xref: /openbmc/linux/fs/btrfs/scrub.c (revision 4bce6fce)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 };
129 
130 /* Used for the chunks with parity stripe such RAID5/6 */
131 struct scrub_parity {
132 	struct scrub_ctx	*sctx;
133 
134 	struct btrfs_device	*scrub_dev;
135 
136 	u64			logic_start;
137 
138 	u64			logic_end;
139 
140 	int			nsectors;
141 
142 	int			stripe_len;
143 
144 	atomic_t		refs;
145 
146 	struct list_head	spages;
147 
148 	/* Work of parity check and repair */
149 	struct btrfs_work	work;
150 
151 	/* Mark the parity blocks which have data */
152 	unsigned long		*dbitmap;
153 
154 	/*
155 	 * Mark the parity blocks which have data, but errors happen when
156 	 * read data or check data
157 	 */
158 	unsigned long		*ebitmap;
159 
160 	unsigned long		bitmap[0];
161 };
162 
163 struct scrub_wr_ctx {
164 	struct scrub_bio *wr_curr_bio;
165 	struct btrfs_device *tgtdev;
166 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
167 	atomic_t flush_all_writes;
168 	struct mutex wr_lock;
169 };
170 
171 struct scrub_ctx {
172 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173 	struct btrfs_root	*dev_root;
174 	int			first_free;
175 	int			curr;
176 	atomic_t		bios_in_flight;
177 	atomic_t		workers_pending;
178 	spinlock_t		list_lock;
179 	wait_queue_head_t	list_wait;
180 	u16			csum_size;
181 	struct list_head	csum_list;
182 	atomic_t		cancel_req;
183 	int			readonly;
184 	int			pages_per_rd_bio;
185 	u32			sectorsize;
186 	u32			nodesize;
187 
188 	int			is_dev_replace;
189 	struct scrub_wr_ctx	wr_ctx;
190 
191 	/*
192 	 * statistics
193 	 */
194 	struct btrfs_scrub_progress stat;
195 	spinlock_t		stat_lock;
196 
197 	/*
198 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
199 	 * decrement bios_in_flight and workers_pending and then do a wakeup
200 	 * on the list_wait wait queue. We must ensure the main scrub task
201 	 * doesn't free the scrub context before or while the workers are
202 	 * doing the wakeup() call.
203 	 */
204 	atomic_t                refs;
205 };
206 
207 struct scrub_fixup_nodatasum {
208 	struct scrub_ctx	*sctx;
209 	struct btrfs_device	*dev;
210 	u64			logical;
211 	struct btrfs_root	*root;
212 	struct btrfs_work	work;
213 	int			mirror_num;
214 };
215 
216 struct scrub_nocow_inode {
217 	u64			inum;
218 	u64			offset;
219 	u64			root;
220 	struct list_head	list;
221 };
222 
223 struct scrub_copy_nocow_ctx {
224 	struct scrub_ctx	*sctx;
225 	u64			logical;
226 	u64			len;
227 	int			mirror_num;
228 	u64			physical_for_dev_replace;
229 	struct list_head	inodes;
230 	struct btrfs_work	work;
231 };
232 
233 struct scrub_warning {
234 	struct btrfs_path	*path;
235 	u64			extent_item_size;
236 	const char		*errstr;
237 	sector_t		sector;
238 	u64			logical;
239 	struct btrfs_device	*dev;
240 };
241 
242 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
243 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
244 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
246 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
247 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
248 				     struct scrub_block *sblocks_for_recheck);
249 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
250 				struct scrub_block *sblock, int is_metadata,
251 				int have_csum, u8 *csum, u64 generation,
252 				u16 csum_size, int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
254 					 struct scrub_block *sblock,
255 					 int is_metadata, int have_csum,
256 					 const u8 *csum, u64 generation,
257 					 u16 csum_size);
258 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
259 					     struct scrub_block *sblock_good);
260 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
261 					    struct scrub_block *sblock_good,
262 					    int page_num, int force_write);
263 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
264 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
265 					   int page_num);
266 static int scrub_checksum_data(struct scrub_block *sblock);
267 static int scrub_checksum_tree_block(struct scrub_block *sblock);
268 static int scrub_checksum_super(struct scrub_block *sblock);
269 static void scrub_block_get(struct scrub_block *sblock);
270 static void scrub_block_put(struct scrub_block *sblock);
271 static void scrub_page_get(struct scrub_page *spage);
272 static void scrub_page_put(struct scrub_page *spage);
273 static void scrub_parity_get(struct scrub_parity *sparity);
274 static void scrub_parity_put(struct scrub_parity *sparity);
275 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
276 				    struct scrub_page *spage);
277 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
278 		       u64 physical, struct btrfs_device *dev, u64 flags,
279 		       u64 gen, int mirror_num, u8 *csum, int force,
280 		       u64 physical_for_dev_replace);
281 static void scrub_bio_end_io(struct bio *bio, int err);
282 static void scrub_bio_end_io_worker(struct btrfs_work *work);
283 static void scrub_block_complete(struct scrub_block *sblock);
284 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
285 			       u64 extent_logical, u64 extent_len,
286 			       u64 *extent_physical,
287 			       struct btrfs_device **extent_dev,
288 			       int *extent_mirror_num);
289 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
290 			      struct scrub_wr_ctx *wr_ctx,
291 			      struct btrfs_fs_info *fs_info,
292 			      struct btrfs_device *dev,
293 			      int is_dev_replace);
294 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
295 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
296 				    struct scrub_page *spage);
297 static void scrub_wr_submit(struct scrub_ctx *sctx);
298 static void scrub_wr_bio_end_io(struct bio *bio, int err);
299 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
300 static int write_page_nocow(struct scrub_ctx *sctx,
301 			    u64 physical_for_dev_replace, struct page *page);
302 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
303 				      struct scrub_copy_nocow_ctx *ctx);
304 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
305 			    int mirror_num, u64 physical_for_dev_replace);
306 static void copy_nocow_pages_worker(struct btrfs_work *work);
307 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
308 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309 static void scrub_put_ctx(struct scrub_ctx *sctx);
310 
311 
312 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
313 {
314 	atomic_inc(&sctx->refs);
315 	atomic_inc(&sctx->bios_in_flight);
316 }
317 
318 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
319 {
320 	atomic_dec(&sctx->bios_in_flight);
321 	wake_up(&sctx->list_wait);
322 	scrub_put_ctx(sctx);
323 }
324 
325 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
326 {
327 	while (atomic_read(&fs_info->scrub_pause_req)) {
328 		mutex_unlock(&fs_info->scrub_lock);
329 		wait_event(fs_info->scrub_pause_wait,
330 		   atomic_read(&fs_info->scrub_pause_req) == 0);
331 		mutex_lock(&fs_info->scrub_lock);
332 	}
333 }
334 
335 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
336 {
337 	atomic_inc(&fs_info->scrubs_paused);
338 	wake_up(&fs_info->scrub_pause_wait);
339 
340 	mutex_lock(&fs_info->scrub_lock);
341 	__scrub_blocked_if_needed(fs_info);
342 	atomic_dec(&fs_info->scrubs_paused);
343 	mutex_unlock(&fs_info->scrub_lock);
344 
345 	wake_up(&fs_info->scrub_pause_wait);
346 }
347 
348 /*
349  * used for workers that require transaction commits (i.e., for the
350  * NOCOW case)
351  */
352 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
353 {
354 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
355 
356 	atomic_inc(&sctx->refs);
357 	/*
358 	 * increment scrubs_running to prevent cancel requests from
359 	 * completing as long as a worker is running. we must also
360 	 * increment scrubs_paused to prevent deadlocking on pause
361 	 * requests used for transactions commits (as the worker uses a
362 	 * transaction context). it is safe to regard the worker
363 	 * as paused for all matters practical. effectively, we only
364 	 * avoid cancellation requests from completing.
365 	 */
366 	mutex_lock(&fs_info->scrub_lock);
367 	atomic_inc(&fs_info->scrubs_running);
368 	atomic_inc(&fs_info->scrubs_paused);
369 	mutex_unlock(&fs_info->scrub_lock);
370 
371 	/*
372 	 * check if @scrubs_running=@scrubs_paused condition
373 	 * inside wait_event() is not an atomic operation.
374 	 * which means we may inc/dec @scrub_running/paused
375 	 * at any time. Let's wake up @scrub_pause_wait as
376 	 * much as we can to let commit transaction blocked less.
377 	 */
378 	wake_up(&fs_info->scrub_pause_wait);
379 
380 	atomic_inc(&sctx->workers_pending);
381 }
382 
383 /* used for workers that require transaction commits */
384 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
385 {
386 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
387 
388 	/*
389 	 * see scrub_pending_trans_workers_inc() why we're pretending
390 	 * to be paused in the scrub counters
391 	 */
392 	mutex_lock(&fs_info->scrub_lock);
393 	atomic_dec(&fs_info->scrubs_running);
394 	atomic_dec(&fs_info->scrubs_paused);
395 	mutex_unlock(&fs_info->scrub_lock);
396 	atomic_dec(&sctx->workers_pending);
397 	wake_up(&fs_info->scrub_pause_wait);
398 	wake_up(&sctx->list_wait);
399 	scrub_put_ctx(sctx);
400 }
401 
402 static void scrub_free_csums(struct scrub_ctx *sctx)
403 {
404 	while (!list_empty(&sctx->csum_list)) {
405 		struct btrfs_ordered_sum *sum;
406 		sum = list_first_entry(&sctx->csum_list,
407 				       struct btrfs_ordered_sum, list);
408 		list_del(&sum->list);
409 		kfree(sum);
410 	}
411 }
412 
413 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
414 {
415 	int i;
416 
417 	if (!sctx)
418 		return;
419 
420 	scrub_free_wr_ctx(&sctx->wr_ctx);
421 
422 	/* this can happen when scrub is cancelled */
423 	if (sctx->curr != -1) {
424 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
425 
426 		for (i = 0; i < sbio->page_count; i++) {
427 			WARN_ON(!sbio->pagev[i]->page);
428 			scrub_block_put(sbio->pagev[i]->sblock);
429 		}
430 		bio_put(sbio->bio);
431 	}
432 
433 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
434 		struct scrub_bio *sbio = sctx->bios[i];
435 
436 		if (!sbio)
437 			break;
438 		kfree(sbio);
439 	}
440 
441 	scrub_free_csums(sctx);
442 	kfree(sctx);
443 }
444 
445 static void scrub_put_ctx(struct scrub_ctx *sctx)
446 {
447 	if (atomic_dec_and_test(&sctx->refs))
448 		scrub_free_ctx(sctx);
449 }
450 
451 static noinline_for_stack
452 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
453 {
454 	struct scrub_ctx *sctx;
455 	int		i;
456 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
457 	int pages_per_rd_bio;
458 	int ret;
459 
460 	/*
461 	 * the setting of pages_per_rd_bio is correct for scrub but might
462 	 * be wrong for the dev_replace code where we might read from
463 	 * different devices in the initial huge bios. However, that
464 	 * code is able to correctly handle the case when adding a page
465 	 * to a bio fails.
466 	 */
467 	if (dev->bdev)
468 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
469 					 bio_get_nr_vecs(dev->bdev));
470 	else
471 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
472 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
473 	if (!sctx)
474 		goto nomem;
475 	atomic_set(&sctx->refs, 1);
476 	sctx->is_dev_replace = is_dev_replace;
477 	sctx->pages_per_rd_bio = pages_per_rd_bio;
478 	sctx->curr = -1;
479 	sctx->dev_root = dev->dev_root;
480 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
481 		struct scrub_bio *sbio;
482 
483 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
484 		if (!sbio)
485 			goto nomem;
486 		sctx->bios[i] = sbio;
487 
488 		sbio->index = i;
489 		sbio->sctx = sctx;
490 		sbio->page_count = 0;
491 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
492 				scrub_bio_end_io_worker, NULL, NULL);
493 
494 		if (i != SCRUB_BIOS_PER_SCTX - 1)
495 			sctx->bios[i]->next_free = i + 1;
496 		else
497 			sctx->bios[i]->next_free = -1;
498 	}
499 	sctx->first_free = 0;
500 	sctx->nodesize = dev->dev_root->nodesize;
501 	sctx->sectorsize = dev->dev_root->sectorsize;
502 	atomic_set(&sctx->bios_in_flight, 0);
503 	atomic_set(&sctx->workers_pending, 0);
504 	atomic_set(&sctx->cancel_req, 0);
505 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
506 	INIT_LIST_HEAD(&sctx->csum_list);
507 
508 	spin_lock_init(&sctx->list_lock);
509 	spin_lock_init(&sctx->stat_lock);
510 	init_waitqueue_head(&sctx->list_wait);
511 
512 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
513 				 fs_info->dev_replace.tgtdev, is_dev_replace);
514 	if (ret) {
515 		scrub_free_ctx(sctx);
516 		return ERR_PTR(ret);
517 	}
518 	return sctx;
519 
520 nomem:
521 	scrub_free_ctx(sctx);
522 	return ERR_PTR(-ENOMEM);
523 }
524 
525 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
526 				     void *warn_ctx)
527 {
528 	u64 isize;
529 	u32 nlink;
530 	int ret;
531 	int i;
532 	struct extent_buffer *eb;
533 	struct btrfs_inode_item *inode_item;
534 	struct scrub_warning *swarn = warn_ctx;
535 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
536 	struct inode_fs_paths *ipath = NULL;
537 	struct btrfs_root *local_root;
538 	struct btrfs_key root_key;
539 	struct btrfs_key key;
540 
541 	root_key.objectid = root;
542 	root_key.type = BTRFS_ROOT_ITEM_KEY;
543 	root_key.offset = (u64)-1;
544 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
545 	if (IS_ERR(local_root)) {
546 		ret = PTR_ERR(local_root);
547 		goto err;
548 	}
549 
550 	/*
551 	 * this makes the path point to (inum INODE_ITEM ioff)
552 	 */
553 	key.objectid = inum;
554 	key.type = BTRFS_INODE_ITEM_KEY;
555 	key.offset = 0;
556 
557 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558 	if (ret) {
559 		btrfs_release_path(swarn->path);
560 		goto err;
561 	}
562 
563 	eb = swarn->path->nodes[0];
564 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
565 					struct btrfs_inode_item);
566 	isize = btrfs_inode_size(eb, inode_item);
567 	nlink = btrfs_inode_nlink(eb, inode_item);
568 	btrfs_release_path(swarn->path);
569 
570 	ipath = init_ipath(4096, local_root, swarn->path);
571 	if (IS_ERR(ipath)) {
572 		ret = PTR_ERR(ipath);
573 		ipath = NULL;
574 		goto err;
575 	}
576 	ret = paths_from_inode(inum, ipath);
577 
578 	if (ret < 0)
579 		goto err;
580 
581 	/*
582 	 * we deliberately ignore the bit ipath might have been too small to
583 	 * hold all of the paths here
584 	 */
585 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
586 		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
587 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
588 			"length %llu, links %u (path: %s)\n", swarn->errstr,
589 			swarn->logical, rcu_str_deref(swarn->dev->name),
590 			(unsigned long long)swarn->sector, root, inum, offset,
591 			min(isize - offset, (u64)PAGE_SIZE), nlink,
592 			(char *)(unsigned long)ipath->fspath->val[i]);
593 
594 	free_ipath(ipath);
595 	return 0;
596 
597 err:
598 	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
599 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
600 		"resolving failed with ret=%d\n", swarn->errstr,
601 		swarn->logical, rcu_str_deref(swarn->dev->name),
602 		(unsigned long long)swarn->sector, root, inum, offset, ret);
603 
604 	free_ipath(ipath);
605 	return 0;
606 }
607 
608 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
609 {
610 	struct btrfs_device *dev;
611 	struct btrfs_fs_info *fs_info;
612 	struct btrfs_path *path;
613 	struct btrfs_key found_key;
614 	struct extent_buffer *eb;
615 	struct btrfs_extent_item *ei;
616 	struct scrub_warning swarn;
617 	unsigned long ptr = 0;
618 	u64 extent_item_pos;
619 	u64 flags = 0;
620 	u64 ref_root;
621 	u32 item_size;
622 	u8 ref_level;
623 	int ret;
624 
625 	WARN_ON(sblock->page_count < 1);
626 	dev = sblock->pagev[0]->dev;
627 	fs_info = sblock->sctx->dev_root->fs_info;
628 
629 	path = btrfs_alloc_path();
630 	if (!path)
631 		return;
632 
633 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
634 	swarn.logical = sblock->pagev[0]->logical;
635 	swarn.errstr = errstr;
636 	swarn.dev = NULL;
637 
638 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
639 				  &flags);
640 	if (ret < 0)
641 		goto out;
642 
643 	extent_item_pos = swarn.logical - found_key.objectid;
644 	swarn.extent_item_size = found_key.offset;
645 
646 	eb = path->nodes[0];
647 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
648 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
649 
650 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
651 		do {
652 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
653 						      item_size, &ref_root,
654 						      &ref_level);
655 			printk_in_rcu(KERN_WARNING
656 				"BTRFS: %s at logical %llu on dev %s, "
657 				"sector %llu: metadata %s (level %d) in tree "
658 				"%llu\n", errstr, swarn.logical,
659 				rcu_str_deref(dev->name),
660 				(unsigned long long)swarn.sector,
661 				ref_level ? "node" : "leaf",
662 				ret < 0 ? -1 : ref_level,
663 				ret < 0 ? -1 : ref_root);
664 		} while (ret != 1);
665 		btrfs_release_path(path);
666 	} else {
667 		btrfs_release_path(path);
668 		swarn.path = path;
669 		swarn.dev = dev;
670 		iterate_extent_inodes(fs_info, found_key.objectid,
671 					extent_item_pos, 1,
672 					scrub_print_warning_inode, &swarn);
673 	}
674 
675 out:
676 	btrfs_free_path(path);
677 }
678 
679 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
680 {
681 	struct page *page = NULL;
682 	unsigned long index;
683 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
684 	int ret;
685 	int corrected = 0;
686 	struct btrfs_key key;
687 	struct inode *inode = NULL;
688 	struct btrfs_fs_info *fs_info;
689 	u64 end = offset + PAGE_SIZE - 1;
690 	struct btrfs_root *local_root;
691 	int srcu_index;
692 
693 	key.objectid = root;
694 	key.type = BTRFS_ROOT_ITEM_KEY;
695 	key.offset = (u64)-1;
696 
697 	fs_info = fixup->root->fs_info;
698 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
699 
700 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
701 	if (IS_ERR(local_root)) {
702 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 		return PTR_ERR(local_root);
704 	}
705 
706 	key.type = BTRFS_INODE_ITEM_KEY;
707 	key.objectid = inum;
708 	key.offset = 0;
709 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
710 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
711 	if (IS_ERR(inode))
712 		return PTR_ERR(inode);
713 
714 	index = offset >> PAGE_CACHE_SHIFT;
715 
716 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
717 	if (!page) {
718 		ret = -ENOMEM;
719 		goto out;
720 	}
721 
722 	if (PageUptodate(page)) {
723 		if (PageDirty(page)) {
724 			/*
725 			 * we need to write the data to the defect sector. the
726 			 * data that was in that sector is not in memory,
727 			 * because the page was modified. we must not write the
728 			 * modified page to that sector.
729 			 *
730 			 * TODO: what could be done here: wait for the delalloc
731 			 *       runner to write out that page (might involve
732 			 *       COW) and see whether the sector is still
733 			 *       referenced afterwards.
734 			 *
735 			 * For the meantime, we'll treat this error
736 			 * incorrectable, although there is a chance that a
737 			 * later scrub will find the bad sector again and that
738 			 * there's no dirty page in memory, then.
739 			 */
740 			ret = -EIO;
741 			goto out;
742 		}
743 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
744 					fixup->logical, page,
745 					offset - page_offset(page),
746 					fixup->mirror_num);
747 		unlock_page(page);
748 		corrected = !ret;
749 	} else {
750 		/*
751 		 * we need to get good data first. the general readpage path
752 		 * will call repair_io_failure for us, we just have to make
753 		 * sure we read the bad mirror.
754 		 */
755 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
756 					EXTENT_DAMAGED, GFP_NOFS);
757 		if (ret) {
758 			/* set_extent_bits should give proper error */
759 			WARN_ON(ret > 0);
760 			if (ret > 0)
761 				ret = -EFAULT;
762 			goto out;
763 		}
764 
765 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
766 						btrfs_get_extent,
767 						fixup->mirror_num);
768 		wait_on_page_locked(page);
769 
770 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
771 						end, EXTENT_DAMAGED, 0, NULL);
772 		if (!corrected)
773 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
774 						EXTENT_DAMAGED, GFP_NOFS);
775 	}
776 
777 out:
778 	if (page)
779 		put_page(page);
780 
781 	iput(inode);
782 
783 	if (ret < 0)
784 		return ret;
785 
786 	if (ret == 0 && corrected) {
787 		/*
788 		 * we only need to call readpage for one of the inodes belonging
789 		 * to this extent. so make iterate_extent_inodes stop
790 		 */
791 		return 1;
792 	}
793 
794 	return -EIO;
795 }
796 
797 static void scrub_fixup_nodatasum(struct btrfs_work *work)
798 {
799 	int ret;
800 	struct scrub_fixup_nodatasum *fixup;
801 	struct scrub_ctx *sctx;
802 	struct btrfs_trans_handle *trans = NULL;
803 	struct btrfs_path *path;
804 	int uncorrectable = 0;
805 
806 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
807 	sctx = fixup->sctx;
808 
809 	path = btrfs_alloc_path();
810 	if (!path) {
811 		spin_lock(&sctx->stat_lock);
812 		++sctx->stat.malloc_errors;
813 		spin_unlock(&sctx->stat_lock);
814 		uncorrectable = 1;
815 		goto out;
816 	}
817 
818 	trans = btrfs_join_transaction(fixup->root);
819 	if (IS_ERR(trans)) {
820 		uncorrectable = 1;
821 		goto out;
822 	}
823 
824 	/*
825 	 * the idea is to trigger a regular read through the standard path. we
826 	 * read a page from the (failed) logical address by specifying the
827 	 * corresponding copynum of the failed sector. thus, that readpage is
828 	 * expected to fail.
829 	 * that is the point where on-the-fly error correction will kick in
830 	 * (once it's finished) and rewrite the failed sector if a good copy
831 	 * can be found.
832 	 */
833 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
834 						path, scrub_fixup_readpage,
835 						fixup);
836 	if (ret < 0) {
837 		uncorrectable = 1;
838 		goto out;
839 	}
840 	WARN_ON(ret != 1);
841 
842 	spin_lock(&sctx->stat_lock);
843 	++sctx->stat.corrected_errors;
844 	spin_unlock(&sctx->stat_lock);
845 
846 out:
847 	if (trans && !IS_ERR(trans))
848 		btrfs_end_transaction(trans, fixup->root);
849 	if (uncorrectable) {
850 		spin_lock(&sctx->stat_lock);
851 		++sctx->stat.uncorrectable_errors;
852 		spin_unlock(&sctx->stat_lock);
853 		btrfs_dev_replace_stats_inc(
854 			&sctx->dev_root->fs_info->dev_replace.
855 			num_uncorrectable_read_errors);
856 		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
857 		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
858 			fixup->logical, rcu_str_deref(fixup->dev->name));
859 	}
860 
861 	btrfs_free_path(path);
862 	kfree(fixup);
863 
864 	scrub_pending_trans_workers_dec(sctx);
865 }
866 
867 static inline void scrub_get_recover(struct scrub_recover *recover)
868 {
869 	atomic_inc(&recover->refs);
870 }
871 
872 static inline void scrub_put_recover(struct scrub_recover *recover)
873 {
874 	if (atomic_dec_and_test(&recover->refs)) {
875 		btrfs_put_bbio(recover->bbio);
876 		kfree(recover);
877 	}
878 }
879 
880 /*
881  * scrub_handle_errored_block gets called when either verification of the
882  * pages failed or the bio failed to read, e.g. with EIO. In the latter
883  * case, this function handles all pages in the bio, even though only one
884  * may be bad.
885  * The goal of this function is to repair the errored block by using the
886  * contents of one of the mirrors.
887  */
888 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
889 {
890 	struct scrub_ctx *sctx = sblock_to_check->sctx;
891 	struct btrfs_device *dev;
892 	struct btrfs_fs_info *fs_info;
893 	u64 length;
894 	u64 logical;
895 	u64 generation;
896 	unsigned int failed_mirror_index;
897 	unsigned int is_metadata;
898 	unsigned int have_csum;
899 	u8 *csum;
900 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
901 	struct scrub_block *sblock_bad;
902 	int ret;
903 	int mirror_index;
904 	int page_num;
905 	int success;
906 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
907 				      DEFAULT_RATELIMIT_BURST);
908 
909 	BUG_ON(sblock_to_check->page_count < 1);
910 	fs_info = sctx->dev_root->fs_info;
911 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
912 		/*
913 		 * if we find an error in a super block, we just report it.
914 		 * They will get written with the next transaction commit
915 		 * anyway
916 		 */
917 		spin_lock(&sctx->stat_lock);
918 		++sctx->stat.super_errors;
919 		spin_unlock(&sctx->stat_lock);
920 		return 0;
921 	}
922 	length = sblock_to_check->page_count * PAGE_SIZE;
923 	logical = sblock_to_check->pagev[0]->logical;
924 	generation = sblock_to_check->pagev[0]->generation;
925 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
926 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
927 	is_metadata = !(sblock_to_check->pagev[0]->flags &
928 			BTRFS_EXTENT_FLAG_DATA);
929 	have_csum = sblock_to_check->pagev[0]->have_csum;
930 	csum = sblock_to_check->pagev[0]->csum;
931 	dev = sblock_to_check->pagev[0]->dev;
932 
933 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
934 		sblocks_for_recheck = NULL;
935 		goto nodatasum_case;
936 	}
937 
938 	/*
939 	 * read all mirrors one after the other. This includes to
940 	 * re-read the extent or metadata block that failed (that was
941 	 * the cause that this fixup code is called) another time,
942 	 * page by page this time in order to know which pages
943 	 * caused I/O errors and which ones are good (for all mirrors).
944 	 * It is the goal to handle the situation when more than one
945 	 * mirror contains I/O errors, but the errors do not
946 	 * overlap, i.e. the data can be repaired by selecting the
947 	 * pages from those mirrors without I/O error on the
948 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
949 	 * would be that mirror #1 has an I/O error on the first page,
950 	 * the second page is good, and mirror #2 has an I/O error on
951 	 * the second page, but the first page is good.
952 	 * Then the first page of the first mirror can be repaired by
953 	 * taking the first page of the second mirror, and the
954 	 * second page of the second mirror can be repaired by
955 	 * copying the contents of the 2nd page of the 1st mirror.
956 	 * One more note: if the pages of one mirror contain I/O
957 	 * errors, the checksum cannot be verified. In order to get
958 	 * the best data for repairing, the first attempt is to find
959 	 * a mirror without I/O errors and with a validated checksum.
960 	 * Only if this is not possible, the pages are picked from
961 	 * mirrors with I/O errors without considering the checksum.
962 	 * If the latter is the case, at the end, the checksum of the
963 	 * repaired area is verified in order to correctly maintain
964 	 * the statistics.
965 	 */
966 
967 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
968 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
969 	if (!sblocks_for_recheck) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.malloc_errors++;
972 		sctx->stat.read_errors++;
973 		sctx->stat.uncorrectable_errors++;
974 		spin_unlock(&sctx->stat_lock);
975 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 		goto out;
977 	}
978 
979 	/* setup the context, map the logical blocks and alloc the pages */
980 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
981 	if (ret) {
982 		spin_lock(&sctx->stat_lock);
983 		sctx->stat.read_errors++;
984 		sctx->stat.uncorrectable_errors++;
985 		spin_unlock(&sctx->stat_lock);
986 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
987 		goto out;
988 	}
989 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
990 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
991 
992 	/* build and submit the bios for the failed mirror, check checksums */
993 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
994 			    csum, generation, sctx->csum_size, 1);
995 
996 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
997 	    sblock_bad->no_io_error_seen) {
998 		/*
999 		 * the error disappeared after reading page by page, or
1000 		 * the area was part of a huge bio and other parts of the
1001 		 * bio caused I/O errors, or the block layer merged several
1002 		 * read requests into one and the error is caused by a
1003 		 * different bio (usually one of the two latter cases is
1004 		 * the cause)
1005 		 */
1006 		spin_lock(&sctx->stat_lock);
1007 		sctx->stat.unverified_errors++;
1008 		sblock_to_check->data_corrected = 1;
1009 		spin_unlock(&sctx->stat_lock);
1010 
1011 		if (sctx->is_dev_replace)
1012 			scrub_write_block_to_dev_replace(sblock_bad);
1013 		goto out;
1014 	}
1015 
1016 	if (!sblock_bad->no_io_error_seen) {
1017 		spin_lock(&sctx->stat_lock);
1018 		sctx->stat.read_errors++;
1019 		spin_unlock(&sctx->stat_lock);
1020 		if (__ratelimit(&_rs))
1021 			scrub_print_warning("i/o error", sblock_to_check);
1022 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1023 	} else if (sblock_bad->checksum_error) {
1024 		spin_lock(&sctx->stat_lock);
1025 		sctx->stat.csum_errors++;
1026 		spin_unlock(&sctx->stat_lock);
1027 		if (__ratelimit(&_rs))
1028 			scrub_print_warning("checksum error", sblock_to_check);
1029 		btrfs_dev_stat_inc_and_print(dev,
1030 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031 	} else if (sblock_bad->header_error) {
1032 		spin_lock(&sctx->stat_lock);
1033 		sctx->stat.verify_errors++;
1034 		spin_unlock(&sctx->stat_lock);
1035 		if (__ratelimit(&_rs))
1036 			scrub_print_warning("checksum/header error",
1037 					    sblock_to_check);
1038 		if (sblock_bad->generation_error)
1039 			btrfs_dev_stat_inc_and_print(dev,
1040 				BTRFS_DEV_STAT_GENERATION_ERRS);
1041 		else
1042 			btrfs_dev_stat_inc_and_print(dev,
1043 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1044 	}
1045 
1046 	if (sctx->readonly) {
1047 		ASSERT(!sctx->is_dev_replace);
1048 		goto out;
1049 	}
1050 
1051 	if (!is_metadata && !have_csum) {
1052 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1053 
1054 		WARN_ON(sctx->is_dev_replace);
1055 
1056 nodatasum_case:
1057 
1058 		/*
1059 		 * !is_metadata and !have_csum, this means that the data
1060 		 * might not be COW'ed, that it might be modified
1061 		 * concurrently. The general strategy to work on the
1062 		 * commit root does not help in the case when COW is not
1063 		 * used.
1064 		 */
1065 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1066 		if (!fixup_nodatasum)
1067 			goto did_not_correct_error;
1068 		fixup_nodatasum->sctx = sctx;
1069 		fixup_nodatasum->dev = dev;
1070 		fixup_nodatasum->logical = logical;
1071 		fixup_nodatasum->root = fs_info->extent_root;
1072 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1073 		scrub_pending_trans_workers_inc(sctx);
1074 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1075 				scrub_fixup_nodatasum, NULL, NULL);
1076 		btrfs_queue_work(fs_info->scrub_workers,
1077 				 &fixup_nodatasum->work);
1078 		goto out;
1079 	}
1080 
1081 	/*
1082 	 * now build and submit the bios for the other mirrors, check
1083 	 * checksums.
1084 	 * First try to pick the mirror which is completely without I/O
1085 	 * errors and also does not have a checksum error.
1086 	 * If one is found, and if a checksum is present, the full block
1087 	 * that is known to contain an error is rewritten. Afterwards
1088 	 * the block is known to be corrected.
1089 	 * If a mirror is found which is completely correct, and no
1090 	 * checksum is present, only those pages are rewritten that had
1091 	 * an I/O error in the block to be repaired, since it cannot be
1092 	 * determined, which copy of the other pages is better (and it
1093 	 * could happen otherwise that a correct page would be
1094 	 * overwritten by a bad one).
1095 	 */
1096 	for (mirror_index = 0;
1097 	     mirror_index < BTRFS_MAX_MIRRORS &&
1098 	     sblocks_for_recheck[mirror_index].page_count > 0;
1099 	     mirror_index++) {
1100 		struct scrub_block *sblock_other;
1101 
1102 		if (mirror_index == failed_mirror_index)
1103 			continue;
1104 		sblock_other = sblocks_for_recheck + mirror_index;
1105 
1106 		/* build and submit the bios, check checksums */
1107 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1108 				    have_csum, csum, generation,
1109 				    sctx->csum_size, 0);
1110 
1111 		if (!sblock_other->header_error &&
1112 		    !sblock_other->checksum_error &&
1113 		    sblock_other->no_io_error_seen) {
1114 			if (sctx->is_dev_replace) {
1115 				scrub_write_block_to_dev_replace(sblock_other);
1116 				goto corrected_error;
1117 			} else {
1118 				ret = scrub_repair_block_from_good_copy(
1119 						sblock_bad, sblock_other);
1120 				if (!ret)
1121 					goto corrected_error;
1122 			}
1123 		}
1124 	}
1125 
1126 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1127 		goto did_not_correct_error;
1128 
1129 	/*
1130 	 * In case of I/O errors in the area that is supposed to be
1131 	 * repaired, continue by picking good copies of those pages.
1132 	 * Select the good pages from mirrors to rewrite bad pages from
1133 	 * the area to fix. Afterwards verify the checksum of the block
1134 	 * that is supposed to be repaired. This verification step is
1135 	 * only done for the purpose of statistic counting and for the
1136 	 * final scrub report, whether errors remain.
1137 	 * A perfect algorithm could make use of the checksum and try
1138 	 * all possible combinations of pages from the different mirrors
1139 	 * until the checksum verification succeeds. For example, when
1140 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1141 	 * of mirror #2 is readable but the final checksum test fails,
1142 	 * then the 2nd page of mirror #3 could be tried, whether now
1143 	 * the final checksum succeedes. But this would be a rare
1144 	 * exception and is therefore not implemented. At least it is
1145 	 * avoided that the good copy is overwritten.
1146 	 * A more useful improvement would be to pick the sectors
1147 	 * without I/O error based on sector sizes (512 bytes on legacy
1148 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1149 	 * mirror could be repaired by taking 512 byte of a different
1150 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1151 	 * area are unreadable.
1152 	 */
1153 	success = 1;
1154 	for (page_num = 0; page_num < sblock_bad->page_count;
1155 	     page_num++) {
1156 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1157 		struct scrub_block *sblock_other = NULL;
1158 
1159 		/* skip no-io-error page in scrub */
1160 		if (!page_bad->io_error && !sctx->is_dev_replace)
1161 			continue;
1162 
1163 		/* try to find no-io-error page in mirrors */
1164 		if (page_bad->io_error) {
1165 			for (mirror_index = 0;
1166 			     mirror_index < BTRFS_MAX_MIRRORS &&
1167 			     sblocks_for_recheck[mirror_index].page_count > 0;
1168 			     mirror_index++) {
1169 				if (!sblocks_for_recheck[mirror_index].
1170 				    pagev[page_num]->io_error) {
1171 					sblock_other = sblocks_for_recheck +
1172 						       mirror_index;
1173 					break;
1174 				}
1175 			}
1176 			if (!sblock_other)
1177 				success = 0;
1178 		}
1179 
1180 		if (sctx->is_dev_replace) {
1181 			/*
1182 			 * did not find a mirror to fetch the page
1183 			 * from. scrub_write_page_to_dev_replace()
1184 			 * handles this case (page->io_error), by
1185 			 * filling the block with zeros before
1186 			 * submitting the write request
1187 			 */
1188 			if (!sblock_other)
1189 				sblock_other = sblock_bad;
1190 
1191 			if (scrub_write_page_to_dev_replace(sblock_other,
1192 							    page_num) != 0) {
1193 				btrfs_dev_replace_stats_inc(
1194 					&sctx->dev_root->
1195 					fs_info->dev_replace.
1196 					num_write_errors);
1197 				success = 0;
1198 			}
1199 		} else if (sblock_other) {
1200 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1201 							       sblock_other,
1202 							       page_num, 0);
1203 			if (0 == ret)
1204 				page_bad->io_error = 0;
1205 			else
1206 				success = 0;
1207 		}
1208 	}
1209 
1210 	if (success && !sctx->is_dev_replace) {
1211 		if (is_metadata || have_csum) {
1212 			/*
1213 			 * need to verify the checksum now that all
1214 			 * sectors on disk are repaired (the write
1215 			 * request for data to be repaired is on its way).
1216 			 * Just be lazy and use scrub_recheck_block()
1217 			 * which re-reads the data before the checksum
1218 			 * is verified, but most likely the data comes out
1219 			 * of the page cache.
1220 			 */
1221 			scrub_recheck_block(fs_info, sblock_bad,
1222 					    is_metadata, have_csum, csum,
1223 					    generation, sctx->csum_size, 1);
1224 			if (!sblock_bad->header_error &&
1225 			    !sblock_bad->checksum_error &&
1226 			    sblock_bad->no_io_error_seen)
1227 				goto corrected_error;
1228 			else
1229 				goto did_not_correct_error;
1230 		} else {
1231 corrected_error:
1232 			spin_lock(&sctx->stat_lock);
1233 			sctx->stat.corrected_errors++;
1234 			sblock_to_check->data_corrected = 1;
1235 			spin_unlock(&sctx->stat_lock);
1236 			printk_ratelimited_in_rcu(KERN_ERR
1237 				"BTRFS: fixed up error at logical %llu on dev %s\n",
1238 				logical, rcu_str_deref(dev->name));
1239 		}
1240 	} else {
1241 did_not_correct_error:
1242 		spin_lock(&sctx->stat_lock);
1243 		sctx->stat.uncorrectable_errors++;
1244 		spin_unlock(&sctx->stat_lock);
1245 		printk_ratelimited_in_rcu(KERN_ERR
1246 			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1247 			logical, rcu_str_deref(dev->name));
1248 	}
1249 
1250 out:
1251 	if (sblocks_for_recheck) {
1252 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1253 		     mirror_index++) {
1254 			struct scrub_block *sblock = sblocks_for_recheck +
1255 						     mirror_index;
1256 			struct scrub_recover *recover;
1257 			int page_index;
1258 
1259 			for (page_index = 0; page_index < sblock->page_count;
1260 			     page_index++) {
1261 				sblock->pagev[page_index]->sblock = NULL;
1262 				recover = sblock->pagev[page_index]->recover;
1263 				if (recover) {
1264 					scrub_put_recover(recover);
1265 					sblock->pagev[page_index]->recover =
1266 									NULL;
1267 				}
1268 				scrub_page_put(sblock->pagev[page_index]);
1269 			}
1270 		}
1271 		kfree(sblocks_for_recheck);
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1278 {
1279 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1280 		return 2;
1281 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1282 		return 3;
1283 	else
1284 		return (int)bbio->num_stripes;
1285 }
1286 
1287 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1288 						 u64 *raid_map,
1289 						 u64 mapped_length,
1290 						 int nstripes, int mirror,
1291 						 int *stripe_index,
1292 						 u64 *stripe_offset)
1293 {
1294 	int i;
1295 
1296 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1297 		/* RAID5/6 */
1298 		for (i = 0; i < nstripes; i++) {
1299 			if (raid_map[i] == RAID6_Q_STRIPE ||
1300 			    raid_map[i] == RAID5_P_STRIPE)
1301 				continue;
1302 
1303 			if (logical >= raid_map[i] &&
1304 			    logical < raid_map[i] + mapped_length)
1305 				break;
1306 		}
1307 
1308 		*stripe_index = i;
1309 		*stripe_offset = logical - raid_map[i];
1310 	} else {
1311 		/* The other RAID type */
1312 		*stripe_index = mirror;
1313 		*stripe_offset = 0;
1314 	}
1315 }
1316 
1317 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1318 				     struct scrub_block *sblocks_for_recheck)
1319 {
1320 	struct scrub_ctx *sctx = original_sblock->sctx;
1321 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1322 	u64 length = original_sblock->page_count * PAGE_SIZE;
1323 	u64 logical = original_sblock->pagev[0]->logical;
1324 	struct scrub_recover *recover;
1325 	struct btrfs_bio *bbio;
1326 	u64 sublen;
1327 	u64 mapped_length;
1328 	u64 stripe_offset;
1329 	int stripe_index;
1330 	int page_index = 0;
1331 	int mirror_index;
1332 	int nmirrors;
1333 	int ret;
1334 
1335 	/*
1336 	 * note: the two members refs and outstanding_pages
1337 	 * are not used (and not set) in the blocks that are used for
1338 	 * the recheck procedure
1339 	 */
1340 
1341 	while (length > 0) {
1342 		sublen = min_t(u64, length, PAGE_SIZE);
1343 		mapped_length = sublen;
1344 		bbio = NULL;
1345 
1346 		/*
1347 		 * with a length of PAGE_SIZE, each returned stripe
1348 		 * represents one mirror
1349 		 */
1350 		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1351 				       &mapped_length, &bbio, 0, 1);
1352 		if (ret || !bbio || mapped_length < sublen) {
1353 			btrfs_put_bbio(bbio);
1354 			return -EIO;
1355 		}
1356 
1357 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1358 		if (!recover) {
1359 			btrfs_put_bbio(bbio);
1360 			return -ENOMEM;
1361 		}
1362 
1363 		atomic_set(&recover->refs, 1);
1364 		recover->bbio = bbio;
1365 		recover->map_length = mapped_length;
1366 
1367 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1368 
1369 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1370 
1371 		for (mirror_index = 0; mirror_index < nmirrors;
1372 		     mirror_index++) {
1373 			struct scrub_block *sblock;
1374 			struct scrub_page *page;
1375 
1376 			sblock = sblocks_for_recheck + mirror_index;
1377 			sblock->sctx = sctx;
1378 			page = kzalloc(sizeof(*page), GFP_NOFS);
1379 			if (!page) {
1380 leave_nomem:
1381 				spin_lock(&sctx->stat_lock);
1382 				sctx->stat.malloc_errors++;
1383 				spin_unlock(&sctx->stat_lock);
1384 				scrub_put_recover(recover);
1385 				return -ENOMEM;
1386 			}
1387 			scrub_page_get(page);
1388 			sblock->pagev[page_index] = page;
1389 			page->logical = logical;
1390 
1391 			scrub_stripe_index_and_offset(logical,
1392 						      bbio->map_type,
1393 						      bbio->raid_map,
1394 						      mapped_length,
1395 						      bbio->num_stripes -
1396 						      bbio->num_tgtdevs,
1397 						      mirror_index,
1398 						      &stripe_index,
1399 						      &stripe_offset);
1400 			page->physical = bbio->stripes[stripe_index].physical +
1401 					 stripe_offset;
1402 			page->dev = bbio->stripes[stripe_index].dev;
1403 
1404 			BUG_ON(page_index >= original_sblock->page_count);
1405 			page->physical_for_dev_replace =
1406 				original_sblock->pagev[page_index]->
1407 				physical_for_dev_replace;
1408 			/* for missing devices, dev->bdev is NULL */
1409 			page->mirror_num = mirror_index + 1;
1410 			sblock->page_count++;
1411 			page->page = alloc_page(GFP_NOFS);
1412 			if (!page->page)
1413 				goto leave_nomem;
1414 
1415 			scrub_get_recover(recover);
1416 			page->recover = recover;
1417 		}
1418 		scrub_put_recover(recover);
1419 		length -= sublen;
1420 		logical += sublen;
1421 		page_index++;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 struct scrub_bio_ret {
1428 	struct completion event;
1429 	int error;
1430 };
1431 
1432 static void scrub_bio_wait_endio(struct bio *bio, int error)
1433 {
1434 	struct scrub_bio_ret *ret = bio->bi_private;
1435 
1436 	ret->error = error;
1437 	complete(&ret->event);
1438 }
1439 
1440 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1441 {
1442 	return page->recover &&
1443 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1444 }
1445 
1446 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1447 					struct bio *bio,
1448 					struct scrub_page *page)
1449 {
1450 	struct scrub_bio_ret done;
1451 	int ret;
1452 
1453 	init_completion(&done.event);
1454 	done.error = 0;
1455 	bio->bi_iter.bi_sector = page->logical >> 9;
1456 	bio->bi_private = &done;
1457 	bio->bi_end_io = scrub_bio_wait_endio;
1458 
1459 	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1460 				    page->recover->map_length,
1461 				    page->mirror_num, 0);
1462 	if (ret)
1463 		return ret;
1464 
1465 	wait_for_completion(&done.event);
1466 	if (done.error)
1467 		return -EIO;
1468 
1469 	return 0;
1470 }
1471 
1472 /*
1473  * this function will check the on disk data for checksum errors, header
1474  * errors and read I/O errors. If any I/O errors happen, the exact pages
1475  * which are errored are marked as being bad. The goal is to enable scrub
1476  * to take those pages that are not errored from all the mirrors so that
1477  * the pages that are errored in the just handled mirror can be repaired.
1478  */
1479 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1480 				struct scrub_block *sblock, int is_metadata,
1481 				int have_csum, u8 *csum, u64 generation,
1482 				u16 csum_size, int retry_failed_mirror)
1483 {
1484 	int page_num;
1485 
1486 	sblock->no_io_error_seen = 1;
1487 	sblock->header_error = 0;
1488 	sblock->checksum_error = 0;
1489 
1490 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1491 		struct bio *bio;
1492 		struct scrub_page *page = sblock->pagev[page_num];
1493 
1494 		if (page->dev->bdev == NULL) {
1495 			page->io_error = 1;
1496 			sblock->no_io_error_seen = 0;
1497 			continue;
1498 		}
1499 
1500 		WARN_ON(!page->page);
1501 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1502 		if (!bio) {
1503 			page->io_error = 1;
1504 			sblock->no_io_error_seen = 0;
1505 			continue;
1506 		}
1507 		bio->bi_bdev = page->dev->bdev;
1508 
1509 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1510 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1511 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1512 				sblock->no_io_error_seen = 0;
1513 		} else {
1514 			bio->bi_iter.bi_sector = page->physical >> 9;
1515 
1516 			if (btrfsic_submit_bio_wait(READ, bio))
1517 				sblock->no_io_error_seen = 0;
1518 		}
1519 
1520 		bio_put(bio);
1521 	}
1522 
1523 	if (sblock->no_io_error_seen)
1524 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1525 					     have_csum, csum, generation,
1526 					     csum_size);
1527 
1528 	return;
1529 }
1530 
1531 static inline int scrub_check_fsid(u8 fsid[],
1532 				   struct scrub_page *spage)
1533 {
1534 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1535 	int ret;
1536 
1537 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1538 	return !ret;
1539 }
1540 
1541 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1542 					 struct scrub_block *sblock,
1543 					 int is_metadata, int have_csum,
1544 					 const u8 *csum, u64 generation,
1545 					 u16 csum_size)
1546 {
1547 	int page_num;
1548 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1549 	u32 crc = ~(u32)0;
1550 	void *mapped_buffer;
1551 
1552 	WARN_ON(!sblock->pagev[0]->page);
1553 	if (is_metadata) {
1554 		struct btrfs_header *h;
1555 
1556 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1557 		h = (struct btrfs_header *)mapped_buffer;
1558 
1559 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1560 		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1561 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1562 			   BTRFS_UUID_SIZE)) {
1563 			sblock->header_error = 1;
1564 		} else if (generation != btrfs_stack_header_generation(h)) {
1565 			sblock->header_error = 1;
1566 			sblock->generation_error = 1;
1567 		}
1568 		csum = h->csum;
1569 	} else {
1570 		if (!have_csum)
1571 			return;
1572 
1573 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1574 	}
1575 
1576 	for (page_num = 0;;) {
1577 		if (page_num == 0 && is_metadata)
1578 			crc = btrfs_csum_data(
1579 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1580 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1581 		else
1582 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1583 
1584 		kunmap_atomic(mapped_buffer);
1585 		page_num++;
1586 		if (page_num >= sblock->page_count)
1587 			break;
1588 		WARN_ON(!sblock->pagev[page_num]->page);
1589 
1590 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1591 	}
1592 
1593 	btrfs_csum_final(crc, calculated_csum);
1594 	if (memcmp(calculated_csum, csum, csum_size))
1595 		sblock->checksum_error = 1;
1596 }
1597 
1598 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1599 					     struct scrub_block *sblock_good)
1600 {
1601 	int page_num;
1602 	int ret = 0;
1603 
1604 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1605 		int ret_sub;
1606 
1607 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1608 							   sblock_good,
1609 							   page_num, 1);
1610 		if (ret_sub)
1611 			ret = ret_sub;
1612 	}
1613 
1614 	return ret;
1615 }
1616 
1617 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1618 					    struct scrub_block *sblock_good,
1619 					    int page_num, int force_write)
1620 {
1621 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1622 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1623 
1624 	BUG_ON(page_bad->page == NULL);
1625 	BUG_ON(page_good->page == NULL);
1626 	if (force_write || sblock_bad->header_error ||
1627 	    sblock_bad->checksum_error || page_bad->io_error) {
1628 		struct bio *bio;
1629 		int ret;
1630 
1631 		if (!page_bad->dev->bdev) {
1632 			printk_ratelimited(KERN_WARNING "BTRFS: "
1633 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1634 				"is unexpected!\n");
1635 			return -EIO;
1636 		}
1637 
1638 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1639 		if (!bio)
1640 			return -EIO;
1641 		bio->bi_bdev = page_bad->dev->bdev;
1642 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1643 
1644 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1645 		if (PAGE_SIZE != ret) {
1646 			bio_put(bio);
1647 			return -EIO;
1648 		}
1649 
1650 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1651 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1652 				BTRFS_DEV_STAT_WRITE_ERRS);
1653 			btrfs_dev_replace_stats_inc(
1654 				&sblock_bad->sctx->dev_root->fs_info->
1655 				dev_replace.num_write_errors);
1656 			bio_put(bio);
1657 			return -EIO;
1658 		}
1659 		bio_put(bio);
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1666 {
1667 	int page_num;
1668 
1669 	/*
1670 	 * This block is used for the check of the parity on the source device,
1671 	 * so the data needn't be written into the destination device.
1672 	 */
1673 	if (sblock->sparity)
1674 		return;
1675 
1676 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1677 		int ret;
1678 
1679 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1680 		if (ret)
1681 			btrfs_dev_replace_stats_inc(
1682 				&sblock->sctx->dev_root->fs_info->dev_replace.
1683 				num_write_errors);
1684 	}
1685 }
1686 
1687 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1688 					   int page_num)
1689 {
1690 	struct scrub_page *spage = sblock->pagev[page_num];
1691 
1692 	BUG_ON(spage->page == NULL);
1693 	if (spage->io_error) {
1694 		void *mapped_buffer = kmap_atomic(spage->page);
1695 
1696 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1697 		flush_dcache_page(spage->page);
1698 		kunmap_atomic(mapped_buffer);
1699 	}
1700 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1701 }
1702 
1703 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1704 				    struct scrub_page *spage)
1705 {
1706 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1707 	struct scrub_bio *sbio;
1708 	int ret;
1709 
1710 	mutex_lock(&wr_ctx->wr_lock);
1711 again:
1712 	if (!wr_ctx->wr_curr_bio) {
1713 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1714 					      GFP_NOFS);
1715 		if (!wr_ctx->wr_curr_bio) {
1716 			mutex_unlock(&wr_ctx->wr_lock);
1717 			return -ENOMEM;
1718 		}
1719 		wr_ctx->wr_curr_bio->sctx = sctx;
1720 		wr_ctx->wr_curr_bio->page_count = 0;
1721 	}
1722 	sbio = wr_ctx->wr_curr_bio;
1723 	if (sbio->page_count == 0) {
1724 		struct bio *bio;
1725 
1726 		sbio->physical = spage->physical_for_dev_replace;
1727 		sbio->logical = spage->logical;
1728 		sbio->dev = wr_ctx->tgtdev;
1729 		bio = sbio->bio;
1730 		if (!bio) {
1731 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1732 			if (!bio) {
1733 				mutex_unlock(&wr_ctx->wr_lock);
1734 				return -ENOMEM;
1735 			}
1736 			sbio->bio = bio;
1737 		}
1738 
1739 		bio->bi_private = sbio;
1740 		bio->bi_end_io = scrub_wr_bio_end_io;
1741 		bio->bi_bdev = sbio->dev->bdev;
1742 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1743 		sbio->err = 0;
1744 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1745 		   spage->physical_for_dev_replace ||
1746 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1747 		   spage->logical) {
1748 		scrub_wr_submit(sctx);
1749 		goto again;
1750 	}
1751 
1752 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1753 	if (ret != PAGE_SIZE) {
1754 		if (sbio->page_count < 1) {
1755 			bio_put(sbio->bio);
1756 			sbio->bio = NULL;
1757 			mutex_unlock(&wr_ctx->wr_lock);
1758 			return -EIO;
1759 		}
1760 		scrub_wr_submit(sctx);
1761 		goto again;
1762 	}
1763 
1764 	sbio->pagev[sbio->page_count] = spage;
1765 	scrub_page_get(spage);
1766 	sbio->page_count++;
1767 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1768 		scrub_wr_submit(sctx);
1769 	mutex_unlock(&wr_ctx->wr_lock);
1770 
1771 	return 0;
1772 }
1773 
1774 static void scrub_wr_submit(struct scrub_ctx *sctx)
1775 {
1776 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1777 	struct scrub_bio *sbio;
1778 
1779 	if (!wr_ctx->wr_curr_bio)
1780 		return;
1781 
1782 	sbio = wr_ctx->wr_curr_bio;
1783 	wr_ctx->wr_curr_bio = NULL;
1784 	WARN_ON(!sbio->bio->bi_bdev);
1785 	scrub_pending_bio_inc(sctx);
1786 	/* process all writes in a single worker thread. Then the block layer
1787 	 * orders the requests before sending them to the driver which
1788 	 * doubled the write performance on spinning disks when measured
1789 	 * with Linux 3.5 */
1790 	btrfsic_submit_bio(WRITE, sbio->bio);
1791 }
1792 
1793 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1794 {
1795 	struct scrub_bio *sbio = bio->bi_private;
1796 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1797 
1798 	sbio->err = err;
1799 	sbio->bio = bio;
1800 
1801 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1802 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1803 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1804 }
1805 
1806 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1807 {
1808 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1809 	struct scrub_ctx *sctx = sbio->sctx;
1810 	int i;
1811 
1812 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1813 	if (sbio->err) {
1814 		struct btrfs_dev_replace *dev_replace =
1815 			&sbio->sctx->dev_root->fs_info->dev_replace;
1816 
1817 		for (i = 0; i < sbio->page_count; i++) {
1818 			struct scrub_page *spage = sbio->pagev[i];
1819 
1820 			spage->io_error = 1;
1821 			btrfs_dev_replace_stats_inc(&dev_replace->
1822 						    num_write_errors);
1823 		}
1824 	}
1825 
1826 	for (i = 0; i < sbio->page_count; i++)
1827 		scrub_page_put(sbio->pagev[i]);
1828 
1829 	bio_put(sbio->bio);
1830 	kfree(sbio);
1831 	scrub_pending_bio_dec(sctx);
1832 }
1833 
1834 static int scrub_checksum(struct scrub_block *sblock)
1835 {
1836 	u64 flags;
1837 	int ret;
1838 
1839 	WARN_ON(sblock->page_count < 1);
1840 	flags = sblock->pagev[0]->flags;
1841 	ret = 0;
1842 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1843 		ret = scrub_checksum_data(sblock);
1844 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1845 		ret = scrub_checksum_tree_block(sblock);
1846 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1847 		(void)scrub_checksum_super(sblock);
1848 	else
1849 		WARN_ON(1);
1850 	if (ret)
1851 		scrub_handle_errored_block(sblock);
1852 
1853 	return ret;
1854 }
1855 
1856 static int scrub_checksum_data(struct scrub_block *sblock)
1857 {
1858 	struct scrub_ctx *sctx = sblock->sctx;
1859 	u8 csum[BTRFS_CSUM_SIZE];
1860 	u8 *on_disk_csum;
1861 	struct page *page;
1862 	void *buffer;
1863 	u32 crc = ~(u32)0;
1864 	int fail = 0;
1865 	u64 len;
1866 	int index;
1867 
1868 	BUG_ON(sblock->page_count < 1);
1869 	if (!sblock->pagev[0]->have_csum)
1870 		return 0;
1871 
1872 	on_disk_csum = sblock->pagev[0]->csum;
1873 	page = sblock->pagev[0]->page;
1874 	buffer = kmap_atomic(page);
1875 
1876 	len = sctx->sectorsize;
1877 	index = 0;
1878 	for (;;) {
1879 		u64 l = min_t(u64, len, PAGE_SIZE);
1880 
1881 		crc = btrfs_csum_data(buffer, crc, l);
1882 		kunmap_atomic(buffer);
1883 		len -= l;
1884 		if (len == 0)
1885 			break;
1886 		index++;
1887 		BUG_ON(index >= sblock->page_count);
1888 		BUG_ON(!sblock->pagev[index]->page);
1889 		page = sblock->pagev[index]->page;
1890 		buffer = kmap_atomic(page);
1891 	}
1892 
1893 	btrfs_csum_final(crc, csum);
1894 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1895 		fail = 1;
1896 
1897 	return fail;
1898 }
1899 
1900 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1901 {
1902 	struct scrub_ctx *sctx = sblock->sctx;
1903 	struct btrfs_header *h;
1904 	struct btrfs_root *root = sctx->dev_root;
1905 	struct btrfs_fs_info *fs_info = root->fs_info;
1906 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1907 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1908 	struct page *page;
1909 	void *mapped_buffer;
1910 	u64 mapped_size;
1911 	void *p;
1912 	u32 crc = ~(u32)0;
1913 	int fail = 0;
1914 	int crc_fail = 0;
1915 	u64 len;
1916 	int index;
1917 
1918 	BUG_ON(sblock->page_count < 1);
1919 	page = sblock->pagev[0]->page;
1920 	mapped_buffer = kmap_atomic(page);
1921 	h = (struct btrfs_header *)mapped_buffer;
1922 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1923 
1924 	/*
1925 	 * we don't use the getter functions here, as we
1926 	 * a) don't have an extent buffer and
1927 	 * b) the page is already kmapped
1928 	 */
1929 
1930 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1931 		++fail;
1932 
1933 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1934 		++fail;
1935 
1936 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1937 		++fail;
1938 
1939 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1940 		   BTRFS_UUID_SIZE))
1941 		++fail;
1942 
1943 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1944 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1945 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1946 	index = 0;
1947 	for (;;) {
1948 		u64 l = min_t(u64, len, mapped_size);
1949 
1950 		crc = btrfs_csum_data(p, crc, l);
1951 		kunmap_atomic(mapped_buffer);
1952 		len -= l;
1953 		if (len == 0)
1954 			break;
1955 		index++;
1956 		BUG_ON(index >= sblock->page_count);
1957 		BUG_ON(!sblock->pagev[index]->page);
1958 		page = sblock->pagev[index]->page;
1959 		mapped_buffer = kmap_atomic(page);
1960 		mapped_size = PAGE_SIZE;
1961 		p = mapped_buffer;
1962 	}
1963 
1964 	btrfs_csum_final(crc, calculated_csum);
1965 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966 		++crc_fail;
1967 
1968 	return fail || crc_fail;
1969 }
1970 
1971 static int scrub_checksum_super(struct scrub_block *sblock)
1972 {
1973 	struct btrfs_super_block *s;
1974 	struct scrub_ctx *sctx = sblock->sctx;
1975 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1976 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1977 	struct page *page;
1978 	void *mapped_buffer;
1979 	u64 mapped_size;
1980 	void *p;
1981 	u32 crc = ~(u32)0;
1982 	int fail_gen = 0;
1983 	int fail_cor = 0;
1984 	u64 len;
1985 	int index;
1986 
1987 	BUG_ON(sblock->page_count < 1);
1988 	page = sblock->pagev[0]->page;
1989 	mapped_buffer = kmap_atomic(page);
1990 	s = (struct btrfs_super_block *)mapped_buffer;
1991 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1992 
1993 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1994 		++fail_cor;
1995 
1996 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1997 		++fail_gen;
1998 
1999 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2000 		++fail_cor;
2001 
2002 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2003 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2004 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2005 	index = 0;
2006 	for (;;) {
2007 		u64 l = min_t(u64, len, mapped_size);
2008 
2009 		crc = btrfs_csum_data(p, crc, l);
2010 		kunmap_atomic(mapped_buffer);
2011 		len -= l;
2012 		if (len == 0)
2013 			break;
2014 		index++;
2015 		BUG_ON(index >= sblock->page_count);
2016 		BUG_ON(!sblock->pagev[index]->page);
2017 		page = sblock->pagev[index]->page;
2018 		mapped_buffer = kmap_atomic(page);
2019 		mapped_size = PAGE_SIZE;
2020 		p = mapped_buffer;
2021 	}
2022 
2023 	btrfs_csum_final(crc, calculated_csum);
2024 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2025 		++fail_cor;
2026 
2027 	if (fail_cor + fail_gen) {
2028 		/*
2029 		 * if we find an error in a super block, we just report it.
2030 		 * They will get written with the next transaction commit
2031 		 * anyway
2032 		 */
2033 		spin_lock(&sctx->stat_lock);
2034 		++sctx->stat.super_errors;
2035 		spin_unlock(&sctx->stat_lock);
2036 		if (fail_cor)
2037 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2038 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2039 		else
2040 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2041 				BTRFS_DEV_STAT_GENERATION_ERRS);
2042 	}
2043 
2044 	return fail_cor + fail_gen;
2045 }
2046 
2047 static void scrub_block_get(struct scrub_block *sblock)
2048 {
2049 	atomic_inc(&sblock->refs);
2050 }
2051 
2052 static void scrub_block_put(struct scrub_block *sblock)
2053 {
2054 	if (atomic_dec_and_test(&sblock->refs)) {
2055 		int i;
2056 
2057 		if (sblock->sparity)
2058 			scrub_parity_put(sblock->sparity);
2059 
2060 		for (i = 0; i < sblock->page_count; i++)
2061 			scrub_page_put(sblock->pagev[i]);
2062 		kfree(sblock);
2063 	}
2064 }
2065 
2066 static void scrub_page_get(struct scrub_page *spage)
2067 {
2068 	atomic_inc(&spage->refs);
2069 }
2070 
2071 static void scrub_page_put(struct scrub_page *spage)
2072 {
2073 	if (atomic_dec_and_test(&spage->refs)) {
2074 		if (spage->page)
2075 			__free_page(spage->page);
2076 		kfree(spage);
2077 	}
2078 }
2079 
2080 static void scrub_submit(struct scrub_ctx *sctx)
2081 {
2082 	struct scrub_bio *sbio;
2083 
2084 	if (sctx->curr == -1)
2085 		return;
2086 
2087 	sbio = sctx->bios[sctx->curr];
2088 	sctx->curr = -1;
2089 	scrub_pending_bio_inc(sctx);
2090 
2091 	if (!sbio->bio->bi_bdev) {
2092 		/*
2093 		 * this case should not happen. If btrfs_map_block() is
2094 		 * wrong, it could happen for dev-replace operations on
2095 		 * missing devices when no mirrors are available, but in
2096 		 * this case it should already fail the mount.
2097 		 * This case is handled correctly (but _very_ slowly).
2098 		 */
2099 		printk_ratelimited(KERN_WARNING
2100 			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2101 		bio_endio(sbio->bio, -EIO);
2102 	} else {
2103 		btrfsic_submit_bio(READ, sbio->bio);
2104 	}
2105 }
2106 
2107 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2108 				    struct scrub_page *spage)
2109 {
2110 	struct scrub_block *sblock = spage->sblock;
2111 	struct scrub_bio *sbio;
2112 	int ret;
2113 
2114 again:
2115 	/*
2116 	 * grab a fresh bio or wait for one to become available
2117 	 */
2118 	while (sctx->curr == -1) {
2119 		spin_lock(&sctx->list_lock);
2120 		sctx->curr = sctx->first_free;
2121 		if (sctx->curr != -1) {
2122 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2123 			sctx->bios[sctx->curr]->next_free = -1;
2124 			sctx->bios[sctx->curr]->page_count = 0;
2125 			spin_unlock(&sctx->list_lock);
2126 		} else {
2127 			spin_unlock(&sctx->list_lock);
2128 			wait_event(sctx->list_wait, sctx->first_free != -1);
2129 		}
2130 	}
2131 	sbio = sctx->bios[sctx->curr];
2132 	if (sbio->page_count == 0) {
2133 		struct bio *bio;
2134 
2135 		sbio->physical = spage->physical;
2136 		sbio->logical = spage->logical;
2137 		sbio->dev = spage->dev;
2138 		bio = sbio->bio;
2139 		if (!bio) {
2140 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2141 			if (!bio)
2142 				return -ENOMEM;
2143 			sbio->bio = bio;
2144 		}
2145 
2146 		bio->bi_private = sbio;
2147 		bio->bi_end_io = scrub_bio_end_io;
2148 		bio->bi_bdev = sbio->dev->bdev;
2149 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2150 		sbio->err = 0;
2151 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2152 		   spage->physical ||
2153 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2154 		   spage->logical ||
2155 		   sbio->dev != spage->dev) {
2156 		scrub_submit(sctx);
2157 		goto again;
2158 	}
2159 
2160 	sbio->pagev[sbio->page_count] = spage;
2161 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2162 	if (ret != PAGE_SIZE) {
2163 		if (sbio->page_count < 1) {
2164 			bio_put(sbio->bio);
2165 			sbio->bio = NULL;
2166 			return -EIO;
2167 		}
2168 		scrub_submit(sctx);
2169 		goto again;
2170 	}
2171 
2172 	scrub_block_get(sblock); /* one for the page added to the bio */
2173 	atomic_inc(&sblock->outstanding_pages);
2174 	sbio->page_count++;
2175 	if (sbio->page_count == sctx->pages_per_rd_bio)
2176 		scrub_submit(sctx);
2177 
2178 	return 0;
2179 }
2180 
2181 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2182 		       u64 physical, struct btrfs_device *dev, u64 flags,
2183 		       u64 gen, int mirror_num, u8 *csum, int force,
2184 		       u64 physical_for_dev_replace)
2185 {
2186 	struct scrub_block *sblock;
2187 	int index;
2188 
2189 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2190 	if (!sblock) {
2191 		spin_lock(&sctx->stat_lock);
2192 		sctx->stat.malloc_errors++;
2193 		spin_unlock(&sctx->stat_lock);
2194 		return -ENOMEM;
2195 	}
2196 
2197 	/* one ref inside this function, plus one for each page added to
2198 	 * a bio later on */
2199 	atomic_set(&sblock->refs, 1);
2200 	sblock->sctx = sctx;
2201 	sblock->no_io_error_seen = 1;
2202 
2203 	for (index = 0; len > 0; index++) {
2204 		struct scrub_page *spage;
2205 		u64 l = min_t(u64, len, PAGE_SIZE);
2206 
2207 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2208 		if (!spage) {
2209 leave_nomem:
2210 			spin_lock(&sctx->stat_lock);
2211 			sctx->stat.malloc_errors++;
2212 			spin_unlock(&sctx->stat_lock);
2213 			scrub_block_put(sblock);
2214 			return -ENOMEM;
2215 		}
2216 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2217 		scrub_page_get(spage);
2218 		sblock->pagev[index] = spage;
2219 		spage->sblock = sblock;
2220 		spage->dev = dev;
2221 		spage->flags = flags;
2222 		spage->generation = gen;
2223 		spage->logical = logical;
2224 		spage->physical = physical;
2225 		spage->physical_for_dev_replace = physical_for_dev_replace;
2226 		spage->mirror_num = mirror_num;
2227 		if (csum) {
2228 			spage->have_csum = 1;
2229 			memcpy(spage->csum, csum, sctx->csum_size);
2230 		} else {
2231 			spage->have_csum = 0;
2232 		}
2233 		sblock->page_count++;
2234 		spage->page = alloc_page(GFP_NOFS);
2235 		if (!spage->page)
2236 			goto leave_nomem;
2237 		len -= l;
2238 		logical += l;
2239 		physical += l;
2240 		physical_for_dev_replace += l;
2241 	}
2242 
2243 	WARN_ON(sblock->page_count == 0);
2244 	for (index = 0; index < sblock->page_count; index++) {
2245 		struct scrub_page *spage = sblock->pagev[index];
2246 		int ret;
2247 
2248 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2249 		if (ret) {
2250 			scrub_block_put(sblock);
2251 			return ret;
2252 		}
2253 	}
2254 
2255 	if (force)
2256 		scrub_submit(sctx);
2257 
2258 	/* last one frees, either here or in bio completion for last page */
2259 	scrub_block_put(sblock);
2260 	return 0;
2261 }
2262 
2263 static void scrub_bio_end_io(struct bio *bio, int err)
2264 {
2265 	struct scrub_bio *sbio = bio->bi_private;
2266 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2267 
2268 	sbio->err = err;
2269 	sbio->bio = bio;
2270 
2271 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2272 }
2273 
2274 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2275 {
2276 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2277 	struct scrub_ctx *sctx = sbio->sctx;
2278 	int i;
2279 
2280 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2281 	if (sbio->err) {
2282 		for (i = 0; i < sbio->page_count; i++) {
2283 			struct scrub_page *spage = sbio->pagev[i];
2284 
2285 			spage->io_error = 1;
2286 			spage->sblock->no_io_error_seen = 0;
2287 		}
2288 	}
2289 
2290 	/* now complete the scrub_block items that have all pages completed */
2291 	for (i = 0; i < sbio->page_count; i++) {
2292 		struct scrub_page *spage = sbio->pagev[i];
2293 		struct scrub_block *sblock = spage->sblock;
2294 
2295 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2296 			scrub_block_complete(sblock);
2297 		scrub_block_put(sblock);
2298 	}
2299 
2300 	bio_put(sbio->bio);
2301 	sbio->bio = NULL;
2302 	spin_lock(&sctx->list_lock);
2303 	sbio->next_free = sctx->first_free;
2304 	sctx->first_free = sbio->index;
2305 	spin_unlock(&sctx->list_lock);
2306 
2307 	if (sctx->is_dev_replace &&
2308 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2309 		mutex_lock(&sctx->wr_ctx.wr_lock);
2310 		scrub_wr_submit(sctx);
2311 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2312 	}
2313 
2314 	scrub_pending_bio_dec(sctx);
2315 }
2316 
2317 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2318 				       unsigned long *bitmap,
2319 				       u64 start, u64 len)
2320 {
2321 	u32 offset;
2322 	int nsectors;
2323 	int sectorsize = sparity->sctx->dev_root->sectorsize;
2324 
2325 	if (len >= sparity->stripe_len) {
2326 		bitmap_set(bitmap, 0, sparity->nsectors);
2327 		return;
2328 	}
2329 
2330 	start -= sparity->logic_start;
2331 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2332 	offset /= sectorsize;
2333 	nsectors = (int)len / sectorsize;
2334 
2335 	if (offset + nsectors <= sparity->nsectors) {
2336 		bitmap_set(bitmap, offset, nsectors);
2337 		return;
2338 	}
2339 
2340 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2341 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2342 }
2343 
2344 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2345 						   u64 start, u64 len)
2346 {
2347 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2348 }
2349 
2350 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2351 						  u64 start, u64 len)
2352 {
2353 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2354 }
2355 
2356 static void scrub_block_complete(struct scrub_block *sblock)
2357 {
2358 	int corrupted = 0;
2359 
2360 	if (!sblock->no_io_error_seen) {
2361 		corrupted = 1;
2362 		scrub_handle_errored_block(sblock);
2363 	} else {
2364 		/*
2365 		 * if has checksum error, write via repair mechanism in
2366 		 * dev replace case, otherwise write here in dev replace
2367 		 * case.
2368 		 */
2369 		corrupted = scrub_checksum(sblock);
2370 		if (!corrupted && sblock->sctx->is_dev_replace)
2371 			scrub_write_block_to_dev_replace(sblock);
2372 	}
2373 
2374 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2375 		u64 start = sblock->pagev[0]->logical;
2376 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2377 			  PAGE_SIZE;
2378 
2379 		scrub_parity_mark_sectors_error(sblock->sparity,
2380 						start, end - start);
2381 	}
2382 }
2383 
2384 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2385 			   u8 *csum)
2386 {
2387 	struct btrfs_ordered_sum *sum = NULL;
2388 	unsigned long index;
2389 	unsigned long num_sectors;
2390 
2391 	while (!list_empty(&sctx->csum_list)) {
2392 		sum = list_first_entry(&sctx->csum_list,
2393 				       struct btrfs_ordered_sum, list);
2394 		if (sum->bytenr > logical)
2395 			return 0;
2396 		if (sum->bytenr + sum->len > logical)
2397 			break;
2398 
2399 		++sctx->stat.csum_discards;
2400 		list_del(&sum->list);
2401 		kfree(sum);
2402 		sum = NULL;
2403 	}
2404 	if (!sum)
2405 		return 0;
2406 
2407 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2408 	num_sectors = sum->len / sctx->sectorsize;
2409 	memcpy(csum, sum->sums + index, sctx->csum_size);
2410 	if (index == num_sectors - 1) {
2411 		list_del(&sum->list);
2412 		kfree(sum);
2413 	}
2414 	return 1;
2415 }
2416 
2417 /* scrub extent tries to collect up to 64 kB for each bio */
2418 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2419 			u64 physical, struct btrfs_device *dev, u64 flags,
2420 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2421 {
2422 	int ret;
2423 	u8 csum[BTRFS_CSUM_SIZE];
2424 	u32 blocksize;
2425 
2426 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2427 		blocksize = sctx->sectorsize;
2428 		spin_lock(&sctx->stat_lock);
2429 		sctx->stat.data_extents_scrubbed++;
2430 		sctx->stat.data_bytes_scrubbed += len;
2431 		spin_unlock(&sctx->stat_lock);
2432 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2433 		blocksize = sctx->nodesize;
2434 		spin_lock(&sctx->stat_lock);
2435 		sctx->stat.tree_extents_scrubbed++;
2436 		sctx->stat.tree_bytes_scrubbed += len;
2437 		spin_unlock(&sctx->stat_lock);
2438 	} else {
2439 		blocksize = sctx->sectorsize;
2440 		WARN_ON(1);
2441 	}
2442 
2443 	while (len) {
2444 		u64 l = min_t(u64, len, blocksize);
2445 		int have_csum = 0;
2446 
2447 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2448 			/* push csums to sbio */
2449 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2450 			if (have_csum == 0)
2451 				++sctx->stat.no_csum;
2452 			if (sctx->is_dev_replace && !have_csum) {
2453 				ret = copy_nocow_pages(sctx, logical, l,
2454 						       mirror_num,
2455 						      physical_for_dev_replace);
2456 				goto behind_scrub_pages;
2457 			}
2458 		}
2459 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2460 				  mirror_num, have_csum ? csum : NULL, 0,
2461 				  physical_for_dev_replace);
2462 behind_scrub_pages:
2463 		if (ret)
2464 			return ret;
2465 		len -= l;
2466 		logical += l;
2467 		physical += l;
2468 		physical_for_dev_replace += l;
2469 	}
2470 	return 0;
2471 }
2472 
2473 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2474 				  u64 logical, u64 len,
2475 				  u64 physical, struct btrfs_device *dev,
2476 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2477 {
2478 	struct scrub_ctx *sctx = sparity->sctx;
2479 	struct scrub_block *sblock;
2480 	int index;
2481 
2482 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2483 	if (!sblock) {
2484 		spin_lock(&sctx->stat_lock);
2485 		sctx->stat.malloc_errors++;
2486 		spin_unlock(&sctx->stat_lock);
2487 		return -ENOMEM;
2488 	}
2489 
2490 	/* one ref inside this function, plus one for each page added to
2491 	 * a bio later on */
2492 	atomic_set(&sblock->refs, 1);
2493 	sblock->sctx = sctx;
2494 	sblock->no_io_error_seen = 1;
2495 	sblock->sparity = sparity;
2496 	scrub_parity_get(sparity);
2497 
2498 	for (index = 0; len > 0; index++) {
2499 		struct scrub_page *spage;
2500 		u64 l = min_t(u64, len, PAGE_SIZE);
2501 
2502 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2503 		if (!spage) {
2504 leave_nomem:
2505 			spin_lock(&sctx->stat_lock);
2506 			sctx->stat.malloc_errors++;
2507 			spin_unlock(&sctx->stat_lock);
2508 			scrub_block_put(sblock);
2509 			return -ENOMEM;
2510 		}
2511 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2512 		/* For scrub block */
2513 		scrub_page_get(spage);
2514 		sblock->pagev[index] = spage;
2515 		/* For scrub parity */
2516 		scrub_page_get(spage);
2517 		list_add_tail(&spage->list, &sparity->spages);
2518 		spage->sblock = sblock;
2519 		spage->dev = dev;
2520 		spage->flags = flags;
2521 		spage->generation = gen;
2522 		spage->logical = logical;
2523 		spage->physical = physical;
2524 		spage->mirror_num = mirror_num;
2525 		if (csum) {
2526 			spage->have_csum = 1;
2527 			memcpy(spage->csum, csum, sctx->csum_size);
2528 		} else {
2529 			spage->have_csum = 0;
2530 		}
2531 		sblock->page_count++;
2532 		spage->page = alloc_page(GFP_NOFS);
2533 		if (!spage->page)
2534 			goto leave_nomem;
2535 		len -= l;
2536 		logical += l;
2537 		physical += l;
2538 	}
2539 
2540 	WARN_ON(sblock->page_count == 0);
2541 	for (index = 0; index < sblock->page_count; index++) {
2542 		struct scrub_page *spage = sblock->pagev[index];
2543 		int ret;
2544 
2545 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2546 		if (ret) {
2547 			scrub_block_put(sblock);
2548 			return ret;
2549 		}
2550 	}
2551 
2552 	/* last one frees, either here or in bio completion for last page */
2553 	scrub_block_put(sblock);
2554 	return 0;
2555 }
2556 
2557 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2558 				   u64 logical, u64 len,
2559 				   u64 physical, struct btrfs_device *dev,
2560 				   u64 flags, u64 gen, int mirror_num)
2561 {
2562 	struct scrub_ctx *sctx = sparity->sctx;
2563 	int ret;
2564 	u8 csum[BTRFS_CSUM_SIZE];
2565 	u32 blocksize;
2566 
2567 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2568 		blocksize = sctx->sectorsize;
2569 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2570 		blocksize = sctx->nodesize;
2571 	} else {
2572 		blocksize = sctx->sectorsize;
2573 		WARN_ON(1);
2574 	}
2575 
2576 	while (len) {
2577 		u64 l = min_t(u64, len, blocksize);
2578 		int have_csum = 0;
2579 
2580 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2581 			/* push csums to sbio */
2582 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2583 			if (have_csum == 0)
2584 				goto skip;
2585 		}
2586 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2587 					     flags, gen, mirror_num,
2588 					     have_csum ? csum : NULL);
2589 		if (ret)
2590 			return ret;
2591 skip:
2592 		len -= l;
2593 		logical += l;
2594 		physical += l;
2595 	}
2596 	return 0;
2597 }
2598 
2599 /*
2600  * Given a physical address, this will calculate it's
2601  * logical offset. if this is a parity stripe, it will return
2602  * the most left data stripe's logical offset.
2603  *
2604  * return 0 if it is a data stripe, 1 means parity stripe.
2605  */
2606 static int get_raid56_logic_offset(u64 physical, int num,
2607 				   struct map_lookup *map, u64 *offset,
2608 				   u64 *stripe_start)
2609 {
2610 	int i;
2611 	int j = 0;
2612 	u64 stripe_nr;
2613 	u64 last_offset;
2614 	u32 stripe_index;
2615 	u32 rot;
2616 
2617 	last_offset = (physical - map->stripes[num].physical) *
2618 		      nr_data_stripes(map);
2619 	if (stripe_start)
2620 		*stripe_start = last_offset;
2621 
2622 	*offset = last_offset;
2623 	for (i = 0; i < nr_data_stripes(map); i++) {
2624 		*offset = last_offset + i * map->stripe_len;
2625 
2626 		stripe_nr = div_u64(*offset, map->stripe_len);
2627 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2628 
2629 		/* Work out the disk rotation on this stripe-set */
2630 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2631 		/* calculate which stripe this data locates */
2632 		rot += i;
2633 		stripe_index = rot % map->num_stripes;
2634 		if (stripe_index == num)
2635 			return 0;
2636 		if (stripe_index < num)
2637 			j++;
2638 	}
2639 	*offset = last_offset + j * map->stripe_len;
2640 	return 1;
2641 }
2642 
2643 static void scrub_free_parity(struct scrub_parity *sparity)
2644 {
2645 	struct scrub_ctx *sctx = sparity->sctx;
2646 	struct scrub_page *curr, *next;
2647 	int nbits;
2648 
2649 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2650 	if (nbits) {
2651 		spin_lock(&sctx->stat_lock);
2652 		sctx->stat.read_errors += nbits;
2653 		sctx->stat.uncorrectable_errors += nbits;
2654 		spin_unlock(&sctx->stat_lock);
2655 	}
2656 
2657 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2658 		list_del_init(&curr->list);
2659 		scrub_page_put(curr);
2660 	}
2661 
2662 	kfree(sparity);
2663 }
2664 
2665 static void scrub_parity_bio_endio(struct bio *bio, int error)
2666 {
2667 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2668 	struct scrub_ctx *sctx = sparity->sctx;
2669 
2670 	if (error)
2671 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2672 			  sparity->nsectors);
2673 
2674 	scrub_free_parity(sparity);
2675 	scrub_pending_bio_dec(sctx);
2676 	bio_put(bio);
2677 }
2678 
2679 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2680 {
2681 	struct scrub_ctx *sctx = sparity->sctx;
2682 	struct bio *bio;
2683 	struct btrfs_raid_bio *rbio;
2684 	struct scrub_page *spage;
2685 	struct btrfs_bio *bbio = NULL;
2686 	u64 length;
2687 	int ret;
2688 
2689 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2690 			   sparity->nsectors))
2691 		goto out;
2692 
2693 	length = sparity->logic_end - sparity->logic_start + 1;
2694 	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2695 			       sparity->logic_start,
2696 			       &length, &bbio, 0, 1);
2697 	if (ret || !bbio || !bbio->raid_map)
2698 		goto bbio_out;
2699 
2700 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2701 	if (!bio)
2702 		goto bbio_out;
2703 
2704 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2705 	bio->bi_private = sparity;
2706 	bio->bi_end_io = scrub_parity_bio_endio;
2707 
2708 	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2709 					      length, sparity->scrub_dev,
2710 					      sparity->dbitmap,
2711 					      sparity->nsectors);
2712 	if (!rbio)
2713 		goto rbio_out;
2714 
2715 	list_for_each_entry(spage, &sparity->spages, list)
2716 		raid56_parity_add_scrub_pages(rbio, spage->page,
2717 					      spage->logical);
2718 
2719 	scrub_pending_bio_inc(sctx);
2720 	raid56_parity_submit_scrub_rbio(rbio);
2721 	return;
2722 
2723 rbio_out:
2724 	bio_put(bio);
2725 bbio_out:
2726 	btrfs_put_bbio(bbio);
2727 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2728 		  sparity->nsectors);
2729 	spin_lock(&sctx->stat_lock);
2730 	sctx->stat.malloc_errors++;
2731 	spin_unlock(&sctx->stat_lock);
2732 out:
2733 	scrub_free_parity(sparity);
2734 }
2735 
2736 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2737 {
2738 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2739 }
2740 
2741 static void scrub_parity_get(struct scrub_parity *sparity)
2742 {
2743 	atomic_inc(&sparity->refs);
2744 }
2745 
2746 static void scrub_parity_put(struct scrub_parity *sparity)
2747 {
2748 	if (!atomic_dec_and_test(&sparity->refs))
2749 		return;
2750 
2751 	scrub_parity_check_and_repair(sparity);
2752 }
2753 
2754 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2755 						  struct map_lookup *map,
2756 						  struct btrfs_device *sdev,
2757 						  struct btrfs_path *path,
2758 						  u64 logic_start,
2759 						  u64 logic_end)
2760 {
2761 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2762 	struct btrfs_root *root = fs_info->extent_root;
2763 	struct btrfs_root *csum_root = fs_info->csum_root;
2764 	struct btrfs_extent_item *extent;
2765 	u64 flags;
2766 	int ret;
2767 	int slot;
2768 	struct extent_buffer *l;
2769 	struct btrfs_key key;
2770 	u64 generation;
2771 	u64 extent_logical;
2772 	u64 extent_physical;
2773 	u64 extent_len;
2774 	struct btrfs_device *extent_dev;
2775 	struct scrub_parity *sparity;
2776 	int nsectors;
2777 	int bitmap_len;
2778 	int extent_mirror_num;
2779 	int stop_loop = 0;
2780 
2781 	nsectors = map->stripe_len / root->sectorsize;
2782 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2783 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2784 			  GFP_NOFS);
2785 	if (!sparity) {
2786 		spin_lock(&sctx->stat_lock);
2787 		sctx->stat.malloc_errors++;
2788 		spin_unlock(&sctx->stat_lock);
2789 		return -ENOMEM;
2790 	}
2791 
2792 	sparity->stripe_len = map->stripe_len;
2793 	sparity->nsectors = nsectors;
2794 	sparity->sctx = sctx;
2795 	sparity->scrub_dev = sdev;
2796 	sparity->logic_start = logic_start;
2797 	sparity->logic_end = logic_end;
2798 	atomic_set(&sparity->refs, 1);
2799 	INIT_LIST_HEAD(&sparity->spages);
2800 	sparity->dbitmap = sparity->bitmap;
2801 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2802 
2803 	ret = 0;
2804 	while (logic_start < logic_end) {
2805 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2806 			key.type = BTRFS_METADATA_ITEM_KEY;
2807 		else
2808 			key.type = BTRFS_EXTENT_ITEM_KEY;
2809 		key.objectid = logic_start;
2810 		key.offset = (u64)-1;
2811 
2812 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2813 		if (ret < 0)
2814 			goto out;
2815 
2816 		if (ret > 0) {
2817 			ret = btrfs_previous_extent_item(root, path, 0);
2818 			if (ret < 0)
2819 				goto out;
2820 			if (ret > 0) {
2821 				btrfs_release_path(path);
2822 				ret = btrfs_search_slot(NULL, root, &key,
2823 							path, 0, 0);
2824 				if (ret < 0)
2825 					goto out;
2826 			}
2827 		}
2828 
2829 		stop_loop = 0;
2830 		while (1) {
2831 			u64 bytes;
2832 
2833 			l = path->nodes[0];
2834 			slot = path->slots[0];
2835 			if (slot >= btrfs_header_nritems(l)) {
2836 				ret = btrfs_next_leaf(root, path);
2837 				if (ret == 0)
2838 					continue;
2839 				if (ret < 0)
2840 					goto out;
2841 
2842 				stop_loop = 1;
2843 				break;
2844 			}
2845 			btrfs_item_key_to_cpu(l, &key, slot);
2846 
2847 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2848 				bytes = root->nodesize;
2849 			else
2850 				bytes = key.offset;
2851 
2852 			if (key.objectid + bytes <= logic_start)
2853 				goto next;
2854 
2855 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2856 			    key.type != BTRFS_METADATA_ITEM_KEY)
2857 				goto next;
2858 
2859 			if (key.objectid > logic_end) {
2860 				stop_loop = 1;
2861 				break;
2862 			}
2863 
2864 			while (key.objectid >= logic_start + map->stripe_len)
2865 				logic_start += map->stripe_len;
2866 
2867 			extent = btrfs_item_ptr(l, slot,
2868 						struct btrfs_extent_item);
2869 			flags = btrfs_extent_flags(l, extent);
2870 			generation = btrfs_extent_generation(l, extent);
2871 
2872 			if (key.objectid < logic_start &&
2873 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2874 				btrfs_err(fs_info,
2875 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2876 					   key.objectid, logic_start);
2877 				goto next;
2878 			}
2879 again:
2880 			extent_logical = key.objectid;
2881 			extent_len = bytes;
2882 
2883 			if (extent_logical < logic_start) {
2884 				extent_len -= logic_start - extent_logical;
2885 				extent_logical = logic_start;
2886 			}
2887 
2888 			if (extent_logical + extent_len >
2889 			    logic_start + map->stripe_len)
2890 				extent_len = logic_start + map->stripe_len -
2891 					     extent_logical;
2892 
2893 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2894 						       extent_len);
2895 
2896 			scrub_remap_extent(fs_info, extent_logical,
2897 					   extent_len, &extent_physical,
2898 					   &extent_dev,
2899 					   &extent_mirror_num);
2900 
2901 			ret = btrfs_lookup_csums_range(csum_root,
2902 						extent_logical,
2903 						extent_logical + extent_len - 1,
2904 						&sctx->csum_list, 1);
2905 			if (ret)
2906 				goto out;
2907 
2908 			ret = scrub_extent_for_parity(sparity, extent_logical,
2909 						      extent_len,
2910 						      extent_physical,
2911 						      extent_dev, flags,
2912 						      generation,
2913 						      extent_mirror_num);
2914 			if (ret)
2915 				goto out;
2916 
2917 			scrub_free_csums(sctx);
2918 			if (extent_logical + extent_len <
2919 			    key.objectid + bytes) {
2920 				logic_start += map->stripe_len;
2921 
2922 				if (logic_start >= logic_end) {
2923 					stop_loop = 1;
2924 					break;
2925 				}
2926 
2927 				if (logic_start < key.objectid + bytes) {
2928 					cond_resched();
2929 					goto again;
2930 				}
2931 			}
2932 next:
2933 			path->slots[0]++;
2934 		}
2935 
2936 		btrfs_release_path(path);
2937 
2938 		if (stop_loop)
2939 			break;
2940 
2941 		logic_start += map->stripe_len;
2942 	}
2943 out:
2944 	if (ret < 0)
2945 		scrub_parity_mark_sectors_error(sparity, logic_start,
2946 						logic_end - logic_start + 1);
2947 	scrub_parity_put(sparity);
2948 	scrub_submit(sctx);
2949 	mutex_lock(&sctx->wr_ctx.wr_lock);
2950 	scrub_wr_submit(sctx);
2951 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2952 
2953 	btrfs_release_path(path);
2954 	return ret < 0 ? ret : 0;
2955 }
2956 
2957 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2958 					   struct map_lookup *map,
2959 					   struct btrfs_device *scrub_dev,
2960 					   int num, u64 base, u64 length,
2961 					   int is_dev_replace)
2962 {
2963 	struct btrfs_path *path, *ppath;
2964 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2965 	struct btrfs_root *root = fs_info->extent_root;
2966 	struct btrfs_root *csum_root = fs_info->csum_root;
2967 	struct btrfs_extent_item *extent;
2968 	struct blk_plug plug;
2969 	u64 flags;
2970 	int ret;
2971 	int slot;
2972 	u64 nstripes;
2973 	struct extent_buffer *l;
2974 	struct btrfs_key key;
2975 	u64 physical;
2976 	u64 logical;
2977 	u64 logic_end;
2978 	u64 physical_end;
2979 	u64 generation;
2980 	int mirror_num;
2981 	struct reada_control *reada1;
2982 	struct reada_control *reada2;
2983 	struct btrfs_key key_start;
2984 	struct btrfs_key key_end;
2985 	u64 increment = map->stripe_len;
2986 	u64 offset;
2987 	u64 extent_logical;
2988 	u64 extent_physical;
2989 	u64 extent_len;
2990 	u64 stripe_logical;
2991 	u64 stripe_end;
2992 	struct btrfs_device *extent_dev;
2993 	int extent_mirror_num;
2994 	int stop_loop = 0;
2995 
2996 	physical = map->stripes[num].physical;
2997 	offset = 0;
2998 	nstripes = div_u64(length, map->stripe_len);
2999 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3000 		offset = map->stripe_len * num;
3001 		increment = map->stripe_len * map->num_stripes;
3002 		mirror_num = 1;
3003 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3004 		int factor = map->num_stripes / map->sub_stripes;
3005 		offset = map->stripe_len * (num / map->sub_stripes);
3006 		increment = map->stripe_len * factor;
3007 		mirror_num = num % map->sub_stripes + 1;
3008 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3009 		increment = map->stripe_len;
3010 		mirror_num = num % map->num_stripes + 1;
3011 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3012 		increment = map->stripe_len;
3013 		mirror_num = num % map->num_stripes + 1;
3014 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3015 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3016 		increment = map->stripe_len * nr_data_stripes(map);
3017 		mirror_num = 1;
3018 	} else {
3019 		increment = map->stripe_len;
3020 		mirror_num = 1;
3021 	}
3022 
3023 	path = btrfs_alloc_path();
3024 	if (!path)
3025 		return -ENOMEM;
3026 
3027 	ppath = btrfs_alloc_path();
3028 	if (!ppath) {
3029 		btrfs_free_path(path);
3030 		return -ENOMEM;
3031 	}
3032 
3033 	/*
3034 	 * work on commit root. The related disk blocks are static as
3035 	 * long as COW is applied. This means, it is save to rewrite
3036 	 * them to repair disk errors without any race conditions
3037 	 */
3038 	path->search_commit_root = 1;
3039 	path->skip_locking = 1;
3040 
3041 	ppath->search_commit_root = 1;
3042 	ppath->skip_locking = 1;
3043 	/*
3044 	 * trigger the readahead for extent tree csum tree and wait for
3045 	 * completion. During readahead, the scrub is officially paused
3046 	 * to not hold off transaction commits
3047 	 */
3048 	logical = base + offset;
3049 	physical_end = physical + nstripes * map->stripe_len;
3050 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3051 		get_raid56_logic_offset(physical_end, num,
3052 					map, &logic_end, NULL);
3053 		logic_end += base;
3054 	} else {
3055 		logic_end = logical + increment * nstripes;
3056 	}
3057 	wait_event(sctx->list_wait,
3058 		   atomic_read(&sctx->bios_in_flight) == 0);
3059 	scrub_blocked_if_needed(fs_info);
3060 
3061 	/* FIXME it might be better to start readahead at commit root */
3062 	key_start.objectid = logical;
3063 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
3064 	key_start.offset = (u64)0;
3065 	key_end.objectid = logic_end;
3066 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3067 	key_end.offset = (u64)-1;
3068 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
3069 
3070 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3071 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
3072 	key_start.offset = logical;
3073 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3074 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3075 	key_end.offset = logic_end;
3076 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3077 
3078 	if (!IS_ERR(reada1))
3079 		btrfs_reada_wait(reada1);
3080 	if (!IS_ERR(reada2))
3081 		btrfs_reada_wait(reada2);
3082 
3083 
3084 	/*
3085 	 * collect all data csums for the stripe to avoid seeking during
3086 	 * the scrub. This might currently (crc32) end up to be about 1MB
3087 	 */
3088 	blk_start_plug(&plug);
3089 
3090 	/*
3091 	 * now find all extents for each stripe and scrub them
3092 	 */
3093 	ret = 0;
3094 	while (physical < physical_end) {
3095 		/* for raid56, we skip parity stripe */
3096 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3097 			ret = get_raid56_logic_offset(physical, num,
3098 					map, &logical, &stripe_logical);
3099 			logical += base;
3100 			if (ret) {
3101 				stripe_logical += base;
3102 				stripe_end = stripe_logical + increment - 1;
3103 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3104 						ppath, stripe_logical,
3105 						stripe_end);
3106 				if (ret)
3107 					goto out;
3108 				goto skip;
3109 			}
3110 		}
3111 		/*
3112 		 * canceled?
3113 		 */
3114 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3115 		    atomic_read(&sctx->cancel_req)) {
3116 			ret = -ECANCELED;
3117 			goto out;
3118 		}
3119 		/*
3120 		 * check to see if we have to pause
3121 		 */
3122 		if (atomic_read(&fs_info->scrub_pause_req)) {
3123 			/* push queued extents */
3124 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3125 			scrub_submit(sctx);
3126 			mutex_lock(&sctx->wr_ctx.wr_lock);
3127 			scrub_wr_submit(sctx);
3128 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3129 			wait_event(sctx->list_wait,
3130 				   atomic_read(&sctx->bios_in_flight) == 0);
3131 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3132 			scrub_blocked_if_needed(fs_info);
3133 		}
3134 
3135 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3136 			key.type = BTRFS_METADATA_ITEM_KEY;
3137 		else
3138 			key.type = BTRFS_EXTENT_ITEM_KEY;
3139 		key.objectid = logical;
3140 		key.offset = (u64)-1;
3141 
3142 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3143 		if (ret < 0)
3144 			goto out;
3145 
3146 		if (ret > 0) {
3147 			ret = btrfs_previous_extent_item(root, path, 0);
3148 			if (ret < 0)
3149 				goto out;
3150 			if (ret > 0) {
3151 				/* there's no smaller item, so stick with the
3152 				 * larger one */
3153 				btrfs_release_path(path);
3154 				ret = btrfs_search_slot(NULL, root, &key,
3155 							path, 0, 0);
3156 				if (ret < 0)
3157 					goto out;
3158 			}
3159 		}
3160 
3161 		stop_loop = 0;
3162 		while (1) {
3163 			u64 bytes;
3164 
3165 			l = path->nodes[0];
3166 			slot = path->slots[0];
3167 			if (slot >= btrfs_header_nritems(l)) {
3168 				ret = btrfs_next_leaf(root, path);
3169 				if (ret == 0)
3170 					continue;
3171 				if (ret < 0)
3172 					goto out;
3173 
3174 				stop_loop = 1;
3175 				break;
3176 			}
3177 			btrfs_item_key_to_cpu(l, &key, slot);
3178 
3179 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3180 				bytes = root->nodesize;
3181 			else
3182 				bytes = key.offset;
3183 
3184 			if (key.objectid + bytes <= logical)
3185 				goto next;
3186 
3187 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3188 			    key.type != BTRFS_METADATA_ITEM_KEY)
3189 				goto next;
3190 
3191 			if (key.objectid >= logical + map->stripe_len) {
3192 				/* out of this device extent */
3193 				if (key.objectid >= logic_end)
3194 					stop_loop = 1;
3195 				break;
3196 			}
3197 
3198 			extent = btrfs_item_ptr(l, slot,
3199 						struct btrfs_extent_item);
3200 			flags = btrfs_extent_flags(l, extent);
3201 			generation = btrfs_extent_generation(l, extent);
3202 
3203 			if (key.objectid < logical &&
3204 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3205 				btrfs_err(fs_info,
3206 					   "scrub: tree block %llu spanning "
3207 					   "stripes, ignored. logical=%llu",
3208 				       key.objectid, logical);
3209 				goto next;
3210 			}
3211 
3212 again:
3213 			extent_logical = key.objectid;
3214 			extent_len = bytes;
3215 
3216 			/*
3217 			 * trim extent to this stripe
3218 			 */
3219 			if (extent_logical < logical) {
3220 				extent_len -= logical - extent_logical;
3221 				extent_logical = logical;
3222 			}
3223 			if (extent_logical + extent_len >
3224 			    logical + map->stripe_len) {
3225 				extent_len = logical + map->stripe_len -
3226 					     extent_logical;
3227 			}
3228 
3229 			extent_physical = extent_logical - logical + physical;
3230 			extent_dev = scrub_dev;
3231 			extent_mirror_num = mirror_num;
3232 			if (is_dev_replace)
3233 				scrub_remap_extent(fs_info, extent_logical,
3234 						   extent_len, &extent_physical,
3235 						   &extent_dev,
3236 						   &extent_mirror_num);
3237 
3238 			ret = btrfs_lookup_csums_range(csum_root, logical,
3239 						logical + map->stripe_len - 1,
3240 						&sctx->csum_list, 1);
3241 			if (ret)
3242 				goto out;
3243 
3244 			ret = scrub_extent(sctx, extent_logical, extent_len,
3245 					   extent_physical, extent_dev, flags,
3246 					   generation, extent_mirror_num,
3247 					   extent_logical - logical + physical);
3248 			if (ret)
3249 				goto out;
3250 
3251 			scrub_free_csums(sctx);
3252 			if (extent_logical + extent_len <
3253 			    key.objectid + bytes) {
3254 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3255 					/*
3256 					 * loop until we find next data stripe
3257 					 * or we have finished all stripes.
3258 					 */
3259 loop:
3260 					physical += map->stripe_len;
3261 					ret = get_raid56_logic_offset(physical,
3262 							num, map, &logical,
3263 							&stripe_logical);
3264 					logical += base;
3265 
3266 					if (ret && physical < physical_end) {
3267 						stripe_logical += base;
3268 						stripe_end = stripe_logical +
3269 								increment - 1;
3270 						ret = scrub_raid56_parity(sctx,
3271 							map, scrub_dev, ppath,
3272 							stripe_logical,
3273 							stripe_end);
3274 						if (ret)
3275 							goto out;
3276 						goto loop;
3277 					}
3278 				} else {
3279 					physical += map->stripe_len;
3280 					logical += increment;
3281 				}
3282 				if (logical < key.objectid + bytes) {
3283 					cond_resched();
3284 					goto again;
3285 				}
3286 
3287 				if (physical >= physical_end) {
3288 					stop_loop = 1;
3289 					break;
3290 				}
3291 			}
3292 next:
3293 			path->slots[0]++;
3294 		}
3295 		btrfs_release_path(path);
3296 skip:
3297 		logical += increment;
3298 		physical += map->stripe_len;
3299 		spin_lock(&sctx->stat_lock);
3300 		if (stop_loop)
3301 			sctx->stat.last_physical = map->stripes[num].physical +
3302 						   length;
3303 		else
3304 			sctx->stat.last_physical = physical;
3305 		spin_unlock(&sctx->stat_lock);
3306 		if (stop_loop)
3307 			break;
3308 	}
3309 out:
3310 	/* push queued extents */
3311 	scrub_submit(sctx);
3312 	mutex_lock(&sctx->wr_ctx.wr_lock);
3313 	scrub_wr_submit(sctx);
3314 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3315 
3316 	blk_finish_plug(&plug);
3317 	btrfs_free_path(path);
3318 	btrfs_free_path(ppath);
3319 	return ret < 0 ? ret : 0;
3320 }
3321 
3322 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3323 					  struct btrfs_device *scrub_dev,
3324 					  u64 chunk_tree, u64 chunk_objectid,
3325 					  u64 chunk_offset, u64 length,
3326 					  u64 dev_offset, int is_dev_replace)
3327 {
3328 	struct btrfs_mapping_tree *map_tree =
3329 		&sctx->dev_root->fs_info->mapping_tree;
3330 	struct map_lookup *map;
3331 	struct extent_map *em;
3332 	int i;
3333 	int ret = 0;
3334 
3335 	read_lock(&map_tree->map_tree.lock);
3336 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3337 	read_unlock(&map_tree->map_tree.lock);
3338 
3339 	if (!em)
3340 		return -EINVAL;
3341 
3342 	map = (struct map_lookup *)em->bdev;
3343 	if (em->start != chunk_offset)
3344 		goto out;
3345 
3346 	if (em->len < length)
3347 		goto out;
3348 
3349 	for (i = 0; i < map->num_stripes; ++i) {
3350 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3351 		    map->stripes[i].physical == dev_offset) {
3352 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3353 					   chunk_offset, length,
3354 					   is_dev_replace);
3355 			if (ret)
3356 				goto out;
3357 		}
3358 	}
3359 out:
3360 	free_extent_map(em);
3361 
3362 	return ret;
3363 }
3364 
3365 static noinline_for_stack
3366 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3367 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3368 			   int is_dev_replace)
3369 {
3370 	struct btrfs_dev_extent *dev_extent = NULL;
3371 	struct btrfs_path *path;
3372 	struct btrfs_root *root = sctx->dev_root;
3373 	struct btrfs_fs_info *fs_info = root->fs_info;
3374 	u64 length;
3375 	u64 chunk_tree;
3376 	u64 chunk_objectid;
3377 	u64 chunk_offset;
3378 	int ret;
3379 	int slot;
3380 	struct extent_buffer *l;
3381 	struct btrfs_key key;
3382 	struct btrfs_key found_key;
3383 	struct btrfs_block_group_cache *cache;
3384 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3385 
3386 	path = btrfs_alloc_path();
3387 	if (!path)
3388 		return -ENOMEM;
3389 
3390 	path->reada = 2;
3391 	path->search_commit_root = 1;
3392 	path->skip_locking = 1;
3393 
3394 	key.objectid = scrub_dev->devid;
3395 	key.offset = 0ull;
3396 	key.type = BTRFS_DEV_EXTENT_KEY;
3397 
3398 	while (1) {
3399 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3400 		if (ret < 0)
3401 			break;
3402 		if (ret > 0) {
3403 			if (path->slots[0] >=
3404 			    btrfs_header_nritems(path->nodes[0])) {
3405 				ret = btrfs_next_leaf(root, path);
3406 				if (ret)
3407 					break;
3408 			}
3409 		}
3410 
3411 		l = path->nodes[0];
3412 		slot = path->slots[0];
3413 
3414 		btrfs_item_key_to_cpu(l, &found_key, slot);
3415 
3416 		if (found_key.objectid != scrub_dev->devid)
3417 			break;
3418 
3419 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3420 			break;
3421 
3422 		if (found_key.offset >= end)
3423 			break;
3424 
3425 		if (found_key.offset < key.offset)
3426 			break;
3427 
3428 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3429 		length = btrfs_dev_extent_length(l, dev_extent);
3430 
3431 		if (found_key.offset + length <= start)
3432 			goto skip;
3433 
3434 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3435 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3436 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3437 
3438 		/*
3439 		 * get a reference on the corresponding block group to prevent
3440 		 * the chunk from going away while we scrub it
3441 		 */
3442 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3443 
3444 		/* some chunks are removed but not committed to disk yet,
3445 		 * continue scrubbing */
3446 		if (!cache)
3447 			goto skip;
3448 
3449 		dev_replace->cursor_right = found_key.offset + length;
3450 		dev_replace->cursor_left = found_key.offset;
3451 		dev_replace->item_needs_writeback = 1;
3452 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3453 				  chunk_offset, length, found_key.offset,
3454 				  is_dev_replace);
3455 
3456 		/*
3457 		 * flush, submit all pending read and write bios, afterwards
3458 		 * wait for them.
3459 		 * Note that in the dev replace case, a read request causes
3460 		 * write requests that are submitted in the read completion
3461 		 * worker. Therefore in the current situation, it is required
3462 		 * that all write requests are flushed, so that all read and
3463 		 * write requests are really completed when bios_in_flight
3464 		 * changes to 0.
3465 		 */
3466 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3467 		scrub_submit(sctx);
3468 		mutex_lock(&sctx->wr_ctx.wr_lock);
3469 		scrub_wr_submit(sctx);
3470 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3471 
3472 		wait_event(sctx->list_wait,
3473 			   atomic_read(&sctx->bios_in_flight) == 0);
3474 		atomic_inc(&fs_info->scrubs_paused);
3475 		wake_up(&fs_info->scrub_pause_wait);
3476 
3477 		/*
3478 		 * must be called before we decrease @scrub_paused.
3479 		 * make sure we don't block transaction commit while
3480 		 * we are waiting pending workers finished.
3481 		 */
3482 		wait_event(sctx->list_wait,
3483 			   atomic_read(&sctx->workers_pending) == 0);
3484 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3485 
3486 		mutex_lock(&fs_info->scrub_lock);
3487 		__scrub_blocked_if_needed(fs_info);
3488 		atomic_dec(&fs_info->scrubs_paused);
3489 		mutex_unlock(&fs_info->scrub_lock);
3490 		wake_up(&fs_info->scrub_pause_wait);
3491 
3492 		btrfs_put_block_group(cache);
3493 		if (ret)
3494 			break;
3495 		if (is_dev_replace &&
3496 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3497 			ret = -EIO;
3498 			break;
3499 		}
3500 		if (sctx->stat.malloc_errors > 0) {
3501 			ret = -ENOMEM;
3502 			break;
3503 		}
3504 
3505 		dev_replace->cursor_left = dev_replace->cursor_right;
3506 		dev_replace->item_needs_writeback = 1;
3507 skip:
3508 		key.offset = found_key.offset + length;
3509 		btrfs_release_path(path);
3510 	}
3511 
3512 	btrfs_free_path(path);
3513 
3514 	/*
3515 	 * ret can still be 1 from search_slot or next_leaf,
3516 	 * that's not an error
3517 	 */
3518 	return ret < 0 ? ret : 0;
3519 }
3520 
3521 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3522 					   struct btrfs_device *scrub_dev)
3523 {
3524 	int	i;
3525 	u64	bytenr;
3526 	u64	gen;
3527 	int	ret;
3528 	struct btrfs_root *root = sctx->dev_root;
3529 
3530 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3531 		return -EIO;
3532 
3533 	/* Seed devices of a new filesystem has their own generation. */
3534 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3535 		gen = scrub_dev->generation;
3536 	else
3537 		gen = root->fs_info->last_trans_committed;
3538 
3539 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3540 		bytenr = btrfs_sb_offset(i);
3541 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3542 		    scrub_dev->commit_total_bytes)
3543 			break;
3544 
3545 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3546 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3547 				  NULL, 1, bytenr);
3548 		if (ret)
3549 			return ret;
3550 	}
3551 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3552 
3553 	return 0;
3554 }
3555 
3556 /*
3557  * get a reference count on fs_info->scrub_workers. start worker if necessary
3558  */
3559 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3560 						int is_dev_replace)
3561 {
3562 	int ret = 0;
3563 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3564 	int max_active = fs_info->thread_pool_size;
3565 
3566 	if (fs_info->scrub_workers_refcnt == 0) {
3567 		if (is_dev_replace)
3568 			fs_info->scrub_workers =
3569 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3570 						      1, 4);
3571 		else
3572 			fs_info->scrub_workers =
3573 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3574 						      max_active, 4);
3575 		if (!fs_info->scrub_workers) {
3576 			ret = -ENOMEM;
3577 			goto out;
3578 		}
3579 		fs_info->scrub_wr_completion_workers =
3580 			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3581 					      max_active, 2);
3582 		if (!fs_info->scrub_wr_completion_workers) {
3583 			ret = -ENOMEM;
3584 			goto out;
3585 		}
3586 		fs_info->scrub_nocow_workers =
3587 			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3588 		if (!fs_info->scrub_nocow_workers) {
3589 			ret = -ENOMEM;
3590 			goto out;
3591 		}
3592 	}
3593 	++fs_info->scrub_workers_refcnt;
3594 out:
3595 	return ret;
3596 }
3597 
3598 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3599 {
3600 	if (--fs_info->scrub_workers_refcnt == 0) {
3601 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3602 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3603 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3604 	}
3605 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3606 }
3607 
3608 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3609 		    u64 end, struct btrfs_scrub_progress *progress,
3610 		    int readonly, int is_dev_replace)
3611 {
3612 	struct scrub_ctx *sctx;
3613 	int ret;
3614 	struct btrfs_device *dev;
3615 	struct rcu_string *name;
3616 
3617 	if (btrfs_fs_closing(fs_info))
3618 		return -EINVAL;
3619 
3620 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3621 		/*
3622 		 * in this case scrub is unable to calculate the checksum
3623 		 * the way scrub is implemented. Do not handle this
3624 		 * situation at all because it won't ever happen.
3625 		 */
3626 		btrfs_err(fs_info,
3627 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3628 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3629 		return -EINVAL;
3630 	}
3631 
3632 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3633 		/* not supported for data w/o checksums */
3634 		btrfs_err(fs_info,
3635 			   "scrub: size assumption sectorsize != PAGE_SIZE "
3636 			   "(%d != %lu) fails",
3637 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3638 		return -EINVAL;
3639 	}
3640 
3641 	if (fs_info->chunk_root->nodesize >
3642 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3643 	    fs_info->chunk_root->sectorsize >
3644 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3645 		/*
3646 		 * would exhaust the array bounds of pagev member in
3647 		 * struct scrub_block
3648 		 */
3649 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3650 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3651 		       fs_info->chunk_root->nodesize,
3652 		       SCRUB_MAX_PAGES_PER_BLOCK,
3653 		       fs_info->chunk_root->sectorsize,
3654 		       SCRUB_MAX_PAGES_PER_BLOCK);
3655 		return -EINVAL;
3656 	}
3657 
3658 
3659 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3660 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3661 	if (!dev || (dev->missing && !is_dev_replace)) {
3662 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3663 		return -ENODEV;
3664 	}
3665 
3666 	if (!is_dev_replace && !readonly && !dev->writeable) {
3667 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3668 		rcu_read_lock();
3669 		name = rcu_dereference(dev->name);
3670 		btrfs_err(fs_info, "scrub: device %s is not writable",
3671 			  name->str);
3672 		rcu_read_unlock();
3673 		return -EROFS;
3674 	}
3675 
3676 	mutex_lock(&fs_info->scrub_lock);
3677 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3678 		mutex_unlock(&fs_info->scrub_lock);
3679 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3680 		return -EIO;
3681 	}
3682 
3683 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3684 	if (dev->scrub_device ||
3685 	    (!is_dev_replace &&
3686 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3687 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
3688 		mutex_unlock(&fs_info->scrub_lock);
3689 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3690 		return -EINPROGRESS;
3691 	}
3692 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3693 
3694 	ret = scrub_workers_get(fs_info, is_dev_replace);
3695 	if (ret) {
3696 		mutex_unlock(&fs_info->scrub_lock);
3697 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3698 		return ret;
3699 	}
3700 
3701 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3702 	if (IS_ERR(sctx)) {
3703 		mutex_unlock(&fs_info->scrub_lock);
3704 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3705 		scrub_workers_put(fs_info);
3706 		return PTR_ERR(sctx);
3707 	}
3708 	sctx->readonly = readonly;
3709 	dev->scrub_device = sctx;
3710 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3711 
3712 	/*
3713 	 * checking @scrub_pause_req here, we can avoid
3714 	 * race between committing transaction and scrubbing.
3715 	 */
3716 	__scrub_blocked_if_needed(fs_info);
3717 	atomic_inc(&fs_info->scrubs_running);
3718 	mutex_unlock(&fs_info->scrub_lock);
3719 
3720 	if (!is_dev_replace) {
3721 		/*
3722 		 * by holding device list mutex, we can
3723 		 * kick off writing super in log tree sync.
3724 		 */
3725 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3726 		ret = scrub_supers(sctx, dev);
3727 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3728 	}
3729 
3730 	if (!ret)
3731 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3732 					     is_dev_replace);
3733 
3734 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3735 	atomic_dec(&fs_info->scrubs_running);
3736 	wake_up(&fs_info->scrub_pause_wait);
3737 
3738 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3739 
3740 	if (progress)
3741 		memcpy(progress, &sctx->stat, sizeof(*progress));
3742 
3743 	mutex_lock(&fs_info->scrub_lock);
3744 	dev->scrub_device = NULL;
3745 	scrub_workers_put(fs_info);
3746 	mutex_unlock(&fs_info->scrub_lock);
3747 
3748 	scrub_put_ctx(sctx);
3749 
3750 	return ret;
3751 }
3752 
3753 void btrfs_scrub_pause(struct btrfs_root *root)
3754 {
3755 	struct btrfs_fs_info *fs_info = root->fs_info;
3756 
3757 	mutex_lock(&fs_info->scrub_lock);
3758 	atomic_inc(&fs_info->scrub_pause_req);
3759 	while (atomic_read(&fs_info->scrubs_paused) !=
3760 	       atomic_read(&fs_info->scrubs_running)) {
3761 		mutex_unlock(&fs_info->scrub_lock);
3762 		wait_event(fs_info->scrub_pause_wait,
3763 			   atomic_read(&fs_info->scrubs_paused) ==
3764 			   atomic_read(&fs_info->scrubs_running));
3765 		mutex_lock(&fs_info->scrub_lock);
3766 	}
3767 	mutex_unlock(&fs_info->scrub_lock);
3768 }
3769 
3770 void btrfs_scrub_continue(struct btrfs_root *root)
3771 {
3772 	struct btrfs_fs_info *fs_info = root->fs_info;
3773 
3774 	atomic_dec(&fs_info->scrub_pause_req);
3775 	wake_up(&fs_info->scrub_pause_wait);
3776 }
3777 
3778 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3779 {
3780 	mutex_lock(&fs_info->scrub_lock);
3781 	if (!atomic_read(&fs_info->scrubs_running)) {
3782 		mutex_unlock(&fs_info->scrub_lock);
3783 		return -ENOTCONN;
3784 	}
3785 
3786 	atomic_inc(&fs_info->scrub_cancel_req);
3787 	while (atomic_read(&fs_info->scrubs_running)) {
3788 		mutex_unlock(&fs_info->scrub_lock);
3789 		wait_event(fs_info->scrub_pause_wait,
3790 			   atomic_read(&fs_info->scrubs_running) == 0);
3791 		mutex_lock(&fs_info->scrub_lock);
3792 	}
3793 	atomic_dec(&fs_info->scrub_cancel_req);
3794 	mutex_unlock(&fs_info->scrub_lock);
3795 
3796 	return 0;
3797 }
3798 
3799 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3800 			   struct btrfs_device *dev)
3801 {
3802 	struct scrub_ctx *sctx;
3803 
3804 	mutex_lock(&fs_info->scrub_lock);
3805 	sctx = dev->scrub_device;
3806 	if (!sctx) {
3807 		mutex_unlock(&fs_info->scrub_lock);
3808 		return -ENOTCONN;
3809 	}
3810 	atomic_inc(&sctx->cancel_req);
3811 	while (dev->scrub_device) {
3812 		mutex_unlock(&fs_info->scrub_lock);
3813 		wait_event(fs_info->scrub_pause_wait,
3814 			   dev->scrub_device == NULL);
3815 		mutex_lock(&fs_info->scrub_lock);
3816 	}
3817 	mutex_unlock(&fs_info->scrub_lock);
3818 
3819 	return 0;
3820 }
3821 
3822 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3823 			 struct btrfs_scrub_progress *progress)
3824 {
3825 	struct btrfs_device *dev;
3826 	struct scrub_ctx *sctx = NULL;
3827 
3828 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3829 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3830 	if (dev)
3831 		sctx = dev->scrub_device;
3832 	if (sctx)
3833 		memcpy(progress, &sctx->stat, sizeof(*progress));
3834 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3835 
3836 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3837 }
3838 
3839 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3840 			       u64 extent_logical, u64 extent_len,
3841 			       u64 *extent_physical,
3842 			       struct btrfs_device **extent_dev,
3843 			       int *extent_mirror_num)
3844 {
3845 	u64 mapped_length;
3846 	struct btrfs_bio *bbio = NULL;
3847 	int ret;
3848 
3849 	mapped_length = extent_len;
3850 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3851 			      &mapped_length, &bbio, 0);
3852 	if (ret || !bbio || mapped_length < extent_len ||
3853 	    !bbio->stripes[0].dev->bdev) {
3854 		btrfs_put_bbio(bbio);
3855 		return;
3856 	}
3857 
3858 	*extent_physical = bbio->stripes[0].physical;
3859 	*extent_mirror_num = bbio->mirror_num;
3860 	*extent_dev = bbio->stripes[0].dev;
3861 	btrfs_put_bbio(bbio);
3862 }
3863 
3864 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3865 			      struct scrub_wr_ctx *wr_ctx,
3866 			      struct btrfs_fs_info *fs_info,
3867 			      struct btrfs_device *dev,
3868 			      int is_dev_replace)
3869 {
3870 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3871 
3872 	mutex_init(&wr_ctx->wr_lock);
3873 	wr_ctx->wr_curr_bio = NULL;
3874 	if (!is_dev_replace)
3875 		return 0;
3876 
3877 	WARN_ON(!dev->bdev);
3878 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3879 					 bio_get_nr_vecs(dev->bdev));
3880 	wr_ctx->tgtdev = dev;
3881 	atomic_set(&wr_ctx->flush_all_writes, 0);
3882 	return 0;
3883 }
3884 
3885 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3886 {
3887 	mutex_lock(&wr_ctx->wr_lock);
3888 	kfree(wr_ctx->wr_curr_bio);
3889 	wr_ctx->wr_curr_bio = NULL;
3890 	mutex_unlock(&wr_ctx->wr_lock);
3891 }
3892 
3893 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3894 			    int mirror_num, u64 physical_for_dev_replace)
3895 {
3896 	struct scrub_copy_nocow_ctx *nocow_ctx;
3897 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3898 
3899 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3900 	if (!nocow_ctx) {
3901 		spin_lock(&sctx->stat_lock);
3902 		sctx->stat.malloc_errors++;
3903 		spin_unlock(&sctx->stat_lock);
3904 		return -ENOMEM;
3905 	}
3906 
3907 	scrub_pending_trans_workers_inc(sctx);
3908 
3909 	nocow_ctx->sctx = sctx;
3910 	nocow_ctx->logical = logical;
3911 	nocow_ctx->len = len;
3912 	nocow_ctx->mirror_num = mirror_num;
3913 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3914 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3915 			copy_nocow_pages_worker, NULL, NULL);
3916 	INIT_LIST_HEAD(&nocow_ctx->inodes);
3917 	btrfs_queue_work(fs_info->scrub_nocow_workers,
3918 			 &nocow_ctx->work);
3919 
3920 	return 0;
3921 }
3922 
3923 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3924 {
3925 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3926 	struct scrub_nocow_inode *nocow_inode;
3927 
3928 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3929 	if (!nocow_inode)
3930 		return -ENOMEM;
3931 	nocow_inode->inum = inum;
3932 	nocow_inode->offset = offset;
3933 	nocow_inode->root = root;
3934 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3935 	return 0;
3936 }
3937 
3938 #define COPY_COMPLETE 1
3939 
3940 static void copy_nocow_pages_worker(struct btrfs_work *work)
3941 {
3942 	struct scrub_copy_nocow_ctx *nocow_ctx =
3943 		container_of(work, struct scrub_copy_nocow_ctx, work);
3944 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3945 	u64 logical = nocow_ctx->logical;
3946 	u64 len = nocow_ctx->len;
3947 	int mirror_num = nocow_ctx->mirror_num;
3948 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3949 	int ret;
3950 	struct btrfs_trans_handle *trans = NULL;
3951 	struct btrfs_fs_info *fs_info;
3952 	struct btrfs_path *path;
3953 	struct btrfs_root *root;
3954 	int not_written = 0;
3955 
3956 	fs_info = sctx->dev_root->fs_info;
3957 	root = fs_info->extent_root;
3958 
3959 	path = btrfs_alloc_path();
3960 	if (!path) {
3961 		spin_lock(&sctx->stat_lock);
3962 		sctx->stat.malloc_errors++;
3963 		spin_unlock(&sctx->stat_lock);
3964 		not_written = 1;
3965 		goto out;
3966 	}
3967 
3968 	trans = btrfs_join_transaction(root);
3969 	if (IS_ERR(trans)) {
3970 		not_written = 1;
3971 		goto out;
3972 	}
3973 
3974 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3975 					  record_inode_for_nocow, nocow_ctx);
3976 	if (ret != 0 && ret != -ENOENT) {
3977 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3978 			"phys %llu, len %llu, mir %u, ret %d",
3979 			logical, physical_for_dev_replace, len, mirror_num,
3980 			ret);
3981 		not_written = 1;
3982 		goto out;
3983 	}
3984 
3985 	btrfs_end_transaction(trans, root);
3986 	trans = NULL;
3987 	while (!list_empty(&nocow_ctx->inodes)) {
3988 		struct scrub_nocow_inode *entry;
3989 		entry = list_first_entry(&nocow_ctx->inodes,
3990 					 struct scrub_nocow_inode,
3991 					 list);
3992 		list_del_init(&entry->list);
3993 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3994 						 entry->root, nocow_ctx);
3995 		kfree(entry);
3996 		if (ret == COPY_COMPLETE) {
3997 			ret = 0;
3998 			break;
3999 		} else if (ret) {
4000 			break;
4001 		}
4002 	}
4003 out:
4004 	while (!list_empty(&nocow_ctx->inodes)) {
4005 		struct scrub_nocow_inode *entry;
4006 		entry = list_first_entry(&nocow_ctx->inodes,
4007 					 struct scrub_nocow_inode,
4008 					 list);
4009 		list_del_init(&entry->list);
4010 		kfree(entry);
4011 	}
4012 	if (trans && !IS_ERR(trans))
4013 		btrfs_end_transaction(trans, root);
4014 	if (not_written)
4015 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4016 					    num_uncorrectable_read_errors);
4017 
4018 	btrfs_free_path(path);
4019 	kfree(nocow_ctx);
4020 
4021 	scrub_pending_trans_workers_dec(sctx);
4022 }
4023 
4024 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4025 				 u64 logical)
4026 {
4027 	struct extent_state *cached_state = NULL;
4028 	struct btrfs_ordered_extent *ordered;
4029 	struct extent_io_tree *io_tree;
4030 	struct extent_map *em;
4031 	u64 lockstart = start, lockend = start + len - 1;
4032 	int ret = 0;
4033 
4034 	io_tree = &BTRFS_I(inode)->io_tree;
4035 
4036 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4037 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4038 	if (ordered) {
4039 		btrfs_put_ordered_extent(ordered);
4040 		ret = 1;
4041 		goto out_unlock;
4042 	}
4043 
4044 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4045 	if (IS_ERR(em)) {
4046 		ret = PTR_ERR(em);
4047 		goto out_unlock;
4048 	}
4049 
4050 	/*
4051 	 * This extent does not actually cover the logical extent anymore,
4052 	 * move on to the next inode.
4053 	 */
4054 	if (em->block_start > logical ||
4055 	    em->block_start + em->block_len < logical + len) {
4056 		free_extent_map(em);
4057 		ret = 1;
4058 		goto out_unlock;
4059 	}
4060 	free_extent_map(em);
4061 
4062 out_unlock:
4063 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4064 			     GFP_NOFS);
4065 	return ret;
4066 }
4067 
4068 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4069 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4070 {
4071 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4072 	struct btrfs_key key;
4073 	struct inode *inode;
4074 	struct page *page;
4075 	struct btrfs_root *local_root;
4076 	struct extent_io_tree *io_tree;
4077 	u64 physical_for_dev_replace;
4078 	u64 nocow_ctx_logical;
4079 	u64 len = nocow_ctx->len;
4080 	unsigned long index;
4081 	int srcu_index;
4082 	int ret = 0;
4083 	int err = 0;
4084 
4085 	key.objectid = root;
4086 	key.type = BTRFS_ROOT_ITEM_KEY;
4087 	key.offset = (u64)-1;
4088 
4089 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4090 
4091 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4092 	if (IS_ERR(local_root)) {
4093 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4094 		return PTR_ERR(local_root);
4095 	}
4096 
4097 	key.type = BTRFS_INODE_ITEM_KEY;
4098 	key.objectid = inum;
4099 	key.offset = 0;
4100 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4101 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4102 	if (IS_ERR(inode))
4103 		return PTR_ERR(inode);
4104 
4105 	/* Avoid truncate/dio/punch hole.. */
4106 	mutex_lock(&inode->i_mutex);
4107 	inode_dio_wait(inode);
4108 
4109 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4110 	io_tree = &BTRFS_I(inode)->io_tree;
4111 	nocow_ctx_logical = nocow_ctx->logical;
4112 
4113 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4114 	if (ret) {
4115 		ret = ret > 0 ? 0 : ret;
4116 		goto out;
4117 	}
4118 
4119 	while (len >= PAGE_CACHE_SIZE) {
4120 		index = offset >> PAGE_CACHE_SHIFT;
4121 again:
4122 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4123 		if (!page) {
4124 			btrfs_err(fs_info, "find_or_create_page() failed");
4125 			ret = -ENOMEM;
4126 			goto out;
4127 		}
4128 
4129 		if (PageUptodate(page)) {
4130 			if (PageDirty(page))
4131 				goto next_page;
4132 		} else {
4133 			ClearPageError(page);
4134 			err = extent_read_full_page(io_tree, page,
4135 							   btrfs_get_extent,
4136 							   nocow_ctx->mirror_num);
4137 			if (err) {
4138 				ret = err;
4139 				goto next_page;
4140 			}
4141 
4142 			lock_page(page);
4143 			/*
4144 			 * If the page has been remove from the page cache,
4145 			 * the data on it is meaningless, because it may be
4146 			 * old one, the new data may be written into the new
4147 			 * page in the page cache.
4148 			 */
4149 			if (page->mapping != inode->i_mapping) {
4150 				unlock_page(page);
4151 				page_cache_release(page);
4152 				goto again;
4153 			}
4154 			if (!PageUptodate(page)) {
4155 				ret = -EIO;
4156 				goto next_page;
4157 			}
4158 		}
4159 
4160 		ret = check_extent_to_block(inode, offset, len,
4161 					    nocow_ctx_logical);
4162 		if (ret) {
4163 			ret = ret > 0 ? 0 : ret;
4164 			goto next_page;
4165 		}
4166 
4167 		err = write_page_nocow(nocow_ctx->sctx,
4168 				       physical_for_dev_replace, page);
4169 		if (err)
4170 			ret = err;
4171 next_page:
4172 		unlock_page(page);
4173 		page_cache_release(page);
4174 
4175 		if (ret)
4176 			break;
4177 
4178 		offset += PAGE_CACHE_SIZE;
4179 		physical_for_dev_replace += PAGE_CACHE_SIZE;
4180 		nocow_ctx_logical += PAGE_CACHE_SIZE;
4181 		len -= PAGE_CACHE_SIZE;
4182 	}
4183 	ret = COPY_COMPLETE;
4184 out:
4185 	mutex_unlock(&inode->i_mutex);
4186 	iput(inode);
4187 	return ret;
4188 }
4189 
4190 static int write_page_nocow(struct scrub_ctx *sctx,
4191 			    u64 physical_for_dev_replace, struct page *page)
4192 {
4193 	struct bio *bio;
4194 	struct btrfs_device *dev;
4195 	int ret;
4196 
4197 	dev = sctx->wr_ctx.tgtdev;
4198 	if (!dev)
4199 		return -EIO;
4200 	if (!dev->bdev) {
4201 		printk_ratelimited(KERN_WARNING
4202 			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4203 		return -EIO;
4204 	}
4205 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4206 	if (!bio) {
4207 		spin_lock(&sctx->stat_lock);
4208 		sctx->stat.malloc_errors++;
4209 		spin_unlock(&sctx->stat_lock);
4210 		return -ENOMEM;
4211 	}
4212 	bio->bi_iter.bi_size = 0;
4213 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4214 	bio->bi_bdev = dev->bdev;
4215 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4216 	if (ret != PAGE_CACHE_SIZE) {
4217 leave_with_eio:
4218 		bio_put(bio);
4219 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4220 		return -EIO;
4221 	}
4222 
4223 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4224 		goto leave_with_eio;
4225 
4226 	bio_put(bio);
4227 	return 0;
4228 }
4229