1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_recover { 67 atomic_t refs; 68 struct btrfs_bio *bbio; 69 u64 map_length; 70 }; 71 72 struct scrub_page { 73 struct scrub_block *sblock; 74 struct page *page; 75 struct btrfs_device *dev; 76 struct list_head list; 77 u64 flags; /* extent flags */ 78 u64 generation; 79 u64 logical; 80 u64 physical; 81 u64 physical_for_dev_replace; 82 atomic_t refs; 83 struct { 84 unsigned int mirror_num:8; 85 unsigned int have_csum:1; 86 unsigned int io_error:1; 87 }; 88 u8 csum[BTRFS_CSUM_SIZE]; 89 90 struct scrub_recover *recover; 91 }; 92 93 struct scrub_bio { 94 int index; 95 struct scrub_ctx *sctx; 96 struct btrfs_device *dev; 97 struct bio *bio; 98 int err; 99 u64 logical; 100 u64 physical; 101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 103 #else 104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 105 #endif 106 int page_count; 107 int next_free; 108 struct btrfs_work work; 109 }; 110 111 struct scrub_block { 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 113 int page_count; 114 atomic_t outstanding_pages; 115 atomic_t refs; /* free mem on transition to zero */ 116 struct scrub_ctx *sctx; 117 struct scrub_parity *sparity; 118 struct { 119 unsigned int header_error:1; 120 unsigned int checksum_error:1; 121 unsigned int no_io_error_seen:1; 122 unsigned int generation_error:1; /* also sets header_error */ 123 124 /* The following is for the data used to check parity */ 125 /* It is for the data with checksum */ 126 unsigned int data_corrected:1; 127 }; 128 }; 129 130 /* Used for the chunks with parity stripe such RAID5/6 */ 131 struct scrub_parity { 132 struct scrub_ctx *sctx; 133 134 struct btrfs_device *scrub_dev; 135 136 u64 logic_start; 137 138 u64 logic_end; 139 140 int nsectors; 141 142 int stripe_len; 143 144 atomic_t refs; 145 146 struct list_head spages; 147 148 /* Work of parity check and repair */ 149 struct btrfs_work work; 150 151 /* Mark the parity blocks which have data */ 152 unsigned long *dbitmap; 153 154 /* 155 * Mark the parity blocks which have data, but errors happen when 156 * read data or check data 157 */ 158 unsigned long *ebitmap; 159 160 unsigned long bitmap[0]; 161 }; 162 163 struct scrub_wr_ctx { 164 struct scrub_bio *wr_curr_bio; 165 struct btrfs_device *tgtdev; 166 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 167 atomic_t flush_all_writes; 168 struct mutex wr_lock; 169 }; 170 171 struct scrub_ctx { 172 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 173 struct btrfs_root *dev_root; 174 int first_free; 175 int curr; 176 atomic_t bios_in_flight; 177 atomic_t workers_pending; 178 spinlock_t list_lock; 179 wait_queue_head_t list_wait; 180 u16 csum_size; 181 struct list_head csum_list; 182 atomic_t cancel_req; 183 int readonly; 184 int pages_per_rd_bio; 185 u32 sectorsize; 186 u32 nodesize; 187 188 int is_dev_replace; 189 struct scrub_wr_ctx wr_ctx; 190 191 /* 192 * statistics 193 */ 194 struct btrfs_scrub_progress stat; 195 spinlock_t stat_lock; 196 197 /* 198 * Use a ref counter to avoid use-after-free issues. Scrub workers 199 * decrement bios_in_flight and workers_pending and then do a wakeup 200 * on the list_wait wait queue. We must ensure the main scrub task 201 * doesn't free the scrub context before or while the workers are 202 * doing the wakeup() call. 203 */ 204 atomic_t refs; 205 }; 206 207 struct scrub_fixup_nodatasum { 208 struct scrub_ctx *sctx; 209 struct btrfs_device *dev; 210 u64 logical; 211 struct btrfs_root *root; 212 struct btrfs_work work; 213 int mirror_num; 214 }; 215 216 struct scrub_nocow_inode { 217 u64 inum; 218 u64 offset; 219 u64 root; 220 struct list_head list; 221 }; 222 223 struct scrub_copy_nocow_ctx { 224 struct scrub_ctx *sctx; 225 u64 logical; 226 u64 len; 227 int mirror_num; 228 u64 physical_for_dev_replace; 229 struct list_head inodes; 230 struct btrfs_work work; 231 }; 232 233 struct scrub_warning { 234 struct btrfs_path *path; 235 u64 extent_item_size; 236 const char *errstr; 237 sector_t sector; 238 u64 logical; 239 struct btrfs_device *dev; 240 }; 241 242 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 243 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 244 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 245 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 246 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 247 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 248 struct scrub_block *sblocks_for_recheck); 249 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 250 struct scrub_block *sblock, int is_metadata, 251 int have_csum, u8 *csum, u64 generation, 252 u16 csum_size, int retry_failed_mirror); 253 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 254 struct scrub_block *sblock, 255 int is_metadata, int have_csum, 256 const u8 *csum, u64 generation, 257 u16 csum_size); 258 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 259 struct scrub_block *sblock_good); 260 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 261 struct scrub_block *sblock_good, 262 int page_num, int force_write); 263 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 264 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 265 int page_num); 266 static int scrub_checksum_data(struct scrub_block *sblock); 267 static int scrub_checksum_tree_block(struct scrub_block *sblock); 268 static int scrub_checksum_super(struct scrub_block *sblock); 269 static void scrub_block_get(struct scrub_block *sblock); 270 static void scrub_block_put(struct scrub_block *sblock); 271 static void scrub_page_get(struct scrub_page *spage); 272 static void scrub_page_put(struct scrub_page *spage); 273 static void scrub_parity_get(struct scrub_parity *sparity); 274 static void scrub_parity_put(struct scrub_parity *sparity); 275 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 276 struct scrub_page *spage); 277 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 278 u64 physical, struct btrfs_device *dev, u64 flags, 279 u64 gen, int mirror_num, u8 *csum, int force, 280 u64 physical_for_dev_replace); 281 static void scrub_bio_end_io(struct bio *bio, int err); 282 static void scrub_bio_end_io_worker(struct btrfs_work *work); 283 static void scrub_block_complete(struct scrub_block *sblock); 284 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 285 u64 extent_logical, u64 extent_len, 286 u64 *extent_physical, 287 struct btrfs_device **extent_dev, 288 int *extent_mirror_num); 289 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 290 struct scrub_wr_ctx *wr_ctx, 291 struct btrfs_fs_info *fs_info, 292 struct btrfs_device *dev, 293 int is_dev_replace); 294 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 295 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 296 struct scrub_page *spage); 297 static void scrub_wr_submit(struct scrub_ctx *sctx); 298 static void scrub_wr_bio_end_io(struct bio *bio, int err); 299 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 300 static int write_page_nocow(struct scrub_ctx *sctx, 301 u64 physical_for_dev_replace, struct page *page); 302 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 303 struct scrub_copy_nocow_ctx *ctx); 304 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 305 int mirror_num, u64 physical_for_dev_replace); 306 static void copy_nocow_pages_worker(struct btrfs_work *work); 307 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 308 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 309 static void scrub_put_ctx(struct scrub_ctx *sctx); 310 311 312 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 313 { 314 atomic_inc(&sctx->refs); 315 atomic_inc(&sctx->bios_in_flight); 316 } 317 318 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 319 { 320 atomic_dec(&sctx->bios_in_flight); 321 wake_up(&sctx->list_wait); 322 scrub_put_ctx(sctx); 323 } 324 325 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 326 { 327 while (atomic_read(&fs_info->scrub_pause_req)) { 328 mutex_unlock(&fs_info->scrub_lock); 329 wait_event(fs_info->scrub_pause_wait, 330 atomic_read(&fs_info->scrub_pause_req) == 0); 331 mutex_lock(&fs_info->scrub_lock); 332 } 333 } 334 335 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 336 { 337 atomic_inc(&fs_info->scrubs_paused); 338 wake_up(&fs_info->scrub_pause_wait); 339 340 mutex_lock(&fs_info->scrub_lock); 341 __scrub_blocked_if_needed(fs_info); 342 atomic_dec(&fs_info->scrubs_paused); 343 mutex_unlock(&fs_info->scrub_lock); 344 345 wake_up(&fs_info->scrub_pause_wait); 346 } 347 348 /* 349 * used for workers that require transaction commits (i.e., for the 350 * NOCOW case) 351 */ 352 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 353 { 354 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 355 356 atomic_inc(&sctx->refs); 357 /* 358 * increment scrubs_running to prevent cancel requests from 359 * completing as long as a worker is running. we must also 360 * increment scrubs_paused to prevent deadlocking on pause 361 * requests used for transactions commits (as the worker uses a 362 * transaction context). it is safe to regard the worker 363 * as paused for all matters practical. effectively, we only 364 * avoid cancellation requests from completing. 365 */ 366 mutex_lock(&fs_info->scrub_lock); 367 atomic_inc(&fs_info->scrubs_running); 368 atomic_inc(&fs_info->scrubs_paused); 369 mutex_unlock(&fs_info->scrub_lock); 370 371 /* 372 * check if @scrubs_running=@scrubs_paused condition 373 * inside wait_event() is not an atomic operation. 374 * which means we may inc/dec @scrub_running/paused 375 * at any time. Let's wake up @scrub_pause_wait as 376 * much as we can to let commit transaction blocked less. 377 */ 378 wake_up(&fs_info->scrub_pause_wait); 379 380 atomic_inc(&sctx->workers_pending); 381 } 382 383 /* used for workers that require transaction commits */ 384 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 385 { 386 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 387 388 /* 389 * see scrub_pending_trans_workers_inc() why we're pretending 390 * to be paused in the scrub counters 391 */ 392 mutex_lock(&fs_info->scrub_lock); 393 atomic_dec(&fs_info->scrubs_running); 394 atomic_dec(&fs_info->scrubs_paused); 395 mutex_unlock(&fs_info->scrub_lock); 396 atomic_dec(&sctx->workers_pending); 397 wake_up(&fs_info->scrub_pause_wait); 398 wake_up(&sctx->list_wait); 399 scrub_put_ctx(sctx); 400 } 401 402 static void scrub_free_csums(struct scrub_ctx *sctx) 403 { 404 while (!list_empty(&sctx->csum_list)) { 405 struct btrfs_ordered_sum *sum; 406 sum = list_first_entry(&sctx->csum_list, 407 struct btrfs_ordered_sum, list); 408 list_del(&sum->list); 409 kfree(sum); 410 } 411 } 412 413 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 414 { 415 int i; 416 417 if (!sctx) 418 return; 419 420 scrub_free_wr_ctx(&sctx->wr_ctx); 421 422 /* this can happen when scrub is cancelled */ 423 if (sctx->curr != -1) { 424 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 425 426 for (i = 0; i < sbio->page_count; i++) { 427 WARN_ON(!sbio->pagev[i]->page); 428 scrub_block_put(sbio->pagev[i]->sblock); 429 } 430 bio_put(sbio->bio); 431 } 432 433 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 434 struct scrub_bio *sbio = sctx->bios[i]; 435 436 if (!sbio) 437 break; 438 kfree(sbio); 439 } 440 441 scrub_free_csums(sctx); 442 kfree(sctx); 443 } 444 445 static void scrub_put_ctx(struct scrub_ctx *sctx) 446 { 447 if (atomic_dec_and_test(&sctx->refs)) 448 scrub_free_ctx(sctx); 449 } 450 451 static noinline_for_stack 452 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 453 { 454 struct scrub_ctx *sctx; 455 int i; 456 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 457 int pages_per_rd_bio; 458 int ret; 459 460 /* 461 * the setting of pages_per_rd_bio is correct for scrub but might 462 * be wrong for the dev_replace code where we might read from 463 * different devices in the initial huge bios. However, that 464 * code is able to correctly handle the case when adding a page 465 * to a bio fails. 466 */ 467 if (dev->bdev) 468 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO, 469 bio_get_nr_vecs(dev->bdev)); 470 else 471 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 472 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 473 if (!sctx) 474 goto nomem; 475 atomic_set(&sctx->refs, 1); 476 sctx->is_dev_replace = is_dev_replace; 477 sctx->pages_per_rd_bio = pages_per_rd_bio; 478 sctx->curr = -1; 479 sctx->dev_root = dev->dev_root; 480 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 481 struct scrub_bio *sbio; 482 483 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 484 if (!sbio) 485 goto nomem; 486 sctx->bios[i] = sbio; 487 488 sbio->index = i; 489 sbio->sctx = sctx; 490 sbio->page_count = 0; 491 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 492 scrub_bio_end_io_worker, NULL, NULL); 493 494 if (i != SCRUB_BIOS_PER_SCTX - 1) 495 sctx->bios[i]->next_free = i + 1; 496 else 497 sctx->bios[i]->next_free = -1; 498 } 499 sctx->first_free = 0; 500 sctx->nodesize = dev->dev_root->nodesize; 501 sctx->sectorsize = dev->dev_root->sectorsize; 502 atomic_set(&sctx->bios_in_flight, 0); 503 atomic_set(&sctx->workers_pending, 0); 504 atomic_set(&sctx->cancel_req, 0); 505 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 506 INIT_LIST_HEAD(&sctx->csum_list); 507 508 spin_lock_init(&sctx->list_lock); 509 spin_lock_init(&sctx->stat_lock); 510 init_waitqueue_head(&sctx->list_wait); 511 512 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 513 fs_info->dev_replace.tgtdev, is_dev_replace); 514 if (ret) { 515 scrub_free_ctx(sctx); 516 return ERR_PTR(ret); 517 } 518 return sctx; 519 520 nomem: 521 scrub_free_ctx(sctx); 522 return ERR_PTR(-ENOMEM); 523 } 524 525 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 526 void *warn_ctx) 527 { 528 u64 isize; 529 u32 nlink; 530 int ret; 531 int i; 532 struct extent_buffer *eb; 533 struct btrfs_inode_item *inode_item; 534 struct scrub_warning *swarn = warn_ctx; 535 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 536 struct inode_fs_paths *ipath = NULL; 537 struct btrfs_root *local_root; 538 struct btrfs_key root_key; 539 struct btrfs_key key; 540 541 root_key.objectid = root; 542 root_key.type = BTRFS_ROOT_ITEM_KEY; 543 root_key.offset = (u64)-1; 544 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 545 if (IS_ERR(local_root)) { 546 ret = PTR_ERR(local_root); 547 goto err; 548 } 549 550 /* 551 * this makes the path point to (inum INODE_ITEM ioff) 552 */ 553 key.objectid = inum; 554 key.type = BTRFS_INODE_ITEM_KEY; 555 key.offset = 0; 556 557 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 558 if (ret) { 559 btrfs_release_path(swarn->path); 560 goto err; 561 } 562 563 eb = swarn->path->nodes[0]; 564 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 565 struct btrfs_inode_item); 566 isize = btrfs_inode_size(eb, inode_item); 567 nlink = btrfs_inode_nlink(eb, inode_item); 568 btrfs_release_path(swarn->path); 569 570 ipath = init_ipath(4096, local_root, swarn->path); 571 if (IS_ERR(ipath)) { 572 ret = PTR_ERR(ipath); 573 ipath = NULL; 574 goto err; 575 } 576 ret = paths_from_inode(inum, ipath); 577 578 if (ret < 0) 579 goto err; 580 581 /* 582 * we deliberately ignore the bit ipath might have been too small to 583 * hold all of the paths here 584 */ 585 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 586 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 587 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 588 "length %llu, links %u (path: %s)\n", swarn->errstr, 589 swarn->logical, rcu_str_deref(swarn->dev->name), 590 (unsigned long long)swarn->sector, root, inum, offset, 591 min(isize - offset, (u64)PAGE_SIZE), nlink, 592 (char *)(unsigned long)ipath->fspath->val[i]); 593 594 free_ipath(ipath); 595 return 0; 596 597 err: 598 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 599 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 600 "resolving failed with ret=%d\n", swarn->errstr, 601 swarn->logical, rcu_str_deref(swarn->dev->name), 602 (unsigned long long)swarn->sector, root, inum, offset, ret); 603 604 free_ipath(ipath); 605 return 0; 606 } 607 608 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 609 { 610 struct btrfs_device *dev; 611 struct btrfs_fs_info *fs_info; 612 struct btrfs_path *path; 613 struct btrfs_key found_key; 614 struct extent_buffer *eb; 615 struct btrfs_extent_item *ei; 616 struct scrub_warning swarn; 617 unsigned long ptr = 0; 618 u64 extent_item_pos; 619 u64 flags = 0; 620 u64 ref_root; 621 u32 item_size; 622 u8 ref_level; 623 int ret; 624 625 WARN_ON(sblock->page_count < 1); 626 dev = sblock->pagev[0]->dev; 627 fs_info = sblock->sctx->dev_root->fs_info; 628 629 path = btrfs_alloc_path(); 630 if (!path) 631 return; 632 633 swarn.sector = (sblock->pagev[0]->physical) >> 9; 634 swarn.logical = sblock->pagev[0]->logical; 635 swarn.errstr = errstr; 636 swarn.dev = NULL; 637 638 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 639 &flags); 640 if (ret < 0) 641 goto out; 642 643 extent_item_pos = swarn.logical - found_key.objectid; 644 swarn.extent_item_size = found_key.offset; 645 646 eb = path->nodes[0]; 647 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 648 item_size = btrfs_item_size_nr(eb, path->slots[0]); 649 650 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 651 do { 652 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 653 item_size, &ref_root, 654 &ref_level); 655 printk_in_rcu(KERN_WARNING 656 "BTRFS: %s at logical %llu on dev %s, " 657 "sector %llu: metadata %s (level %d) in tree " 658 "%llu\n", errstr, swarn.logical, 659 rcu_str_deref(dev->name), 660 (unsigned long long)swarn.sector, 661 ref_level ? "node" : "leaf", 662 ret < 0 ? -1 : ref_level, 663 ret < 0 ? -1 : ref_root); 664 } while (ret != 1); 665 btrfs_release_path(path); 666 } else { 667 btrfs_release_path(path); 668 swarn.path = path; 669 swarn.dev = dev; 670 iterate_extent_inodes(fs_info, found_key.objectid, 671 extent_item_pos, 1, 672 scrub_print_warning_inode, &swarn); 673 } 674 675 out: 676 btrfs_free_path(path); 677 } 678 679 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 680 { 681 struct page *page = NULL; 682 unsigned long index; 683 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 684 int ret; 685 int corrected = 0; 686 struct btrfs_key key; 687 struct inode *inode = NULL; 688 struct btrfs_fs_info *fs_info; 689 u64 end = offset + PAGE_SIZE - 1; 690 struct btrfs_root *local_root; 691 int srcu_index; 692 693 key.objectid = root; 694 key.type = BTRFS_ROOT_ITEM_KEY; 695 key.offset = (u64)-1; 696 697 fs_info = fixup->root->fs_info; 698 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 699 700 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 701 if (IS_ERR(local_root)) { 702 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 703 return PTR_ERR(local_root); 704 } 705 706 key.type = BTRFS_INODE_ITEM_KEY; 707 key.objectid = inum; 708 key.offset = 0; 709 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 710 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 711 if (IS_ERR(inode)) 712 return PTR_ERR(inode); 713 714 index = offset >> PAGE_CACHE_SHIFT; 715 716 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 717 if (!page) { 718 ret = -ENOMEM; 719 goto out; 720 } 721 722 if (PageUptodate(page)) { 723 if (PageDirty(page)) { 724 /* 725 * we need to write the data to the defect sector. the 726 * data that was in that sector is not in memory, 727 * because the page was modified. we must not write the 728 * modified page to that sector. 729 * 730 * TODO: what could be done here: wait for the delalloc 731 * runner to write out that page (might involve 732 * COW) and see whether the sector is still 733 * referenced afterwards. 734 * 735 * For the meantime, we'll treat this error 736 * incorrectable, although there is a chance that a 737 * later scrub will find the bad sector again and that 738 * there's no dirty page in memory, then. 739 */ 740 ret = -EIO; 741 goto out; 742 } 743 ret = repair_io_failure(inode, offset, PAGE_SIZE, 744 fixup->logical, page, 745 offset - page_offset(page), 746 fixup->mirror_num); 747 unlock_page(page); 748 corrected = !ret; 749 } else { 750 /* 751 * we need to get good data first. the general readpage path 752 * will call repair_io_failure for us, we just have to make 753 * sure we read the bad mirror. 754 */ 755 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 756 EXTENT_DAMAGED, GFP_NOFS); 757 if (ret) { 758 /* set_extent_bits should give proper error */ 759 WARN_ON(ret > 0); 760 if (ret > 0) 761 ret = -EFAULT; 762 goto out; 763 } 764 765 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 766 btrfs_get_extent, 767 fixup->mirror_num); 768 wait_on_page_locked(page); 769 770 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 771 end, EXTENT_DAMAGED, 0, NULL); 772 if (!corrected) 773 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 774 EXTENT_DAMAGED, GFP_NOFS); 775 } 776 777 out: 778 if (page) 779 put_page(page); 780 781 iput(inode); 782 783 if (ret < 0) 784 return ret; 785 786 if (ret == 0 && corrected) { 787 /* 788 * we only need to call readpage for one of the inodes belonging 789 * to this extent. so make iterate_extent_inodes stop 790 */ 791 return 1; 792 } 793 794 return -EIO; 795 } 796 797 static void scrub_fixup_nodatasum(struct btrfs_work *work) 798 { 799 int ret; 800 struct scrub_fixup_nodatasum *fixup; 801 struct scrub_ctx *sctx; 802 struct btrfs_trans_handle *trans = NULL; 803 struct btrfs_path *path; 804 int uncorrectable = 0; 805 806 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 807 sctx = fixup->sctx; 808 809 path = btrfs_alloc_path(); 810 if (!path) { 811 spin_lock(&sctx->stat_lock); 812 ++sctx->stat.malloc_errors; 813 spin_unlock(&sctx->stat_lock); 814 uncorrectable = 1; 815 goto out; 816 } 817 818 trans = btrfs_join_transaction(fixup->root); 819 if (IS_ERR(trans)) { 820 uncorrectable = 1; 821 goto out; 822 } 823 824 /* 825 * the idea is to trigger a regular read through the standard path. we 826 * read a page from the (failed) logical address by specifying the 827 * corresponding copynum of the failed sector. thus, that readpage is 828 * expected to fail. 829 * that is the point where on-the-fly error correction will kick in 830 * (once it's finished) and rewrite the failed sector if a good copy 831 * can be found. 832 */ 833 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 834 path, scrub_fixup_readpage, 835 fixup); 836 if (ret < 0) { 837 uncorrectable = 1; 838 goto out; 839 } 840 WARN_ON(ret != 1); 841 842 spin_lock(&sctx->stat_lock); 843 ++sctx->stat.corrected_errors; 844 spin_unlock(&sctx->stat_lock); 845 846 out: 847 if (trans && !IS_ERR(trans)) 848 btrfs_end_transaction(trans, fixup->root); 849 if (uncorrectable) { 850 spin_lock(&sctx->stat_lock); 851 ++sctx->stat.uncorrectable_errors; 852 spin_unlock(&sctx->stat_lock); 853 btrfs_dev_replace_stats_inc( 854 &sctx->dev_root->fs_info->dev_replace. 855 num_uncorrectable_read_errors); 856 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 857 "unable to fixup (nodatasum) error at logical %llu on dev %s\n", 858 fixup->logical, rcu_str_deref(fixup->dev->name)); 859 } 860 861 btrfs_free_path(path); 862 kfree(fixup); 863 864 scrub_pending_trans_workers_dec(sctx); 865 } 866 867 static inline void scrub_get_recover(struct scrub_recover *recover) 868 { 869 atomic_inc(&recover->refs); 870 } 871 872 static inline void scrub_put_recover(struct scrub_recover *recover) 873 { 874 if (atomic_dec_and_test(&recover->refs)) { 875 btrfs_put_bbio(recover->bbio); 876 kfree(recover); 877 } 878 } 879 880 /* 881 * scrub_handle_errored_block gets called when either verification of the 882 * pages failed or the bio failed to read, e.g. with EIO. In the latter 883 * case, this function handles all pages in the bio, even though only one 884 * may be bad. 885 * The goal of this function is to repair the errored block by using the 886 * contents of one of the mirrors. 887 */ 888 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 889 { 890 struct scrub_ctx *sctx = sblock_to_check->sctx; 891 struct btrfs_device *dev; 892 struct btrfs_fs_info *fs_info; 893 u64 length; 894 u64 logical; 895 u64 generation; 896 unsigned int failed_mirror_index; 897 unsigned int is_metadata; 898 unsigned int have_csum; 899 u8 *csum; 900 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 901 struct scrub_block *sblock_bad; 902 int ret; 903 int mirror_index; 904 int page_num; 905 int success; 906 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 907 DEFAULT_RATELIMIT_BURST); 908 909 BUG_ON(sblock_to_check->page_count < 1); 910 fs_info = sctx->dev_root->fs_info; 911 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 912 /* 913 * if we find an error in a super block, we just report it. 914 * They will get written with the next transaction commit 915 * anyway 916 */ 917 spin_lock(&sctx->stat_lock); 918 ++sctx->stat.super_errors; 919 spin_unlock(&sctx->stat_lock); 920 return 0; 921 } 922 length = sblock_to_check->page_count * PAGE_SIZE; 923 logical = sblock_to_check->pagev[0]->logical; 924 generation = sblock_to_check->pagev[0]->generation; 925 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 926 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 927 is_metadata = !(sblock_to_check->pagev[0]->flags & 928 BTRFS_EXTENT_FLAG_DATA); 929 have_csum = sblock_to_check->pagev[0]->have_csum; 930 csum = sblock_to_check->pagev[0]->csum; 931 dev = sblock_to_check->pagev[0]->dev; 932 933 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 934 sblocks_for_recheck = NULL; 935 goto nodatasum_case; 936 } 937 938 /* 939 * read all mirrors one after the other. This includes to 940 * re-read the extent or metadata block that failed (that was 941 * the cause that this fixup code is called) another time, 942 * page by page this time in order to know which pages 943 * caused I/O errors and which ones are good (for all mirrors). 944 * It is the goal to handle the situation when more than one 945 * mirror contains I/O errors, but the errors do not 946 * overlap, i.e. the data can be repaired by selecting the 947 * pages from those mirrors without I/O error on the 948 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 949 * would be that mirror #1 has an I/O error on the first page, 950 * the second page is good, and mirror #2 has an I/O error on 951 * the second page, but the first page is good. 952 * Then the first page of the first mirror can be repaired by 953 * taking the first page of the second mirror, and the 954 * second page of the second mirror can be repaired by 955 * copying the contents of the 2nd page of the 1st mirror. 956 * One more note: if the pages of one mirror contain I/O 957 * errors, the checksum cannot be verified. In order to get 958 * the best data for repairing, the first attempt is to find 959 * a mirror without I/O errors and with a validated checksum. 960 * Only if this is not possible, the pages are picked from 961 * mirrors with I/O errors without considering the checksum. 962 * If the latter is the case, at the end, the checksum of the 963 * repaired area is verified in order to correctly maintain 964 * the statistics. 965 */ 966 967 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 968 sizeof(*sblocks_for_recheck), GFP_NOFS); 969 if (!sblocks_for_recheck) { 970 spin_lock(&sctx->stat_lock); 971 sctx->stat.malloc_errors++; 972 sctx->stat.read_errors++; 973 sctx->stat.uncorrectable_errors++; 974 spin_unlock(&sctx->stat_lock); 975 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 976 goto out; 977 } 978 979 /* setup the context, map the logical blocks and alloc the pages */ 980 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 981 if (ret) { 982 spin_lock(&sctx->stat_lock); 983 sctx->stat.read_errors++; 984 sctx->stat.uncorrectable_errors++; 985 spin_unlock(&sctx->stat_lock); 986 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 987 goto out; 988 } 989 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 990 sblock_bad = sblocks_for_recheck + failed_mirror_index; 991 992 /* build and submit the bios for the failed mirror, check checksums */ 993 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 994 csum, generation, sctx->csum_size, 1); 995 996 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 997 sblock_bad->no_io_error_seen) { 998 /* 999 * the error disappeared after reading page by page, or 1000 * the area was part of a huge bio and other parts of the 1001 * bio caused I/O errors, or the block layer merged several 1002 * read requests into one and the error is caused by a 1003 * different bio (usually one of the two latter cases is 1004 * the cause) 1005 */ 1006 spin_lock(&sctx->stat_lock); 1007 sctx->stat.unverified_errors++; 1008 sblock_to_check->data_corrected = 1; 1009 spin_unlock(&sctx->stat_lock); 1010 1011 if (sctx->is_dev_replace) 1012 scrub_write_block_to_dev_replace(sblock_bad); 1013 goto out; 1014 } 1015 1016 if (!sblock_bad->no_io_error_seen) { 1017 spin_lock(&sctx->stat_lock); 1018 sctx->stat.read_errors++; 1019 spin_unlock(&sctx->stat_lock); 1020 if (__ratelimit(&_rs)) 1021 scrub_print_warning("i/o error", sblock_to_check); 1022 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1023 } else if (sblock_bad->checksum_error) { 1024 spin_lock(&sctx->stat_lock); 1025 sctx->stat.csum_errors++; 1026 spin_unlock(&sctx->stat_lock); 1027 if (__ratelimit(&_rs)) 1028 scrub_print_warning("checksum error", sblock_to_check); 1029 btrfs_dev_stat_inc_and_print(dev, 1030 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1031 } else if (sblock_bad->header_error) { 1032 spin_lock(&sctx->stat_lock); 1033 sctx->stat.verify_errors++; 1034 spin_unlock(&sctx->stat_lock); 1035 if (__ratelimit(&_rs)) 1036 scrub_print_warning("checksum/header error", 1037 sblock_to_check); 1038 if (sblock_bad->generation_error) 1039 btrfs_dev_stat_inc_and_print(dev, 1040 BTRFS_DEV_STAT_GENERATION_ERRS); 1041 else 1042 btrfs_dev_stat_inc_and_print(dev, 1043 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1044 } 1045 1046 if (sctx->readonly) { 1047 ASSERT(!sctx->is_dev_replace); 1048 goto out; 1049 } 1050 1051 if (!is_metadata && !have_csum) { 1052 struct scrub_fixup_nodatasum *fixup_nodatasum; 1053 1054 WARN_ON(sctx->is_dev_replace); 1055 1056 nodatasum_case: 1057 1058 /* 1059 * !is_metadata and !have_csum, this means that the data 1060 * might not be COW'ed, that it might be modified 1061 * concurrently. The general strategy to work on the 1062 * commit root does not help in the case when COW is not 1063 * used. 1064 */ 1065 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1066 if (!fixup_nodatasum) 1067 goto did_not_correct_error; 1068 fixup_nodatasum->sctx = sctx; 1069 fixup_nodatasum->dev = dev; 1070 fixup_nodatasum->logical = logical; 1071 fixup_nodatasum->root = fs_info->extent_root; 1072 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1073 scrub_pending_trans_workers_inc(sctx); 1074 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1075 scrub_fixup_nodatasum, NULL, NULL); 1076 btrfs_queue_work(fs_info->scrub_workers, 1077 &fixup_nodatasum->work); 1078 goto out; 1079 } 1080 1081 /* 1082 * now build and submit the bios for the other mirrors, check 1083 * checksums. 1084 * First try to pick the mirror which is completely without I/O 1085 * errors and also does not have a checksum error. 1086 * If one is found, and if a checksum is present, the full block 1087 * that is known to contain an error is rewritten. Afterwards 1088 * the block is known to be corrected. 1089 * If a mirror is found which is completely correct, and no 1090 * checksum is present, only those pages are rewritten that had 1091 * an I/O error in the block to be repaired, since it cannot be 1092 * determined, which copy of the other pages is better (and it 1093 * could happen otherwise that a correct page would be 1094 * overwritten by a bad one). 1095 */ 1096 for (mirror_index = 0; 1097 mirror_index < BTRFS_MAX_MIRRORS && 1098 sblocks_for_recheck[mirror_index].page_count > 0; 1099 mirror_index++) { 1100 struct scrub_block *sblock_other; 1101 1102 if (mirror_index == failed_mirror_index) 1103 continue; 1104 sblock_other = sblocks_for_recheck + mirror_index; 1105 1106 /* build and submit the bios, check checksums */ 1107 scrub_recheck_block(fs_info, sblock_other, is_metadata, 1108 have_csum, csum, generation, 1109 sctx->csum_size, 0); 1110 1111 if (!sblock_other->header_error && 1112 !sblock_other->checksum_error && 1113 sblock_other->no_io_error_seen) { 1114 if (sctx->is_dev_replace) { 1115 scrub_write_block_to_dev_replace(sblock_other); 1116 goto corrected_error; 1117 } else { 1118 ret = scrub_repair_block_from_good_copy( 1119 sblock_bad, sblock_other); 1120 if (!ret) 1121 goto corrected_error; 1122 } 1123 } 1124 } 1125 1126 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1127 goto did_not_correct_error; 1128 1129 /* 1130 * In case of I/O errors in the area that is supposed to be 1131 * repaired, continue by picking good copies of those pages. 1132 * Select the good pages from mirrors to rewrite bad pages from 1133 * the area to fix. Afterwards verify the checksum of the block 1134 * that is supposed to be repaired. This verification step is 1135 * only done for the purpose of statistic counting and for the 1136 * final scrub report, whether errors remain. 1137 * A perfect algorithm could make use of the checksum and try 1138 * all possible combinations of pages from the different mirrors 1139 * until the checksum verification succeeds. For example, when 1140 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1141 * of mirror #2 is readable but the final checksum test fails, 1142 * then the 2nd page of mirror #3 could be tried, whether now 1143 * the final checksum succeedes. But this would be a rare 1144 * exception and is therefore not implemented. At least it is 1145 * avoided that the good copy is overwritten. 1146 * A more useful improvement would be to pick the sectors 1147 * without I/O error based on sector sizes (512 bytes on legacy 1148 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1149 * mirror could be repaired by taking 512 byte of a different 1150 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1151 * area are unreadable. 1152 */ 1153 success = 1; 1154 for (page_num = 0; page_num < sblock_bad->page_count; 1155 page_num++) { 1156 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1157 struct scrub_block *sblock_other = NULL; 1158 1159 /* skip no-io-error page in scrub */ 1160 if (!page_bad->io_error && !sctx->is_dev_replace) 1161 continue; 1162 1163 /* try to find no-io-error page in mirrors */ 1164 if (page_bad->io_error) { 1165 for (mirror_index = 0; 1166 mirror_index < BTRFS_MAX_MIRRORS && 1167 sblocks_for_recheck[mirror_index].page_count > 0; 1168 mirror_index++) { 1169 if (!sblocks_for_recheck[mirror_index]. 1170 pagev[page_num]->io_error) { 1171 sblock_other = sblocks_for_recheck + 1172 mirror_index; 1173 break; 1174 } 1175 } 1176 if (!sblock_other) 1177 success = 0; 1178 } 1179 1180 if (sctx->is_dev_replace) { 1181 /* 1182 * did not find a mirror to fetch the page 1183 * from. scrub_write_page_to_dev_replace() 1184 * handles this case (page->io_error), by 1185 * filling the block with zeros before 1186 * submitting the write request 1187 */ 1188 if (!sblock_other) 1189 sblock_other = sblock_bad; 1190 1191 if (scrub_write_page_to_dev_replace(sblock_other, 1192 page_num) != 0) { 1193 btrfs_dev_replace_stats_inc( 1194 &sctx->dev_root-> 1195 fs_info->dev_replace. 1196 num_write_errors); 1197 success = 0; 1198 } 1199 } else if (sblock_other) { 1200 ret = scrub_repair_page_from_good_copy(sblock_bad, 1201 sblock_other, 1202 page_num, 0); 1203 if (0 == ret) 1204 page_bad->io_error = 0; 1205 else 1206 success = 0; 1207 } 1208 } 1209 1210 if (success && !sctx->is_dev_replace) { 1211 if (is_metadata || have_csum) { 1212 /* 1213 * need to verify the checksum now that all 1214 * sectors on disk are repaired (the write 1215 * request for data to be repaired is on its way). 1216 * Just be lazy and use scrub_recheck_block() 1217 * which re-reads the data before the checksum 1218 * is verified, but most likely the data comes out 1219 * of the page cache. 1220 */ 1221 scrub_recheck_block(fs_info, sblock_bad, 1222 is_metadata, have_csum, csum, 1223 generation, sctx->csum_size, 1); 1224 if (!sblock_bad->header_error && 1225 !sblock_bad->checksum_error && 1226 sblock_bad->no_io_error_seen) 1227 goto corrected_error; 1228 else 1229 goto did_not_correct_error; 1230 } else { 1231 corrected_error: 1232 spin_lock(&sctx->stat_lock); 1233 sctx->stat.corrected_errors++; 1234 sblock_to_check->data_corrected = 1; 1235 spin_unlock(&sctx->stat_lock); 1236 printk_ratelimited_in_rcu(KERN_ERR 1237 "BTRFS: fixed up error at logical %llu on dev %s\n", 1238 logical, rcu_str_deref(dev->name)); 1239 } 1240 } else { 1241 did_not_correct_error: 1242 spin_lock(&sctx->stat_lock); 1243 sctx->stat.uncorrectable_errors++; 1244 spin_unlock(&sctx->stat_lock); 1245 printk_ratelimited_in_rcu(KERN_ERR 1246 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n", 1247 logical, rcu_str_deref(dev->name)); 1248 } 1249 1250 out: 1251 if (sblocks_for_recheck) { 1252 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1253 mirror_index++) { 1254 struct scrub_block *sblock = sblocks_for_recheck + 1255 mirror_index; 1256 struct scrub_recover *recover; 1257 int page_index; 1258 1259 for (page_index = 0; page_index < sblock->page_count; 1260 page_index++) { 1261 sblock->pagev[page_index]->sblock = NULL; 1262 recover = sblock->pagev[page_index]->recover; 1263 if (recover) { 1264 scrub_put_recover(recover); 1265 sblock->pagev[page_index]->recover = 1266 NULL; 1267 } 1268 scrub_page_put(sblock->pagev[page_index]); 1269 } 1270 } 1271 kfree(sblocks_for_recheck); 1272 } 1273 1274 return 0; 1275 } 1276 1277 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1278 { 1279 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1280 return 2; 1281 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1282 return 3; 1283 else 1284 return (int)bbio->num_stripes; 1285 } 1286 1287 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1288 u64 *raid_map, 1289 u64 mapped_length, 1290 int nstripes, int mirror, 1291 int *stripe_index, 1292 u64 *stripe_offset) 1293 { 1294 int i; 1295 1296 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1297 /* RAID5/6 */ 1298 for (i = 0; i < nstripes; i++) { 1299 if (raid_map[i] == RAID6_Q_STRIPE || 1300 raid_map[i] == RAID5_P_STRIPE) 1301 continue; 1302 1303 if (logical >= raid_map[i] && 1304 logical < raid_map[i] + mapped_length) 1305 break; 1306 } 1307 1308 *stripe_index = i; 1309 *stripe_offset = logical - raid_map[i]; 1310 } else { 1311 /* The other RAID type */ 1312 *stripe_index = mirror; 1313 *stripe_offset = 0; 1314 } 1315 } 1316 1317 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1318 struct scrub_block *sblocks_for_recheck) 1319 { 1320 struct scrub_ctx *sctx = original_sblock->sctx; 1321 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 1322 u64 length = original_sblock->page_count * PAGE_SIZE; 1323 u64 logical = original_sblock->pagev[0]->logical; 1324 struct scrub_recover *recover; 1325 struct btrfs_bio *bbio; 1326 u64 sublen; 1327 u64 mapped_length; 1328 u64 stripe_offset; 1329 int stripe_index; 1330 int page_index = 0; 1331 int mirror_index; 1332 int nmirrors; 1333 int ret; 1334 1335 /* 1336 * note: the two members refs and outstanding_pages 1337 * are not used (and not set) in the blocks that are used for 1338 * the recheck procedure 1339 */ 1340 1341 while (length > 0) { 1342 sublen = min_t(u64, length, PAGE_SIZE); 1343 mapped_length = sublen; 1344 bbio = NULL; 1345 1346 /* 1347 * with a length of PAGE_SIZE, each returned stripe 1348 * represents one mirror 1349 */ 1350 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, 1351 &mapped_length, &bbio, 0, 1); 1352 if (ret || !bbio || mapped_length < sublen) { 1353 btrfs_put_bbio(bbio); 1354 return -EIO; 1355 } 1356 1357 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1358 if (!recover) { 1359 btrfs_put_bbio(bbio); 1360 return -ENOMEM; 1361 } 1362 1363 atomic_set(&recover->refs, 1); 1364 recover->bbio = bbio; 1365 recover->map_length = mapped_length; 1366 1367 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1368 1369 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1370 1371 for (mirror_index = 0; mirror_index < nmirrors; 1372 mirror_index++) { 1373 struct scrub_block *sblock; 1374 struct scrub_page *page; 1375 1376 sblock = sblocks_for_recheck + mirror_index; 1377 sblock->sctx = sctx; 1378 page = kzalloc(sizeof(*page), GFP_NOFS); 1379 if (!page) { 1380 leave_nomem: 1381 spin_lock(&sctx->stat_lock); 1382 sctx->stat.malloc_errors++; 1383 spin_unlock(&sctx->stat_lock); 1384 scrub_put_recover(recover); 1385 return -ENOMEM; 1386 } 1387 scrub_page_get(page); 1388 sblock->pagev[page_index] = page; 1389 page->logical = logical; 1390 1391 scrub_stripe_index_and_offset(logical, 1392 bbio->map_type, 1393 bbio->raid_map, 1394 mapped_length, 1395 bbio->num_stripes - 1396 bbio->num_tgtdevs, 1397 mirror_index, 1398 &stripe_index, 1399 &stripe_offset); 1400 page->physical = bbio->stripes[stripe_index].physical + 1401 stripe_offset; 1402 page->dev = bbio->stripes[stripe_index].dev; 1403 1404 BUG_ON(page_index >= original_sblock->page_count); 1405 page->physical_for_dev_replace = 1406 original_sblock->pagev[page_index]-> 1407 physical_for_dev_replace; 1408 /* for missing devices, dev->bdev is NULL */ 1409 page->mirror_num = mirror_index + 1; 1410 sblock->page_count++; 1411 page->page = alloc_page(GFP_NOFS); 1412 if (!page->page) 1413 goto leave_nomem; 1414 1415 scrub_get_recover(recover); 1416 page->recover = recover; 1417 } 1418 scrub_put_recover(recover); 1419 length -= sublen; 1420 logical += sublen; 1421 page_index++; 1422 } 1423 1424 return 0; 1425 } 1426 1427 struct scrub_bio_ret { 1428 struct completion event; 1429 int error; 1430 }; 1431 1432 static void scrub_bio_wait_endio(struct bio *bio, int error) 1433 { 1434 struct scrub_bio_ret *ret = bio->bi_private; 1435 1436 ret->error = error; 1437 complete(&ret->event); 1438 } 1439 1440 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1441 { 1442 return page->recover && 1443 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1444 } 1445 1446 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1447 struct bio *bio, 1448 struct scrub_page *page) 1449 { 1450 struct scrub_bio_ret done; 1451 int ret; 1452 1453 init_completion(&done.event); 1454 done.error = 0; 1455 bio->bi_iter.bi_sector = page->logical >> 9; 1456 bio->bi_private = &done; 1457 bio->bi_end_io = scrub_bio_wait_endio; 1458 1459 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio, 1460 page->recover->map_length, 1461 page->mirror_num, 0); 1462 if (ret) 1463 return ret; 1464 1465 wait_for_completion(&done.event); 1466 if (done.error) 1467 return -EIO; 1468 1469 return 0; 1470 } 1471 1472 /* 1473 * this function will check the on disk data for checksum errors, header 1474 * errors and read I/O errors. If any I/O errors happen, the exact pages 1475 * which are errored are marked as being bad. The goal is to enable scrub 1476 * to take those pages that are not errored from all the mirrors so that 1477 * the pages that are errored in the just handled mirror can be repaired. 1478 */ 1479 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1480 struct scrub_block *sblock, int is_metadata, 1481 int have_csum, u8 *csum, u64 generation, 1482 u16 csum_size, int retry_failed_mirror) 1483 { 1484 int page_num; 1485 1486 sblock->no_io_error_seen = 1; 1487 sblock->header_error = 0; 1488 sblock->checksum_error = 0; 1489 1490 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1491 struct bio *bio; 1492 struct scrub_page *page = sblock->pagev[page_num]; 1493 1494 if (page->dev->bdev == NULL) { 1495 page->io_error = 1; 1496 sblock->no_io_error_seen = 0; 1497 continue; 1498 } 1499 1500 WARN_ON(!page->page); 1501 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1502 if (!bio) { 1503 page->io_error = 1; 1504 sblock->no_io_error_seen = 0; 1505 continue; 1506 } 1507 bio->bi_bdev = page->dev->bdev; 1508 1509 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1510 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1511 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) 1512 sblock->no_io_error_seen = 0; 1513 } else { 1514 bio->bi_iter.bi_sector = page->physical >> 9; 1515 1516 if (btrfsic_submit_bio_wait(READ, bio)) 1517 sblock->no_io_error_seen = 0; 1518 } 1519 1520 bio_put(bio); 1521 } 1522 1523 if (sblock->no_io_error_seen) 1524 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1525 have_csum, csum, generation, 1526 csum_size); 1527 1528 return; 1529 } 1530 1531 static inline int scrub_check_fsid(u8 fsid[], 1532 struct scrub_page *spage) 1533 { 1534 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1535 int ret; 1536 1537 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1538 return !ret; 1539 } 1540 1541 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1542 struct scrub_block *sblock, 1543 int is_metadata, int have_csum, 1544 const u8 *csum, u64 generation, 1545 u16 csum_size) 1546 { 1547 int page_num; 1548 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1549 u32 crc = ~(u32)0; 1550 void *mapped_buffer; 1551 1552 WARN_ON(!sblock->pagev[0]->page); 1553 if (is_metadata) { 1554 struct btrfs_header *h; 1555 1556 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1557 h = (struct btrfs_header *)mapped_buffer; 1558 1559 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) || 1560 !scrub_check_fsid(h->fsid, sblock->pagev[0]) || 1561 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1562 BTRFS_UUID_SIZE)) { 1563 sblock->header_error = 1; 1564 } else if (generation != btrfs_stack_header_generation(h)) { 1565 sblock->header_error = 1; 1566 sblock->generation_error = 1; 1567 } 1568 csum = h->csum; 1569 } else { 1570 if (!have_csum) 1571 return; 1572 1573 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1574 } 1575 1576 for (page_num = 0;;) { 1577 if (page_num == 0 && is_metadata) 1578 crc = btrfs_csum_data( 1579 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1580 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1581 else 1582 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE); 1583 1584 kunmap_atomic(mapped_buffer); 1585 page_num++; 1586 if (page_num >= sblock->page_count) 1587 break; 1588 WARN_ON(!sblock->pagev[page_num]->page); 1589 1590 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1591 } 1592 1593 btrfs_csum_final(crc, calculated_csum); 1594 if (memcmp(calculated_csum, csum, csum_size)) 1595 sblock->checksum_error = 1; 1596 } 1597 1598 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1599 struct scrub_block *sblock_good) 1600 { 1601 int page_num; 1602 int ret = 0; 1603 1604 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1605 int ret_sub; 1606 1607 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1608 sblock_good, 1609 page_num, 1); 1610 if (ret_sub) 1611 ret = ret_sub; 1612 } 1613 1614 return ret; 1615 } 1616 1617 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1618 struct scrub_block *sblock_good, 1619 int page_num, int force_write) 1620 { 1621 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1622 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1623 1624 BUG_ON(page_bad->page == NULL); 1625 BUG_ON(page_good->page == NULL); 1626 if (force_write || sblock_bad->header_error || 1627 sblock_bad->checksum_error || page_bad->io_error) { 1628 struct bio *bio; 1629 int ret; 1630 1631 if (!page_bad->dev->bdev) { 1632 printk_ratelimited(KERN_WARNING "BTRFS: " 1633 "scrub_repair_page_from_good_copy(bdev == NULL) " 1634 "is unexpected!\n"); 1635 return -EIO; 1636 } 1637 1638 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1639 if (!bio) 1640 return -EIO; 1641 bio->bi_bdev = page_bad->dev->bdev; 1642 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1643 1644 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1645 if (PAGE_SIZE != ret) { 1646 bio_put(bio); 1647 return -EIO; 1648 } 1649 1650 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1651 btrfs_dev_stat_inc_and_print(page_bad->dev, 1652 BTRFS_DEV_STAT_WRITE_ERRS); 1653 btrfs_dev_replace_stats_inc( 1654 &sblock_bad->sctx->dev_root->fs_info-> 1655 dev_replace.num_write_errors); 1656 bio_put(bio); 1657 return -EIO; 1658 } 1659 bio_put(bio); 1660 } 1661 1662 return 0; 1663 } 1664 1665 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1666 { 1667 int page_num; 1668 1669 /* 1670 * This block is used for the check of the parity on the source device, 1671 * so the data needn't be written into the destination device. 1672 */ 1673 if (sblock->sparity) 1674 return; 1675 1676 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1677 int ret; 1678 1679 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1680 if (ret) 1681 btrfs_dev_replace_stats_inc( 1682 &sblock->sctx->dev_root->fs_info->dev_replace. 1683 num_write_errors); 1684 } 1685 } 1686 1687 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1688 int page_num) 1689 { 1690 struct scrub_page *spage = sblock->pagev[page_num]; 1691 1692 BUG_ON(spage->page == NULL); 1693 if (spage->io_error) { 1694 void *mapped_buffer = kmap_atomic(spage->page); 1695 1696 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1697 flush_dcache_page(spage->page); 1698 kunmap_atomic(mapped_buffer); 1699 } 1700 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1701 } 1702 1703 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1704 struct scrub_page *spage) 1705 { 1706 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1707 struct scrub_bio *sbio; 1708 int ret; 1709 1710 mutex_lock(&wr_ctx->wr_lock); 1711 again: 1712 if (!wr_ctx->wr_curr_bio) { 1713 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1714 GFP_NOFS); 1715 if (!wr_ctx->wr_curr_bio) { 1716 mutex_unlock(&wr_ctx->wr_lock); 1717 return -ENOMEM; 1718 } 1719 wr_ctx->wr_curr_bio->sctx = sctx; 1720 wr_ctx->wr_curr_bio->page_count = 0; 1721 } 1722 sbio = wr_ctx->wr_curr_bio; 1723 if (sbio->page_count == 0) { 1724 struct bio *bio; 1725 1726 sbio->physical = spage->physical_for_dev_replace; 1727 sbio->logical = spage->logical; 1728 sbio->dev = wr_ctx->tgtdev; 1729 bio = sbio->bio; 1730 if (!bio) { 1731 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1732 if (!bio) { 1733 mutex_unlock(&wr_ctx->wr_lock); 1734 return -ENOMEM; 1735 } 1736 sbio->bio = bio; 1737 } 1738 1739 bio->bi_private = sbio; 1740 bio->bi_end_io = scrub_wr_bio_end_io; 1741 bio->bi_bdev = sbio->dev->bdev; 1742 bio->bi_iter.bi_sector = sbio->physical >> 9; 1743 sbio->err = 0; 1744 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1745 spage->physical_for_dev_replace || 1746 sbio->logical + sbio->page_count * PAGE_SIZE != 1747 spage->logical) { 1748 scrub_wr_submit(sctx); 1749 goto again; 1750 } 1751 1752 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1753 if (ret != PAGE_SIZE) { 1754 if (sbio->page_count < 1) { 1755 bio_put(sbio->bio); 1756 sbio->bio = NULL; 1757 mutex_unlock(&wr_ctx->wr_lock); 1758 return -EIO; 1759 } 1760 scrub_wr_submit(sctx); 1761 goto again; 1762 } 1763 1764 sbio->pagev[sbio->page_count] = spage; 1765 scrub_page_get(spage); 1766 sbio->page_count++; 1767 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1768 scrub_wr_submit(sctx); 1769 mutex_unlock(&wr_ctx->wr_lock); 1770 1771 return 0; 1772 } 1773 1774 static void scrub_wr_submit(struct scrub_ctx *sctx) 1775 { 1776 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1777 struct scrub_bio *sbio; 1778 1779 if (!wr_ctx->wr_curr_bio) 1780 return; 1781 1782 sbio = wr_ctx->wr_curr_bio; 1783 wr_ctx->wr_curr_bio = NULL; 1784 WARN_ON(!sbio->bio->bi_bdev); 1785 scrub_pending_bio_inc(sctx); 1786 /* process all writes in a single worker thread. Then the block layer 1787 * orders the requests before sending them to the driver which 1788 * doubled the write performance on spinning disks when measured 1789 * with Linux 3.5 */ 1790 btrfsic_submit_bio(WRITE, sbio->bio); 1791 } 1792 1793 static void scrub_wr_bio_end_io(struct bio *bio, int err) 1794 { 1795 struct scrub_bio *sbio = bio->bi_private; 1796 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1797 1798 sbio->err = err; 1799 sbio->bio = bio; 1800 1801 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1802 scrub_wr_bio_end_io_worker, NULL, NULL); 1803 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1804 } 1805 1806 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1807 { 1808 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1809 struct scrub_ctx *sctx = sbio->sctx; 1810 int i; 1811 1812 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1813 if (sbio->err) { 1814 struct btrfs_dev_replace *dev_replace = 1815 &sbio->sctx->dev_root->fs_info->dev_replace; 1816 1817 for (i = 0; i < sbio->page_count; i++) { 1818 struct scrub_page *spage = sbio->pagev[i]; 1819 1820 spage->io_error = 1; 1821 btrfs_dev_replace_stats_inc(&dev_replace-> 1822 num_write_errors); 1823 } 1824 } 1825 1826 for (i = 0; i < sbio->page_count; i++) 1827 scrub_page_put(sbio->pagev[i]); 1828 1829 bio_put(sbio->bio); 1830 kfree(sbio); 1831 scrub_pending_bio_dec(sctx); 1832 } 1833 1834 static int scrub_checksum(struct scrub_block *sblock) 1835 { 1836 u64 flags; 1837 int ret; 1838 1839 WARN_ON(sblock->page_count < 1); 1840 flags = sblock->pagev[0]->flags; 1841 ret = 0; 1842 if (flags & BTRFS_EXTENT_FLAG_DATA) 1843 ret = scrub_checksum_data(sblock); 1844 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1845 ret = scrub_checksum_tree_block(sblock); 1846 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1847 (void)scrub_checksum_super(sblock); 1848 else 1849 WARN_ON(1); 1850 if (ret) 1851 scrub_handle_errored_block(sblock); 1852 1853 return ret; 1854 } 1855 1856 static int scrub_checksum_data(struct scrub_block *sblock) 1857 { 1858 struct scrub_ctx *sctx = sblock->sctx; 1859 u8 csum[BTRFS_CSUM_SIZE]; 1860 u8 *on_disk_csum; 1861 struct page *page; 1862 void *buffer; 1863 u32 crc = ~(u32)0; 1864 int fail = 0; 1865 u64 len; 1866 int index; 1867 1868 BUG_ON(sblock->page_count < 1); 1869 if (!sblock->pagev[0]->have_csum) 1870 return 0; 1871 1872 on_disk_csum = sblock->pagev[0]->csum; 1873 page = sblock->pagev[0]->page; 1874 buffer = kmap_atomic(page); 1875 1876 len = sctx->sectorsize; 1877 index = 0; 1878 for (;;) { 1879 u64 l = min_t(u64, len, PAGE_SIZE); 1880 1881 crc = btrfs_csum_data(buffer, crc, l); 1882 kunmap_atomic(buffer); 1883 len -= l; 1884 if (len == 0) 1885 break; 1886 index++; 1887 BUG_ON(index >= sblock->page_count); 1888 BUG_ON(!sblock->pagev[index]->page); 1889 page = sblock->pagev[index]->page; 1890 buffer = kmap_atomic(page); 1891 } 1892 1893 btrfs_csum_final(crc, csum); 1894 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1895 fail = 1; 1896 1897 return fail; 1898 } 1899 1900 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1901 { 1902 struct scrub_ctx *sctx = sblock->sctx; 1903 struct btrfs_header *h; 1904 struct btrfs_root *root = sctx->dev_root; 1905 struct btrfs_fs_info *fs_info = root->fs_info; 1906 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1907 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1908 struct page *page; 1909 void *mapped_buffer; 1910 u64 mapped_size; 1911 void *p; 1912 u32 crc = ~(u32)0; 1913 int fail = 0; 1914 int crc_fail = 0; 1915 u64 len; 1916 int index; 1917 1918 BUG_ON(sblock->page_count < 1); 1919 page = sblock->pagev[0]->page; 1920 mapped_buffer = kmap_atomic(page); 1921 h = (struct btrfs_header *)mapped_buffer; 1922 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1923 1924 /* 1925 * we don't use the getter functions here, as we 1926 * a) don't have an extent buffer and 1927 * b) the page is already kmapped 1928 */ 1929 1930 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1931 ++fail; 1932 1933 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) 1934 ++fail; 1935 1936 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1937 ++fail; 1938 1939 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1940 BTRFS_UUID_SIZE)) 1941 ++fail; 1942 1943 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1944 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1945 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1946 index = 0; 1947 for (;;) { 1948 u64 l = min_t(u64, len, mapped_size); 1949 1950 crc = btrfs_csum_data(p, crc, l); 1951 kunmap_atomic(mapped_buffer); 1952 len -= l; 1953 if (len == 0) 1954 break; 1955 index++; 1956 BUG_ON(index >= sblock->page_count); 1957 BUG_ON(!sblock->pagev[index]->page); 1958 page = sblock->pagev[index]->page; 1959 mapped_buffer = kmap_atomic(page); 1960 mapped_size = PAGE_SIZE; 1961 p = mapped_buffer; 1962 } 1963 1964 btrfs_csum_final(crc, calculated_csum); 1965 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1966 ++crc_fail; 1967 1968 return fail || crc_fail; 1969 } 1970 1971 static int scrub_checksum_super(struct scrub_block *sblock) 1972 { 1973 struct btrfs_super_block *s; 1974 struct scrub_ctx *sctx = sblock->sctx; 1975 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1976 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1977 struct page *page; 1978 void *mapped_buffer; 1979 u64 mapped_size; 1980 void *p; 1981 u32 crc = ~(u32)0; 1982 int fail_gen = 0; 1983 int fail_cor = 0; 1984 u64 len; 1985 int index; 1986 1987 BUG_ON(sblock->page_count < 1); 1988 page = sblock->pagev[0]->page; 1989 mapped_buffer = kmap_atomic(page); 1990 s = (struct btrfs_super_block *)mapped_buffer; 1991 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1992 1993 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1994 ++fail_cor; 1995 1996 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1997 ++fail_gen; 1998 1999 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 2000 ++fail_cor; 2001 2002 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 2003 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2004 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2005 index = 0; 2006 for (;;) { 2007 u64 l = min_t(u64, len, mapped_size); 2008 2009 crc = btrfs_csum_data(p, crc, l); 2010 kunmap_atomic(mapped_buffer); 2011 len -= l; 2012 if (len == 0) 2013 break; 2014 index++; 2015 BUG_ON(index >= sblock->page_count); 2016 BUG_ON(!sblock->pagev[index]->page); 2017 page = sblock->pagev[index]->page; 2018 mapped_buffer = kmap_atomic(page); 2019 mapped_size = PAGE_SIZE; 2020 p = mapped_buffer; 2021 } 2022 2023 btrfs_csum_final(crc, calculated_csum); 2024 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2025 ++fail_cor; 2026 2027 if (fail_cor + fail_gen) { 2028 /* 2029 * if we find an error in a super block, we just report it. 2030 * They will get written with the next transaction commit 2031 * anyway 2032 */ 2033 spin_lock(&sctx->stat_lock); 2034 ++sctx->stat.super_errors; 2035 spin_unlock(&sctx->stat_lock); 2036 if (fail_cor) 2037 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2038 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2039 else 2040 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2041 BTRFS_DEV_STAT_GENERATION_ERRS); 2042 } 2043 2044 return fail_cor + fail_gen; 2045 } 2046 2047 static void scrub_block_get(struct scrub_block *sblock) 2048 { 2049 atomic_inc(&sblock->refs); 2050 } 2051 2052 static void scrub_block_put(struct scrub_block *sblock) 2053 { 2054 if (atomic_dec_and_test(&sblock->refs)) { 2055 int i; 2056 2057 if (sblock->sparity) 2058 scrub_parity_put(sblock->sparity); 2059 2060 for (i = 0; i < sblock->page_count; i++) 2061 scrub_page_put(sblock->pagev[i]); 2062 kfree(sblock); 2063 } 2064 } 2065 2066 static void scrub_page_get(struct scrub_page *spage) 2067 { 2068 atomic_inc(&spage->refs); 2069 } 2070 2071 static void scrub_page_put(struct scrub_page *spage) 2072 { 2073 if (atomic_dec_and_test(&spage->refs)) { 2074 if (spage->page) 2075 __free_page(spage->page); 2076 kfree(spage); 2077 } 2078 } 2079 2080 static void scrub_submit(struct scrub_ctx *sctx) 2081 { 2082 struct scrub_bio *sbio; 2083 2084 if (sctx->curr == -1) 2085 return; 2086 2087 sbio = sctx->bios[sctx->curr]; 2088 sctx->curr = -1; 2089 scrub_pending_bio_inc(sctx); 2090 2091 if (!sbio->bio->bi_bdev) { 2092 /* 2093 * this case should not happen. If btrfs_map_block() is 2094 * wrong, it could happen for dev-replace operations on 2095 * missing devices when no mirrors are available, but in 2096 * this case it should already fail the mount. 2097 * This case is handled correctly (but _very_ slowly). 2098 */ 2099 printk_ratelimited(KERN_WARNING 2100 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n"); 2101 bio_endio(sbio->bio, -EIO); 2102 } else { 2103 btrfsic_submit_bio(READ, sbio->bio); 2104 } 2105 } 2106 2107 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2108 struct scrub_page *spage) 2109 { 2110 struct scrub_block *sblock = spage->sblock; 2111 struct scrub_bio *sbio; 2112 int ret; 2113 2114 again: 2115 /* 2116 * grab a fresh bio or wait for one to become available 2117 */ 2118 while (sctx->curr == -1) { 2119 spin_lock(&sctx->list_lock); 2120 sctx->curr = sctx->first_free; 2121 if (sctx->curr != -1) { 2122 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2123 sctx->bios[sctx->curr]->next_free = -1; 2124 sctx->bios[sctx->curr]->page_count = 0; 2125 spin_unlock(&sctx->list_lock); 2126 } else { 2127 spin_unlock(&sctx->list_lock); 2128 wait_event(sctx->list_wait, sctx->first_free != -1); 2129 } 2130 } 2131 sbio = sctx->bios[sctx->curr]; 2132 if (sbio->page_count == 0) { 2133 struct bio *bio; 2134 2135 sbio->physical = spage->physical; 2136 sbio->logical = spage->logical; 2137 sbio->dev = spage->dev; 2138 bio = sbio->bio; 2139 if (!bio) { 2140 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 2141 if (!bio) 2142 return -ENOMEM; 2143 sbio->bio = bio; 2144 } 2145 2146 bio->bi_private = sbio; 2147 bio->bi_end_io = scrub_bio_end_io; 2148 bio->bi_bdev = sbio->dev->bdev; 2149 bio->bi_iter.bi_sector = sbio->physical >> 9; 2150 sbio->err = 0; 2151 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2152 spage->physical || 2153 sbio->logical + sbio->page_count * PAGE_SIZE != 2154 spage->logical || 2155 sbio->dev != spage->dev) { 2156 scrub_submit(sctx); 2157 goto again; 2158 } 2159 2160 sbio->pagev[sbio->page_count] = spage; 2161 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2162 if (ret != PAGE_SIZE) { 2163 if (sbio->page_count < 1) { 2164 bio_put(sbio->bio); 2165 sbio->bio = NULL; 2166 return -EIO; 2167 } 2168 scrub_submit(sctx); 2169 goto again; 2170 } 2171 2172 scrub_block_get(sblock); /* one for the page added to the bio */ 2173 atomic_inc(&sblock->outstanding_pages); 2174 sbio->page_count++; 2175 if (sbio->page_count == sctx->pages_per_rd_bio) 2176 scrub_submit(sctx); 2177 2178 return 0; 2179 } 2180 2181 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2182 u64 physical, struct btrfs_device *dev, u64 flags, 2183 u64 gen, int mirror_num, u8 *csum, int force, 2184 u64 physical_for_dev_replace) 2185 { 2186 struct scrub_block *sblock; 2187 int index; 2188 2189 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2190 if (!sblock) { 2191 spin_lock(&sctx->stat_lock); 2192 sctx->stat.malloc_errors++; 2193 spin_unlock(&sctx->stat_lock); 2194 return -ENOMEM; 2195 } 2196 2197 /* one ref inside this function, plus one for each page added to 2198 * a bio later on */ 2199 atomic_set(&sblock->refs, 1); 2200 sblock->sctx = sctx; 2201 sblock->no_io_error_seen = 1; 2202 2203 for (index = 0; len > 0; index++) { 2204 struct scrub_page *spage; 2205 u64 l = min_t(u64, len, PAGE_SIZE); 2206 2207 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2208 if (!spage) { 2209 leave_nomem: 2210 spin_lock(&sctx->stat_lock); 2211 sctx->stat.malloc_errors++; 2212 spin_unlock(&sctx->stat_lock); 2213 scrub_block_put(sblock); 2214 return -ENOMEM; 2215 } 2216 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2217 scrub_page_get(spage); 2218 sblock->pagev[index] = spage; 2219 spage->sblock = sblock; 2220 spage->dev = dev; 2221 spage->flags = flags; 2222 spage->generation = gen; 2223 spage->logical = logical; 2224 spage->physical = physical; 2225 spage->physical_for_dev_replace = physical_for_dev_replace; 2226 spage->mirror_num = mirror_num; 2227 if (csum) { 2228 spage->have_csum = 1; 2229 memcpy(spage->csum, csum, sctx->csum_size); 2230 } else { 2231 spage->have_csum = 0; 2232 } 2233 sblock->page_count++; 2234 spage->page = alloc_page(GFP_NOFS); 2235 if (!spage->page) 2236 goto leave_nomem; 2237 len -= l; 2238 logical += l; 2239 physical += l; 2240 physical_for_dev_replace += l; 2241 } 2242 2243 WARN_ON(sblock->page_count == 0); 2244 for (index = 0; index < sblock->page_count; index++) { 2245 struct scrub_page *spage = sblock->pagev[index]; 2246 int ret; 2247 2248 ret = scrub_add_page_to_rd_bio(sctx, spage); 2249 if (ret) { 2250 scrub_block_put(sblock); 2251 return ret; 2252 } 2253 } 2254 2255 if (force) 2256 scrub_submit(sctx); 2257 2258 /* last one frees, either here or in bio completion for last page */ 2259 scrub_block_put(sblock); 2260 return 0; 2261 } 2262 2263 static void scrub_bio_end_io(struct bio *bio, int err) 2264 { 2265 struct scrub_bio *sbio = bio->bi_private; 2266 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2267 2268 sbio->err = err; 2269 sbio->bio = bio; 2270 2271 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2272 } 2273 2274 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2275 { 2276 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2277 struct scrub_ctx *sctx = sbio->sctx; 2278 int i; 2279 2280 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2281 if (sbio->err) { 2282 for (i = 0; i < sbio->page_count; i++) { 2283 struct scrub_page *spage = sbio->pagev[i]; 2284 2285 spage->io_error = 1; 2286 spage->sblock->no_io_error_seen = 0; 2287 } 2288 } 2289 2290 /* now complete the scrub_block items that have all pages completed */ 2291 for (i = 0; i < sbio->page_count; i++) { 2292 struct scrub_page *spage = sbio->pagev[i]; 2293 struct scrub_block *sblock = spage->sblock; 2294 2295 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2296 scrub_block_complete(sblock); 2297 scrub_block_put(sblock); 2298 } 2299 2300 bio_put(sbio->bio); 2301 sbio->bio = NULL; 2302 spin_lock(&sctx->list_lock); 2303 sbio->next_free = sctx->first_free; 2304 sctx->first_free = sbio->index; 2305 spin_unlock(&sctx->list_lock); 2306 2307 if (sctx->is_dev_replace && 2308 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2309 mutex_lock(&sctx->wr_ctx.wr_lock); 2310 scrub_wr_submit(sctx); 2311 mutex_unlock(&sctx->wr_ctx.wr_lock); 2312 } 2313 2314 scrub_pending_bio_dec(sctx); 2315 } 2316 2317 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2318 unsigned long *bitmap, 2319 u64 start, u64 len) 2320 { 2321 u32 offset; 2322 int nsectors; 2323 int sectorsize = sparity->sctx->dev_root->sectorsize; 2324 2325 if (len >= sparity->stripe_len) { 2326 bitmap_set(bitmap, 0, sparity->nsectors); 2327 return; 2328 } 2329 2330 start -= sparity->logic_start; 2331 start = div_u64_rem(start, sparity->stripe_len, &offset); 2332 offset /= sectorsize; 2333 nsectors = (int)len / sectorsize; 2334 2335 if (offset + nsectors <= sparity->nsectors) { 2336 bitmap_set(bitmap, offset, nsectors); 2337 return; 2338 } 2339 2340 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2341 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2342 } 2343 2344 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2345 u64 start, u64 len) 2346 { 2347 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2348 } 2349 2350 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2351 u64 start, u64 len) 2352 { 2353 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2354 } 2355 2356 static void scrub_block_complete(struct scrub_block *sblock) 2357 { 2358 int corrupted = 0; 2359 2360 if (!sblock->no_io_error_seen) { 2361 corrupted = 1; 2362 scrub_handle_errored_block(sblock); 2363 } else { 2364 /* 2365 * if has checksum error, write via repair mechanism in 2366 * dev replace case, otherwise write here in dev replace 2367 * case. 2368 */ 2369 corrupted = scrub_checksum(sblock); 2370 if (!corrupted && sblock->sctx->is_dev_replace) 2371 scrub_write_block_to_dev_replace(sblock); 2372 } 2373 2374 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2375 u64 start = sblock->pagev[0]->logical; 2376 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2377 PAGE_SIZE; 2378 2379 scrub_parity_mark_sectors_error(sblock->sparity, 2380 start, end - start); 2381 } 2382 } 2383 2384 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2385 u8 *csum) 2386 { 2387 struct btrfs_ordered_sum *sum = NULL; 2388 unsigned long index; 2389 unsigned long num_sectors; 2390 2391 while (!list_empty(&sctx->csum_list)) { 2392 sum = list_first_entry(&sctx->csum_list, 2393 struct btrfs_ordered_sum, list); 2394 if (sum->bytenr > logical) 2395 return 0; 2396 if (sum->bytenr + sum->len > logical) 2397 break; 2398 2399 ++sctx->stat.csum_discards; 2400 list_del(&sum->list); 2401 kfree(sum); 2402 sum = NULL; 2403 } 2404 if (!sum) 2405 return 0; 2406 2407 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2408 num_sectors = sum->len / sctx->sectorsize; 2409 memcpy(csum, sum->sums + index, sctx->csum_size); 2410 if (index == num_sectors - 1) { 2411 list_del(&sum->list); 2412 kfree(sum); 2413 } 2414 return 1; 2415 } 2416 2417 /* scrub extent tries to collect up to 64 kB for each bio */ 2418 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2419 u64 physical, struct btrfs_device *dev, u64 flags, 2420 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2421 { 2422 int ret; 2423 u8 csum[BTRFS_CSUM_SIZE]; 2424 u32 blocksize; 2425 2426 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2427 blocksize = sctx->sectorsize; 2428 spin_lock(&sctx->stat_lock); 2429 sctx->stat.data_extents_scrubbed++; 2430 sctx->stat.data_bytes_scrubbed += len; 2431 spin_unlock(&sctx->stat_lock); 2432 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2433 blocksize = sctx->nodesize; 2434 spin_lock(&sctx->stat_lock); 2435 sctx->stat.tree_extents_scrubbed++; 2436 sctx->stat.tree_bytes_scrubbed += len; 2437 spin_unlock(&sctx->stat_lock); 2438 } else { 2439 blocksize = sctx->sectorsize; 2440 WARN_ON(1); 2441 } 2442 2443 while (len) { 2444 u64 l = min_t(u64, len, blocksize); 2445 int have_csum = 0; 2446 2447 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2448 /* push csums to sbio */ 2449 have_csum = scrub_find_csum(sctx, logical, l, csum); 2450 if (have_csum == 0) 2451 ++sctx->stat.no_csum; 2452 if (sctx->is_dev_replace && !have_csum) { 2453 ret = copy_nocow_pages(sctx, logical, l, 2454 mirror_num, 2455 physical_for_dev_replace); 2456 goto behind_scrub_pages; 2457 } 2458 } 2459 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2460 mirror_num, have_csum ? csum : NULL, 0, 2461 physical_for_dev_replace); 2462 behind_scrub_pages: 2463 if (ret) 2464 return ret; 2465 len -= l; 2466 logical += l; 2467 physical += l; 2468 physical_for_dev_replace += l; 2469 } 2470 return 0; 2471 } 2472 2473 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2474 u64 logical, u64 len, 2475 u64 physical, struct btrfs_device *dev, 2476 u64 flags, u64 gen, int mirror_num, u8 *csum) 2477 { 2478 struct scrub_ctx *sctx = sparity->sctx; 2479 struct scrub_block *sblock; 2480 int index; 2481 2482 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2483 if (!sblock) { 2484 spin_lock(&sctx->stat_lock); 2485 sctx->stat.malloc_errors++; 2486 spin_unlock(&sctx->stat_lock); 2487 return -ENOMEM; 2488 } 2489 2490 /* one ref inside this function, plus one for each page added to 2491 * a bio later on */ 2492 atomic_set(&sblock->refs, 1); 2493 sblock->sctx = sctx; 2494 sblock->no_io_error_seen = 1; 2495 sblock->sparity = sparity; 2496 scrub_parity_get(sparity); 2497 2498 for (index = 0; len > 0; index++) { 2499 struct scrub_page *spage; 2500 u64 l = min_t(u64, len, PAGE_SIZE); 2501 2502 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2503 if (!spage) { 2504 leave_nomem: 2505 spin_lock(&sctx->stat_lock); 2506 sctx->stat.malloc_errors++; 2507 spin_unlock(&sctx->stat_lock); 2508 scrub_block_put(sblock); 2509 return -ENOMEM; 2510 } 2511 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2512 /* For scrub block */ 2513 scrub_page_get(spage); 2514 sblock->pagev[index] = spage; 2515 /* For scrub parity */ 2516 scrub_page_get(spage); 2517 list_add_tail(&spage->list, &sparity->spages); 2518 spage->sblock = sblock; 2519 spage->dev = dev; 2520 spage->flags = flags; 2521 spage->generation = gen; 2522 spage->logical = logical; 2523 spage->physical = physical; 2524 spage->mirror_num = mirror_num; 2525 if (csum) { 2526 spage->have_csum = 1; 2527 memcpy(spage->csum, csum, sctx->csum_size); 2528 } else { 2529 spage->have_csum = 0; 2530 } 2531 sblock->page_count++; 2532 spage->page = alloc_page(GFP_NOFS); 2533 if (!spage->page) 2534 goto leave_nomem; 2535 len -= l; 2536 logical += l; 2537 physical += l; 2538 } 2539 2540 WARN_ON(sblock->page_count == 0); 2541 for (index = 0; index < sblock->page_count; index++) { 2542 struct scrub_page *spage = sblock->pagev[index]; 2543 int ret; 2544 2545 ret = scrub_add_page_to_rd_bio(sctx, spage); 2546 if (ret) { 2547 scrub_block_put(sblock); 2548 return ret; 2549 } 2550 } 2551 2552 /* last one frees, either here or in bio completion for last page */ 2553 scrub_block_put(sblock); 2554 return 0; 2555 } 2556 2557 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2558 u64 logical, u64 len, 2559 u64 physical, struct btrfs_device *dev, 2560 u64 flags, u64 gen, int mirror_num) 2561 { 2562 struct scrub_ctx *sctx = sparity->sctx; 2563 int ret; 2564 u8 csum[BTRFS_CSUM_SIZE]; 2565 u32 blocksize; 2566 2567 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2568 blocksize = sctx->sectorsize; 2569 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2570 blocksize = sctx->nodesize; 2571 } else { 2572 blocksize = sctx->sectorsize; 2573 WARN_ON(1); 2574 } 2575 2576 while (len) { 2577 u64 l = min_t(u64, len, blocksize); 2578 int have_csum = 0; 2579 2580 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2581 /* push csums to sbio */ 2582 have_csum = scrub_find_csum(sctx, logical, l, csum); 2583 if (have_csum == 0) 2584 goto skip; 2585 } 2586 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2587 flags, gen, mirror_num, 2588 have_csum ? csum : NULL); 2589 if (ret) 2590 return ret; 2591 skip: 2592 len -= l; 2593 logical += l; 2594 physical += l; 2595 } 2596 return 0; 2597 } 2598 2599 /* 2600 * Given a physical address, this will calculate it's 2601 * logical offset. if this is a parity stripe, it will return 2602 * the most left data stripe's logical offset. 2603 * 2604 * return 0 if it is a data stripe, 1 means parity stripe. 2605 */ 2606 static int get_raid56_logic_offset(u64 physical, int num, 2607 struct map_lookup *map, u64 *offset, 2608 u64 *stripe_start) 2609 { 2610 int i; 2611 int j = 0; 2612 u64 stripe_nr; 2613 u64 last_offset; 2614 u32 stripe_index; 2615 u32 rot; 2616 2617 last_offset = (physical - map->stripes[num].physical) * 2618 nr_data_stripes(map); 2619 if (stripe_start) 2620 *stripe_start = last_offset; 2621 2622 *offset = last_offset; 2623 for (i = 0; i < nr_data_stripes(map); i++) { 2624 *offset = last_offset + i * map->stripe_len; 2625 2626 stripe_nr = div_u64(*offset, map->stripe_len); 2627 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2628 2629 /* Work out the disk rotation on this stripe-set */ 2630 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2631 /* calculate which stripe this data locates */ 2632 rot += i; 2633 stripe_index = rot % map->num_stripes; 2634 if (stripe_index == num) 2635 return 0; 2636 if (stripe_index < num) 2637 j++; 2638 } 2639 *offset = last_offset + j * map->stripe_len; 2640 return 1; 2641 } 2642 2643 static void scrub_free_parity(struct scrub_parity *sparity) 2644 { 2645 struct scrub_ctx *sctx = sparity->sctx; 2646 struct scrub_page *curr, *next; 2647 int nbits; 2648 2649 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2650 if (nbits) { 2651 spin_lock(&sctx->stat_lock); 2652 sctx->stat.read_errors += nbits; 2653 sctx->stat.uncorrectable_errors += nbits; 2654 spin_unlock(&sctx->stat_lock); 2655 } 2656 2657 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2658 list_del_init(&curr->list); 2659 scrub_page_put(curr); 2660 } 2661 2662 kfree(sparity); 2663 } 2664 2665 static void scrub_parity_bio_endio(struct bio *bio, int error) 2666 { 2667 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2668 struct scrub_ctx *sctx = sparity->sctx; 2669 2670 if (error) 2671 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2672 sparity->nsectors); 2673 2674 scrub_free_parity(sparity); 2675 scrub_pending_bio_dec(sctx); 2676 bio_put(bio); 2677 } 2678 2679 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2680 { 2681 struct scrub_ctx *sctx = sparity->sctx; 2682 struct bio *bio; 2683 struct btrfs_raid_bio *rbio; 2684 struct scrub_page *spage; 2685 struct btrfs_bio *bbio = NULL; 2686 u64 length; 2687 int ret; 2688 2689 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2690 sparity->nsectors)) 2691 goto out; 2692 2693 length = sparity->logic_end - sparity->logic_start + 1; 2694 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE, 2695 sparity->logic_start, 2696 &length, &bbio, 0, 1); 2697 if (ret || !bbio || !bbio->raid_map) 2698 goto bbio_out; 2699 2700 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2701 if (!bio) 2702 goto bbio_out; 2703 2704 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2705 bio->bi_private = sparity; 2706 bio->bi_end_io = scrub_parity_bio_endio; 2707 2708 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio, 2709 length, sparity->scrub_dev, 2710 sparity->dbitmap, 2711 sparity->nsectors); 2712 if (!rbio) 2713 goto rbio_out; 2714 2715 list_for_each_entry(spage, &sparity->spages, list) 2716 raid56_parity_add_scrub_pages(rbio, spage->page, 2717 spage->logical); 2718 2719 scrub_pending_bio_inc(sctx); 2720 raid56_parity_submit_scrub_rbio(rbio); 2721 return; 2722 2723 rbio_out: 2724 bio_put(bio); 2725 bbio_out: 2726 btrfs_put_bbio(bbio); 2727 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2728 sparity->nsectors); 2729 spin_lock(&sctx->stat_lock); 2730 sctx->stat.malloc_errors++; 2731 spin_unlock(&sctx->stat_lock); 2732 out: 2733 scrub_free_parity(sparity); 2734 } 2735 2736 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2737 { 2738 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8); 2739 } 2740 2741 static void scrub_parity_get(struct scrub_parity *sparity) 2742 { 2743 atomic_inc(&sparity->refs); 2744 } 2745 2746 static void scrub_parity_put(struct scrub_parity *sparity) 2747 { 2748 if (!atomic_dec_and_test(&sparity->refs)) 2749 return; 2750 2751 scrub_parity_check_and_repair(sparity); 2752 } 2753 2754 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2755 struct map_lookup *map, 2756 struct btrfs_device *sdev, 2757 struct btrfs_path *path, 2758 u64 logic_start, 2759 u64 logic_end) 2760 { 2761 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2762 struct btrfs_root *root = fs_info->extent_root; 2763 struct btrfs_root *csum_root = fs_info->csum_root; 2764 struct btrfs_extent_item *extent; 2765 u64 flags; 2766 int ret; 2767 int slot; 2768 struct extent_buffer *l; 2769 struct btrfs_key key; 2770 u64 generation; 2771 u64 extent_logical; 2772 u64 extent_physical; 2773 u64 extent_len; 2774 struct btrfs_device *extent_dev; 2775 struct scrub_parity *sparity; 2776 int nsectors; 2777 int bitmap_len; 2778 int extent_mirror_num; 2779 int stop_loop = 0; 2780 2781 nsectors = map->stripe_len / root->sectorsize; 2782 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2783 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2784 GFP_NOFS); 2785 if (!sparity) { 2786 spin_lock(&sctx->stat_lock); 2787 sctx->stat.malloc_errors++; 2788 spin_unlock(&sctx->stat_lock); 2789 return -ENOMEM; 2790 } 2791 2792 sparity->stripe_len = map->stripe_len; 2793 sparity->nsectors = nsectors; 2794 sparity->sctx = sctx; 2795 sparity->scrub_dev = sdev; 2796 sparity->logic_start = logic_start; 2797 sparity->logic_end = logic_end; 2798 atomic_set(&sparity->refs, 1); 2799 INIT_LIST_HEAD(&sparity->spages); 2800 sparity->dbitmap = sparity->bitmap; 2801 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2802 2803 ret = 0; 2804 while (logic_start < logic_end) { 2805 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2806 key.type = BTRFS_METADATA_ITEM_KEY; 2807 else 2808 key.type = BTRFS_EXTENT_ITEM_KEY; 2809 key.objectid = logic_start; 2810 key.offset = (u64)-1; 2811 2812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2813 if (ret < 0) 2814 goto out; 2815 2816 if (ret > 0) { 2817 ret = btrfs_previous_extent_item(root, path, 0); 2818 if (ret < 0) 2819 goto out; 2820 if (ret > 0) { 2821 btrfs_release_path(path); 2822 ret = btrfs_search_slot(NULL, root, &key, 2823 path, 0, 0); 2824 if (ret < 0) 2825 goto out; 2826 } 2827 } 2828 2829 stop_loop = 0; 2830 while (1) { 2831 u64 bytes; 2832 2833 l = path->nodes[0]; 2834 slot = path->slots[0]; 2835 if (slot >= btrfs_header_nritems(l)) { 2836 ret = btrfs_next_leaf(root, path); 2837 if (ret == 0) 2838 continue; 2839 if (ret < 0) 2840 goto out; 2841 2842 stop_loop = 1; 2843 break; 2844 } 2845 btrfs_item_key_to_cpu(l, &key, slot); 2846 2847 if (key.type == BTRFS_METADATA_ITEM_KEY) 2848 bytes = root->nodesize; 2849 else 2850 bytes = key.offset; 2851 2852 if (key.objectid + bytes <= logic_start) 2853 goto next; 2854 2855 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2856 key.type != BTRFS_METADATA_ITEM_KEY) 2857 goto next; 2858 2859 if (key.objectid > logic_end) { 2860 stop_loop = 1; 2861 break; 2862 } 2863 2864 while (key.objectid >= logic_start + map->stripe_len) 2865 logic_start += map->stripe_len; 2866 2867 extent = btrfs_item_ptr(l, slot, 2868 struct btrfs_extent_item); 2869 flags = btrfs_extent_flags(l, extent); 2870 generation = btrfs_extent_generation(l, extent); 2871 2872 if (key.objectid < logic_start && 2873 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 2874 btrfs_err(fs_info, 2875 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2876 key.objectid, logic_start); 2877 goto next; 2878 } 2879 again: 2880 extent_logical = key.objectid; 2881 extent_len = bytes; 2882 2883 if (extent_logical < logic_start) { 2884 extent_len -= logic_start - extent_logical; 2885 extent_logical = logic_start; 2886 } 2887 2888 if (extent_logical + extent_len > 2889 logic_start + map->stripe_len) 2890 extent_len = logic_start + map->stripe_len - 2891 extent_logical; 2892 2893 scrub_parity_mark_sectors_data(sparity, extent_logical, 2894 extent_len); 2895 2896 scrub_remap_extent(fs_info, extent_logical, 2897 extent_len, &extent_physical, 2898 &extent_dev, 2899 &extent_mirror_num); 2900 2901 ret = btrfs_lookup_csums_range(csum_root, 2902 extent_logical, 2903 extent_logical + extent_len - 1, 2904 &sctx->csum_list, 1); 2905 if (ret) 2906 goto out; 2907 2908 ret = scrub_extent_for_parity(sparity, extent_logical, 2909 extent_len, 2910 extent_physical, 2911 extent_dev, flags, 2912 generation, 2913 extent_mirror_num); 2914 if (ret) 2915 goto out; 2916 2917 scrub_free_csums(sctx); 2918 if (extent_logical + extent_len < 2919 key.objectid + bytes) { 2920 logic_start += map->stripe_len; 2921 2922 if (logic_start >= logic_end) { 2923 stop_loop = 1; 2924 break; 2925 } 2926 2927 if (logic_start < key.objectid + bytes) { 2928 cond_resched(); 2929 goto again; 2930 } 2931 } 2932 next: 2933 path->slots[0]++; 2934 } 2935 2936 btrfs_release_path(path); 2937 2938 if (stop_loop) 2939 break; 2940 2941 logic_start += map->stripe_len; 2942 } 2943 out: 2944 if (ret < 0) 2945 scrub_parity_mark_sectors_error(sparity, logic_start, 2946 logic_end - logic_start + 1); 2947 scrub_parity_put(sparity); 2948 scrub_submit(sctx); 2949 mutex_lock(&sctx->wr_ctx.wr_lock); 2950 scrub_wr_submit(sctx); 2951 mutex_unlock(&sctx->wr_ctx.wr_lock); 2952 2953 btrfs_release_path(path); 2954 return ret < 0 ? ret : 0; 2955 } 2956 2957 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2958 struct map_lookup *map, 2959 struct btrfs_device *scrub_dev, 2960 int num, u64 base, u64 length, 2961 int is_dev_replace) 2962 { 2963 struct btrfs_path *path, *ppath; 2964 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2965 struct btrfs_root *root = fs_info->extent_root; 2966 struct btrfs_root *csum_root = fs_info->csum_root; 2967 struct btrfs_extent_item *extent; 2968 struct blk_plug plug; 2969 u64 flags; 2970 int ret; 2971 int slot; 2972 u64 nstripes; 2973 struct extent_buffer *l; 2974 struct btrfs_key key; 2975 u64 physical; 2976 u64 logical; 2977 u64 logic_end; 2978 u64 physical_end; 2979 u64 generation; 2980 int mirror_num; 2981 struct reada_control *reada1; 2982 struct reada_control *reada2; 2983 struct btrfs_key key_start; 2984 struct btrfs_key key_end; 2985 u64 increment = map->stripe_len; 2986 u64 offset; 2987 u64 extent_logical; 2988 u64 extent_physical; 2989 u64 extent_len; 2990 u64 stripe_logical; 2991 u64 stripe_end; 2992 struct btrfs_device *extent_dev; 2993 int extent_mirror_num; 2994 int stop_loop = 0; 2995 2996 physical = map->stripes[num].physical; 2997 offset = 0; 2998 nstripes = div_u64(length, map->stripe_len); 2999 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3000 offset = map->stripe_len * num; 3001 increment = map->stripe_len * map->num_stripes; 3002 mirror_num = 1; 3003 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3004 int factor = map->num_stripes / map->sub_stripes; 3005 offset = map->stripe_len * (num / map->sub_stripes); 3006 increment = map->stripe_len * factor; 3007 mirror_num = num % map->sub_stripes + 1; 3008 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3009 increment = map->stripe_len; 3010 mirror_num = num % map->num_stripes + 1; 3011 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3012 increment = map->stripe_len; 3013 mirror_num = num % map->num_stripes + 1; 3014 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3015 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3016 increment = map->stripe_len * nr_data_stripes(map); 3017 mirror_num = 1; 3018 } else { 3019 increment = map->stripe_len; 3020 mirror_num = 1; 3021 } 3022 3023 path = btrfs_alloc_path(); 3024 if (!path) 3025 return -ENOMEM; 3026 3027 ppath = btrfs_alloc_path(); 3028 if (!ppath) { 3029 btrfs_free_path(path); 3030 return -ENOMEM; 3031 } 3032 3033 /* 3034 * work on commit root. The related disk blocks are static as 3035 * long as COW is applied. This means, it is save to rewrite 3036 * them to repair disk errors without any race conditions 3037 */ 3038 path->search_commit_root = 1; 3039 path->skip_locking = 1; 3040 3041 ppath->search_commit_root = 1; 3042 ppath->skip_locking = 1; 3043 /* 3044 * trigger the readahead for extent tree csum tree and wait for 3045 * completion. During readahead, the scrub is officially paused 3046 * to not hold off transaction commits 3047 */ 3048 logical = base + offset; 3049 physical_end = physical + nstripes * map->stripe_len; 3050 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3051 get_raid56_logic_offset(physical_end, num, 3052 map, &logic_end, NULL); 3053 logic_end += base; 3054 } else { 3055 logic_end = logical + increment * nstripes; 3056 } 3057 wait_event(sctx->list_wait, 3058 atomic_read(&sctx->bios_in_flight) == 0); 3059 scrub_blocked_if_needed(fs_info); 3060 3061 /* FIXME it might be better to start readahead at commit root */ 3062 key_start.objectid = logical; 3063 key_start.type = BTRFS_EXTENT_ITEM_KEY; 3064 key_start.offset = (u64)0; 3065 key_end.objectid = logic_end; 3066 key_end.type = BTRFS_METADATA_ITEM_KEY; 3067 key_end.offset = (u64)-1; 3068 reada1 = btrfs_reada_add(root, &key_start, &key_end); 3069 3070 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3071 key_start.type = BTRFS_EXTENT_CSUM_KEY; 3072 key_start.offset = logical; 3073 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3074 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3075 key_end.offset = logic_end; 3076 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 3077 3078 if (!IS_ERR(reada1)) 3079 btrfs_reada_wait(reada1); 3080 if (!IS_ERR(reada2)) 3081 btrfs_reada_wait(reada2); 3082 3083 3084 /* 3085 * collect all data csums for the stripe to avoid seeking during 3086 * the scrub. This might currently (crc32) end up to be about 1MB 3087 */ 3088 blk_start_plug(&plug); 3089 3090 /* 3091 * now find all extents for each stripe and scrub them 3092 */ 3093 ret = 0; 3094 while (physical < physical_end) { 3095 /* for raid56, we skip parity stripe */ 3096 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3097 ret = get_raid56_logic_offset(physical, num, 3098 map, &logical, &stripe_logical); 3099 logical += base; 3100 if (ret) { 3101 stripe_logical += base; 3102 stripe_end = stripe_logical + increment - 1; 3103 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3104 ppath, stripe_logical, 3105 stripe_end); 3106 if (ret) 3107 goto out; 3108 goto skip; 3109 } 3110 } 3111 /* 3112 * canceled? 3113 */ 3114 if (atomic_read(&fs_info->scrub_cancel_req) || 3115 atomic_read(&sctx->cancel_req)) { 3116 ret = -ECANCELED; 3117 goto out; 3118 } 3119 /* 3120 * check to see if we have to pause 3121 */ 3122 if (atomic_read(&fs_info->scrub_pause_req)) { 3123 /* push queued extents */ 3124 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3125 scrub_submit(sctx); 3126 mutex_lock(&sctx->wr_ctx.wr_lock); 3127 scrub_wr_submit(sctx); 3128 mutex_unlock(&sctx->wr_ctx.wr_lock); 3129 wait_event(sctx->list_wait, 3130 atomic_read(&sctx->bios_in_flight) == 0); 3131 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3132 scrub_blocked_if_needed(fs_info); 3133 } 3134 3135 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3136 key.type = BTRFS_METADATA_ITEM_KEY; 3137 else 3138 key.type = BTRFS_EXTENT_ITEM_KEY; 3139 key.objectid = logical; 3140 key.offset = (u64)-1; 3141 3142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3143 if (ret < 0) 3144 goto out; 3145 3146 if (ret > 0) { 3147 ret = btrfs_previous_extent_item(root, path, 0); 3148 if (ret < 0) 3149 goto out; 3150 if (ret > 0) { 3151 /* there's no smaller item, so stick with the 3152 * larger one */ 3153 btrfs_release_path(path); 3154 ret = btrfs_search_slot(NULL, root, &key, 3155 path, 0, 0); 3156 if (ret < 0) 3157 goto out; 3158 } 3159 } 3160 3161 stop_loop = 0; 3162 while (1) { 3163 u64 bytes; 3164 3165 l = path->nodes[0]; 3166 slot = path->slots[0]; 3167 if (slot >= btrfs_header_nritems(l)) { 3168 ret = btrfs_next_leaf(root, path); 3169 if (ret == 0) 3170 continue; 3171 if (ret < 0) 3172 goto out; 3173 3174 stop_loop = 1; 3175 break; 3176 } 3177 btrfs_item_key_to_cpu(l, &key, slot); 3178 3179 if (key.type == BTRFS_METADATA_ITEM_KEY) 3180 bytes = root->nodesize; 3181 else 3182 bytes = key.offset; 3183 3184 if (key.objectid + bytes <= logical) 3185 goto next; 3186 3187 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3188 key.type != BTRFS_METADATA_ITEM_KEY) 3189 goto next; 3190 3191 if (key.objectid >= logical + map->stripe_len) { 3192 /* out of this device extent */ 3193 if (key.objectid >= logic_end) 3194 stop_loop = 1; 3195 break; 3196 } 3197 3198 extent = btrfs_item_ptr(l, slot, 3199 struct btrfs_extent_item); 3200 flags = btrfs_extent_flags(l, extent); 3201 generation = btrfs_extent_generation(l, extent); 3202 3203 if (key.objectid < logical && 3204 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 3205 btrfs_err(fs_info, 3206 "scrub: tree block %llu spanning " 3207 "stripes, ignored. logical=%llu", 3208 key.objectid, logical); 3209 goto next; 3210 } 3211 3212 again: 3213 extent_logical = key.objectid; 3214 extent_len = bytes; 3215 3216 /* 3217 * trim extent to this stripe 3218 */ 3219 if (extent_logical < logical) { 3220 extent_len -= logical - extent_logical; 3221 extent_logical = logical; 3222 } 3223 if (extent_logical + extent_len > 3224 logical + map->stripe_len) { 3225 extent_len = logical + map->stripe_len - 3226 extent_logical; 3227 } 3228 3229 extent_physical = extent_logical - logical + physical; 3230 extent_dev = scrub_dev; 3231 extent_mirror_num = mirror_num; 3232 if (is_dev_replace) 3233 scrub_remap_extent(fs_info, extent_logical, 3234 extent_len, &extent_physical, 3235 &extent_dev, 3236 &extent_mirror_num); 3237 3238 ret = btrfs_lookup_csums_range(csum_root, logical, 3239 logical + map->stripe_len - 1, 3240 &sctx->csum_list, 1); 3241 if (ret) 3242 goto out; 3243 3244 ret = scrub_extent(sctx, extent_logical, extent_len, 3245 extent_physical, extent_dev, flags, 3246 generation, extent_mirror_num, 3247 extent_logical - logical + physical); 3248 if (ret) 3249 goto out; 3250 3251 scrub_free_csums(sctx); 3252 if (extent_logical + extent_len < 3253 key.objectid + bytes) { 3254 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3255 /* 3256 * loop until we find next data stripe 3257 * or we have finished all stripes. 3258 */ 3259 loop: 3260 physical += map->stripe_len; 3261 ret = get_raid56_logic_offset(physical, 3262 num, map, &logical, 3263 &stripe_logical); 3264 logical += base; 3265 3266 if (ret && physical < physical_end) { 3267 stripe_logical += base; 3268 stripe_end = stripe_logical + 3269 increment - 1; 3270 ret = scrub_raid56_parity(sctx, 3271 map, scrub_dev, ppath, 3272 stripe_logical, 3273 stripe_end); 3274 if (ret) 3275 goto out; 3276 goto loop; 3277 } 3278 } else { 3279 physical += map->stripe_len; 3280 logical += increment; 3281 } 3282 if (logical < key.objectid + bytes) { 3283 cond_resched(); 3284 goto again; 3285 } 3286 3287 if (physical >= physical_end) { 3288 stop_loop = 1; 3289 break; 3290 } 3291 } 3292 next: 3293 path->slots[0]++; 3294 } 3295 btrfs_release_path(path); 3296 skip: 3297 logical += increment; 3298 physical += map->stripe_len; 3299 spin_lock(&sctx->stat_lock); 3300 if (stop_loop) 3301 sctx->stat.last_physical = map->stripes[num].physical + 3302 length; 3303 else 3304 sctx->stat.last_physical = physical; 3305 spin_unlock(&sctx->stat_lock); 3306 if (stop_loop) 3307 break; 3308 } 3309 out: 3310 /* push queued extents */ 3311 scrub_submit(sctx); 3312 mutex_lock(&sctx->wr_ctx.wr_lock); 3313 scrub_wr_submit(sctx); 3314 mutex_unlock(&sctx->wr_ctx.wr_lock); 3315 3316 blk_finish_plug(&plug); 3317 btrfs_free_path(path); 3318 btrfs_free_path(ppath); 3319 return ret < 0 ? ret : 0; 3320 } 3321 3322 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3323 struct btrfs_device *scrub_dev, 3324 u64 chunk_tree, u64 chunk_objectid, 3325 u64 chunk_offset, u64 length, 3326 u64 dev_offset, int is_dev_replace) 3327 { 3328 struct btrfs_mapping_tree *map_tree = 3329 &sctx->dev_root->fs_info->mapping_tree; 3330 struct map_lookup *map; 3331 struct extent_map *em; 3332 int i; 3333 int ret = 0; 3334 3335 read_lock(&map_tree->map_tree.lock); 3336 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3337 read_unlock(&map_tree->map_tree.lock); 3338 3339 if (!em) 3340 return -EINVAL; 3341 3342 map = (struct map_lookup *)em->bdev; 3343 if (em->start != chunk_offset) 3344 goto out; 3345 3346 if (em->len < length) 3347 goto out; 3348 3349 for (i = 0; i < map->num_stripes; ++i) { 3350 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3351 map->stripes[i].physical == dev_offset) { 3352 ret = scrub_stripe(sctx, map, scrub_dev, i, 3353 chunk_offset, length, 3354 is_dev_replace); 3355 if (ret) 3356 goto out; 3357 } 3358 } 3359 out: 3360 free_extent_map(em); 3361 3362 return ret; 3363 } 3364 3365 static noinline_for_stack 3366 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3367 struct btrfs_device *scrub_dev, u64 start, u64 end, 3368 int is_dev_replace) 3369 { 3370 struct btrfs_dev_extent *dev_extent = NULL; 3371 struct btrfs_path *path; 3372 struct btrfs_root *root = sctx->dev_root; 3373 struct btrfs_fs_info *fs_info = root->fs_info; 3374 u64 length; 3375 u64 chunk_tree; 3376 u64 chunk_objectid; 3377 u64 chunk_offset; 3378 int ret; 3379 int slot; 3380 struct extent_buffer *l; 3381 struct btrfs_key key; 3382 struct btrfs_key found_key; 3383 struct btrfs_block_group_cache *cache; 3384 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3385 3386 path = btrfs_alloc_path(); 3387 if (!path) 3388 return -ENOMEM; 3389 3390 path->reada = 2; 3391 path->search_commit_root = 1; 3392 path->skip_locking = 1; 3393 3394 key.objectid = scrub_dev->devid; 3395 key.offset = 0ull; 3396 key.type = BTRFS_DEV_EXTENT_KEY; 3397 3398 while (1) { 3399 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3400 if (ret < 0) 3401 break; 3402 if (ret > 0) { 3403 if (path->slots[0] >= 3404 btrfs_header_nritems(path->nodes[0])) { 3405 ret = btrfs_next_leaf(root, path); 3406 if (ret) 3407 break; 3408 } 3409 } 3410 3411 l = path->nodes[0]; 3412 slot = path->slots[0]; 3413 3414 btrfs_item_key_to_cpu(l, &found_key, slot); 3415 3416 if (found_key.objectid != scrub_dev->devid) 3417 break; 3418 3419 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3420 break; 3421 3422 if (found_key.offset >= end) 3423 break; 3424 3425 if (found_key.offset < key.offset) 3426 break; 3427 3428 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3429 length = btrfs_dev_extent_length(l, dev_extent); 3430 3431 if (found_key.offset + length <= start) 3432 goto skip; 3433 3434 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3435 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3436 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3437 3438 /* 3439 * get a reference on the corresponding block group to prevent 3440 * the chunk from going away while we scrub it 3441 */ 3442 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3443 3444 /* some chunks are removed but not committed to disk yet, 3445 * continue scrubbing */ 3446 if (!cache) 3447 goto skip; 3448 3449 dev_replace->cursor_right = found_key.offset + length; 3450 dev_replace->cursor_left = found_key.offset; 3451 dev_replace->item_needs_writeback = 1; 3452 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 3453 chunk_offset, length, found_key.offset, 3454 is_dev_replace); 3455 3456 /* 3457 * flush, submit all pending read and write bios, afterwards 3458 * wait for them. 3459 * Note that in the dev replace case, a read request causes 3460 * write requests that are submitted in the read completion 3461 * worker. Therefore in the current situation, it is required 3462 * that all write requests are flushed, so that all read and 3463 * write requests are really completed when bios_in_flight 3464 * changes to 0. 3465 */ 3466 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3467 scrub_submit(sctx); 3468 mutex_lock(&sctx->wr_ctx.wr_lock); 3469 scrub_wr_submit(sctx); 3470 mutex_unlock(&sctx->wr_ctx.wr_lock); 3471 3472 wait_event(sctx->list_wait, 3473 atomic_read(&sctx->bios_in_flight) == 0); 3474 atomic_inc(&fs_info->scrubs_paused); 3475 wake_up(&fs_info->scrub_pause_wait); 3476 3477 /* 3478 * must be called before we decrease @scrub_paused. 3479 * make sure we don't block transaction commit while 3480 * we are waiting pending workers finished. 3481 */ 3482 wait_event(sctx->list_wait, 3483 atomic_read(&sctx->workers_pending) == 0); 3484 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3485 3486 mutex_lock(&fs_info->scrub_lock); 3487 __scrub_blocked_if_needed(fs_info); 3488 atomic_dec(&fs_info->scrubs_paused); 3489 mutex_unlock(&fs_info->scrub_lock); 3490 wake_up(&fs_info->scrub_pause_wait); 3491 3492 btrfs_put_block_group(cache); 3493 if (ret) 3494 break; 3495 if (is_dev_replace && 3496 atomic64_read(&dev_replace->num_write_errors) > 0) { 3497 ret = -EIO; 3498 break; 3499 } 3500 if (sctx->stat.malloc_errors > 0) { 3501 ret = -ENOMEM; 3502 break; 3503 } 3504 3505 dev_replace->cursor_left = dev_replace->cursor_right; 3506 dev_replace->item_needs_writeback = 1; 3507 skip: 3508 key.offset = found_key.offset + length; 3509 btrfs_release_path(path); 3510 } 3511 3512 btrfs_free_path(path); 3513 3514 /* 3515 * ret can still be 1 from search_slot or next_leaf, 3516 * that's not an error 3517 */ 3518 return ret < 0 ? ret : 0; 3519 } 3520 3521 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3522 struct btrfs_device *scrub_dev) 3523 { 3524 int i; 3525 u64 bytenr; 3526 u64 gen; 3527 int ret; 3528 struct btrfs_root *root = sctx->dev_root; 3529 3530 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 3531 return -EIO; 3532 3533 /* Seed devices of a new filesystem has their own generation. */ 3534 if (scrub_dev->fs_devices != root->fs_info->fs_devices) 3535 gen = scrub_dev->generation; 3536 else 3537 gen = root->fs_info->last_trans_committed; 3538 3539 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3540 bytenr = btrfs_sb_offset(i); 3541 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3542 scrub_dev->commit_total_bytes) 3543 break; 3544 3545 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3546 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3547 NULL, 1, bytenr); 3548 if (ret) 3549 return ret; 3550 } 3551 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3552 3553 return 0; 3554 } 3555 3556 /* 3557 * get a reference count on fs_info->scrub_workers. start worker if necessary 3558 */ 3559 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3560 int is_dev_replace) 3561 { 3562 int ret = 0; 3563 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3564 int max_active = fs_info->thread_pool_size; 3565 3566 if (fs_info->scrub_workers_refcnt == 0) { 3567 if (is_dev_replace) 3568 fs_info->scrub_workers = 3569 btrfs_alloc_workqueue("btrfs-scrub", flags, 3570 1, 4); 3571 else 3572 fs_info->scrub_workers = 3573 btrfs_alloc_workqueue("btrfs-scrub", flags, 3574 max_active, 4); 3575 if (!fs_info->scrub_workers) { 3576 ret = -ENOMEM; 3577 goto out; 3578 } 3579 fs_info->scrub_wr_completion_workers = 3580 btrfs_alloc_workqueue("btrfs-scrubwrc", flags, 3581 max_active, 2); 3582 if (!fs_info->scrub_wr_completion_workers) { 3583 ret = -ENOMEM; 3584 goto out; 3585 } 3586 fs_info->scrub_nocow_workers = 3587 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0); 3588 if (!fs_info->scrub_nocow_workers) { 3589 ret = -ENOMEM; 3590 goto out; 3591 } 3592 } 3593 ++fs_info->scrub_workers_refcnt; 3594 out: 3595 return ret; 3596 } 3597 3598 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 3599 { 3600 if (--fs_info->scrub_workers_refcnt == 0) { 3601 btrfs_destroy_workqueue(fs_info->scrub_workers); 3602 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3603 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3604 } 3605 WARN_ON(fs_info->scrub_workers_refcnt < 0); 3606 } 3607 3608 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3609 u64 end, struct btrfs_scrub_progress *progress, 3610 int readonly, int is_dev_replace) 3611 { 3612 struct scrub_ctx *sctx; 3613 int ret; 3614 struct btrfs_device *dev; 3615 struct rcu_string *name; 3616 3617 if (btrfs_fs_closing(fs_info)) 3618 return -EINVAL; 3619 3620 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 3621 /* 3622 * in this case scrub is unable to calculate the checksum 3623 * the way scrub is implemented. Do not handle this 3624 * situation at all because it won't ever happen. 3625 */ 3626 btrfs_err(fs_info, 3627 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3628 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 3629 return -EINVAL; 3630 } 3631 3632 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 3633 /* not supported for data w/o checksums */ 3634 btrfs_err(fs_info, 3635 "scrub: size assumption sectorsize != PAGE_SIZE " 3636 "(%d != %lu) fails", 3637 fs_info->chunk_root->sectorsize, PAGE_SIZE); 3638 return -EINVAL; 3639 } 3640 3641 if (fs_info->chunk_root->nodesize > 3642 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3643 fs_info->chunk_root->sectorsize > 3644 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3645 /* 3646 * would exhaust the array bounds of pagev member in 3647 * struct scrub_block 3648 */ 3649 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize " 3650 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3651 fs_info->chunk_root->nodesize, 3652 SCRUB_MAX_PAGES_PER_BLOCK, 3653 fs_info->chunk_root->sectorsize, 3654 SCRUB_MAX_PAGES_PER_BLOCK); 3655 return -EINVAL; 3656 } 3657 3658 3659 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3660 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3661 if (!dev || (dev->missing && !is_dev_replace)) { 3662 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3663 return -ENODEV; 3664 } 3665 3666 if (!is_dev_replace && !readonly && !dev->writeable) { 3667 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3668 rcu_read_lock(); 3669 name = rcu_dereference(dev->name); 3670 btrfs_err(fs_info, "scrub: device %s is not writable", 3671 name->str); 3672 rcu_read_unlock(); 3673 return -EROFS; 3674 } 3675 3676 mutex_lock(&fs_info->scrub_lock); 3677 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 3678 mutex_unlock(&fs_info->scrub_lock); 3679 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3680 return -EIO; 3681 } 3682 3683 btrfs_dev_replace_lock(&fs_info->dev_replace); 3684 if (dev->scrub_device || 3685 (!is_dev_replace && 3686 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3687 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3688 mutex_unlock(&fs_info->scrub_lock); 3689 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3690 return -EINPROGRESS; 3691 } 3692 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3693 3694 ret = scrub_workers_get(fs_info, is_dev_replace); 3695 if (ret) { 3696 mutex_unlock(&fs_info->scrub_lock); 3697 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3698 return ret; 3699 } 3700 3701 sctx = scrub_setup_ctx(dev, is_dev_replace); 3702 if (IS_ERR(sctx)) { 3703 mutex_unlock(&fs_info->scrub_lock); 3704 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3705 scrub_workers_put(fs_info); 3706 return PTR_ERR(sctx); 3707 } 3708 sctx->readonly = readonly; 3709 dev->scrub_device = sctx; 3710 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3711 3712 /* 3713 * checking @scrub_pause_req here, we can avoid 3714 * race between committing transaction and scrubbing. 3715 */ 3716 __scrub_blocked_if_needed(fs_info); 3717 atomic_inc(&fs_info->scrubs_running); 3718 mutex_unlock(&fs_info->scrub_lock); 3719 3720 if (!is_dev_replace) { 3721 /* 3722 * by holding device list mutex, we can 3723 * kick off writing super in log tree sync. 3724 */ 3725 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3726 ret = scrub_supers(sctx, dev); 3727 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3728 } 3729 3730 if (!ret) 3731 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3732 is_dev_replace); 3733 3734 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3735 atomic_dec(&fs_info->scrubs_running); 3736 wake_up(&fs_info->scrub_pause_wait); 3737 3738 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3739 3740 if (progress) 3741 memcpy(progress, &sctx->stat, sizeof(*progress)); 3742 3743 mutex_lock(&fs_info->scrub_lock); 3744 dev->scrub_device = NULL; 3745 scrub_workers_put(fs_info); 3746 mutex_unlock(&fs_info->scrub_lock); 3747 3748 scrub_put_ctx(sctx); 3749 3750 return ret; 3751 } 3752 3753 void btrfs_scrub_pause(struct btrfs_root *root) 3754 { 3755 struct btrfs_fs_info *fs_info = root->fs_info; 3756 3757 mutex_lock(&fs_info->scrub_lock); 3758 atomic_inc(&fs_info->scrub_pause_req); 3759 while (atomic_read(&fs_info->scrubs_paused) != 3760 atomic_read(&fs_info->scrubs_running)) { 3761 mutex_unlock(&fs_info->scrub_lock); 3762 wait_event(fs_info->scrub_pause_wait, 3763 atomic_read(&fs_info->scrubs_paused) == 3764 atomic_read(&fs_info->scrubs_running)); 3765 mutex_lock(&fs_info->scrub_lock); 3766 } 3767 mutex_unlock(&fs_info->scrub_lock); 3768 } 3769 3770 void btrfs_scrub_continue(struct btrfs_root *root) 3771 { 3772 struct btrfs_fs_info *fs_info = root->fs_info; 3773 3774 atomic_dec(&fs_info->scrub_pause_req); 3775 wake_up(&fs_info->scrub_pause_wait); 3776 } 3777 3778 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3779 { 3780 mutex_lock(&fs_info->scrub_lock); 3781 if (!atomic_read(&fs_info->scrubs_running)) { 3782 mutex_unlock(&fs_info->scrub_lock); 3783 return -ENOTCONN; 3784 } 3785 3786 atomic_inc(&fs_info->scrub_cancel_req); 3787 while (atomic_read(&fs_info->scrubs_running)) { 3788 mutex_unlock(&fs_info->scrub_lock); 3789 wait_event(fs_info->scrub_pause_wait, 3790 atomic_read(&fs_info->scrubs_running) == 0); 3791 mutex_lock(&fs_info->scrub_lock); 3792 } 3793 atomic_dec(&fs_info->scrub_cancel_req); 3794 mutex_unlock(&fs_info->scrub_lock); 3795 3796 return 0; 3797 } 3798 3799 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3800 struct btrfs_device *dev) 3801 { 3802 struct scrub_ctx *sctx; 3803 3804 mutex_lock(&fs_info->scrub_lock); 3805 sctx = dev->scrub_device; 3806 if (!sctx) { 3807 mutex_unlock(&fs_info->scrub_lock); 3808 return -ENOTCONN; 3809 } 3810 atomic_inc(&sctx->cancel_req); 3811 while (dev->scrub_device) { 3812 mutex_unlock(&fs_info->scrub_lock); 3813 wait_event(fs_info->scrub_pause_wait, 3814 dev->scrub_device == NULL); 3815 mutex_lock(&fs_info->scrub_lock); 3816 } 3817 mutex_unlock(&fs_info->scrub_lock); 3818 3819 return 0; 3820 } 3821 3822 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 3823 struct btrfs_scrub_progress *progress) 3824 { 3825 struct btrfs_device *dev; 3826 struct scrub_ctx *sctx = NULL; 3827 3828 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3829 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 3830 if (dev) 3831 sctx = dev->scrub_device; 3832 if (sctx) 3833 memcpy(progress, &sctx->stat, sizeof(*progress)); 3834 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3835 3836 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3837 } 3838 3839 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3840 u64 extent_logical, u64 extent_len, 3841 u64 *extent_physical, 3842 struct btrfs_device **extent_dev, 3843 int *extent_mirror_num) 3844 { 3845 u64 mapped_length; 3846 struct btrfs_bio *bbio = NULL; 3847 int ret; 3848 3849 mapped_length = extent_len; 3850 ret = btrfs_map_block(fs_info, READ, extent_logical, 3851 &mapped_length, &bbio, 0); 3852 if (ret || !bbio || mapped_length < extent_len || 3853 !bbio->stripes[0].dev->bdev) { 3854 btrfs_put_bbio(bbio); 3855 return; 3856 } 3857 3858 *extent_physical = bbio->stripes[0].physical; 3859 *extent_mirror_num = bbio->mirror_num; 3860 *extent_dev = bbio->stripes[0].dev; 3861 btrfs_put_bbio(bbio); 3862 } 3863 3864 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 3865 struct scrub_wr_ctx *wr_ctx, 3866 struct btrfs_fs_info *fs_info, 3867 struct btrfs_device *dev, 3868 int is_dev_replace) 3869 { 3870 WARN_ON(wr_ctx->wr_curr_bio != NULL); 3871 3872 mutex_init(&wr_ctx->wr_lock); 3873 wr_ctx->wr_curr_bio = NULL; 3874 if (!is_dev_replace) 3875 return 0; 3876 3877 WARN_ON(!dev->bdev); 3878 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO, 3879 bio_get_nr_vecs(dev->bdev)); 3880 wr_ctx->tgtdev = dev; 3881 atomic_set(&wr_ctx->flush_all_writes, 0); 3882 return 0; 3883 } 3884 3885 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 3886 { 3887 mutex_lock(&wr_ctx->wr_lock); 3888 kfree(wr_ctx->wr_curr_bio); 3889 wr_ctx->wr_curr_bio = NULL; 3890 mutex_unlock(&wr_ctx->wr_lock); 3891 } 3892 3893 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 3894 int mirror_num, u64 physical_for_dev_replace) 3895 { 3896 struct scrub_copy_nocow_ctx *nocow_ctx; 3897 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3898 3899 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 3900 if (!nocow_ctx) { 3901 spin_lock(&sctx->stat_lock); 3902 sctx->stat.malloc_errors++; 3903 spin_unlock(&sctx->stat_lock); 3904 return -ENOMEM; 3905 } 3906 3907 scrub_pending_trans_workers_inc(sctx); 3908 3909 nocow_ctx->sctx = sctx; 3910 nocow_ctx->logical = logical; 3911 nocow_ctx->len = len; 3912 nocow_ctx->mirror_num = mirror_num; 3913 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 3914 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 3915 copy_nocow_pages_worker, NULL, NULL); 3916 INIT_LIST_HEAD(&nocow_ctx->inodes); 3917 btrfs_queue_work(fs_info->scrub_nocow_workers, 3918 &nocow_ctx->work); 3919 3920 return 0; 3921 } 3922 3923 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 3924 { 3925 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 3926 struct scrub_nocow_inode *nocow_inode; 3927 3928 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 3929 if (!nocow_inode) 3930 return -ENOMEM; 3931 nocow_inode->inum = inum; 3932 nocow_inode->offset = offset; 3933 nocow_inode->root = root; 3934 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 3935 return 0; 3936 } 3937 3938 #define COPY_COMPLETE 1 3939 3940 static void copy_nocow_pages_worker(struct btrfs_work *work) 3941 { 3942 struct scrub_copy_nocow_ctx *nocow_ctx = 3943 container_of(work, struct scrub_copy_nocow_ctx, work); 3944 struct scrub_ctx *sctx = nocow_ctx->sctx; 3945 u64 logical = nocow_ctx->logical; 3946 u64 len = nocow_ctx->len; 3947 int mirror_num = nocow_ctx->mirror_num; 3948 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3949 int ret; 3950 struct btrfs_trans_handle *trans = NULL; 3951 struct btrfs_fs_info *fs_info; 3952 struct btrfs_path *path; 3953 struct btrfs_root *root; 3954 int not_written = 0; 3955 3956 fs_info = sctx->dev_root->fs_info; 3957 root = fs_info->extent_root; 3958 3959 path = btrfs_alloc_path(); 3960 if (!path) { 3961 spin_lock(&sctx->stat_lock); 3962 sctx->stat.malloc_errors++; 3963 spin_unlock(&sctx->stat_lock); 3964 not_written = 1; 3965 goto out; 3966 } 3967 3968 trans = btrfs_join_transaction(root); 3969 if (IS_ERR(trans)) { 3970 not_written = 1; 3971 goto out; 3972 } 3973 3974 ret = iterate_inodes_from_logical(logical, fs_info, path, 3975 record_inode_for_nocow, nocow_ctx); 3976 if (ret != 0 && ret != -ENOENT) { 3977 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, " 3978 "phys %llu, len %llu, mir %u, ret %d", 3979 logical, physical_for_dev_replace, len, mirror_num, 3980 ret); 3981 not_written = 1; 3982 goto out; 3983 } 3984 3985 btrfs_end_transaction(trans, root); 3986 trans = NULL; 3987 while (!list_empty(&nocow_ctx->inodes)) { 3988 struct scrub_nocow_inode *entry; 3989 entry = list_first_entry(&nocow_ctx->inodes, 3990 struct scrub_nocow_inode, 3991 list); 3992 list_del_init(&entry->list); 3993 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 3994 entry->root, nocow_ctx); 3995 kfree(entry); 3996 if (ret == COPY_COMPLETE) { 3997 ret = 0; 3998 break; 3999 } else if (ret) { 4000 break; 4001 } 4002 } 4003 out: 4004 while (!list_empty(&nocow_ctx->inodes)) { 4005 struct scrub_nocow_inode *entry; 4006 entry = list_first_entry(&nocow_ctx->inodes, 4007 struct scrub_nocow_inode, 4008 list); 4009 list_del_init(&entry->list); 4010 kfree(entry); 4011 } 4012 if (trans && !IS_ERR(trans)) 4013 btrfs_end_transaction(trans, root); 4014 if (not_written) 4015 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4016 num_uncorrectable_read_errors); 4017 4018 btrfs_free_path(path); 4019 kfree(nocow_ctx); 4020 4021 scrub_pending_trans_workers_dec(sctx); 4022 } 4023 4024 static int check_extent_to_block(struct inode *inode, u64 start, u64 len, 4025 u64 logical) 4026 { 4027 struct extent_state *cached_state = NULL; 4028 struct btrfs_ordered_extent *ordered; 4029 struct extent_io_tree *io_tree; 4030 struct extent_map *em; 4031 u64 lockstart = start, lockend = start + len - 1; 4032 int ret = 0; 4033 4034 io_tree = &BTRFS_I(inode)->io_tree; 4035 4036 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state); 4037 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4038 if (ordered) { 4039 btrfs_put_ordered_extent(ordered); 4040 ret = 1; 4041 goto out_unlock; 4042 } 4043 4044 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4045 if (IS_ERR(em)) { 4046 ret = PTR_ERR(em); 4047 goto out_unlock; 4048 } 4049 4050 /* 4051 * This extent does not actually cover the logical extent anymore, 4052 * move on to the next inode. 4053 */ 4054 if (em->block_start > logical || 4055 em->block_start + em->block_len < logical + len) { 4056 free_extent_map(em); 4057 ret = 1; 4058 goto out_unlock; 4059 } 4060 free_extent_map(em); 4061 4062 out_unlock: 4063 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4064 GFP_NOFS); 4065 return ret; 4066 } 4067 4068 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4069 struct scrub_copy_nocow_ctx *nocow_ctx) 4070 { 4071 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 4072 struct btrfs_key key; 4073 struct inode *inode; 4074 struct page *page; 4075 struct btrfs_root *local_root; 4076 struct extent_io_tree *io_tree; 4077 u64 physical_for_dev_replace; 4078 u64 nocow_ctx_logical; 4079 u64 len = nocow_ctx->len; 4080 unsigned long index; 4081 int srcu_index; 4082 int ret = 0; 4083 int err = 0; 4084 4085 key.objectid = root; 4086 key.type = BTRFS_ROOT_ITEM_KEY; 4087 key.offset = (u64)-1; 4088 4089 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4090 4091 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4092 if (IS_ERR(local_root)) { 4093 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4094 return PTR_ERR(local_root); 4095 } 4096 4097 key.type = BTRFS_INODE_ITEM_KEY; 4098 key.objectid = inum; 4099 key.offset = 0; 4100 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4101 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4102 if (IS_ERR(inode)) 4103 return PTR_ERR(inode); 4104 4105 /* Avoid truncate/dio/punch hole.. */ 4106 mutex_lock(&inode->i_mutex); 4107 inode_dio_wait(inode); 4108 4109 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4110 io_tree = &BTRFS_I(inode)->io_tree; 4111 nocow_ctx_logical = nocow_ctx->logical; 4112 4113 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical); 4114 if (ret) { 4115 ret = ret > 0 ? 0 : ret; 4116 goto out; 4117 } 4118 4119 while (len >= PAGE_CACHE_SIZE) { 4120 index = offset >> PAGE_CACHE_SHIFT; 4121 again: 4122 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4123 if (!page) { 4124 btrfs_err(fs_info, "find_or_create_page() failed"); 4125 ret = -ENOMEM; 4126 goto out; 4127 } 4128 4129 if (PageUptodate(page)) { 4130 if (PageDirty(page)) 4131 goto next_page; 4132 } else { 4133 ClearPageError(page); 4134 err = extent_read_full_page(io_tree, page, 4135 btrfs_get_extent, 4136 nocow_ctx->mirror_num); 4137 if (err) { 4138 ret = err; 4139 goto next_page; 4140 } 4141 4142 lock_page(page); 4143 /* 4144 * If the page has been remove from the page cache, 4145 * the data on it is meaningless, because it may be 4146 * old one, the new data may be written into the new 4147 * page in the page cache. 4148 */ 4149 if (page->mapping != inode->i_mapping) { 4150 unlock_page(page); 4151 page_cache_release(page); 4152 goto again; 4153 } 4154 if (!PageUptodate(page)) { 4155 ret = -EIO; 4156 goto next_page; 4157 } 4158 } 4159 4160 ret = check_extent_to_block(inode, offset, len, 4161 nocow_ctx_logical); 4162 if (ret) { 4163 ret = ret > 0 ? 0 : ret; 4164 goto next_page; 4165 } 4166 4167 err = write_page_nocow(nocow_ctx->sctx, 4168 physical_for_dev_replace, page); 4169 if (err) 4170 ret = err; 4171 next_page: 4172 unlock_page(page); 4173 page_cache_release(page); 4174 4175 if (ret) 4176 break; 4177 4178 offset += PAGE_CACHE_SIZE; 4179 physical_for_dev_replace += PAGE_CACHE_SIZE; 4180 nocow_ctx_logical += PAGE_CACHE_SIZE; 4181 len -= PAGE_CACHE_SIZE; 4182 } 4183 ret = COPY_COMPLETE; 4184 out: 4185 mutex_unlock(&inode->i_mutex); 4186 iput(inode); 4187 return ret; 4188 } 4189 4190 static int write_page_nocow(struct scrub_ctx *sctx, 4191 u64 physical_for_dev_replace, struct page *page) 4192 { 4193 struct bio *bio; 4194 struct btrfs_device *dev; 4195 int ret; 4196 4197 dev = sctx->wr_ctx.tgtdev; 4198 if (!dev) 4199 return -EIO; 4200 if (!dev->bdev) { 4201 printk_ratelimited(KERN_WARNING 4202 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 4203 return -EIO; 4204 } 4205 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 4206 if (!bio) { 4207 spin_lock(&sctx->stat_lock); 4208 sctx->stat.malloc_errors++; 4209 spin_unlock(&sctx->stat_lock); 4210 return -ENOMEM; 4211 } 4212 bio->bi_iter.bi_size = 0; 4213 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4214 bio->bi_bdev = dev->bdev; 4215 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 4216 if (ret != PAGE_CACHE_SIZE) { 4217 leave_with_eio: 4218 bio_put(bio); 4219 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4220 return -EIO; 4221 } 4222 4223 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 4224 goto leave_with_eio; 4225 4226 bio_put(bio); 4227 return 0; 4228 } 4229