (i = 0; i < sbio->page_count; i++) {
1761 			struct scrub_page *spage = sbio->pagev[i];
1762 
1763 			spage->io_error = 1;
1764 			btrfs_dev_replace_stats_inc(&dev_replace->
1765 						    num_write_errors);
1766 		}
1767 	}
1768 
1769 	for (i = 0; i < sbio->page_count; i++)
1770 		scrub_page_put(sbio->pagev[i]);
1771 
1772 	bio_put(sbio->bio);
1773 	kfree(sbio);
1774 	scrub_pending_bio_dec(sctx);
1775 }
1776 
1777 static int scrub_checksum(struct scrub_block *sblock)
1778 {
1779 	u64 flags;
1780 	int ret;
1781 
1782 	/*
1783 	 * No need to initialize these stats currently,
1784 	 * because this function only use return value
1785 	 * instead of these stats value.
1786 	 *
1787 	 * Todo:
1788 	 * always use stats
1789 	 */
1790 	sblock->header_error = 0;
1791 	sblock->generation_error = 0;
1792 	sblock->checksum_error = 0;
1793 
1794 	WARN_ON(sblock->page_count < 1);
1795 	flags = sblock->pagev[0]->flags;
1796 	ret = 0;
1797 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1798 		ret = scrub_checksum_data(sblock);
1799 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1800 		ret = scrub_checksum_tree_block(sblock);
1801 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1802 		(void)scrub_checksum_super(sblock);
1803 	else
1804 		WARN_ON(1);
1805 	if (ret)
1806 		scrub_handle_errored_block(sblock);
1807 
1808 	return ret;
1809 }
1810 
1811 static int scrub_checksum_data(struct scrub_block *sblock)
1812 {
1813 	struct scrub_ctx *sctx = sblock->sctx;
1814 	u8 csum[BTRFS_CSUM_SIZE];
1815 	u8 *on_disk_csum;
1816 	struct page *page;
1817 	void *buffer;
1818 	u32 crc = ~(u32)0;
1819 	u64 len;
1820 	int index;
1821 
1822 	BUG_ON(sblock->page_count < 1);
1823 	if (!sblock->pagev[0]->have_csum)
1824 		return 0;
1825 
1826 	on_disk_csum = sblock->pagev[0]->csum;
1827 	page = sblock->pagev[0]->page;
1828 	buffer = kmap_atomic(page);
1829 
1830 	len = sctx->sectorsize;
1831 	index = 0;
1832 	for (;;) {
1833 		u64 l = min_t(u64, len, PAGE_SIZE);
1834 
1835 		crc = btrfs_csum_data(buffer, crc, l);
1836 		kunmap_atomic(buffer);
1837 		len -= l;
1838 		if (len == 0)
1839 			break;
1840 		index++;
1841 		BUG_ON(index >= sblock->page_count);
1842 		BUG_ON(!sblock->pagev[index]->page);
1843 		page = sblock->pagev[index]->page;
1844 		buffer = kmap_atomic(page);
1845 	}
1846 
1847 	btrfs_csum_final(crc, csum);
1848 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1849 		sblock->checksum_error = 1;
1850 
1851 	return sblock->checksum_error;
1852 }
1853 
1854 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1855 {
1856 	struct scrub_ctx *sctx = sblock->sctx;
1857 	struct btrfs_header *h;
1858 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1859 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1860 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1861 	struct page *page;
1862 	void *mapped_buffer;
1863 	u64 mapped_size;
1864 	void *p;
1865 	u32 crc = ~(u32)0;
1866 	u64 len;
1867 	int index;
1868 
1869 	BUG_ON(sblock->page_count < 1);
1870 	page = sblock->pagev[0]->page;
1871 	mapped_buffer = kmap_atomic(page);
1872 	h = (struct btrfs_header *)mapped_buffer;
1873 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1874 
1875 	/*
1876 	 * we don't use the getter functions here, as we
1877 	 * a) don't have an extent buffer and
1878 	 * b) the page is already kmapped
1879 	 */
1880 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1881 		sblock->header_error = 1;
1882 
1883 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1884 		sblock->header_error = 1;
1885 		sblock->generation_error = 1;
1886 	}
1887 
1888 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1889 		sblock->header_error = 1;
1890 
1891 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1892 		   BTRFS_UUID_SIZE))
1893 		sblock->header_error = 1;
1894 
1895 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1896 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1897 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1898 	index = 0;
1899 	for (;;) {
1900 		u64 l = min_t(u64, len, mapped_size);
1901 
1902 		crc = btrfs_csum_data(p, crc, l);
1903 		kunmap_atomic(mapped_buffer);
1904 		len -= l;
1905 		if (len == 0)
1906 			break;
1907 		index++;
1908 		BUG_ON(index >= sblock->page_count);
1909 		BUG_ON(!sblock->pagev[index]->page);
1910 		page = sblock->pagev[index]->page;
1911 		mapped_buffer = kmap_atomic(page);
1912 		mapped_size = PAGE_SIZE;
1913 		p = mapped_buffer;
1914 	}
1915 
1916 	btrfs_csum_final(crc, calculated_csum);
1917 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1918 		sblock->checksum_error = 1;
1919 
1920 	return sblock->header_error || sblock->checksum_error;
1921 }
1922 
1923 static int scrub_checksum_super(struct scrub_block *sblock)
1924 {
1925 	struct btrfs_super_block *s;
1926 	struct scrub_ctx *sctx = sblock->sctx;
1927 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1928 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1929 	struct page *page;
1930 	void *mapped_buffer;
1931 	u64 mapped_size;
1932 	void *p;
1933 	u32 crc = ~(u32)0;
1934 	int fail_gen = 0;
1935 	int fail_cor = 0;
1936 	u64 len;
1937 	int index;
1938 
1939 	BUG_ON(sblock->page_count < 1);
1940 	page = sblock->pagev[0]->page;
1941 	mapped_buffer = kmap_atomic(page);
1942 	s = (struct btrfs_super_block *)mapped_buffer;
1943 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1944 
1945 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1946 		++fail_cor;
1947 
1948 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1949 		++fail_gen;
1950 
1951 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1952 		++fail_cor;
1953 
1954 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1955 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1956 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1957 	index = 0;
1958 	for (;;) {
1959 		u64 l = min_t(u64, len, mapped_size);
1960 
1961 		crc = btrfs_csum_data(p, crc, l);
1962 		kunmap_atomic(mapped_buffer);
1963 		len -= l;
1964 		if (len == 0)
1965 			break;
1966 		index++;
1967 		BUG_ON(index >= sblock->page_count);
1968 		BUG_ON(!sblock->pagev[index]->page);
1969 		page = sblock->pagev[index]->page;
1970 		mapped_buffer = kmap_atomic(page);
1971 		mapped_size = PAGE_SIZE;
1972 		p = mapped_buffer;
1973 	}
1974 
1975 	btrfs_csum_final(crc, calculated_csum);
1976 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1977 		++fail_cor;
1978 
1979 	if (fail_cor + fail_gen) {
1980 		/*
1981 		 * if we find an error in a super block, we just report it.
1982 		 * They will get written with the next transaction commit
1983 		 * anyway
1984 		 */
1985 		spin_lock(&sctx->stat_lock);
1986 		++sctx->stat.super_errors;
1987 		spin_unlock(&sctx->stat_lock);
1988 		if (fail_cor)
1989 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1990 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1991 		else
1992 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1993 				BTRFS_DEV_STAT_GENERATION_ERRS);
1994 	}
1995 
1996 	return fail_cor + fail_gen;
1997 }
1998 
1999 static void scrub_block_get(struct scrub_block *sblock)
2000 {
2001 	atomic_inc(&sblock->refs);
2002 }
2003 
2004 static void scrub_block_put(struct scrub_block *sblock)
2005 {
2006 	if (atomic_dec_and_test(&sblock->refs)) {
2007 		int i;
2008 
2009 		if (sblock->sparity)
2010 			scrub_parity_put(sblock->sparity);
2011 
2012 		for (i = 0; i < sblock->page_count; i++)
2013 			scrub_page_put(sblock->pagev[i]);
2014 		kfree(sblock);
2015 	}
2016 }
2017 
2018 static void scrub_page_get(struct scrub_page *spage)
2019 {
2020 	atomic_inc(&spage->refs);
2021 }
2022 
2023 static void scrub_page_put(struct scrub_page *spage)
2024 {
2025 	if (atomic_dec_and_test(&spage->refs)) {
2026 		if (spage->page)
2027 			__free_page(spage->page);
2028 		kfree(spage);
2029 	}
2030 }
2031 
2032 static void scrub_submit(struct scrub_ctx *sctx)
2033 {
2034 	struct scrub_bio *sbio;
2035 
2036 	if (sctx->curr == -1)
2037 		return;
2038 
2039 	sbio = sctx->bios[sctx->curr];
2040 	sctx->curr = -1;
2041 	scrub_pending_bio_inc(sctx);
2042 	btrfsic_submit_bio(sbio->bio);
2043 }
2044 
2045 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2046 				    struct scrub_page *spage)
2047 {
2048 	struct scrub_block *sblock = spage->sblock;
2049 	struct scrub_bio *sbio;
2050 	int ret;
2051 
2052 again:
2053 	/*
2054 	 * grab a fresh bio or wait for one to become available
2055 	 */
2056 	while (sctx->curr == -1) {
2057 		spin_lock(&sctx->list_lock);
2058 		sctx->curr = sctx->first_free;
2059 		if (sctx->curr != -1) {
2060 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2061 			sctx->bios[sctx->curr]->next_free = -1;
2062 			sctx->bios[sctx->curr]->page_count = 0;
2063 			spin_unlock(&sctx->list_lock);
2064 		} else {
2065 			spin_unlock(&sctx->list_lock);
2066 			wait_event(sctx->list_wait, sctx->first_free != -1);
2067 		}
2068 	}
2069 	sbio = sctx->bios[sctx->curr];
2070 	if (sbio->page_count == 0) {
2071 		struct bio *bio;
2072 
2073 		sbio->physical = spage->physical;
2074 		sbio->logical = spage->logical;
2075 		sbio->dev = spage->dev;
2076 		bio = sbio->bio;
2077 		if (!bio) {
2078 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2079 					sctx->pages_per_rd_bio);
2080 			if (!bio)
2081 				return -ENOMEM;
2082 			sbio->bio = bio;
2083 		}
2084 
2085 		bio->bi_private = sbio;
2086 		bio->bi_end_io = scrub_bio_end_io;
2087 		bio->bi_bdev = sbio->dev->bdev;
2088 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2089 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2090 		sbio->err = 0;
2091 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2092 		   spage->physical ||
2093 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2094 		   spage->logical ||
2095 		   sbio->dev != spage->dev) {
2096 		scrub_submit(sctx);
2097 		goto again;
2098 	}
2099 
2100 	sbio->pagev[sbio->page_count] = spage;
2101 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2102 	if (ret != PAGE_SIZE) {
2103 		if (sbio->page_count < 1) {
2104 			bio_put(sbio->bio);
2105 			sbio->bio = NULL;
2106 			return -EIO;
2107 		}
2108 		scrub_submit(sctx);
2109 		goto again;
2110 	}
2111 
2112 	scrub_block_get(sblock); /* one for the page added to the bio */
2113 	atomic_inc(&sblock->outstanding_pages);
2114 	sbio->page_count++;
2115 	if (sbio->page_count == sctx->pages_per_rd_bio)
2116 		scrub_submit(sctx);
2117 
2118 	return 0;
2119 }
2120 
2121 static void scrub_missing_raid56_end_io(struct bio *bio)
2122 {
2123 	struct scrub_block *sblock = bio->bi_private;
2124 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2125 
2126 	if (bio->bi_error)
2127 		sblock->no_io_error_seen = 0;
2128 
2129 	bio_put(bio);
2130 
2131 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2132 }
2133 
2134 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2135 {
2136 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2137 	struct scrub_ctx *sctx = sblock->sctx;
2138 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2139 	u64 logical;
2140 	struct btrfs_device *dev;
2141 
2142 	logical = sblock->pagev[0]->logical;
2143 	dev = sblock->pagev[0]->dev;
2144 
2145 	if (sblock->no_io_error_seen)
2146 		scrub_recheck_block_checksum(sblock);
2147 
2148 	if (!sblock->no_io_error_seen) {
2149 		spin_lock(&sctx->stat_lock);
2150 		sctx->stat.read_errors++;
2151 		spin_unlock(&sctx->stat_lock);
2152 		btrfs_err_rl_in_rcu(fs_info,
2153 			"IO error rebuilding logical %llu for dev %s",
2154 			logical, rcu_str_deref(dev->name));
2155 	} else if (sblock->header_error || sblock->checksum_error) {
2156 		spin_lock(&sctx->stat_lock);
2157 		sctx->stat.uncorrectable_errors++;
2158 		spin_unlock(&sctx->stat_lock);
2159 		btrfs_err_rl_in_rcu(fs_info,
2160 			"failed to rebuild valid logical %llu for dev %s",
2161 			logical, rcu_str_deref(dev->name));
2162 	} else {
2163 		scrub_write_block_to_dev_replace(sblock);
2164 	}
2165 
2166 	scrub_block_put(sblock);
2167 
2168 	if (sctx->is_dev_replace &&
2169 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2170 		mutex_lock(&sctx->wr_ctx.wr_lock);
2171 		scrub_wr_submit(sctx);
2172 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2173 	}
2174 
2175 	scrub_pending_bio_dec(sctx);
2176 }
2177 
2178 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2179 {
2180 	struct scrub_ctx *sctx = sblock->sctx;
2181 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2182 	u64 length = sblock->page_count * PAGE_SIZE;
2183 	u64 logical = sblock->pagev[0]->logical;
2184 	struct btrfs_bio *bbio = NULL;
2185 	struct bio *bio;
2186 	struct btrfs_raid_bio *rbio;
2187 	int ret;
2188 	int i;
2189 
2190 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2191 			&length, &bbio, 0, 1);
2192 	if (ret || !bbio || !bbio->raid_map)
2193 		goto bbio_out;
2194 
2195 	if (WARN_ON(!sctx->is_dev_replace ||
2196 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2197 		/*
2198 		 * We shouldn't be scrubbing a missing device. Even for dev
2199 		 * replace, we should only get here for RAID 5/6. We either
2200 		 * managed to mount something with no mirrors remaining or
2201 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2202 		 */
2203 		goto bbio_out;
2204 	}
2205 
2206 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2207 	if (!bio)
2208 		goto bbio_out;
2209 
2210 	bio->bi_iter.bi_sector = logical >> 9;
2211 	bio->bi_private = sblock;
2212 	bio->bi_end_io = scrub_missing_raid56_end_io;
2213 
2214 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2215 	if (!rbio)
2216 		goto rbio_out;
2217 
2218 	for (i = 0; i < sblock->page_count; i++) {
2219 		struct scrub_page *spage = sblock->pagev[i];
2220 
2221 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2222 	}
2223 
2224 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2225 			scrub_missing_raid56_worker, NULL, NULL);
2226 	scrub_block_get(sblock);
2227 	scrub_pending_bio_inc(sctx);
2228 	raid56_submit_missing_rbio(rbio);
2229 	return;
2230 
2231 rbio_out:
2232 	bio_put(bio);
2233 bbio_out:
2234 	btrfs_put_bbio(bbio);
2235 	spin_lock(&sctx->stat_lock);
2236 	sctx->stat.malloc_errors++;
2237 	spin_unlock(&sctx->stat_lock);
2238 }
2239 
2240 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2241 		       u64 physical, struct btrfs_device *dev, u64 flags,
2242 		       u64 gen, int mirror_num, u8 *csum, int force,
2243 		       u64 physical_for_dev_replace)
2244 {
2245 	struct scrub_block *sblock;
2246 	int index;
2247 
2248 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2249 	if (!sblock) {
2250 		spin_lock(&sctx->stat_lock);
2251 		sctx->stat.malloc_errors++;
2252 		spin_unlock(&sctx->stat_lock);
2253 		return -ENOMEM;
2254 	}
2255 
2256 	/* one ref inside this function, plus one for each page added to
2257 	 * a bio later on */
2258 	atomic_set(&sblock->refs, 1);
2259 	sblock->sctx = sctx;
2260 	sblock->no_io_error_seen = 1;
2261 
2262 	for (index = 0; len > 0; index++) {
2263 		struct scrub_page *spage;
2264 		u64 l = min_t(u64, len, PAGE_SIZE);
2265 
2266 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2267 		if (!spage) {
2268 leave_nomem:
2269 			spin_lock(&sctx->stat_lock);
2270 			sctx->stat.malloc_errors++;
2271 			spin_unlock(&sctx->stat_lock);
2272 			scrub_block_put(sblock);
2273 			return -ENOMEM;
2274 		}
2275 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2276 		scrub_page_get(spage);
2277 		sblock->pagev[index] = spage;
2278 		spage->sblock = sblock;
2279 		spage->dev = dev;
2280 		spage->flags = flags;
2281 		spage->generation = gen;
2282 		spage->logical = logical;
2283 		spage->physical = physical;
2284 		spage->physical_for_dev_replace = physical_for_dev_replace;
2285 		spage->mirror_num = mirror_num;
2286 		if (csum) {
2287 			spage->have_csum = 1;
2288 			memcpy(spage->csum, csum, sctx->csum_size);
2289 		} else {
2290 			spage->have_csum = 0;
2291 		}
2292 		sblock->page_count++;
2293 		spage->page = alloc_page(GFP_KERNEL);
2294 		if (!spage->page)
2295 			goto leave_nomem;
2296 		len -= l;
2297 		logical += l;
2298 		physical += l;
2299 		physical_for_dev_replace += l;
2300 	}
2301 
2302 	WARN_ON(sblock->page_count == 0);
2303 	if (dev->missing) {
2304 		/*
2305 		 * This case should only be hit for RAID 5/6 device replace. See
2306 		 * the comment in scrub_missing_raid56_pages() for details.
2307 		 */
2308 		scrub_missing_raid56_pages(sblock);
2309 	} else {
2310 		for (index = 0; index < sblock->page_count; index++) {
2311 			struct scrub_page *spage = sblock->pagev[index];
2312 			int ret;
2313 
2314 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2315 			if (ret) {
2316 				scrub_block_put(sblock);
2317 				return ret;
2318 			}
2319 		}
2320 
2321 		if (force)
2322 			scrub_submit(sctx);
2323 	}
2324 
2325 	/* last one frees, either here or in bio completion for last page */
2326 	scrub_block_put(sblock);
2327 	return 0;
2328 }
2329 
2330 static void scrub_bio_end_io(struct bio *bio)
2331 {
2332 	struct scrub_bio *sbio = bio->bi_private;
2333 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2334 
2335 	sbio->err = bio->bi_error;
2336 	sbio->bio = bio;
2337 
2338 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2339 }
2340 
2341 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2342 {
2343 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2344 	struct scrub_ctx *sctx = sbio->sctx;
2345 	int i;
2346 
2347 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2348 	if (sbio->err) {
2349 		for (i = 0; i < sbio->page_count; i++) {
2350 			struct scrub_page *spage = sbio->pagev[i];
2351 
2352 			spage->io_error = 1;
2353 			spage->sblock->no_io_error_seen = 0;
2354 		}
2355 	}
2356 
2357 	/* now complete the scrub_block items that have all pages completed */
2358 	for (i = 0; i < sbio->page_count; i++) {
2359 		struct scrub_page *spage = sbio->pagev[i];
2360 		struct scrub_block *sblock = spage->sblock;
2361 
2362 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2363 			scrub_block_complete(sblock);
2364 		scrub_block_put(sblock);
2365 	}
2366 
2367 	bio_put(sbio->bio);
2368 	sbio->bio = NULL;
2369 	spin_lock(&sctx->list_lock);
2370 	sbio->next_free = sctx->first_free;
2371 	sctx->first_free = sbio->index;
2372 	spin_unlock(&sctx->list_lock);
2373 
2374 	if (sctx->is_dev_replace &&
2375 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2376 		mutex_lock(&sctx->wr_ctx.wr_lock);
2377 		scrub_wr_submit(sctx);
2378 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2379 	}
2380 
2381 	scrub_pending_bio_dec(sctx);
2382 }
2383 
2384 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2385 				       unsigned long *bitmap,
2386 				       u64 start, u64 len)
2387 {
2388 	u32 offset;
2389 	int nsectors;
2390 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2391 
2392 	if (len >= sparity->stripe_len) {
2393 		bitmap_set(bitmap, 0, sparity->nsectors);
2394 		return;
2395 	}
2396 
2397 	start -= sparity->logic_start;
2398 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2399 	offset /= sectorsize;
2400 	nsectors = (int)len / sectorsize;
2401 
2402 	if (offset + nsectors <= sparity->nsectors) {
2403 		bitmap_set(bitmap, offset, nsectors);
2404 		return;
2405 	}
2406 
2407 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2408 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2409 }
2410 
2411 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2412 						   u64 start, u64 len)
2413 {
2414 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2415 }
2416 
2417 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2418 						  u64 start, u64 len)
2419 {
2420 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2421 }
2422 
2423 static void scrub_block_complete(struct scrub_block *sblock)
2424 {
2425 	int corrupted = 0;
2426 
2427 	if (!sblock->no_io_error_seen) {
2428 		corrupted = 1;
2429 		scrub_handle_errored_block(sblock);
2430 	} else {
2431 		/*
2432 		 * if has checksum error, write via repair mechanism in
2433 		 * dev replace case, otherwise write here in dev replace
2434 		 * case.
2435 		 */
2436 		corrupted = scrub_checksum(sblock);
2437 		if (!corrupted && sblock->sctx->is_dev_replace)
2438 			scrub_write_block_to_dev_replace(sblock);
2439 	}
2440 
2441 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2442 		u64 start = sblock->pagev[0]->logical;
2443 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2444 			  PAGE_SIZE;
2445 
2446 		scrub_parity_mark_sectors_error(sblock->sparity,
2447 						start, end - start);
2448 	}
2449 }
2450 
2451 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2452 {
2453 	struct btrfs_ordered_sum *sum = NULL;
2454 	unsigned long index;
2455 	unsigned long num_sectors;
2456 
2457 	while (!list_empty(&sctx->csum_list)) {
2458 		sum = list_first_entry(&sctx->csum_list,
2459 				       struct btrfs_ordered_sum, list);
2460 		if (sum->bytenr > logical)
2461 			return 0;
2462 		if (sum->bytenr + sum->len > logical)
2463 			break;
2464 
2465 		++sctx->stat.csum_discards;
2466 		list_del(&sum->list);
2467 		kfree(sum);
2468 		sum = NULL;
2469 	}
2470 	if (!sum)
2471 		return 0;
2472 
2473 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2474 	num_sectors = sum->len / sctx->sectorsize;
2475 	memcpy(csum, sum->sums + index, sctx->csum_size);
2476 	if (index == num_sectors - 1) {
2477 		list_del(&sum->list);
2478 		kfree(sum);
2479 	}
2480 	return 1;
2481 }
2482 
2483 /* scrub extent tries to collect up to 64 kB for each bio */
2484 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2485 			u64 physical, struct btrfs_device *dev, u64 flags,
2486 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2487 {
2488 	int ret;
2489 	u8 csum[BTRFS_CSUM_SIZE];
2490 	u32 blocksize;
2491 
2492 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2493 		blocksize = sctx->sectorsize;
2494 		spin_lock(&sctx->stat_lock);
2495 		sctx->stat.data_extents_scrubbed++;
2496 		sctx->stat.data_bytes_scrubbed += len;
2497 		spin_unlock(&sctx->stat_lock);
2498 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2499 		blocksize = sctx->nodesize;
2500 		spin_lock(&sctx->stat_lock);
2501 		sctx->stat.tree_extents_scrubbed++;
2502 		sctx->stat.tree_bytes_scrubbed += len;
2503 		spin_unlock(&sctx->stat_lock);
2504 	} else {
2505 		blocksize = sctx->sectorsize;
2506 		WARN_ON(1);
2507 	}
2508 
2509 	while (len) {
2510 		u64 l = min_t(u64, len, blocksize);
2511 		int have_csum = 0;
2512 
2513 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2514 			/* push csums to sbio */
2515 			have_csum = scrub_find_csum(sctx, logical, csum);
2516 			if (have_csum == 0)
2517 				++sctx->stat.no_csum;
2518 			if (sctx->is_dev_replace && !have_csum) {
2519 				ret = copy_nocow_pages(sctx, logical, l,
2520 						       mirror_num,
2521 						      physical_for_dev_replace);
2522 				goto behind_scrub_pages;
2523 			}
2524 		}
2525 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2526 				  mirror_num, have_csum ? csum : NULL, 0,
2527 				  physical_for_dev_replace);
2528 behind_scrub_pages:
2529 		if (ret)
2530 			return ret;
2531 		len -= l;
2532 		logical += l;
2533 		physical += l;
2534 		physical_for_dev_replace += l;
2535 	}
2536 	return 0;
2537 }
2538 
2539 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2540 				  u64 logical, u64 len,
2541 				  u64 physical, struct btrfs_device *dev,
2542 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2543 {
2544 	struct scrub_ctx *sctx = sparity->sctx;
2545 	struct scrub_block *sblock;
2546 	int index;
2547 
2548 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2549 	if (!sblock) {
2550 		spin_lock(&sctx->stat_lock);
2551 		sctx->stat.malloc_errors++;
2552 		spin_unlock(&sctx->stat_lock);
2553 		return -ENOMEM;
2554 	}
2555 
2556 	/* one ref inside this function, plus one for each page added to
2557 	 * a bio later on */
2558 	atomic_set(&sblock->refs, 1);
2559 	sblock->sctx = sctx;
2560 	sblock->no_io_error_seen = 1;
2561 	sblock->sparity = sparity;
2562 	scrub_parity_get(sparity);
2563 
2564 	for (index = 0; len > 0; index++) {
2565 		struct scrub_page *spage;
2566 		u64 l = min_t(u64, len, PAGE_SIZE);
2567 
2568 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2569 		if (!spage) {
2570 leave_nomem:
2571 			spin_lock(&sctx->stat_lock);
2572 			sctx->stat.malloc_errors++;
2573 			spin_unlock(&sctx->stat_lock);
2574 			scrub_block_put(sblock);
2575 			return -ENOMEM;
2576 		}
2577 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2578 		/* For scrub block */
2579 		scrub_page_get(spage);
2580 		sblock->pagev[index] = spage;
2581 		/* For scrub parity */
2582 		scrub_page_get(spage);
2583 		list_add_tail(&spage->list, &sparity->spages);
2584 		spage->sblock = sblock;
2585 		spage->dev = dev;
2586 		spage->flags = flags;
2587 		spage->generation = gen;
2588 		spage->logical = logical;
2589 		spage->physical = physical;
2590 		spage->mirror_num = mirror_num;
2591 		if (csum) {
2592 			spage->have_csum = 1;
2593 			memcpy(spage->csum, csum, sctx->csum_size);
2594 		} else {
2595 			spage->have_csum = 0;
2596 		}
2597 		sblock->page_count++;
2598 		spage->page = alloc_page(GFP_KERNEL);
2599 		if (!spage->page)
2600 			goto leave_nomem;
2601 		len -= l;
2602 		logical += l;
2603 		physical += l;
2604 	}
2605 
2606 	WARN_ON(sblock->page_count == 0);
2607 	for (index = 0; index < sblock->page_count; index++) {
2608 		struct scrub_page *spage = sblock->pagev[index];
2609 		int ret;
2610 
2611 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2612 		if (ret) {
2613 			scrub_block_put(sblock);
2614 			return ret;
2615 		}
2616 	}
2617 
2618 	/* last one frees, either here or in bio completion for last page */
2619 	scrub_block_put(sblock);
2620 	return 0;
2621 }
2622 
2623 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2624 				   u64 logical, u64 len,
2625 				   u64 physical, struct btrfs_device *dev,
2626 				   u64 flags, u64 gen, int mirror_num)
2627 {
2628 	struct scrub_ctx *sctx = sparity->sctx;
2629 	int ret;
2630 	u8 csum[BTRFS_CSUM_SIZE];
2631 	u32 blocksize;
2632 
2633 	if (dev->missing) {
2634 		scrub_parity_mark_sectors_error(sparity, logical, len);
2635 		return 0;
2636 	}
2637 
2638 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2639 		blocksize = sctx->sectorsize;
2640 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2641 		blocksize = sctx->nodesize;
2642 	} else {
2643 		blocksize = sctx->sectorsize;
2644 		WARN_ON(1);
2645 	}
2646 
2647 	while (len) {
2648 		u64 l = min_t(u64, len, blocksize);
2649 		int have_csum = 0;
2650 
2651 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2652 			/* push csums to sbio */
2653 			have_csum = scrub_find_csum(sctx, logical, csum);
2654 			if (have_csum == 0)
2655 				goto skip;
2656 		}
2657 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2658 					     flags, gen, mirror_num,
2659 					     have_csum ? csum : NULL);
2660 		if (ret)
2661 			return ret;
2662 skip:
2663 		len -= l;
2664 		logical += l;
2665 		physical += l;
2666 	}
2667 	return 0;
2668 }
2669 
2670 /*
2671  * Given a physical address, this will calculate it's
2672  * logical offset. if this is a parity stripe, it will return
2673  * the most left data stripe's logical offset.
2674  *
2675  * return 0 if it is a data stripe, 1 means parity stripe.
2676  */
2677 static int get_raid56_logic_offset(u64 physical, int num,
2678 				   struct map_lookup *map, u64 *offset,
2679 				   u64 *stripe_start)
2680 {
2681 	int i;
2682 	int j = 0;
2683 	u64 stripe_nr;
2684 	u64 last_offset;
2685 	u32 stripe_index;
2686 	u32 rot;
2687 
2688 	last_offset = (physical - map->stripes[num].physical) *
2689 		      nr_data_stripes(map);
2690 	if (stripe_start)
2691 		*stripe_start = last_offset;
2692 
2693 	*offset = last_offset;
2694 	for (i = 0; i < nr_data_stripes(map); i++) {
2695 		*offset = last_offset + i * map->stripe_len;
2696 
2697 		stripe_nr = div_u64(*offset, map->stripe_len);
2698 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2699 
2700 		/* Work out the disk rotation on this stripe-set */
2701 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2702 		/* calculate which stripe this data locates */
2703 		rot += i;
2704 		stripe_index = rot % map->num_stripes;
2705 		if (stripe_index == num)
2706 			return 0;
2707 		if (stripe_index < num)
2708 			j++;
2709 	}
2710 	*offset = last_offset + j * map->stripe_len;
2711 	return 1;
2712 }
2713 
2714 static void scrub_free_parity(struct scrub_parity *sparity)
2715 {
2716 	struct scrub_ctx *sctx = sparity->sctx;
2717 	struct scrub_page *curr, *next;
2718 	int nbits;
2719 
2720 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2721 	if (nbits) {
2722 		spin_lock(&sctx->stat_lock);
2723 		sctx->stat.read_errors += nbits;
2724 		sctx->stat.uncorrectable_errors += nbits;
2725 		spin_unlock(&sctx->stat_lock);
2726 	}
2727 
2728 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2729 		list_del_init(&curr->list);
2730 		scrub_page_put(curr);
2731 	}
2732 
2733 	kfree(sparity);
2734 }
2735 
2736 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2737 {
2738 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2739 						    work);
2740 	struct scrub_ctx *sctx = sparity->sctx;
2741 
2742 	scrub_free_parity(sparity);
2743 	scrub_pending_bio_dec(sctx);
2744 }
2745 
2746 static void scrub_parity_bio_endio(struct bio *bio)
2747 {
2748 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2749 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2750 
2751 	if (bio->bi_error)
2752 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2753 			  sparity->nsectors);
2754 
2755 	bio_put(bio);
2756 
2757 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2758 			scrub_parity_bio_endio_worker, NULL, NULL);
2759 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2760 }
2761 
2762 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2763 {
2764 	struct scrub_ctx *sctx = sparity->sctx;
2765 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2766 	struct bio *bio;
2767 	struct btrfs_raid_bio *rbio;
2768 	struct scrub_page *spage;
2769 	struct btrfs_bio *bbio = NULL;
2770 	u64 length;
2771 	int ret;
2772 
2773 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2774 			   sparity->nsectors))
2775 		goto out;
2776 
2777 	length = sparity->logic_end - sparity->logic_start;
2778 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2779 			       &length, &bbio, 0, 1);
2780 	if (ret || !bbio || !bbio->raid_map)
2781 		goto bbio_out;
2782 
2783 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2784 	if (!bio)
2785 		goto bbio_out;
2786 
2787 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2788 	bio->bi_private = sparity;
2789 	bio->bi_end_io = scrub_parity_bio_endio;
2790 
2791 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2792 					      length, sparity->scrub_dev,
2793 					      sparity->dbitmap,
2794 					      sparity->nsectors);
2795 	if (!rbio)
2796 		goto rbio_out;
2797 
2798 	list_for_each_entry(spage, &sparity->spages, list)
2799 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2800 
2801 	scrub_pending_bio_inc(sctx);
2802 	raid56_parity_submit_scrub_rbio(rbio);
2803 	return;
2804 
2805 rbio_out:
2806 	bio_put(bio);
2807 bbio_out:
2808 	btrfs_put_bbio(bbio);
2809 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2810 		  sparity->nsectors);
2811 	spin_lock(&sctx->stat_lock);
2812 	sctx->stat.malloc_errors++;
2813 	spin_unlock(&sctx->stat_lock);
2814 out:
2815 	scrub_free_parity(sparity);
2816 }
2817 
2818 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2819 {
2820 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2821 }
2822 
2823 static void scrub_parity_get(struct scrub_parity *sparity)
2824 {
2825 	atomic_inc(&sparity->refs);
2826 }
2827 
2828 static void scrub_parity_put(struct scrub_parity *sparity)
2829 {
2830 	if (!atomic_dec_and_test(&sparity->refs))
2831 		return;
2832 
2833 	scrub_parity_check_and_repair(sparity);
2834 }
2835 
2836 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2837 						  struct map_lookup *map,
2838 						  struct btrfs_device *sdev,
2839 						  struct btrfs_path *path,
2840 						  u64 logic_start,
2841 						  u64 logic_end)
2842 {
2843 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2844 	struct btrfs_root *root = fs_info->extent_root;
2845 	struct btrfs_root *csum_root = fs_info->csum_root;
2846 	struct btrfs_extent_item *extent;
2847 	struct btrfs_bio *bbio = NULL;
2848 	u64 flags;
2849 	int ret;
2850 	int slot;
2851 	struct extent_buffer *l;
2852 	struct btrfs_key key;
2853 	u64 generation;
2854 	u64 extent_logical;
2855 	u64 extent_physical;
2856 	u64 extent_len;
2857 	u64 mapped_length;
2858 	struct btrfs_device *extent_dev;
2859 	struct scrub_parity *sparity;
2860 	int nsectors;
2861 	int bitmap_len;
2862 	int extent_mirror_num;
2863 	int stop_loop = 0;
2864 
2865 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2866 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2867 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2868 			  GFP_NOFS);
2869 	if (!sparity) {
2870 		spin_lock(&sctx->stat_lock);
2871 		sctx->stat.malloc_errors++;
2872 		spin_unlock(&sctx->stat_lock);
2873 		return -ENOMEM;
2874 	}
2875 
2876 	sparity->stripe_len = map->stripe_len;
2877 	sparity->nsectors = nsectors;
2878 	sparity->sctx = sctx;
2879 	sparity->scrub_dev = sdev;
2880 	sparity->logic_start = logic_start;
2881 	sparity->logic_end = logic_end;
2882 	atomic_set(&sparity->refs, 1);
2883 	INIT_LIST_HEAD(&sparity->spages);
2884 	sparity->dbitmap = sparity->bitmap;
2885 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2886 
2887 	ret = 0;
2888 	while (logic_start < logic_end) {
2889 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2890 			key.type = BTRFS_METADATA_ITEM_KEY;
2891 		else
2892 			key.type = BTRFS_EXTENT_ITEM_KEY;
2893 		key.objectid = logic_start;
2894 		key.offset = (u64)-1;
2895 
2896 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 		if (ret < 0)
2898 			goto out;
2899 
2900 		if (ret > 0) {
2901 			ret = btrfs_previous_extent_item(root, path, 0);
2902 			if (ret < 0)
2903 				goto out;
2904 			if (ret > 0) {
2905 				btrfs_release_path(path);
2906 				ret = btrfs_search_slot(NULL, root, &key,
2907 							path, 0, 0);
2908 				if (ret < 0)
2909 					goto out;
2910 			}
2911 		}
2912 
2913 		stop_loop = 0;
2914 		while (1) {
2915 			u64 bytes;
2916 
2917 			l = path->nodes[0];
2918 			slot = path->slots[0];
2919 			if (slot >= btrfs_header_nritems(l)) {
2920 				ret = btrfs_next_leaf(root, path);
2921 				if (ret == 0)
2922 					continue;
2923 				if (ret < 0)
2924 					goto out;
2925 
2926 				stop_loop = 1;
2927 				break;
2928 			}
2929 			btrfs_item_key_to_cpu(l, &key, slot);
2930 
2931 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2932 			    key.type != BTRFS_METADATA_ITEM_KEY)
2933 				goto next;
2934 
2935 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2936 				bytes = fs_info->nodesize;
2937 			else
2938 				bytes = key.offset;
2939 
2940 			if (key.objectid + bytes <= logic_start)
2941 				goto next;
2942 
2943 			if (key.objectid >= logic_end) {
2944 				stop_loop = 1;
2945 				break;
2946 			}
2947 
2948 			while (key.objectid >= logic_start + map->stripe_len)
2949 				logic_start += map->stripe_len;
2950 
2951 			extent = btrfs_item_ptr(l, slot,
2952 						struct btrfs_extent_item);
2953 			flags = btrfs_extent_flags(l, extent);
2954 			generation = btrfs_extent_generation(l, extent);
2955 
2956 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2957 			    (key.objectid < logic_start ||
2958 			     key.objectid + bytes >
2959 			     logic_start + map->stripe_len)) {
2960 				btrfs_err(fs_info,
2961 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2962 					  key.objectid, logic_start);
2963 				spin_lock(&sctx->stat_lock);
2964 				sctx->stat.uncorrectable_errors++;
2965 				spin_unlock(&sctx->stat_lock);
2966 				goto next;
2967 			}
2968 again:
2969 			extent_logical = key.objectid;
2970 			extent_len = bytes;
2971 
2972 			if (extent_logical < logic_start) {
2973 				extent_len -= logic_start - extent_logical;
2974 				extent_logical = logic_start;
2975 			}
2976 
2977 			if (extent_logical + extent_len >
2978 			    logic_start + map->stripe_len)
2979 				extent_len = logic_start + map->stripe_len -
2980 					     extent_logical;
2981 
2982 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2983 						       extent_len);
2984 
2985 			mapped_length = extent_len;
2986 			bbio = NULL;
2987 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2988 					extent_logical, &mapped_length, &bbio,
2989 					0);
2990 			if (!ret) {
2991 				if (!bbio || mapped_length < extent_len)
2992 					ret = -EIO;
2993 			}
2994 			if (ret) {
2995 				btrfs_put_bbio(bbio);
2996 				goto out;
2997 			}
2998 			extent_physical = bbio->stripes[0].physical;
2999 			extent_mirror_num = bbio->mirror_num;
3000 			extent_dev = bbio->stripes[0].dev;
3001 			btrfs_put_bbio(bbio);
3002 
3003 			ret = btrfs_lookup_csums_range(csum_root,
3004 						extent_logical,
3005 						extent_logical + extent_len - 1,
3006 						&sctx->csum_list, 1);
3007 			if (ret)
3008 				goto out;
3009 
3010 			ret = scrub_extent_for_parity(sparity, extent_logical,
3011 						      extent_len,
3012 						      extent_physical,
3013 						      extent_dev, flags,
3014 						      generation,
3015 						      extent_mirror_num);
3016 
3017 			scrub_free_csums(sctx);
3018 
3019 			if (ret)
3020 				goto out;
3021 
3022 			if (extent_logical + extent_len <
3023 			    key.objectid + bytes) {
3024 				logic_start += map->stripe_len;
3025 
3026 				if (logic_start >= logic_end) {
3027 					stop_loop = 1;
3028 					break;
3029 				}
3030 
3031 				if (logic_start < key.objectid + bytes) {
3032 					cond_resched();
3033 					goto again;
3034 				}
3035 			}
3036 next:
3037 			path->slots[0]++;
3038 		}
3039 
3040 		btrfs_release_path(path);
3041 
3042 		if (stop_loop)
3043 			break;
3044 
3045 		logic_start += map->stripe_len;
3046 	}
3047 out:
3048 	if (ret < 0)
3049 		scrub_parity_mark_sectors_error(sparity, logic_start,
3050 						logic_end - logic_start);
3051 	scrub_parity_put(sparity);
3052 	scrub_submit(sctx);
3053 	mutex_lock(&sctx->wr_ctx.wr_lock);
3054 	scrub_wr_submit(sctx);
3055 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3056 
3057 	btrfs_release_path(path);
3058 	return ret < 0 ? ret : 0;
3059 }
3060 
3061 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3062 					   struct map_lookup *map,
3063 					   struct btrfs_device *scrub_dev,
3064 					   int num, u64 base, u64 length,
3065 					   int is_dev_replace)
3066 {
3067 	struct btrfs_path *path, *ppath;
3068 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3069 	struct btrfs_root *root = fs_info->extent_root;
3070 	struct btrfs_root *csum_root = fs_info->csum_root;
3071 	struct btrfs_extent_item *extent;
3072 	struct blk_plug plug;
3073 	u64 flags;
3074 	int ret;
3075 	int slot;
3076 	u64 nstripes;
3077 	struct extent_buffer *l;
3078 	u64 physical;
3079 	u64 logical;
3080 	u64 logic_end;
3081 	u64 physical_end;
3082 	u64 generation;
3083 	int mirror_num;
3084 	struct reada_control *reada1;
3085 	struct reada_control *reada2;
3086 	struct btrfs_key key;
3087 	struct btrfs_key key_end;
3088 	u64 increment = map->stripe_len;
3089 	u64 offset;
3090 	u64 extent_logical;
3091 	u64 extent_physical;
3092 	u64 extent_len;
3093 	u64 stripe_logical;
3094 	u64 stripe_end;
3095 	struct btrfs_device *extent_dev;
3096 	int extent_mirror_num;
3097 	int stop_loop = 0;
3098 
3099 	physical = map->stripes[num].physical;
3100 	offset = 0;
3101 	nstripes = div_u64(length, map->stripe_len);
3102 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3103 		offset = map->stripe_len * num;
3104 		increment = map->stripe_len * map->num_stripes;
3105 		mirror_num = 1;
3106 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3107 		int factor = map->num_stripes / map->sub_stripes;
3108 		offset = map->stripe_len * (num / map->sub_stripes);
3109 		increment = map->stripe_len * factor;
3110 		mirror_num = num % map->sub_stripes + 1;
3111 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3112 		increment = map->stripe_len;
3113 		mirror_num = num % map->num_stripes + 1;
3114 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3115 		increment = map->stripe_len;
3116 		mirror_num = num % map->num_stripes + 1;
3117 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3118 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3119 		increment = map->stripe_len * nr_data_stripes(map);
3120 		mirror_num = 1;
3121 	} else {
3122 		increment = map->stripe_len;
3123 		mirror_num = 1;
3124 	}
3125 
3126 	path = btrfs_alloc_path();
3127 	if (!path)
3128 		return -ENOMEM;
3129 
3130 	ppath = btrfs_alloc_path();
3131 	if (!ppath) {
3132 		btrfs_free_path(path);
3133 		return -ENOMEM;
3134 	}
3135 
3136 	/*
3137 	 * work on commit root. The related disk blocks are static as
3138 	 * long as COW is applied. This means, it is save to rewrite
3139 	 * them to repair disk errors without any race conditions
3140 	 */
3141 	path->search_commit_root = 1;
3142 	path->skip_locking = 1;
3143 
3144 	ppath->search_commit_root = 1;
3145 	ppath->skip_locking = 1;
3146 	/*
3147 	 * trigger the readahead for extent tree csum tree and wait for
3148 	 * completion. During readahead, the scrub is officially paused
3149 	 * to not hold off transaction commits
3150 	 */
3151 	logical = base + offset;
3152 	physical_end = physical + nstripes * map->stripe_len;
3153 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3154 		get_raid56_logic_offset(physical_end, num,
3155 					map, &logic_end, NULL);
3156 		logic_end += base;
3157 	} else {
3158 		logic_end = logical + increment * nstripes;
3159 	}
3160 	wait_event(sctx->list_wait,
3161 		   atomic_read(&sctx->bios_in_flight) == 0);
3162 	scrub_blocked_if_needed(fs_info);
3163 
3164 	/* FIXME it might be better to start readahead at commit root */
3165 	key.objectid = logical;
3166 	key.type = BTRFS_EXTENT_ITEM_KEY;
3167 	key.offset = (u64)0;
3168 	key_end.objectid = logic_end;
3169 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3170 	key_end.offset = (u64)-1;
3171 	reada1 = btrfs_reada_add(root, &key, &key_end);
3172 
3173 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3174 	key.type = BTRFS_EXTENT_CSUM_KEY;
3175 	key.offset = logical;
3176 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3177 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3178 	key_end.offset = logic_end;
3179 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3180 
3181 	if (!IS_ERR(reada1))
3182 		btrfs_reada_wait(reada1);
3183 	if (!IS_ERR(reada2))
3184 		btrfs_reada_wait(reada2);
3185 
3186 
3187 	/*
3188 	 * collect all data csums for the stripe to avoid seeking during
3189 	 * the scrub. This might currently (crc32) end up to be about 1MB
3190 	 */
3191 	blk_start_plug(&plug);
3192 
3193 	/*
3194 	 * now find all extents for each stripe and scrub them
3195 	 */
3196 	ret = 0;
3197 	while (physical < physical_end) {
3198 		/*
3199 		 * canceled?
3200 		 */
3201 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3202 		    atomic_read(&sctx->cancel_req)) {
3203 			ret = -ECANCELED;
3204 			goto out;
3205 		}
3206 		/*
3207 		 * check to see if we have to pause
3208 		 */
3209 		if (atomic_read(&fs_info->scrub_pause_req)) {
3210 			/* push queued extents */
3211 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3212 			scrub_submit(sctx);
3213 			mutex_lock(&sctx->wr_ctx.wr_lock);
3214 			scrub_wr_submit(sctx);
3215 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3216 			wait_event(sctx->list_wait,
3217 				   atomic_read(&sctx->bios_in_flight) == 0);
3218 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3219 			scrub_blocked_if_needed(fs_info);
3220 		}
3221 
3222 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3223 			ret = get_raid56_logic_offset(physical, num, map,
3224 						      &logical,
3225 						      &stripe_logical);
3226 			logical += base;
3227 			if (ret) {
3228 				/* it is parity strip */
3229 				stripe_logical += base;
3230 				stripe_end = stripe_logical + increment;
3231 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3232 							  ppath, stripe_logical,
3233 							  stripe_end);
3234 				if (ret)
3235 					goto out;
3236 				goto skip;
3237 			}
3238 		}
3239 
3240 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3241 			key.type = BTRFS_METADATA_ITEM_KEY;
3242 		else
3243 			key.type = BTRFS_EXTENT_ITEM_KEY;
3244 		key.objectid = logical;
3245 		key.offset = (u64)-1;
3246 
3247 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3248 		if (ret < 0)
3249 			goto out;
3250 
3251 		if (ret > 0) {
3252 			ret = btrfs_previous_extent_item(root, path, 0);
3253 			if (ret < 0)
3254 				goto out;
3255 			if (ret > 0) {
3256 				/* there's no smaller item, so stick with the
3257 				 * larger one */
3258 				btrfs_release_path(path);
3259 				ret = btrfs_search_slot(NULL, root, &key,
3260 							path, 0, 0);
3261 				if (ret < 0)
3262 					goto out;
3263 			}
3264 		}
3265 
3266 		stop_loop = 0;
3267 		while (1) {
3268 			u64 bytes;
3269 
3270 			l = path->nodes[0];
3271 			slot = path->slots[0];
3272 			if (slot >= btrfs_header_nritems(l)) {
3273 				ret = btrfs_next_leaf(root, path);
3274 				if (ret == 0)
3275 					continue;
3276 				if (ret < 0)
3277 					goto out;
3278 
3279 				stop_loop = 1;
3280 				break;
3281 			}
3282 			btrfs_item_key_to_cpu(l, &key, slot);
3283 
3284 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3285 			    key.type != BTRFS_METADATA_ITEM_KEY)
3286 				goto next;
3287 
3288 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3289 				bytes = fs_info->nodesize;
3290 			else
3291 				bytes = key.offset;
3292 
3293 			if (key.objectid + bytes <= logical)
3294 				goto next;
3295 
3296 			if (key.objectid >= logical + map->stripe_len) {
3297 				/* out of this device extent */
3298 				if (key.objectid >= logic_end)
3299 					stop_loop = 1;
3300 				break;
3301 			}
3302 
3303 			extent = btrfs_item_ptr(l, slot,
3304 						struct btrfs_extent_item);
3305 			flags = btrfs_extent_flags(l, extent);
3306 			generation = btrfs_extent_generation(l, extent);
3307 
3308 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3309 			    (key.objectid < logical ||
3310 			     key.objectid + bytes >
3311 			     logical + map->stripe_len)) {
3312 				btrfs_err(fs_info,
3313 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3314 				       key.objectid, logical);
3315 				spin_lock(&sctx->stat_lock);
3316 				sctx->stat.uncorrectable_errors++;
3317 				spin_unlock(&sctx->stat_lock);
3318 				goto next;
3319 			}
3320 
3321 again:
3322 			extent_logical = key.objectid;
3323 			extent_len = bytes;
3324 
3325 			/*
3326 			 * trim extent to this stripe
3327 			 */
3328 			if (extent_logical < logical) {
3329 				extent_len -= logical - extent_logical;
3330 				extent_logical = logical;
3331 			}
3332 			if (extent_logical + extent_len >
3333 			    logical + map->stripe_len) {
3334 				extent_len = logical + map->stripe_len -
3335 					     extent_logical;
3336 			}
3337 
3338 			extent_physical = extent_logical - logical + physical;
3339 			extent_dev = scrub_dev;
3340 			extent_mirror_num = mirror_num;
3341 			if (is_dev_replace)
3342 				scrub_remap_extent(fs_info, extent_logical,
3343 						   extent_len, &extent_physical,
3344 						   &extent_dev,
3345 						   &extent_mirror_num);
3346 
3347 			ret = btrfs_lookup_csums_range(csum_root,
3348 						       extent_logical,
3349 						       extent_logical +
3350 						       extent_len - 1,
3351 						       &sctx->csum_list, 1);
3352 			if (ret)
3353 				goto out;
3354 
3355 			ret = scrub_extent(sctx, extent_logical, extent_len,
3356 					   extent_physical, extent_dev, flags,
3357 					   generation, extent_mirror_num,
3358 					   extent_logical - logical + physical);
3359 
3360 			scrub_free_csums(sctx);
3361 
3362 			if (ret)
3363 				goto out;
3364 
3365 			if (extent_logical + extent_len <
3366 			    key.objectid + bytes) {
3367 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3368 					/*
3369 					 * loop until we find next data stripe
3370 					 * or we have finished all stripes.
3371 					 */
3372 loop:
3373 					physical += map->stripe_len;
3374 					ret = get_raid56_logic_offset(physical,
3375 							num, map, &logical,
3376 							&stripe_logical);
3377 					logical += base;
3378 
3379 					if (ret && physical < physical_end) {
3380 						stripe_logical += base;
3381 						stripe_end = stripe_logical +
3382 								increment;
3383 						ret = scrub_raid56_parity(sctx,
3384 							map, scrub_dev, ppath,
3385 							stripe_logical,
3386 							stripe_end);
3387 						if (ret)
3388 							goto out;
3389 						goto loop;
3390 					}
3391 				} else {
3392 					physical += map->stripe_len;
3393 					logical += increment;
3394 				}
3395 				if (logical < key.objectid + bytes) {
3396 					cond_resched();
3397 					goto again;
3398 				}
3399 
3400 				if (physical >= physical_end) {
3401 					stop_loop = 1;
3402 					break;
3403 				}
3404 			}
3405 next:
3406 			path->slots[0]++;
3407 		}
3408 		btrfs_release_path(path);
3409 skip:
3410 		logical += increment;
3411 		physical += map->stripe_len;
3412 		spin_lock(&sctx->stat_lock);
3413 		if (stop_loop)
3414 			sctx->stat.last_physical = map->stripes[num].physical +
3415 						   length;
3416 		else
3417 			sctx->stat.last_physical = physical;
3418 		spin_unlock(&sctx->stat_lock);
3419 		if (stop_loop)
3420 			break;
3421 	}
3422 out:
3423 	/* push queued extents */
3424 	scrub_submit(sctx);
3425 	mutex_lock(&sctx->wr_ctx.wr_lock);
3426 	scrub_wr_submit(sctx);
3427 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3428 
3429 	blk_finish_plug(&plug);
3430 	btrfs_free_path(path);
3431 	btrfs_free_path(ppath);
3432 	return ret < 0 ? ret : 0;
3433 }
3434 
3435 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3436 					  struct btrfs_device *scrub_dev,
3437 					  u64 chunk_offset, u64 length,
3438 					  u64 dev_offset,
3439 					  struct btrfs_block_group_cache *cache,
3440 					  int is_dev_replace)
3441 {
3442 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3443 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3444 	struct map_lookup *map;
3445 	struct extent_map *em;
3446 	int i;
3447 	int ret = 0;
3448 
3449 	read_lock(&map_tree->map_tree.lock);
3450 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3451 	read_unlock(&map_tree->map_tree.lock);
3452 
3453 	if (!em) {
3454 		/*
3455 		 * Might have been an unused block group deleted by the cleaner
3456 		 * kthread or relocation.
3457 		 */
3458 		spin_lock(&cache->lock);
3459 		if (!cache->removed)
3460 			ret = -EINVAL;
3461 		spin_unlock(&cache->lock);
3462 
3463 		return ret;
3464 	}
3465 
3466 	map = em->map_lookup;
3467 	if (em->start != chunk_offset)
3468 		goto out;
3469 
3470 	if (em->len < length)
3471 		goto out;
3472 
3473 	for (i = 0; i < map->num_stripes; ++i) {
3474 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3475 		    map->stripes[i].physical == dev_offset) {
3476 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3477 					   chunk_offset, length,
3478 					   is_dev_replace);
3479 			if (ret)
3480 				goto out;
3481 		}
3482 	}
3483 out:
3484 	free_extent_map(em);
3485 
3486 	return ret;
3487 }
3488 
3489 static noinline_for_stack
3490 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3491 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3492 			   int is_dev_replace)
3493 {
3494 	struct btrfs_dev_extent *dev_extent = NULL;
3495 	struct btrfs_path *path;
3496 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3497 	struct btrfs_root *root = fs_info->dev_root;
3498 	u64 length;
3499 	u64 chunk_offset;
3500 	int ret = 0;
3501 	int ro_set;
3502 	int slot;
3503 	struct extent_buffer *l;
3504 	struct btrfs_key key;
3505 	struct btrfs_key found_key;
3506 	struct btrfs_block_group_cache *cache;
3507 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3508 
3509 	path = btrfs_alloc_path();
3510 	if (!path)
3511 		return -ENOMEM;
3512 
3513 	path->reada = READA_FORWARD;
3514 	path->search_commit_root = 1;
3515 	path->skip_locking = 1;
3516 
3517 	key.objectid = scrub_dev->devid;
3518 	key.offset = 0ull;
3519 	key.type = BTRFS_DEV_EXTENT_KEY;
3520 
3521 	while (1) {
3522 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3523 		if (ret < 0)
3524 			break;
3525 		if (ret > 0) {
3526 			if (path->slots[0] >=
3527 			    btrfs_header_nritems(path->nodes[0])) {
3528 				ret = btrfs_next_leaf(root, path);
3529 				if (ret < 0)
3530 					break;
3531 				if (ret > 0) {
3532 					ret = 0;
3533 					break;
3534 				}
3535 			} else {
3536 				ret = 0;
3537 			}
3538 		}
3539 
3540 		l = path->nodes[0];
3541 		slot = path->slots[0];
3542 
3543 		btrfs_item_key_to_cpu(l, &found_key, slot);
3544 
3545 		if (found_key.objectid != scrub_dev->devid)
3546 			break;
3547 
3548 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3549 			break;
3550 
3551 		if (found_key.offset >= end)
3552 			break;
3553 
3554 		if (found_key.offset < key.offset)
3555 			break;
3556 
3557 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3558 		length = btrfs_dev_extent_length(l, dev_extent);
3559 
3560 		if (found_key.offset + length <= start)
3561 			goto skip;
3562 
3563 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3564 
3565 		/*
3566 		 * get a reference on the corresponding block group to prevent
3567 		 * the chunk from going away while we scrub it
3568 		 */
3569 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3570 
3571 		/* some chunks are removed but not committed to disk yet,
3572 		 * continue scrubbing */
3573 		if (!cache)
3574 			goto skip;
3575 
3576 		/*
3577 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3578 		 * to avoid deadlock caused by:
3579 		 * btrfs_inc_block_group_ro()
3580 		 * -> btrfs_wait_for_commit()
3581 		 * -> btrfs_commit_transaction()
3582 		 * -> btrfs_scrub_pause()
3583 		 */
3584 		scrub_pause_on(fs_info);
3585 		ret = btrfs_inc_block_group_ro(fs_info, cache);
3586 		if (!ret && is_dev_replace) {
3587 			/*
3588 			 * If we are doing a device replace wait for any tasks
3589 			 * that started dellaloc right before we set the block
3590 			 * group to RO mode, as they might have just allocated
3591 			 * an extent from it or decided they could do a nocow
3592 			 * write. And if any such tasks did that, wait for their
3593 			 * ordered extents to complete and then commit the
3594 			 * current transaction, so that we can later see the new
3595 			 * extent items in the extent tree - the ordered extents
3596 			 * create delayed data references (for cow writes) when
3597 			 * they complete, which will be run and insert the
3598 			 * corresponding extent items into the extent tree when
3599 			 * we commit the transaction they used when running
3600 			 * inode.c:btrfs_finish_ordered_io(). We later use
3601 			 * the commit root of the extent tree to find extents
3602 			 * to copy from the srcdev into the tgtdev, and we don't
3603 			 * want to miss any new extents.
3604 			 */
3605 			btrfs_wait_block_group_reservations(cache);
3606 			btrfs_wait_nocow_writers(cache);
3607 			ret = btrfs_wait_ordered_roots(fs_info, -1,
3608 						       cache->key.objectid,
3609 						       cache->key.offset);
3610 			if (ret > 0) {
3611 				struct btrfs_trans_handle *trans;
3612 
3613 				trans = btrfs_join_transaction(root);
3614 				if (IS_ERR(trans))
3615 					ret = PTR_ERR(trans);
3616 				else
3617 					ret = btrfs_commit_transaction(trans);
3618 				if (ret) {
3619 					scrub_pause_off(fs_info);
3620 					btrfs_put_block_group(cache);
3621 					break;
3622 				}
3623 			}
3624 		}
3625 		scrub_pause_off(fs_info);
3626 
3627 		if (ret == 0) {
3628 			ro_set = 1;
3629 		} else if (ret == -ENOSPC) {
3630 			/*
3631 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3632 			 * failed in creating new chunk for metadata.
3633 			 * It is not a problem for scrub/replace, because
3634 			 * metadata are always cowed, and our scrub paused
3635 			 * commit_transactions.
3636 			 */
3637 			ro_set = 0;
3638 		} else {
3639 			btrfs_warn(fs_info,
3640 				   "failed setting block group ro, ret=%d\n",
3641 				   ret);
3642 			btrfs_put_block_group(cache);
3643 			break;
3644 		}
3645 
3646 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3647 		dev_replace->cursor_right = found_key.offset + length;
3648 		dev_replace->cursor_left = found_key.offset;
3649 		dev_replace->item_needs_writeback = 1;
3650 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3651 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3652 				  found_key.offset, cache, is_dev_replace);
3653 
3654 		/*
3655 		 * flush, submit all pending read and write bios, afterwards
3656 		 * wait for them.
3657 		 * Note that in the dev replace case, a read request causes
3658 		 * write requests that are submitted in the read completion
3659 		 * worker. Therefore in the current situation, it is required
3660 		 * that all write requests are flushed, so that all read and
3661 		 * write requests are really completed when bios_in_flight
3662 		 * changes to 0.
3663 		 */
3664 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3665 		scrub_submit(sctx);
3666 		mutex_lock(&sctx->wr_ctx.wr_lock);
3667 		scrub_wr_submit(sctx);
3668 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3669 
3670 		wait_event(sctx->list_wait,
3671 			   atomic_read(&sctx->bios_in_flight) == 0);
3672 
3673 		scrub_pause_on(fs_info);
3674 
3675 		/*
3676 		 * must be called before we decrease @scrub_paused.
3677 		 * make sure we don't block transaction commit while
3678 		 * we are waiting pending workers finished.
3679 		 */
3680 		wait_event(sctx->list_wait,
3681 			   atomic_read(&sctx->workers_pending) == 0);
3682 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3683 
3684 		scrub_pause_off(fs_info);
3685 
3686 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3687 		dev_replace->cursor_left = dev_replace->cursor_right;
3688 		dev_replace->item_needs_writeback = 1;
3689 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3690 
3691 		if (ro_set)
3692 			btrfs_dec_block_group_ro(cache);
3693 
3694 		/*
3695 		 * We might have prevented the cleaner kthread from deleting
3696 		 * this block group if it was already unused because we raced
3697 		 * and set it to RO mode first. So add it back to the unused
3698 		 * list, otherwise it might not ever be deleted unless a manual
3699 		 * balance is triggered or it becomes used and unused again.
3700 		 */
3701 		spin_lock(&cache->lock);
3702 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3703 		    btrfs_block_group_used(&cache->item) == 0) {
3704 			spin_unlock(&cache->lock);
3705 			spin_lock(&fs_info->unused_bgs_lock);
3706 			if (list_empty(&cache->bg_list)) {
3707 				btrfs_get_block_group(cache);
3708 				list_add_tail(&cache->bg_list,
3709 					      &fs_info->unused_bgs);
3710 			}
3711 			spin_unlock(&fs_info->unused_bgs_lock);
3712 		} else {
3713 			spin_unlock(&cache->lock);
3714 		}
3715 
3716 		btrfs_put_block_group(cache);
3717 		if (ret)
3718 			break;
3719 		if (is_dev_replace &&
3720 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3721 			ret = -EIO;
3722 			break;
3723 		}
3724 		if (sctx->stat.malloc_errors > 0) {
3725 			ret = -ENOMEM;
3726 			break;
3727 		}
3728 skip:
3729 		key.offset = found_key.offset + length;
3730 		btrfs_release_path(path);
3731 	}
3732 
3733 	btrfs_free_path(path);
3734 
3735 	return ret;
3736 }
3737 
3738 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3739 					   struct btrfs_device *scrub_dev)
3740 {
3741 	int	i;
3742 	u64	bytenr;
3743 	u64	gen;
3744 	int	ret;
3745 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3746 
3747 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3748 		return -EIO;
3749 
3750 	/* Seed devices of a new filesystem has their own generation. */
3751 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3752 		gen = scrub_dev->generation;
3753 	else
3754 		gen = fs_info->last_trans_committed;
3755 
3756 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3757 		bytenr = btrfs_sb_offset(i);
3758 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3759 		    scrub_dev->commit_total_bytes)
3760 			break;
3761 
3762 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3763 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3764 				  NULL, 1, bytenr);
3765 		if (ret)
3766 			return ret;
3767 	}
3768 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3769 
3770 	return 0;
3771 }
3772 
3773 /*
3774  * get a reference count on fs_info->scrub_workers. start worker if necessary
3775  */
3776 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3777 						int is_dev_replace)
3778 {
3779 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3780 	int max_active = fs_info->thread_pool_size;
3781 
3782 	if (fs_info->scrub_workers_refcnt == 0) {
3783 		if (is_dev_replace)
3784 			fs_info->scrub_workers =
3785 				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3786 						      1, 4);
3787 		else
3788 			fs_info->scrub_workers =
3789 				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3790 						      max_active, 4);
3791 		if (!fs_info->scrub_workers)
3792 			goto fail_scrub_workers;
3793 
3794 		fs_info->scrub_wr_completion_workers =
3795 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3796 					      max_active, 2);
3797 		if (!fs_info->scrub_wr_completion_workers)
3798 			goto fail_scrub_wr_completion_workers;
3799 
3800 		fs_info->scrub_nocow_workers =
3801 			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3802 		if (!fs_info->scrub_nocow_workers)
3803 			goto fail_scrub_nocow_workers;
3804 		fs_info->scrub_parity_workers =
3805 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3806 					      max_active, 2);
3807 		if (!fs_info->scrub_parity_workers)
3808 			goto fail_scrub_parity_workers;
3809 	}
3810 	++fs_info->scrub_workers_refcnt;
3811 	return 0;
3812 
3813 fail_scrub_parity_workers:
3814 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3815 fail_scrub_nocow_workers:
3816 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3817 fail_scrub_wr_completion_workers:
3818 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3819 fail_scrub_workers:
3820 	return -ENOMEM;
3821 }
3822 
3823 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3824 {
3825 	if (--fs_info->scrub_workers_refcnt == 0) {
3826 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3827 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3828 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3829 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3830 	}
3831 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3832 }
3833 
3834 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3835 		    u64 end, struct btrfs_scrub_progress *progress,
3836 		    int readonly, int is_dev_replace)
3837 {
3838 	struct scrub_ctx *sctx;
3839 	int ret;
3840 	struct btrfs_device *dev;
3841 	struct rcu_string *name;
3842 
3843 	if (btrfs_fs_closing(fs_info))
3844 		return -EINVAL;
3845 
3846 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3847 		/*
3848 		 * in this case scrub is unable to calculate the checksum
3849 		 * the way scrub is implemented. Do not handle this
3850 		 * situation at all because it won't ever happen.
3851 		 */
3852 		btrfs_err(fs_info,
3853 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3854 		       fs_info->nodesize,
3855 		       BTRFS_STRIPE_LEN);
3856 		return -EINVAL;
3857 	}
3858 
3859 	if (fs_info->sectorsize != PAGE_SIZE) {
3860 		/* not supported for data w/o checksums */
3861 		btrfs_err_rl(fs_info,
3862 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3863 		       fs_info->sectorsize, PAGE_SIZE);
3864 		return -EINVAL;
3865 	}
3866 
3867 	if (fs_info->nodesize >
3868 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3869 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3870 		/*
3871 		 * would exhaust the array bounds of pagev member in
3872 		 * struct scrub_block
3873 		 */
3874 		btrfs_err(fs_info,
3875 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3876 		       fs_info->nodesize,
3877 		       SCRUB_MAX_PAGES_PER_BLOCK,
3878 		       fs_info->sectorsize,
3879 		       SCRUB_MAX_PAGES_PER_BLOCK);
3880 		return -EINVAL;
3881 	}
3882 
3883 
3884 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3885 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3886 	if (!dev || (dev->missing && !is_dev_replace)) {
3887 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3888 		return -ENODEV;
3889 	}
3890 
3891 	if (!is_dev_replace && !readonly && !dev->writeable) {
3892 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893 		rcu_read_lock();
3894 		name = rcu_dereference(dev->name);
3895 		btrfs_err(fs_info, "scrub: device %s is not writable",
3896 			  name->str);
3897 		rcu_read_unlock();
3898 		return -EROFS;
3899 	}
3900 
3901 	mutex_lock(&fs_info->scrub_lock);
3902 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3903 		mutex_unlock(&fs_info->scrub_lock);
3904 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3905 		return -EIO;
3906 	}
3907 
3908 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3909 	if (dev->scrub_device ||
3910 	    (!is_dev_replace &&
3911 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3912 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3913 		mutex_unlock(&fs_info->scrub_lock);
3914 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3915 		return -EINPROGRESS;
3916 	}
3917 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3918 
3919 	ret = scrub_workers_get(fs_info, is_dev_replace);
3920 	if (ret) {
3921 		mutex_unlock(&fs_info->scrub_lock);
3922 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3923 		return ret;
3924 	}
3925 
3926 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3927 	if (IS_ERR(sctx)) {
3928 		mutex_unlock(&fs_info->scrub_lock);
3929 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3930 		scrub_workers_put(fs_info);
3931 		return PTR_ERR(sctx);
3932 	}
3933 	sctx->readonly = readonly;
3934 	dev->scrub_device = sctx;
3935 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3936 
3937 	/*
3938 	 * checking @scrub_pause_req here, we can avoid
3939 	 * race between committing transaction and scrubbing.
3940 	 */
3941 	__scrub_blocked_if_needed(fs_info);
3942 	atomic_inc(&fs_info->scrubs_running);
3943 	mutex_unlock(&fs_info->scrub_lock);
3944 
3945 	if (!is_dev_replace) {
3946 		/*
3947 		 * by holding device list mutex, we can
3948 		 * kick off writing super in log tree sync.
3949 		 */
3950 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3951 		ret = scrub_supers(sctx, dev);
3952 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3953 	}
3954 
3955 	if (!ret)
3956 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3957 					     is_dev_replace);
3958 
3959 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3960 	atomic_dec(&fs_info->scrubs_running);
3961 	wake_up(&fs_info->scrub_pause_wait);
3962 
3963 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3964 
3965 	if (progress)
3966 		memcpy(progress, &sctx->stat, sizeof(*progress));
3967 
3968 	mutex_lock(&fs_info->scrub_lock);
3969 	dev->scrub_device = NULL;
3970 	scrub_workers_put(fs_info);
3971 	mutex_unlock(&fs_info->scrub_lock);
3972 
3973 	scrub_put_ctx(sctx);
3974 
3975 	return ret;
3976 }
3977 
3978 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3979 {
3980 	mutex_lock(&fs_info->scrub_lock);
3981 	atomic_inc(&fs_info->scrub_pause_req);
3982 	while (atomic_read(&fs_info->scrubs_paused) !=
3983 	       atomic_read(&fs_info->scrubs_running)) {
3984 		mutex_unlock(&fs_info->scrub_lock);
3985 		wait_event(fs_info->scrub_pause_wait,
3986 			   atomic_read(&fs_info->scrubs_paused) ==
3987 			   atomic_read(&fs_info->scrubs_running));
3988 		mutex_lock(&fs_info->scrub_lock);
3989 	}
3990 	mutex_unlock(&fs_info->scrub_lock);
3991 }
3992 
3993 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3994 {
3995 	atomic_dec(&fs_info->scrub_pause_req);
3996 	wake_up(&fs_info->scrub_pause_wait);
3997 }
3998 
3999 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4000 {
4001 	mutex_lock(&fs_info->scrub_lock);
4002 	if (!atomic_read(&fs_info->scrubs_running)) {
4003 		mutex_unlock(&fs_info->scrub_lock);
4004 		return -ENOTCONN;
4005 	}
4006 
4007 	atomic_inc(&fs_info->scrub_cancel_req);
4008 	while (atomic_read(&fs_info->scrubs_running)) {
4009 		mutex_unlock(&fs_info->scrub_lock);
4010 		wait_event(fs_info->scrub_pause_wait,
4011 			   atomic_read(&fs_info->scrubs_running) == 0);
4012 		mutex_lock(&fs_info->scrub_lock);
4013 	}
4014 	atomic_dec(&fs_info->scrub_cancel_req);
4015 	mutex_unlock(&fs_info->scrub_lock);
4016 
4017 	return 0;
4018 }
4019 
4020 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4021 			   struct btrfs_device *dev)
4022 {
4023 	struct scrub_ctx *sctx;
4024 
4025 	mutex_lock(&fs_info->scrub_lock);
4026 	sctx = dev->scrub_device;
4027 	if (!sctx) {
4028 		mutex_unlock(&fs_info->scrub_lock);
4029 		return -ENOTCONN;
4030 	}
4031 	atomic_inc(&sctx->cancel_req);
4032 	while (dev->scrub_device) {
4033 		mutex_unlock(&fs_info->scrub_lock);
4034 		wait_event(fs_info->scrub_pause_wait,
4035 			   dev->scrub_device == NULL);
4036 		mutex_lock(&fs_info->scrub_lock);
4037 	}
4038 	mutex_unlock(&fs_info->scrub_lock);
4039 
4040 	return 0;
4041 }
4042 
4043 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4044 			 struct btrfs_scrub_progress *progress)
4045 {
4046 	struct btrfs_device *dev;
4047 	struct scrub_ctx *sctx = NULL;
4048 
4049 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4050 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4051 	if (dev)
4052 		sctx = dev->scrub_device;
4053 	if (sctx)
4054 		memcpy(progress, &sctx->stat, sizeof(*progress));
4055 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4056 
4057 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4058 }
4059 
4060 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4061 			       u64 extent_logical, u64 extent_len,
4062 			       u64 *extent_physical,
4063 			       struct btrfs_device **extent_dev,
4064 			       int *extent_mirror_num)
4065 {
4066 	u64 mapped_length;
4067 	struct btrfs_bio *bbio = NULL;
4068 	int ret;
4069 
4070 	mapped_length = extent_len;
4071 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4072 			      &mapped_length, &bbio, 0);
4073 	if (ret || !bbio || mapped_length < extent_len ||
4074 	    !bbio->stripes[0].dev->bdev) {
4075 		btrfs_put_bbio(bbio);
4076 		return;
4077 	}
4078 
4079 	*extent_physical = bbio->stripes[0].physical;
4080 	*extent_mirror_num = bbio->mirror_num;
4081 	*extent_dev = bbio->stripes[0].dev;
4082 	btrfs_put_bbio(bbio);
4083 }
4084 
4085 static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
4086 			      struct btrfs_device *dev,
4087 			      int is_dev_replace)
4088 {
4089 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4090 
4091 	mutex_init(&wr_ctx->wr_lock);
4092 	wr_ctx->wr_curr_bio = NULL;
4093 	if (!is_dev_replace)
4094 		return 0;
4095 
4096 	WARN_ON(!dev->bdev);
4097 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4098 	wr_ctx->tgtdev = dev;
4099 	atomic_set(&wr_ctx->flush_all_writes, 0);
4100 	return 0;
4101 }
4102 
4103 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4104 {
4105 	mutex_lock(&wr_ctx->wr_lock);
4106 	kfree(wr_ctx->wr_curr_bio);
4107 	wr_ctx->wr_curr_bio = NULL;
4108 	mutex_unlock(&wr_ctx->wr_lock);
4109 }
4110 
4111 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4112 			    int mirror_num, u64 physical_for_dev_replace)
4113 {
4114 	struct scrub_copy_nocow_ctx *nocow_ctx;
4115 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4116 
4117 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4118 	if (!nocow_ctx) {
4119 		spin_lock(&sctx->stat_lock);
4120 		sctx->stat.malloc_errors++;
4121 		spin_unlock(&sctx->stat_lock);
4122 		return -ENOMEM;
4123 	}
4124 
4125 	scrub_pending_trans_workers_inc(sctx);
4126 
4127 	nocow_ctx->sctx = sctx;
4128 	nocow_ctx->logical = logical;
4129 	nocow_ctx->len = len;
4130 	nocow_ctx->mirror_num = mirror_num;
4131 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4132 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4133 			copy_nocow_pages_worker, NULL, NULL);
4134 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4135 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4136 			 &nocow_ctx->work);
4137 
4138 	return 0;
4139 }
4140 
4141 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4142 {
4143 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4144 	struct scrub_nocow_inode *nocow_inode;
4145 
4146 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4147 	if (!nocow_inode)
4148 		return -ENOMEM;
4149 	nocow_inode->inum = inum;
4150 	nocow_inode->offset = offset;
4151 	nocow_inode->root = root;
4152 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4153 	return 0;
4154 }
4155 
4156 #define COPY_COMPLETE 1
4157 
4158 static void copy_nocow_pages_worker(struct btrfs_work *work)
4159 {
4160 	struct scrub_copy_nocow_ctx *nocow_ctx =
4161 		container_of(work, struct scrub_copy_nocow_ctx, work);
4162 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4163 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4164 	struct btrfs_root *root = fs_info->extent_root;
4165 	u64 logical = nocow_ctx->logical;
4166 	u64 len = nocow_ctx->len;
4167 	int mirror_num = nocow_ctx->mirror_num;
4168 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4169 	int ret;
4170 	struct btrfs_trans_handle *trans = NULL;
4171 	struct btrfs_path *path;
4172 	int not_written = 0;
4173 
4174 	path = btrfs_alloc_path();
4175 	if (!path) {
4176 		spin_lock(&sctx->stat_lock);
4177 		sctx->stat.malloc_errors++;
4178 		spin_unlock(&sctx->stat_lock);
4179 		not_written = 1;
4180 		goto out;
4181 	}
4182 
4183 	trans = btrfs_join_transaction(root);
4184 	if (IS_ERR(trans)) {
4185 		not_written = 1;
4186 		goto out;
4187 	}
4188 
4189 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4190 					  record_inode_for_nocow, nocow_ctx);
4191 	if (ret != 0 && ret != -ENOENT) {
4192 		btrfs_warn(fs_info,
4193 			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4194 			   logical, physical_for_dev_replace, len, mirror_num,
4195 			   ret);
4196 		not_written = 1;
4197 		goto out;
4198 	}
4199 
4200 	btrfs_end_transaction(trans);
4201 	trans = NULL;
4202 	while (!list_empty(&nocow_ctx->inodes)) {
4203 		struct scrub_nocow_inode *entry;
4204 		entry = list_first_entry(&nocow_ctx->inodes,
4205 					 struct scrub_nocow_inode,
4206 					 list);
4207 		list_del_init(&entry->list);
4208 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4209 						 entry->root, nocow_ctx);
4210 		kfree(entry);
4211 		if (ret == COPY_COMPLETE) {
4212 			ret = 0;
4213 			break;
4214 		} else if (ret) {
4215 			break;
4216 		}
4217 	}
4218 out:
4219 	while (!list_empty(&nocow_ctx->inodes)) {
4220 		struct scrub_nocow_inode *entry;
4221 		entry = list_first_entry(&nocow_ctx->inodes,
4222 					 struct scrub_nocow_inode,
4223 					 list);
4224 		list_del_init(&entry->list);
4225 		kfree(entry);
4226 	}
4227 	if (trans && !IS_ERR(trans))
4228 		btrfs_end_transaction(trans);
4229 	if (not_written)
4230 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4231 					    num_uncorrectable_read_errors);
4232 
4233 	btrfs_free_path(path);
4234 	kfree(nocow_ctx);
4235 
4236 	scrub_pending_trans_workers_dec(sctx);
4237 }
4238 
4239 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4240 				 u64 logical)
4241 {
4242 	struct extent_state *cached_state = NULL;
4243 	struct btrfs_ordered_extent *ordered;
4244 	struct extent_io_tree *io_tree;
4245 	struct extent_map *em;
4246 	u64 lockstart = start, lockend = start + len - 1;
4247 	int ret = 0;
4248 
4249 	io_tree = &inode->io_tree;
4250 
4251 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4252 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4253 	if (ordered) {
4254 		btrfs_put_ordered_extent(ordered);
4255 		ret = 1;
4256 		goto out_unlock;
4257 	}
4258 
4259 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4260 	if (IS_ERR(em)) {
4261 		ret = PTR_ERR(em);
4262 		goto out_unlock;
4263 	}
4264 
4265 	/*
4266 	 * This extent does not actually cover the logical extent anymore,
4267 	 * move on to the next inode.
4268 	 */
4269 	if (em->block_start > logical ||
4270 	    em->block_start + em->block_len < logical + len) {
4271 		free_extent_map(em);
4272 		ret = 1;
4273 		goto out_unlock;
4274 	}
4275 	free_extent_map(em);
4276 
4277 out_unlock:
4278 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4279 			     GFP_NOFS);
4280 	return ret;
4281 }
4282 
4283 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4284 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4285 {
4286 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4287 	struct btrfs_key key;
4288 	struct inode *inode;
4289 	struct page *page;
4290 	struct btrfs_root *local_root;
4291 	struct extent_io_tree *io_tree;
4292 	u64 physical_for_dev_replace;
4293 	u64 nocow_ctx_logical;
4294 	u64 len = nocow_ctx->len;
4295 	unsigned long index;
4296 	int srcu_index;
4297 	int ret = 0;
4298 	int err = 0;
4299 
4300 	key.objectid = root;
4301 	key.type = BTRFS_ROOT_ITEM_KEY;
4302 	key.offset = (u64)-1;
4303 
4304 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4305 
4306 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4307 	if (IS_ERR(local_root)) {
4308 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4309 		return PTR_ERR(local_root);
4310 	}
4311 
4312 	key.type = BTRFS_INODE_ITEM_KEY;
4313 	key.objectid = inum;
4314 	key.offset = 0;
4315 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4316 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4317 	if (IS_ERR(inode))
4318 		return PTR_ERR(inode);
4319 
4320 	/* Avoid truncate/dio/punch hole.. */
4321 	inode_lock(inode);
4322 	inode_dio_wait(inode);
4323 
4324 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4325 	io_tree = &BTRFS_I(inode)->io_tree;
4326 	nocow_ctx_logical = nocow_ctx->logical;
4327 
4328 	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4329 			nocow_ctx_logical);
4330 	if (ret) {
4331 		ret = ret > 0 ? 0 : ret;
4332 		goto out;
4333 	}
4334 
4335 	while (len >= PAGE_SIZE) {
4336 		index = offset >> PAGE_SHIFT;
4337 again:
4338 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4339 		if (!page) {
4340 			btrfs_err(fs_info, "find_or_create_page() failed");
4341 			ret = -ENOMEM;
4342 			goto out;
4343 		}
4344 
4345 		if (PageUptodate(page)) {
4346 			if (PageDirty(page))
4347 				goto next_page;
4348 		} else {
4349 			ClearPageError(page);
4350 			err = extent_read_full_page(io_tree, page,
4351 							   btrfs_get_extent,
4352 							   nocow_ctx->mirror_num);
4353 			if (err) {
4354 				ret = err;
4355 				goto next_page;
4356 			}
4357 
4358 			lock_page(page);
4359 			/*
4360 			 * If the page has been remove from the page cache,
4361 			 * the data on it is meaningless, because it may be
4362 			 * old one, the new data may be written into the new
4363 			 * page in the page cache.
4364 			 */
4365 			if (page->mapping != inode->i_mapping) {
4366 				unlock_page(page);
4367 				put_page(page);
4368 				goto again;
4369 			}
4370 			if (!PageUptodate(page)) {
4371 				ret = -EIO;
4372 				goto next_page;
4373 			}
4374 		}
4375 
4376 		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4377 					    nocow_ctx_logical);
4378 		if (ret) {
4379 			ret = ret > 0 ? 0 : ret;
4380 			goto next_page;
4381 		}
4382 
4383 		err = write_page_nocow(nocow_ctx->sctx,
4384 				       physical_for_dev_replace, page);
4385 		if (err)
4386 			ret = err;
4387 next_page:
4388 		unlock_page(page);
4389 		put_page(page);
4390 
4391 		if (ret)
4392 			break;
4393 
4394 		offset += PAGE_SIZE;
4395 		physical_for_dev_replace += PAGE_SIZE;
4396 		nocow_ctx_logical += PAGE_SIZE;
4397 		len -= PAGE_SIZE;
4398 	}
4399 	ret = COPY_COMPLETE;
4400 out:
4401 	inode_unlock(inode);
4402 	iput(inode);
4403 	return ret;
4404 }
4405 
4406 static int write_page_nocow(struct scrub_ctx *sctx,
4407 			    u64 physical_for_dev_replace, struct page *page)
4408 {
4409 	struct bio *bio;
4410 	struct btrfs_device *dev;
4411 	int ret;
4412 
4413 	dev = sctx->wr_ctx.tgtdev;
4414 	if (!dev)
4415 		return -EIO;
4416 	if (!dev->bdev) {
4417 		btrfs_warn_rl(dev->fs_info,
4418 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4419 		return -EIO;
4420 	}
4421 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4422 	if (!bio) {
4423 		spin_lock(&sctx->stat_lock);
4424 		sctx->stat.malloc_errors++;
4425 		spin_unlock(&sctx->stat_lock);
4426 		return -ENOMEM;
4427 	}
4428 	bio->bi_iter.bi_size = 0;
4429 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4430 	bio->bi_bdev = dev->bdev;
4431 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4432 	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4433 	if (ret != PAGE_SIZE) {
4434 leave_with_eio:
4435 		bio_put(bio);
4436 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4437 		return -EIO;
4438 	}
4439 
4440 	if (btrfsic_submit_bio_wait(bio))
4441 		goto leave_with_eio;
4442 
4443 	bio_put(bio);
4444 	return 0;
4445 }
4446