xref: /openbmc/linux/fs/btrfs/scrub.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines the batch size for stripe submitted in one go.
47  */
48 #define SCRUB_STRIPES_PER_SCTX	8	/* That would be 8 64K stripe per-device. */
49 
50 /*
51  * The following value times PAGE_SIZE needs to be large enough to match the
52  * largest node/leaf/sector size that shall be supported.
53  */
54 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
55 
56 /* Represent one sector and its needed info to verify the content. */
57 struct scrub_sector_verification {
58 	bool is_metadata;
59 
60 	union {
61 		/*
62 		 * Csum pointer for data csum verification.  Should point to a
63 		 * sector csum inside scrub_stripe::csums.
64 		 *
65 		 * NULL if this data sector has no csum.
66 		 */
67 		u8 *csum;
68 
69 		/*
70 		 * Extra info for metadata verification.  All sectors inside a
71 		 * tree block share the same generation.
72 		 */
73 		u64 generation;
74 	};
75 };
76 
77 enum scrub_stripe_flags {
78 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
79 	SCRUB_STRIPE_FLAG_INITIALIZED,
80 
81 	/* Set when the read-repair is finished. */
82 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
83 
84 	/*
85 	 * Set for data stripes if it's triggered from P/Q stripe.
86 	 * During such scrub, we should not report errors in data stripes, nor
87 	 * update the accounting.
88 	 */
89 	SCRUB_STRIPE_FLAG_NO_REPORT,
90 };
91 
92 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
93 
94 /*
95  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
96  */
97 struct scrub_stripe {
98 	struct scrub_ctx *sctx;
99 	struct btrfs_block_group *bg;
100 
101 	struct page *pages[SCRUB_STRIPE_PAGES];
102 	struct scrub_sector_verification *sectors;
103 
104 	struct btrfs_device *dev;
105 	u64 logical;
106 	u64 physical;
107 
108 	u16 mirror_num;
109 
110 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
111 	u16 nr_sectors;
112 
113 	/*
114 	 * How many data/meta extents are in this stripe.  Only for scrub status
115 	 * reporting purposes.
116 	 */
117 	u16 nr_data_extents;
118 	u16 nr_meta_extents;
119 
120 	atomic_t pending_io;
121 	wait_queue_head_t io_wait;
122 	wait_queue_head_t repair_wait;
123 
124 	/*
125 	 * Indicate the states of the stripe.  Bits are defined in
126 	 * scrub_stripe_flags enum.
127 	 */
128 	unsigned long state;
129 
130 	/* Indicate which sectors are covered by extent items. */
131 	unsigned long extent_sector_bitmap;
132 
133 	/*
134 	 * The errors hit during the initial read of the stripe.
135 	 *
136 	 * Would be utilized for error reporting and repair.
137 	 *
138 	 * The remaining init_nr_* records the number of errors hit, only used
139 	 * by error reporting.
140 	 */
141 	unsigned long init_error_bitmap;
142 	unsigned int init_nr_io_errors;
143 	unsigned int init_nr_csum_errors;
144 	unsigned int init_nr_meta_errors;
145 
146 	/*
147 	 * The following error bitmaps are all for the current status.
148 	 * Every time we submit a new read, these bitmaps may be updated.
149 	 *
150 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
151 	 *
152 	 * IO and csum errors can happen for both metadata and data.
153 	 */
154 	unsigned long error_bitmap;
155 	unsigned long io_error_bitmap;
156 	unsigned long csum_error_bitmap;
157 	unsigned long meta_error_bitmap;
158 
159 	/* For writeback (repair or replace) error reporting. */
160 	unsigned long write_error_bitmap;
161 
162 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
163 	spinlock_t write_error_lock;
164 
165 	/*
166 	 * Checksum for the whole stripe if this stripe is inside a data block
167 	 * group.
168 	 */
169 	u8 *csums;
170 
171 	struct work_struct work;
172 };
173 
174 struct scrub_ctx {
175 	struct scrub_stripe	stripes[SCRUB_STRIPES_PER_SCTX];
176 	struct scrub_stripe	*raid56_data_stripes;
177 	struct btrfs_fs_info	*fs_info;
178 	int			first_free;
179 	int			cur_stripe;
180 	atomic_t		cancel_req;
181 	int			readonly;
182 	int			sectors_per_bio;
183 
184 	/* State of IO submission throttling affecting the associated device */
185 	ktime_t			throttle_deadline;
186 	u64			throttle_sent;
187 
188 	int			is_dev_replace;
189 	u64			write_pointer;
190 
191 	struct mutex            wr_lock;
192 	struct btrfs_device     *wr_tgtdev;
193 
194 	/*
195 	 * statistics
196 	 */
197 	struct btrfs_scrub_progress stat;
198 	spinlock_t		stat_lock;
199 
200 	/*
201 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
202 	 * decrement bios_in_flight and workers_pending and then do a wakeup
203 	 * on the list_wait wait queue. We must ensure the main scrub task
204 	 * doesn't free the scrub context before or while the workers are
205 	 * doing the wakeup() call.
206 	 */
207 	refcount_t              refs;
208 };
209 
210 struct scrub_warning {
211 	struct btrfs_path	*path;
212 	u64			extent_item_size;
213 	const char		*errstr;
214 	u64			physical;
215 	u64			logical;
216 	struct btrfs_device	*dev;
217 };
218 
219 static void release_scrub_stripe(struct scrub_stripe *stripe)
220 {
221 	if (!stripe)
222 		return;
223 
224 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
225 		if (stripe->pages[i])
226 			__free_page(stripe->pages[i]);
227 		stripe->pages[i] = NULL;
228 	}
229 	kfree(stripe->sectors);
230 	kfree(stripe->csums);
231 	stripe->sectors = NULL;
232 	stripe->csums = NULL;
233 	stripe->sctx = NULL;
234 	stripe->state = 0;
235 }
236 
237 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
238 			     struct scrub_stripe *stripe)
239 {
240 	int ret;
241 
242 	memset(stripe, 0, sizeof(*stripe));
243 
244 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
245 	stripe->state = 0;
246 
247 	init_waitqueue_head(&stripe->io_wait);
248 	init_waitqueue_head(&stripe->repair_wait);
249 	atomic_set(&stripe->pending_io, 0);
250 	spin_lock_init(&stripe->write_error_lock);
251 
252 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
253 	if (ret < 0)
254 		goto error;
255 
256 	stripe->sectors = kcalloc(stripe->nr_sectors,
257 				  sizeof(struct scrub_sector_verification),
258 				  GFP_KERNEL);
259 	if (!stripe->sectors)
260 		goto error;
261 
262 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
263 				fs_info->csum_size, GFP_KERNEL);
264 	if (!stripe->csums)
265 		goto error;
266 	return 0;
267 error:
268 	release_scrub_stripe(stripe);
269 	return -ENOMEM;
270 }
271 
272 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
273 {
274 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
275 }
276 
277 static void scrub_put_ctx(struct scrub_ctx *sctx);
278 
279 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
280 {
281 	while (atomic_read(&fs_info->scrub_pause_req)) {
282 		mutex_unlock(&fs_info->scrub_lock);
283 		wait_event(fs_info->scrub_pause_wait,
284 		   atomic_read(&fs_info->scrub_pause_req) == 0);
285 		mutex_lock(&fs_info->scrub_lock);
286 	}
287 }
288 
289 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
290 {
291 	atomic_inc(&fs_info->scrubs_paused);
292 	wake_up(&fs_info->scrub_pause_wait);
293 }
294 
295 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
296 {
297 	mutex_lock(&fs_info->scrub_lock);
298 	__scrub_blocked_if_needed(fs_info);
299 	atomic_dec(&fs_info->scrubs_paused);
300 	mutex_unlock(&fs_info->scrub_lock);
301 
302 	wake_up(&fs_info->scrub_pause_wait);
303 }
304 
305 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
306 {
307 	scrub_pause_on(fs_info);
308 	scrub_pause_off(fs_info);
309 }
310 
311 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
312 {
313 	int i;
314 
315 	if (!sctx)
316 		return;
317 
318 	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
319 		release_scrub_stripe(&sctx->stripes[i]);
320 
321 	kfree(sctx);
322 }
323 
324 static void scrub_put_ctx(struct scrub_ctx *sctx)
325 {
326 	if (refcount_dec_and_test(&sctx->refs))
327 		scrub_free_ctx(sctx);
328 }
329 
330 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
331 		struct btrfs_fs_info *fs_info, int is_dev_replace)
332 {
333 	struct scrub_ctx *sctx;
334 	int		i;
335 
336 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
337 	if (!sctx)
338 		goto nomem;
339 	refcount_set(&sctx->refs, 1);
340 	sctx->is_dev_replace = is_dev_replace;
341 	sctx->fs_info = fs_info;
342 	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
343 		int ret;
344 
345 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
346 		if (ret < 0)
347 			goto nomem;
348 		sctx->stripes[i].sctx = sctx;
349 	}
350 	sctx->first_free = 0;
351 	atomic_set(&sctx->cancel_req, 0);
352 
353 	spin_lock_init(&sctx->stat_lock);
354 	sctx->throttle_deadline = 0;
355 
356 	mutex_init(&sctx->wr_lock);
357 	if (is_dev_replace) {
358 		WARN_ON(!fs_info->dev_replace.tgtdev);
359 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
360 	}
361 
362 	return sctx;
363 
364 nomem:
365 	scrub_free_ctx(sctx);
366 	return ERR_PTR(-ENOMEM);
367 }
368 
369 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
370 				     u64 root, void *warn_ctx)
371 {
372 	u32 nlink;
373 	int ret;
374 	int i;
375 	unsigned nofs_flag;
376 	struct extent_buffer *eb;
377 	struct btrfs_inode_item *inode_item;
378 	struct scrub_warning *swarn = warn_ctx;
379 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
380 	struct inode_fs_paths *ipath = NULL;
381 	struct btrfs_root *local_root;
382 	struct btrfs_key key;
383 
384 	local_root = btrfs_get_fs_root(fs_info, root, true);
385 	if (IS_ERR(local_root)) {
386 		ret = PTR_ERR(local_root);
387 		goto err;
388 	}
389 
390 	/*
391 	 * this makes the path point to (inum INODE_ITEM ioff)
392 	 */
393 	key.objectid = inum;
394 	key.type = BTRFS_INODE_ITEM_KEY;
395 	key.offset = 0;
396 
397 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
398 	if (ret) {
399 		btrfs_put_root(local_root);
400 		btrfs_release_path(swarn->path);
401 		goto err;
402 	}
403 
404 	eb = swarn->path->nodes[0];
405 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
406 					struct btrfs_inode_item);
407 	nlink = btrfs_inode_nlink(eb, inode_item);
408 	btrfs_release_path(swarn->path);
409 
410 	/*
411 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
412 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
413 	 * not seem to be strictly necessary.
414 	 */
415 	nofs_flag = memalloc_nofs_save();
416 	ipath = init_ipath(4096, local_root, swarn->path);
417 	memalloc_nofs_restore(nofs_flag);
418 	if (IS_ERR(ipath)) {
419 		btrfs_put_root(local_root);
420 		ret = PTR_ERR(ipath);
421 		ipath = NULL;
422 		goto err;
423 	}
424 	ret = paths_from_inode(inum, ipath);
425 
426 	if (ret < 0)
427 		goto err;
428 
429 	/*
430 	 * we deliberately ignore the bit ipath might have been too small to
431 	 * hold all of the paths here
432 	 */
433 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
434 		btrfs_warn_in_rcu(fs_info,
435 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
436 				  swarn->errstr, swarn->logical,
437 				  btrfs_dev_name(swarn->dev),
438 				  swarn->physical,
439 				  root, inum, offset,
440 				  fs_info->sectorsize, nlink,
441 				  (char *)(unsigned long)ipath->fspath->val[i]);
442 
443 	btrfs_put_root(local_root);
444 	free_ipath(ipath);
445 	return 0;
446 
447 err:
448 	btrfs_warn_in_rcu(fs_info,
449 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
450 			  swarn->errstr, swarn->logical,
451 			  btrfs_dev_name(swarn->dev),
452 			  swarn->physical,
453 			  root, inum, offset, ret);
454 
455 	free_ipath(ipath);
456 	return 0;
457 }
458 
459 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
460 				       bool is_super, u64 logical, u64 physical)
461 {
462 	struct btrfs_fs_info *fs_info = dev->fs_info;
463 	struct btrfs_path *path;
464 	struct btrfs_key found_key;
465 	struct extent_buffer *eb;
466 	struct btrfs_extent_item *ei;
467 	struct scrub_warning swarn;
468 	u64 flags = 0;
469 	u32 item_size;
470 	int ret;
471 
472 	/* Super block error, no need to search extent tree. */
473 	if (is_super) {
474 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
475 				  errstr, btrfs_dev_name(dev), physical);
476 		return;
477 	}
478 	path = btrfs_alloc_path();
479 	if (!path)
480 		return;
481 
482 	swarn.physical = physical;
483 	swarn.logical = logical;
484 	swarn.errstr = errstr;
485 	swarn.dev = NULL;
486 
487 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
488 				  &flags);
489 	if (ret < 0)
490 		goto out;
491 
492 	swarn.extent_item_size = found_key.offset;
493 
494 	eb = path->nodes[0];
495 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
496 	item_size = btrfs_item_size(eb, path->slots[0]);
497 
498 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
499 		unsigned long ptr = 0;
500 		u8 ref_level;
501 		u64 ref_root;
502 
503 		while (true) {
504 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
505 						      item_size, &ref_root,
506 						      &ref_level);
507 			if (ret < 0) {
508 				btrfs_warn(fs_info,
509 				"failed to resolve tree backref for logical %llu: %d",
510 						  swarn.logical, ret);
511 				break;
512 			}
513 			if (ret > 0)
514 				break;
515 			btrfs_warn_in_rcu(fs_info,
516 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
517 				errstr, swarn.logical, btrfs_dev_name(dev),
518 				swarn.physical, (ref_level ? "node" : "leaf"),
519 				ref_level, ref_root);
520 		}
521 		btrfs_release_path(path);
522 	} else {
523 		struct btrfs_backref_walk_ctx ctx = { 0 };
524 
525 		btrfs_release_path(path);
526 
527 		ctx.bytenr = found_key.objectid;
528 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
529 		ctx.fs_info = fs_info;
530 
531 		swarn.path = path;
532 		swarn.dev = dev;
533 
534 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
535 	}
536 
537 out:
538 	btrfs_free_path(path);
539 }
540 
541 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
542 {
543 	int ret = 0;
544 	u64 length;
545 
546 	if (!btrfs_is_zoned(sctx->fs_info))
547 		return 0;
548 
549 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
550 		return 0;
551 
552 	if (sctx->write_pointer < physical) {
553 		length = physical - sctx->write_pointer;
554 
555 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
556 						sctx->write_pointer, length);
557 		if (!ret)
558 			sctx->write_pointer = physical;
559 	}
560 	return ret;
561 }
562 
563 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
564 {
565 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
566 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
567 
568 	return stripe->pages[page_index];
569 }
570 
571 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
572 						 int sector_nr)
573 {
574 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
575 
576 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
577 }
578 
579 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
580 {
581 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
582 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
583 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
584 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
585 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
586 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
587 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
588 	u8 calculated_csum[BTRFS_CSUM_SIZE];
589 	struct btrfs_header *header;
590 
591 	/*
592 	 * Here we don't have a good way to attach the pages (and subpages)
593 	 * to a dummy extent buffer, thus we have to directly grab the members
594 	 * from pages.
595 	 */
596 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
597 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
598 
599 	if (logical != btrfs_stack_header_bytenr(header)) {
600 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
601 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
602 		btrfs_warn_rl(fs_info,
603 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
604 			      logical, stripe->mirror_num,
605 			      btrfs_stack_header_bytenr(header), logical);
606 		return;
607 	}
608 	if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) {
609 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
610 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
611 		btrfs_warn_rl(fs_info,
612 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
613 			      logical, stripe->mirror_num,
614 			      header->fsid, fs_info->fs_devices->fsid);
615 		return;
616 	}
617 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
618 		   BTRFS_UUID_SIZE) != 0) {
619 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
620 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621 		btrfs_warn_rl(fs_info,
622 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
623 			      logical, stripe->mirror_num,
624 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
625 		return;
626 	}
627 
628 	/* Now check tree block csum. */
629 	shash->tfm = fs_info->csum_shash;
630 	crypto_shash_init(shash);
631 	crypto_shash_update(shash, page_address(first_page) + first_off +
632 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
633 
634 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
635 		struct page *page = scrub_stripe_get_page(stripe, i);
636 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
637 
638 		crypto_shash_update(shash, page_address(page) + page_off,
639 				    fs_info->sectorsize);
640 	}
641 
642 	crypto_shash_final(shash, calculated_csum);
643 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
644 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
645 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
646 		btrfs_warn_rl(fs_info,
647 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
648 			      logical, stripe->mirror_num,
649 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
650 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
651 		return;
652 	}
653 	if (stripe->sectors[sector_nr].generation !=
654 	    btrfs_stack_header_generation(header)) {
655 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
656 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
657 		btrfs_warn_rl(fs_info,
658 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
659 			      logical, stripe->mirror_num,
660 			      btrfs_stack_header_generation(header),
661 			      stripe->sectors[sector_nr].generation);
662 		return;
663 	}
664 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
665 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
666 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
667 }
668 
669 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
670 {
671 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
672 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
673 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
674 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
675 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
676 	u8 csum_buf[BTRFS_CSUM_SIZE];
677 	int ret;
678 
679 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
680 
681 	/* Sector not utilized, skip it. */
682 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
683 		return;
684 
685 	/* IO error, no need to check. */
686 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
687 		return;
688 
689 	/* Metadata, verify the full tree block. */
690 	if (sector->is_metadata) {
691 		/*
692 		 * Check if the tree block crosses the stripe boudary.  If
693 		 * crossed the boundary, we cannot verify it but only give a
694 		 * warning.
695 		 *
696 		 * This can only happen on a very old filesystem where chunks
697 		 * are not ensured to be stripe aligned.
698 		 */
699 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
700 			btrfs_warn_rl(fs_info,
701 			"tree block at %llu crosses stripe boundary %llu",
702 				      stripe->logical +
703 				      (sector_nr << fs_info->sectorsize_bits),
704 				      stripe->logical);
705 			return;
706 		}
707 		scrub_verify_one_metadata(stripe, sector_nr);
708 		return;
709 	}
710 
711 	/*
712 	 * Data is easier, we just verify the data csum (if we have it).  For
713 	 * cases without csum, we have no other choice but to trust it.
714 	 */
715 	if (!sector->csum) {
716 		clear_bit(sector_nr, &stripe->error_bitmap);
717 		return;
718 	}
719 
720 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
721 	if (ret < 0) {
722 		set_bit(sector_nr, &stripe->csum_error_bitmap);
723 		set_bit(sector_nr, &stripe->error_bitmap);
724 	} else {
725 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
726 		clear_bit(sector_nr, &stripe->error_bitmap);
727 	}
728 }
729 
730 /* Verify specified sectors of a stripe. */
731 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
732 {
733 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
734 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
735 	int sector_nr;
736 
737 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
738 		scrub_verify_one_sector(stripe, sector_nr);
739 		if (stripe->sectors[sector_nr].is_metadata)
740 			sector_nr += sectors_per_tree - 1;
741 	}
742 }
743 
744 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
745 {
746 	int i;
747 
748 	for (i = 0; i < stripe->nr_sectors; i++) {
749 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
750 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
751 			break;
752 	}
753 	ASSERT(i < stripe->nr_sectors);
754 	return i;
755 }
756 
757 /*
758  * Repair read is different to the regular read:
759  *
760  * - Only reads the failed sectors
761  * - May have extra blocksize limits
762  */
763 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
764 {
765 	struct scrub_stripe *stripe = bbio->private;
766 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
767 	struct bio_vec *bvec;
768 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
769 	u32 bio_size = 0;
770 	int i;
771 
772 	ASSERT(sector_nr < stripe->nr_sectors);
773 
774 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
775 		bio_size += bvec->bv_len;
776 
777 	if (bbio->bio.bi_status) {
778 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
779 			   bio_size >> fs_info->sectorsize_bits);
780 		bitmap_set(&stripe->error_bitmap, sector_nr,
781 			   bio_size >> fs_info->sectorsize_bits);
782 	} else {
783 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
784 			     bio_size >> fs_info->sectorsize_bits);
785 	}
786 	bio_put(&bbio->bio);
787 	if (atomic_dec_and_test(&stripe->pending_io))
788 		wake_up(&stripe->io_wait);
789 }
790 
791 static int calc_next_mirror(int mirror, int num_copies)
792 {
793 	ASSERT(mirror <= num_copies);
794 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
795 }
796 
797 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
798 					    int mirror, int blocksize, bool wait)
799 {
800 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
801 	struct btrfs_bio *bbio = NULL;
802 	const unsigned long old_error_bitmap = stripe->error_bitmap;
803 	int i;
804 
805 	ASSERT(stripe->mirror_num >= 1);
806 	ASSERT(atomic_read(&stripe->pending_io) == 0);
807 
808 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
809 		struct page *page;
810 		int pgoff;
811 		int ret;
812 
813 		page = scrub_stripe_get_page(stripe, i);
814 		pgoff = scrub_stripe_get_page_offset(stripe, i);
815 
816 		/* The current sector cannot be merged, submit the bio. */
817 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
818 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
819 			ASSERT(bbio->bio.bi_iter.bi_size);
820 			atomic_inc(&stripe->pending_io);
821 			btrfs_submit_bio(bbio, mirror);
822 			if (wait)
823 				wait_scrub_stripe_io(stripe);
824 			bbio = NULL;
825 		}
826 
827 		if (!bbio) {
828 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
829 				fs_info, scrub_repair_read_endio, stripe);
830 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
831 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
832 		}
833 
834 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
835 		ASSERT(ret == fs_info->sectorsize);
836 	}
837 	if (bbio) {
838 		ASSERT(bbio->bio.bi_iter.bi_size);
839 		atomic_inc(&stripe->pending_io);
840 		btrfs_submit_bio(bbio, mirror);
841 		if (wait)
842 			wait_scrub_stripe_io(stripe);
843 	}
844 }
845 
846 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
847 				       struct scrub_stripe *stripe)
848 {
849 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
850 				      DEFAULT_RATELIMIT_BURST);
851 	struct btrfs_fs_info *fs_info = sctx->fs_info;
852 	struct btrfs_device *dev = NULL;
853 	u64 physical = 0;
854 	int nr_data_sectors = 0;
855 	int nr_meta_sectors = 0;
856 	int nr_nodatacsum_sectors = 0;
857 	int nr_repaired_sectors = 0;
858 	int sector_nr;
859 
860 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
861 		return;
862 
863 	/*
864 	 * Init needed infos for error reporting.
865 	 *
866 	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
867 	 * thus no need for dev/physical, error reporting still needs dev and physical.
868 	 */
869 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
870 		u64 mapped_len = fs_info->sectorsize;
871 		struct btrfs_io_context *bioc = NULL;
872 		int stripe_index = stripe->mirror_num - 1;
873 		int ret;
874 
875 		/* For scrub, our mirror_num should always start at 1. */
876 		ASSERT(stripe->mirror_num >= 1);
877 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
878 				      stripe->logical, &mapped_len, &bioc,
879 				      NULL, NULL, 1);
880 		/*
881 		 * If we failed, dev will be NULL, and later detailed reports
882 		 * will just be skipped.
883 		 */
884 		if (ret < 0)
885 			goto skip;
886 		physical = bioc->stripes[stripe_index].physical;
887 		dev = bioc->stripes[stripe_index].dev;
888 		btrfs_put_bioc(bioc);
889 	}
890 
891 skip:
892 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
893 		bool repaired = false;
894 
895 		if (stripe->sectors[sector_nr].is_metadata) {
896 			nr_meta_sectors++;
897 		} else {
898 			nr_data_sectors++;
899 			if (!stripe->sectors[sector_nr].csum)
900 				nr_nodatacsum_sectors++;
901 		}
902 
903 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
904 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
905 			nr_repaired_sectors++;
906 			repaired = true;
907 		}
908 
909 		/* Good sector from the beginning, nothing need to be done. */
910 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
911 			continue;
912 
913 		/*
914 		 * Report error for the corrupted sectors.  If repaired, just
915 		 * output the message of repaired message.
916 		 */
917 		if (repaired) {
918 			if (dev) {
919 				btrfs_err_rl_in_rcu(fs_info,
920 			"fixed up error at logical %llu on dev %s physical %llu",
921 					    stripe->logical, btrfs_dev_name(dev),
922 					    physical);
923 			} else {
924 				btrfs_err_rl_in_rcu(fs_info,
925 			"fixed up error at logical %llu on mirror %u",
926 					    stripe->logical, stripe->mirror_num);
927 			}
928 			continue;
929 		}
930 
931 		/* The remaining are all for unrepaired. */
932 		if (dev) {
933 			btrfs_err_rl_in_rcu(fs_info,
934 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
935 					    stripe->logical, btrfs_dev_name(dev),
936 					    physical);
937 		} else {
938 			btrfs_err_rl_in_rcu(fs_info,
939 	"unable to fixup (regular) error at logical %llu on mirror %u",
940 					    stripe->logical, stripe->mirror_num);
941 		}
942 
943 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
944 			if (__ratelimit(&rs) && dev)
945 				scrub_print_common_warning("i/o error", dev, false,
946 						     stripe->logical, physical);
947 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
948 			if (__ratelimit(&rs) && dev)
949 				scrub_print_common_warning("checksum error", dev, false,
950 						     stripe->logical, physical);
951 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
952 			if (__ratelimit(&rs) && dev)
953 				scrub_print_common_warning("header error", dev, false,
954 						     stripe->logical, physical);
955 	}
956 
957 	spin_lock(&sctx->stat_lock);
958 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
959 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
960 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
961 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
962 	sctx->stat.no_csum += nr_nodatacsum_sectors;
963 	sctx->stat.read_errors += stripe->init_nr_io_errors;
964 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
965 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
966 	sctx->stat.uncorrectable_errors +=
967 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
968 	sctx->stat.corrected_errors += nr_repaired_sectors;
969 	spin_unlock(&sctx->stat_lock);
970 }
971 
972 /*
973  * The main entrance for all read related scrub work, including:
974  *
975  * - Wait for the initial read to finish
976  * - Verify and locate any bad sectors
977  * - Go through the remaining mirrors and try to read as large blocksize as
978  *   possible
979  * - Go through all mirrors (including the failed mirror) sector-by-sector
980  *
981  * Writeback does not happen here, it needs extra synchronization.
982  */
983 static void scrub_stripe_read_repair_worker(struct work_struct *work)
984 {
985 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
986 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
987 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
988 					  stripe->bg->length);
989 	int mirror;
990 	int i;
991 
992 	ASSERT(stripe->mirror_num > 0);
993 
994 	wait_scrub_stripe_io(stripe);
995 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
996 	/* Save the initial failed bitmap for later repair and report usage. */
997 	stripe->init_error_bitmap = stripe->error_bitmap;
998 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
999 						  stripe->nr_sectors);
1000 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1001 						    stripe->nr_sectors);
1002 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1003 						    stripe->nr_sectors);
1004 
1005 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1006 		goto out;
1007 
1008 	/*
1009 	 * Try all remaining mirrors.
1010 	 *
1011 	 * Here we still try to read as large block as possible, as this is
1012 	 * faster and we have extra safety nets to rely on.
1013 	 */
1014 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1015 	     mirror != stripe->mirror_num;
1016 	     mirror = calc_next_mirror(mirror, num_copies)) {
1017 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1018 
1019 		scrub_stripe_submit_repair_read(stripe, mirror,
1020 						BTRFS_STRIPE_LEN, false);
1021 		wait_scrub_stripe_io(stripe);
1022 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1023 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1024 			goto out;
1025 	}
1026 
1027 	/*
1028 	 * Last safety net, try re-checking all mirrors, including the failed
1029 	 * one, sector-by-sector.
1030 	 *
1031 	 * As if one sector failed the drive's internal csum, the whole read
1032 	 * containing the offending sector would be marked as error.
1033 	 * Thus here we do sector-by-sector read.
1034 	 *
1035 	 * This can be slow, thus we only try it as the last resort.
1036 	 */
1037 
1038 	for (i = 0, mirror = stripe->mirror_num;
1039 	     i < num_copies;
1040 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1041 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1042 
1043 		scrub_stripe_submit_repair_read(stripe, mirror,
1044 						fs_info->sectorsize, true);
1045 		wait_scrub_stripe_io(stripe);
1046 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1047 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1048 			goto out;
1049 	}
1050 out:
1051 	scrub_stripe_report_errors(stripe->sctx, stripe);
1052 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1053 	wake_up(&stripe->repair_wait);
1054 }
1055 
1056 static void scrub_read_endio(struct btrfs_bio *bbio)
1057 {
1058 	struct scrub_stripe *stripe = bbio->private;
1059 
1060 	if (bbio->bio.bi_status) {
1061 		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1062 		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1063 	} else {
1064 		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1065 	}
1066 	bio_put(&bbio->bio);
1067 	if (atomic_dec_and_test(&stripe->pending_io)) {
1068 		wake_up(&stripe->io_wait);
1069 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1070 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1071 	}
1072 }
1073 
1074 static void scrub_write_endio(struct btrfs_bio *bbio)
1075 {
1076 	struct scrub_stripe *stripe = bbio->private;
1077 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1078 	struct bio_vec *bvec;
1079 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1080 	u32 bio_size = 0;
1081 	int i;
1082 
1083 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1084 		bio_size += bvec->bv_len;
1085 
1086 	if (bbio->bio.bi_status) {
1087 		unsigned long flags;
1088 
1089 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1090 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1091 			   bio_size >> fs_info->sectorsize_bits);
1092 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1093 	}
1094 	bio_put(&bbio->bio);
1095 
1096 	if (atomic_dec_and_test(&stripe->pending_io))
1097 		wake_up(&stripe->io_wait);
1098 }
1099 
1100 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1101 				   struct scrub_stripe *stripe,
1102 				   struct btrfs_bio *bbio, bool dev_replace)
1103 {
1104 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1105 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1106 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1107 		      stripe->logical;
1108 
1109 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1110 	atomic_inc(&stripe->pending_io);
1111 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1112 	if (!btrfs_is_zoned(fs_info))
1113 		return;
1114 	/*
1115 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1116 	 * the write to finish before the next write.
1117 	 */
1118 	wait_scrub_stripe_io(stripe);
1119 
1120 	/*
1121 	 * And also need to update the write pointer if write finished
1122 	 * successfully.
1123 	 */
1124 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1125 		      &stripe->write_error_bitmap))
1126 		sctx->write_pointer += bio_len;
1127 }
1128 
1129 /*
1130  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1131  *
1132  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1133  *
1134  * - Only needs logical bytenr and mirror_num
1135  *   Just like the scrub read path
1136  *
1137  * - Would only result in writes to the specified mirror
1138  *   Unlike the regular writeback path, which would write back to all stripes
1139  *
1140  * - Handle dev-replace and read-repair writeback differently
1141  */
1142 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1143 				unsigned long write_bitmap, bool dev_replace)
1144 {
1145 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1146 	struct btrfs_bio *bbio = NULL;
1147 	int sector_nr;
1148 
1149 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1150 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1151 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1152 		int ret;
1153 
1154 		/* We should only writeback sectors covered by an extent. */
1155 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1156 
1157 		/* Cannot merge with previous sector, submit the current one. */
1158 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1159 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1160 			bbio = NULL;
1161 		}
1162 		if (!bbio) {
1163 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1164 					       fs_info, scrub_write_endio, stripe);
1165 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1166 				(sector_nr << fs_info->sectorsize_bits)) >>
1167 				SECTOR_SHIFT;
1168 		}
1169 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1170 		ASSERT(ret == fs_info->sectorsize);
1171 	}
1172 	if (bbio)
1173 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1174 }
1175 
1176 /*
1177  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1178  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1179  */
1180 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1181 				  unsigned int bio_size)
1182 {
1183 	const int time_slice = 1000;
1184 	s64 delta;
1185 	ktime_t now;
1186 	u32 div;
1187 	u64 bwlimit;
1188 
1189 	bwlimit = READ_ONCE(device->scrub_speed_max);
1190 	if (bwlimit == 0)
1191 		return;
1192 
1193 	/*
1194 	 * Slice is divided into intervals when the IO is submitted, adjust by
1195 	 * bwlimit and maximum of 64 intervals.
1196 	 */
1197 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1198 	div = min_t(u32, 64, div);
1199 
1200 	/* Start new epoch, set deadline */
1201 	now = ktime_get();
1202 	if (sctx->throttle_deadline == 0) {
1203 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1204 		sctx->throttle_sent = 0;
1205 	}
1206 
1207 	/* Still in the time to send? */
1208 	if (ktime_before(now, sctx->throttle_deadline)) {
1209 		/* If current bio is within the limit, send it */
1210 		sctx->throttle_sent += bio_size;
1211 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1212 			return;
1213 
1214 		/* We're over the limit, sleep until the rest of the slice */
1215 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1216 	} else {
1217 		/* New request after deadline, start new epoch */
1218 		delta = 0;
1219 	}
1220 
1221 	if (delta) {
1222 		long timeout;
1223 
1224 		timeout = div_u64(delta * HZ, 1000);
1225 		schedule_timeout_interruptible(timeout);
1226 	}
1227 
1228 	/* Next call will start the deadline period */
1229 	sctx->throttle_deadline = 0;
1230 }
1231 
1232 /*
1233  * Given a physical address, this will calculate it's
1234  * logical offset. if this is a parity stripe, it will return
1235  * the most left data stripe's logical offset.
1236  *
1237  * return 0 if it is a data stripe, 1 means parity stripe.
1238  */
1239 static int get_raid56_logic_offset(u64 physical, int num,
1240 				   struct map_lookup *map, u64 *offset,
1241 				   u64 *stripe_start)
1242 {
1243 	int i;
1244 	int j = 0;
1245 	u64 last_offset;
1246 	const int data_stripes = nr_data_stripes(map);
1247 
1248 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1249 	if (stripe_start)
1250 		*stripe_start = last_offset;
1251 
1252 	*offset = last_offset;
1253 	for (i = 0; i < data_stripes; i++) {
1254 		u32 stripe_nr;
1255 		u32 stripe_index;
1256 		u32 rot;
1257 
1258 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1259 
1260 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1261 
1262 		/* Work out the disk rotation on this stripe-set */
1263 		rot = stripe_nr % map->num_stripes;
1264 		stripe_nr /= map->num_stripes;
1265 		/* calculate which stripe this data locates */
1266 		rot += i;
1267 		stripe_index = rot % map->num_stripes;
1268 		if (stripe_index == num)
1269 			return 0;
1270 		if (stripe_index < num)
1271 			j++;
1272 	}
1273 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1274 	return 1;
1275 }
1276 
1277 /*
1278  * Return 0 if the extent item range covers any byte of the range.
1279  * Return <0 if the extent item is before @search_start.
1280  * Return >0 if the extent item is after @start_start + @search_len.
1281  */
1282 static int compare_extent_item_range(struct btrfs_path *path,
1283 				     u64 search_start, u64 search_len)
1284 {
1285 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1286 	u64 len;
1287 	struct btrfs_key key;
1288 
1289 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1290 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1291 	       key.type == BTRFS_METADATA_ITEM_KEY);
1292 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1293 		len = fs_info->nodesize;
1294 	else
1295 		len = key.offset;
1296 
1297 	if (key.objectid + len <= search_start)
1298 		return -1;
1299 	if (key.objectid >= search_start + search_len)
1300 		return 1;
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Locate one extent item which covers any byte in range
1306  * [@search_start, @search_start + @search_length)
1307  *
1308  * If the path is not initialized, we will initialize the search by doing
1309  * a btrfs_search_slot().
1310  * If the path is already initialized, we will use the path as the initial
1311  * slot, to avoid duplicated btrfs_search_slot() calls.
1312  *
1313  * NOTE: If an extent item starts before @search_start, we will still
1314  * return the extent item. This is for data extent crossing stripe boundary.
1315  *
1316  * Return 0 if we found such extent item, and @path will point to the extent item.
1317  * Return >0 if no such extent item can be found, and @path will be released.
1318  * Return <0 if hit fatal error, and @path will be released.
1319  */
1320 static int find_first_extent_item(struct btrfs_root *extent_root,
1321 				  struct btrfs_path *path,
1322 				  u64 search_start, u64 search_len)
1323 {
1324 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1325 	struct btrfs_key key;
1326 	int ret;
1327 
1328 	/* Continue using the existing path */
1329 	if (path->nodes[0])
1330 		goto search_forward;
1331 
1332 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1333 		key.type = BTRFS_METADATA_ITEM_KEY;
1334 	else
1335 		key.type = BTRFS_EXTENT_ITEM_KEY;
1336 	key.objectid = search_start;
1337 	key.offset = (u64)-1;
1338 
1339 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1340 	if (ret < 0)
1341 		return ret;
1342 
1343 	ASSERT(ret > 0);
1344 	/*
1345 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1346 	 * an extent item starting before @search_start.
1347 	 */
1348 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1349 	if (ret < 0)
1350 		return ret;
1351 	/*
1352 	 * No matter whether we have found an extent item, the next loop will
1353 	 * properly do every check on the key.
1354 	 */
1355 search_forward:
1356 	while (true) {
1357 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1358 		if (key.objectid >= search_start + search_len)
1359 			break;
1360 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1361 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1362 			goto next;
1363 
1364 		ret = compare_extent_item_range(path, search_start, search_len);
1365 		if (ret == 0)
1366 			return ret;
1367 		if (ret > 0)
1368 			break;
1369 next:
1370 		path->slots[0]++;
1371 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1372 			ret = btrfs_next_leaf(extent_root, path);
1373 			if (ret) {
1374 				/* Either no more item or fatal error */
1375 				btrfs_release_path(path);
1376 				return ret;
1377 			}
1378 		}
1379 	}
1380 	btrfs_release_path(path);
1381 	return 1;
1382 }
1383 
1384 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1385 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1386 {
1387 	struct btrfs_key key;
1388 	struct btrfs_extent_item *ei;
1389 
1390 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1391 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1392 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1393 	*extent_start_ret = key.objectid;
1394 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1395 		*size_ret = path->nodes[0]->fs_info->nodesize;
1396 	else
1397 		*size_ret = key.offset;
1398 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1399 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1400 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1401 }
1402 
1403 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1404 					u64 physical, u64 physical_end)
1405 {
1406 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1407 	int ret = 0;
1408 
1409 	if (!btrfs_is_zoned(fs_info))
1410 		return 0;
1411 
1412 	mutex_lock(&sctx->wr_lock);
1413 	if (sctx->write_pointer < physical_end) {
1414 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1415 						    physical,
1416 						    sctx->write_pointer);
1417 		if (ret)
1418 			btrfs_err(fs_info,
1419 				  "zoned: failed to recover write pointer");
1420 	}
1421 	mutex_unlock(&sctx->wr_lock);
1422 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1423 
1424 	return ret;
1425 }
1426 
1427 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1428 				 struct scrub_stripe *stripe,
1429 				 u64 extent_start, u64 extent_len,
1430 				 u64 extent_flags, u64 extent_gen)
1431 {
1432 	for (u64 cur_logical = max(stripe->logical, extent_start);
1433 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1434 			       extent_start + extent_len);
1435 	     cur_logical += fs_info->sectorsize) {
1436 		const int nr_sector = (cur_logical - stripe->logical) >>
1437 				      fs_info->sectorsize_bits;
1438 		struct scrub_sector_verification *sector =
1439 						&stripe->sectors[nr_sector];
1440 
1441 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1442 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1443 			sector->is_metadata = true;
1444 			sector->generation = extent_gen;
1445 		}
1446 	}
1447 }
1448 
1449 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1450 {
1451 	stripe->extent_sector_bitmap = 0;
1452 	stripe->init_error_bitmap = 0;
1453 	stripe->init_nr_io_errors = 0;
1454 	stripe->init_nr_csum_errors = 0;
1455 	stripe->init_nr_meta_errors = 0;
1456 	stripe->error_bitmap = 0;
1457 	stripe->io_error_bitmap = 0;
1458 	stripe->csum_error_bitmap = 0;
1459 	stripe->meta_error_bitmap = 0;
1460 }
1461 
1462 /*
1463  * Locate one stripe which has at least one extent in its range.
1464  *
1465  * Return 0 if found such stripe, and store its info into @stripe.
1466  * Return >0 if there is no such stripe in the specified range.
1467  * Return <0 for error.
1468  */
1469 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1470 					struct btrfs_device *dev, u64 physical,
1471 					int mirror_num, u64 logical_start,
1472 					u32 logical_len,
1473 					struct scrub_stripe *stripe)
1474 {
1475 	struct btrfs_fs_info *fs_info = bg->fs_info;
1476 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1477 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1478 	const u64 logical_end = logical_start + logical_len;
1479 	struct btrfs_path path = { 0 };
1480 	u64 cur_logical = logical_start;
1481 	u64 stripe_end;
1482 	u64 extent_start;
1483 	u64 extent_len;
1484 	u64 extent_flags;
1485 	u64 extent_gen;
1486 	int ret;
1487 
1488 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1489 				   stripe->nr_sectors);
1490 	scrub_stripe_reset_bitmaps(stripe);
1491 
1492 	/* The range must be inside the bg. */
1493 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1494 
1495 	path.search_commit_root = 1;
1496 	path.skip_locking = 1;
1497 
1498 	ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
1499 	/* Either error or not found. */
1500 	if (ret)
1501 		goto out;
1502 	get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
1503 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1504 		stripe->nr_meta_extents++;
1505 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1506 		stripe->nr_data_extents++;
1507 	cur_logical = max(extent_start, cur_logical);
1508 
1509 	/*
1510 	 * Round down to stripe boundary.
1511 	 *
1512 	 * The extra calculation against bg->start is to handle block groups
1513 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1514 	 */
1515 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1516 			  bg->start;
1517 	stripe->physical = physical + stripe->logical - logical_start;
1518 	stripe->dev = dev;
1519 	stripe->bg = bg;
1520 	stripe->mirror_num = mirror_num;
1521 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1522 
1523 	/* Fill the first extent info into stripe->sectors[] array. */
1524 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1525 			     extent_flags, extent_gen);
1526 	cur_logical = extent_start + extent_len;
1527 
1528 	/* Fill the extent info for the remaining sectors. */
1529 	while (cur_logical <= stripe_end) {
1530 		ret = find_first_extent_item(extent_root, &path, cur_logical,
1531 					     stripe_end - cur_logical + 1);
1532 		if (ret < 0)
1533 			goto out;
1534 		if (ret > 0) {
1535 			ret = 0;
1536 			break;
1537 		}
1538 		get_extent_info(&path, &extent_start, &extent_len,
1539 				&extent_flags, &extent_gen);
1540 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1541 			stripe->nr_meta_extents++;
1542 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1543 			stripe->nr_data_extents++;
1544 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1545 				     extent_flags, extent_gen);
1546 		cur_logical = extent_start + extent_len;
1547 	}
1548 
1549 	/* Now fill the data csum. */
1550 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1551 		int sector_nr;
1552 		unsigned long csum_bitmap = 0;
1553 
1554 		/* Csum space should have already been allocated. */
1555 		ASSERT(stripe->csums);
1556 
1557 		/*
1558 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1559 		 * should contain at most 16 sectors.
1560 		 */
1561 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1562 
1563 		ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
1564 						stripe_end, stripe->csums,
1565 						&csum_bitmap, true);
1566 		if (ret < 0)
1567 			goto out;
1568 		if (ret > 0)
1569 			ret = 0;
1570 
1571 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1572 			stripe->sectors[sector_nr].csum = stripe->csums +
1573 				sector_nr * fs_info->csum_size;
1574 		}
1575 	}
1576 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1577 out:
1578 	btrfs_release_path(&path);
1579 	return ret;
1580 }
1581 
1582 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1583 {
1584 	scrub_stripe_reset_bitmaps(stripe);
1585 
1586 	stripe->nr_meta_extents = 0;
1587 	stripe->nr_data_extents = 0;
1588 	stripe->state = 0;
1589 
1590 	for (int i = 0; i < stripe->nr_sectors; i++) {
1591 		stripe->sectors[i].is_metadata = false;
1592 		stripe->sectors[i].csum = NULL;
1593 		stripe->sectors[i].generation = 0;
1594 	}
1595 }
1596 
1597 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1598 				      struct scrub_stripe *stripe)
1599 {
1600 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1601 	struct btrfs_bio *bbio;
1602 	int mirror = stripe->mirror_num;
1603 
1604 	ASSERT(stripe->bg);
1605 	ASSERT(stripe->mirror_num > 0);
1606 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1607 
1608 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1609 			       scrub_read_endio, stripe);
1610 
1611 	/* Read the whole stripe. */
1612 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1613 	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1614 		int ret;
1615 
1616 		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1617 		/* We should have allocated enough bio vectors. */
1618 		ASSERT(ret == PAGE_SIZE);
1619 	}
1620 	atomic_inc(&stripe->pending_io);
1621 
1622 	/*
1623 	 * For dev-replace, either user asks to avoid the source dev, or
1624 	 * the device is missing, we try the next mirror instead.
1625 	 */
1626 	if (sctx->is_dev_replace &&
1627 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1628 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1629 	     !stripe->dev->bdev)) {
1630 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1631 						  stripe->bg->length);
1632 
1633 		mirror = calc_next_mirror(mirror, num_copies);
1634 	}
1635 	btrfs_submit_bio(bbio, mirror);
1636 }
1637 
1638 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1639 {
1640 	int i;
1641 
1642 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1643 		if (stripe->sectors[i].is_metadata) {
1644 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1645 
1646 			btrfs_err(fs_info,
1647 			"stripe %llu has unrepaired metadata sector at %llu",
1648 				  stripe->logical,
1649 				  stripe->logical + (i << fs_info->sectorsize_bits));
1650 			return true;
1651 		}
1652 	}
1653 	return false;
1654 }
1655 
1656 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1657 {
1658 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1659 	struct scrub_stripe *stripe;
1660 	const int nr_stripes = sctx->cur_stripe;
1661 	int ret = 0;
1662 
1663 	if (!nr_stripes)
1664 		return 0;
1665 
1666 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1667 
1668 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1669 			      btrfs_stripe_nr_to_offset(nr_stripes));
1670 	for (int i = 0; i < nr_stripes; i++) {
1671 		stripe = &sctx->stripes[i];
1672 		scrub_submit_initial_read(sctx, stripe);
1673 	}
1674 
1675 	for (int i = 0; i < nr_stripes; i++) {
1676 		stripe = &sctx->stripes[i];
1677 
1678 		wait_event(stripe->repair_wait,
1679 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1680 	}
1681 
1682 	/*
1683 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1684 	 * in-place, but queue the bg to be relocated.
1685 	 */
1686 	if (btrfs_is_zoned(fs_info)) {
1687 		for (int i = 0; i < nr_stripes; i++) {
1688 			stripe = &sctx->stripes[i];
1689 
1690 			if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
1691 				btrfs_repair_one_zone(fs_info,
1692 						      sctx->stripes[0].bg->start);
1693 				break;
1694 			}
1695 		}
1696 	} else if (!sctx->readonly) {
1697 		for (int i = 0; i < nr_stripes; i++) {
1698 			unsigned long repaired;
1699 
1700 			stripe = &sctx->stripes[i];
1701 
1702 			bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1703 				      &stripe->error_bitmap, stripe->nr_sectors);
1704 			scrub_write_sectors(sctx, stripe, repaired, false);
1705 		}
1706 	}
1707 
1708 	/* Submit for dev-replace. */
1709 	if (sctx->is_dev_replace) {
1710 		/*
1711 		 * For dev-replace, if we know there is something wrong with
1712 		 * metadata, we should immedately abort.
1713 		 */
1714 		for (int i = 0; i < nr_stripes; i++) {
1715 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1716 				ret = -EIO;
1717 				goto out;
1718 			}
1719 		}
1720 		for (int i = 0; i < nr_stripes; i++) {
1721 			unsigned long good;
1722 
1723 			stripe = &sctx->stripes[i];
1724 
1725 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1726 
1727 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1728 				      &stripe->error_bitmap, stripe->nr_sectors);
1729 			scrub_write_sectors(sctx, stripe, good, true);
1730 		}
1731 	}
1732 
1733 	/* Wait for the above writebacks to finish. */
1734 	for (int i = 0; i < nr_stripes; i++) {
1735 		stripe = &sctx->stripes[i];
1736 
1737 		wait_scrub_stripe_io(stripe);
1738 		scrub_reset_stripe(stripe);
1739 	}
1740 out:
1741 	sctx->cur_stripe = 0;
1742 	return ret;
1743 }
1744 
1745 static void raid56_scrub_wait_endio(struct bio *bio)
1746 {
1747 	complete(bio->bi_private);
1748 }
1749 
1750 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1751 			      struct btrfs_device *dev, int mirror_num,
1752 			      u64 logical, u32 length, u64 physical)
1753 {
1754 	struct scrub_stripe *stripe;
1755 	int ret;
1756 
1757 	/* No available slot, submit all stripes and wait for them. */
1758 	if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) {
1759 		ret = flush_scrub_stripes(sctx);
1760 		if (ret < 0)
1761 			return ret;
1762 	}
1763 
1764 	stripe = &sctx->stripes[sctx->cur_stripe];
1765 
1766 	/* We can queue one stripe using the remaining slot. */
1767 	scrub_reset_stripe(stripe);
1768 	ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
1769 					   logical, length, stripe);
1770 	/* Either >0 as no more extents or <0 for error. */
1771 	if (ret)
1772 		return ret;
1773 	sctx->cur_stripe++;
1774 	return 0;
1775 }
1776 
1777 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1778 				      struct btrfs_device *scrub_dev,
1779 				      struct btrfs_block_group *bg,
1780 				      struct map_lookup *map,
1781 				      u64 full_stripe_start)
1782 {
1783 	DECLARE_COMPLETION_ONSTACK(io_done);
1784 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1785 	struct btrfs_raid_bio *rbio;
1786 	struct btrfs_io_context *bioc = NULL;
1787 	struct bio *bio;
1788 	struct scrub_stripe *stripe;
1789 	bool all_empty = true;
1790 	const int data_stripes = nr_data_stripes(map);
1791 	unsigned long extent_bitmap = 0;
1792 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1793 	int ret;
1794 
1795 	ASSERT(sctx->raid56_data_stripes);
1796 
1797 	for (int i = 0; i < data_stripes; i++) {
1798 		int stripe_index;
1799 		int rot;
1800 		u64 physical;
1801 
1802 		stripe = &sctx->raid56_data_stripes[i];
1803 		rot = div_u64(full_stripe_start - bg->start,
1804 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1805 		stripe_index = (i + rot) % map->num_stripes;
1806 		physical = map->stripes[stripe_index].physical +
1807 			   btrfs_stripe_nr_to_offset(rot);
1808 
1809 		scrub_reset_stripe(stripe);
1810 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1811 		ret = scrub_find_fill_first_stripe(bg,
1812 				map->stripes[stripe_index].dev, physical, 1,
1813 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1814 				BTRFS_STRIPE_LEN, stripe);
1815 		if (ret < 0)
1816 			goto out;
1817 		/*
1818 		 * No extent in this data stripe, need to manually mark them
1819 		 * initialized to make later read submission happy.
1820 		 */
1821 		if (ret > 0) {
1822 			stripe->logical = full_stripe_start +
1823 					  btrfs_stripe_nr_to_offset(i);
1824 			stripe->dev = map->stripes[stripe_index].dev;
1825 			stripe->mirror_num = 1;
1826 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1827 		}
1828 	}
1829 
1830 	/* Check if all data stripes are empty. */
1831 	for (int i = 0; i < data_stripes; i++) {
1832 		stripe = &sctx->raid56_data_stripes[i];
1833 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1834 			all_empty = false;
1835 			break;
1836 		}
1837 	}
1838 	if (all_empty) {
1839 		ret = 0;
1840 		goto out;
1841 	}
1842 
1843 	for (int i = 0; i < data_stripes; i++) {
1844 		stripe = &sctx->raid56_data_stripes[i];
1845 		scrub_submit_initial_read(sctx, stripe);
1846 	}
1847 	for (int i = 0; i < data_stripes; i++) {
1848 		stripe = &sctx->raid56_data_stripes[i];
1849 
1850 		wait_event(stripe->repair_wait,
1851 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1852 	}
1853 	/* For now, no zoned support for RAID56. */
1854 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1855 
1856 	/* Writeback for the repaired sectors. */
1857 	for (int i = 0; i < data_stripes; i++) {
1858 		unsigned long repaired;
1859 
1860 		stripe = &sctx->raid56_data_stripes[i];
1861 
1862 		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1863 			      &stripe->error_bitmap, stripe->nr_sectors);
1864 		scrub_write_sectors(sctx, stripe, repaired, false);
1865 	}
1866 
1867 	/* Wait for the above writebacks to finish. */
1868 	for (int i = 0; i < data_stripes; i++) {
1869 		stripe = &sctx->raid56_data_stripes[i];
1870 
1871 		wait_scrub_stripe_io(stripe);
1872 	}
1873 
1874 	/*
1875 	 * Now all data stripes are properly verified. Check if we have any
1876 	 * unrepaired, if so abort immediately or we could further corrupt the
1877 	 * P/Q stripes.
1878 	 *
1879 	 * During the loop, also populate extent_bitmap.
1880 	 */
1881 	for (int i = 0; i < data_stripes; i++) {
1882 		unsigned long error;
1883 
1884 		stripe = &sctx->raid56_data_stripes[i];
1885 
1886 		/*
1887 		 * We should only check the errors where there is an extent.
1888 		 * As we may hit an empty data stripe while it's missing.
1889 		 */
1890 		bitmap_and(&error, &stripe->error_bitmap,
1891 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
1892 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
1893 			btrfs_err(fs_info,
1894 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1895 				  full_stripe_start, i, stripe->nr_sectors,
1896 				  &error);
1897 			ret = -EIO;
1898 			goto out;
1899 		}
1900 		bitmap_or(&extent_bitmap, &extent_bitmap,
1901 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
1902 	}
1903 
1904 	/* Now we can check and regenerate the P/Q stripe. */
1905 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1906 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1907 	bio->bi_private = &io_done;
1908 	bio->bi_end_io = raid56_scrub_wait_endio;
1909 
1910 	btrfs_bio_counter_inc_blocked(fs_info);
1911 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1912 			      &length, &bioc, NULL, NULL, 1);
1913 	if (ret < 0) {
1914 		btrfs_put_bioc(bioc);
1915 		btrfs_bio_counter_dec(fs_info);
1916 		goto out;
1917 	}
1918 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1919 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1920 	btrfs_put_bioc(bioc);
1921 	if (!rbio) {
1922 		ret = -ENOMEM;
1923 		btrfs_bio_counter_dec(fs_info);
1924 		goto out;
1925 	}
1926 	/* Use the recovered stripes as cache to avoid read them from disk again. */
1927 	for (int i = 0; i < data_stripes; i++) {
1928 		stripe = &sctx->raid56_data_stripes[i];
1929 
1930 		raid56_parity_cache_data_pages(rbio, stripe->pages,
1931 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
1932 	}
1933 	raid56_parity_submit_scrub_rbio(rbio);
1934 	wait_for_completion_io(&io_done);
1935 	ret = blk_status_to_errno(bio->bi_status);
1936 	bio_put(bio);
1937 	btrfs_bio_counter_dec(fs_info);
1938 
1939 out:
1940 	return ret;
1941 }
1942 
1943 /*
1944  * Scrub one range which can only has simple mirror based profile.
1945  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
1946  *  RAID0/RAID10).
1947  *
1948  * Since we may need to handle a subset of block group, we need @logical_start
1949  * and @logical_length parameter.
1950  */
1951 static int scrub_simple_mirror(struct scrub_ctx *sctx,
1952 			       struct btrfs_block_group *bg,
1953 			       struct map_lookup *map,
1954 			       u64 logical_start, u64 logical_length,
1955 			       struct btrfs_device *device,
1956 			       u64 physical, int mirror_num)
1957 {
1958 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1959 	const u64 logical_end = logical_start + logical_length;
1960 	/* An artificial limit, inherit from old scrub behavior */
1961 	struct btrfs_path path = { 0 };
1962 	u64 cur_logical = logical_start;
1963 	int ret;
1964 
1965 	/* The range must be inside the bg */
1966 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1967 
1968 	path.search_commit_root = 1;
1969 	path.skip_locking = 1;
1970 	/* Go through each extent items inside the logical range */
1971 	while (cur_logical < logical_end) {
1972 		u64 cur_physical = physical + cur_logical - logical_start;
1973 
1974 		/* Canceled? */
1975 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1976 		    atomic_read(&sctx->cancel_req)) {
1977 			ret = -ECANCELED;
1978 			break;
1979 		}
1980 		/* Paused? */
1981 		if (atomic_read(&fs_info->scrub_pause_req)) {
1982 			/* Push queued extents */
1983 			scrub_blocked_if_needed(fs_info);
1984 		}
1985 		/* Block group removed? */
1986 		spin_lock(&bg->lock);
1987 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
1988 			spin_unlock(&bg->lock);
1989 			ret = 0;
1990 			break;
1991 		}
1992 		spin_unlock(&bg->lock);
1993 
1994 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
1995 					 cur_logical, logical_end - cur_logical,
1996 					 cur_physical);
1997 		if (ret > 0) {
1998 			/* No more extent, just update the accounting */
1999 			sctx->stat.last_physical = physical + logical_length;
2000 			ret = 0;
2001 			break;
2002 		}
2003 		if (ret < 0)
2004 			break;
2005 
2006 		ASSERT(sctx->cur_stripe > 0);
2007 		cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
2008 			      + BTRFS_STRIPE_LEN;
2009 
2010 		/* Don't hold CPU for too long time */
2011 		cond_resched();
2012 	}
2013 	btrfs_release_path(&path);
2014 	return ret;
2015 }
2016 
2017 /* Calculate the full stripe length for simple stripe based profiles */
2018 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2019 {
2020 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2021 			    BTRFS_BLOCK_GROUP_RAID10));
2022 
2023 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2024 }
2025 
2026 /* Get the logical bytenr for the stripe */
2027 static u64 simple_stripe_get_logical(struct map_lookup *map,
2028 				     struct btrfs_block_group *bg,
2029 				     int stripe_index)
2030 {
2031 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2032 			    BTRFS_BLOCK_GROUP_RAID10));
2033 	ASSERT(stripe_index < map->num_stripes);
2034 
2035 	/*
2036 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2037 	 * skip.
2038 	 */
2039 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2040 	       bg->start;
2041 }
2042 
2043 /* Get the mirror number for the stripe */
2044 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2045 {
2046 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2047 			    BTRFS_BLOCK_GROUP_RAID10));
2048 	ASSERT(stripe_index < map->num_stripes);
2049 
2050 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2051 	return stripe_index % map->sub_stripes + 1;
2052 }
2053 
2054 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2055 			       struct btrfs_block_group *bg,
2056 			       struct map_lookup *map,
2057 			       struct btrfs_device *device,
2058 			       int stripe_index)
2059 {
2060 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2061 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2062 	const u64 orig_physical = map->stripes[stripe_index].physical;
2063 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2064 	u64 cur_logical = orig_logical;
2065 	u64 cur_physical = orig_physical;
2066 	int ret = 0;
2067 
2068 	while (cur_logical < bg->start + bg->length) {
2069 		/*
2070 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2071 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2072 		 * this stripe.
2073 		 */
2074 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2075 					  BTRFS_STRIPE_LEN, device, cur_physical,
2076 					  mirror_num);
2077 		if (ret)
2078 			return ret;
2079 		/* Skip to next stripe which belongs to the target device */
2080 		cur_logical += logical_increment;
2081 		/* For physical offset, we just go to next stripe */
2082 		cur_physical += BTRFS_STRIPE_LEN;
2083 	}
2084 	return ret;
2085 }
2086 
2087 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2088 					   struct btrfs_block_group *bg,
2089 					   struct extent_map *em,
2090 					   struct btrfs_device *scrub_dev,
2091 					   int stripe_index)
2092 {
2093 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2094 	struct map_lookup *map = em->map_lookup;
2095 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2096 	const u64 chunk_logical = bg->start;
2097 	int ret;
2098 	int ret2;
2099 	u64 physical = map->stripes[stripe_index].physical;
2100 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2101 	const u64 physical_end = physical + dev_stripe_len;
2102 	u64 logical;
2103 	u64 logic_end;
2104 	/* The logical increment after finishing one stripe */
2105 	u64 increment;
2106 	/* Offset inside the chunk */
2107 	u64 offset;
2108 	u64 stripe_logical;
2109 	int stop_loop = 0;
2110 
2111 	scrub_blocked_if_needed(fs_info);
2112 
2113 	if (sctx->is_dev_replace &&
2114 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2115 		mutex_lock(&sctx->wr_lock);
2116 		sctx->write_pointer = physical;
2117 		mutex_unlock(&sctx->wr_lock);
2118 	}
2119 
2120 	/* Prepare the extra data stripes used by RAID56. */
2121 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2122 		ASSERT(sctx->raid56_data_stripes == NULL);
2123 
2124 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2125 						    sizeof(struct scrub_stripe),
2126 						    GFP_KERNEL);
2127 		if (!sctx->raid56_data_stripes) {
2128 			ret = -ENOMEM;
2129 			goto out;
2130 		}
2131 		for (int i = 0; i < nr_data_stripes(map); i++) {
2132 			ret = init_scrub_stripe(fs_info,
2133 						&sctx->raid56_data_stripes[i]);
2134 			if (ret < 0)
2135 				goto out;
2136 			sctx->raid56_data_stripes[i].bg = bg;
2137 			sctx->raid56_data_stripes[i].sctx = sctx;
2138 		}
2139 	}
2140 	/*
2141 	 * There used to be a big double loop to handle all profiles using the
2142 	 * same routine, which grows larger and more gross over time.
2143 	 *
2144 	 * So here we handle each profile differently, so simpler profiles
2145 	 * have simpler scrubbing function.
2146 	 */
2147 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2148 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2149 		/*
2150 		 * Above check rules out all complex profile, the remaining
2151 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2152 		 * mirrored duplication without stripe.
2153 		 *
2154 		 * Only @physical and @mirror_num needs to calculated using
2155 		 * @stripe_index.
2156 		 */
2157 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2158 				scrub_dev, map->stripes[stripe_index].physical,
2159 				stripe_index + 1);
2160 		offset = 0;
2161 		goto out;
2162 	}
2163 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2164 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2165 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2166 		goto out;
2167 	}
2168 
2169 	/* Only RAID56 goes through the old code */
2170 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2171 	ret = 0;
2172 
2173 	/* Calculate the logical end of the stripe */
2174 	get_raid56_logic_offset(physical_end, stripe_index,
2175 				map, &logic_end, NULL);
2176 	logic_end += chunk_logical;
2177 
2178 	/* Initialize @offset in case we need to go to out: label */
2179 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2180 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2181 
2182 	/*
2183 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2184 	 * using their physical offset.
2185 	 */
2186 	while (physical < physical_end) {
2187 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2188 					      &logical, &stripe_logical);
2189 		logical += chunk_logical;
2190 		if (ret) {
2191 			/* it is parity strip */
2192 			stripe_logical += chunk_logical;
2193 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2194 							 map, stripe_logical);
2195 			if (ret)
2196 				goto out;
2197 			goto next;
2198 		}
2199 
2200 		/*
2201 		 * Now we're at a data stripe, scrub each extents in the range.
2202 		 *
2203 		 * At this stage, if we ignore the repair part, inside each data
2204 		 * stripe it is no different than SINGLE profile.
2205 		 * We can reuse scrub_simple_mirror() here, as the repair part
2206 		 * is still based on @mirror_num.
2207 		 */
2208 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2209 					  scrub_dev, physical, 1);
2210 		if (ret < 0)
2211 			goto out;
2212 next:
2213 		logical += increment;
2214 		physical += BTRFS_STRIPE_LEN;
2215 		spin_lock(&sctx->stat_lock);
2216 		if (stop_loop)
2217 			sctx->stat.last_physical =
2218 				map->stripes[stripe_index].physical + dev_stripe_len;
2219 		else
2220 			sctx->stat.last_physical = physical;
2221 		spin_unlock(&sctx->stat_lock);
2222 		if (stop_loop)
2223 			break;
2224 	}
2225 out:
2226 	ret2 = flush_scrub_stripes(sctx);
2227 	if (!ret)
2228 		ret = ret2;
2229 	if (sctx->raid56_data_stripes) {
2230 		for (int i = 0; i < nr_data_stripes(map); i++)
2231 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2232 		kfree(sctx->raid56_data_stripes);
2233 		sctx->raid56_data_stripes = NULL;
2234 	}
2235 
2236 	if (sctx->is_dev_replace && ret >= 0) {
2237 		int ret2;
2238 
2239 		ret2 = sync_write_pointer_for_zoned(sctx,
2240 				chunk_logical + offset,
2241 				map->stripes[stripe_index].physical,
2242 				physical_end);
2243 		if (ret2)
2244 			ret = ret2;
2245 	}
2246 
2247 	return ret < 0 ? ret : 0;
2248 }
2249 
2250 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2251 					  struct btrfs_block_group *bg,
2252 					  struct btrfs_device *scrub_dev,
2253 					  u64 dev_offset,
2254 					  u64 dev_extent_len)
2255 {
2256 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2257 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2258 	struct map_lookup *map;
2259 	struct extent_map *em;
2260 	int i;
2261 	int ret = 0;
2262 
2263 	read_lock(&map_tree->lock);
2264 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2265 	read_unlock(&map_tree->lock);
2266 
2267 	if (!em) {
2268 		/*
2269 		 * Might have been an unused block group deleted by the cleaner
2270 		 * kthread or relocation.
2271 		 */
2272 		spin_lock(&bg->lock);
2273 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2274 			ret = -EINVAL;
2275 		spin_unlock(&bg->lock);
2276 
2277 		return ret;
2278 	}
2279 	if (em->start != bg->start)
2280 		goto out;
2281 	if (em->len < dev_extent_len)
2282 		goto out;
2283 
2284 	map = em->map_lookup;
2285 	for (i = 0; i < map->num_stripes; ++i) {
2286 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2287 		    map->stripes[i].physical == dev_offset) {
2288 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2289 			if (ret)
2290 				goto out;
2291 		}
2292 	}
2293 out:
2294 	free_extent_map(em);
2295 
2296 	return ret;
2297 }
2298 
2299 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2300 					  struct btrfs_block_group *cache)
2301 {
2302 	struct btrfs_fs_info *fs_info = cache->fs_info;
2303 	struct btrfs_trans_handle *trans;
2304 
2305 	if (!btrfs_is_zoned(fs_info))
2306 		return 0;
2307 
2308 	btrfs_wait_block_group_reservations(cache);
2309 	btrfs_wait_nocow_writers(cache);
2310 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2311 
2312 	trans = btrfs_join_transaction(root);
2313 	if (IS_ERR(trans))
2314 		return PTR_ERR(trans);
2315 	return btrfs_commit_transaction(trans);
2316 }
2317 
2318 static noinline_for_stack
2319 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2320 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2321 {
2322 	struct btrfs_dev_extent *dev_extent = NULL;
2323 	struct btrfs_path *path;
2324 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2325 	struct btrfs_root *root = fs_info->dev_root;
2326 	u64 chunk_offset;
2327 	int ret = 0;
2328 	int ro_set;
2329 	int slot;
2330 	struct extent_buffer *l;
2331 	struct btrfs_key key;
2332 	struct btrfs_key found_key;
2333 	struct btrfs_block_group *cache;
2334 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2335 
2336 	path = btrfs_alloc_path();
2337 	if (!path)
2338 		return -ENOMEM;
2339 
2340 	path->reada = READA_FORWARD;
2341 	path->search_commit_root = 1;
2342 	path->skip_locking = 1;
2343 
2344 	key.objectid = scrub_dev->devid;
2345 	key.offset = 0ull;
2346 	key.type = BTRFS_DEV_EXTENT_KEY;
2347 
2348 	while (1) {
2349 		u64 dev_extent_len;
2350 
2351 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2352 		if (ret < 0)
2353 			break;
2354 		if (ret > 0) {
2355 			if (path->slots[0] >=
2356 			    btrfs_header_nritems(path->nodes[0])) {
2357 				ret = btrfs_next_leaf(root, path);
2358 				if (ret < 0)
2359 					break;
2360 				if (ret > 0) {
2361 					ret = 0;
2362 					break;
2363 				}
2364 			} else {
2365 				ret = 0;
2366 			}
2367 		}
2368 
2369 		l = path->nodes[0];
2370 		slot = path->slots[0];
2371 
2372 		btrfs_item_key_to_cpu(l, &found_key, slot);
2373 
2374 		if (found_key.objectid != scrub_dev->devid)
2375 			break;
2376 
2377 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2378 			break;
2379 
2380 		if (found_key.offset >= end)
2381 			break;
2382 
2383 		if (found_key.offset < key.offset)
2384 			break;
2385 
2386 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2387 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2388 
2389 		if (found_key.offset + dev_extent_len <= start)
2390 			goto skip;
2391 
2392 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2393 
2394 		/*
2395 		 * get a reference on the corresponding block group to prevent
2396 		 * the chunk from going away while we scrub it
2397 		 */
2398 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2399 
2400 		/* some chunks are removed but not committed to disk yet,
2401 		 * continue scrubbing */
2402 		if (!cache)
2403 			goto skip;
2404 
2405 		ASSERT(cache->start <= chunk_offset);
2406 		/*
2407 		 * We are using the commit root to search for device extents, so
2408 		 * that means we could have found a device extent item from a
2409 		 * block group that was deleted in the current transaction. The
2410 		 * logical start offset of the deleted block group, stored at
2411 		 * @chunk_offset, might be part of the logical address range of
2412 		 * a new block group (which uses different physical extents).
2413 		 * In this case btrfs_lookup_block_group() has returned the new
2414 		 * block group, and its start address is less than @chunk_offset.
2415 		 *
2416 		 * We skip such new block groups, because it's pointless to
2417 		 * process them, as we won't find their extents because we search
2418 		 * for them using the commit root of the extent tree. For a device
2419 		 * replace it's also fine to skip it, we won't miss copying them
2420 		 * to the target device because we have the write duplication
2421 		 * setup through the regular write path (by btrfs_map_block()),
2422 		 * and we have committed a transaction when we started the device
2423 		 * replace, right after setting up the device replace state.
2424 		 */
2425 		if (cache->start < chunk_offset) {
2426 			btrfs_put_block_group(cache);
2427 			goto skip;
2428 		}
2429 
2430 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2431 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2432 				btrfs_put_block_group(cache);
2433 				goto skip;
2434 			}
2435 		}
2436 
2437 		/*
2438 		 * Make sure that while we are scrubbing the corresponding block
2439 		 * group doesn't get its logical address and its device extents
2440 		 * reused for another block group, which can possibly be of a
2441 		 * different type and different profile. We do this to prevent
2442 		 * false error detections and crashes due to bogus attempts to
2443 		 * repair extents.
2444 		 */
2445 		spin_lock(&cache->lock);
2446 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2447 			spin_unlock(&cache->lock);
2448 			btrfs_put_block_group(cache);
2449 			goto skip;
2450 		}
2451 		btrfs_freeze_block_group(cache);
2452 		spin_unlock(&cache->lock);
2453 
2454 		/*
2455 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2456 		 * to avoid deadlock caused by:
2457 		 * btrfs_inc_block_group_ro()
2458 		 * -> btrfs_wait_for_commit()
2459 		 * -> btrfs_commit_transaction()
2460 		 * -> btrfs_scrub_pause()
2461 		 */
2462 		scrub_pause_on(fs_info);
2463 
2464 		/*
2465 		 * Don't do chunk preallocation for scrub.
2466 		 *
2467 		 * This is especially important for SYSTEM bgs, or we can hit
2468 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2469 		 * 1. The only SYSTEM bg is marked RO.
2470 		 *    Since SYSTEM bg is small, that's pretty common.
2471 		 * 2. New SYSTEM bg will be allocated
2472 		 *    Due to regular version will allocate new chunk.
2473 		 * 3. New SYSTEM bg is empty and will get cleaned up
2474 		 *    Before cleanup really happens, it's marked RO again.
2475 		 * 4. Empty SYSTEM bg get scrubbed
2476 		 *    We go back to 2.
2477 		 *
2478 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2479 		 * thread can't be triggered fast enough, and use up all space
2480 		 * of btrfs_super_block::sys_chunk_array
2481 		 *
2482 		 * While for dev replace, we need to try our best to mark block
2483 		 * group RO, to prevent race between:
2484 		 * - Write duplication
2485 		 *   Contains latest data
2486 		 * - Scrub copy
2487 		 *   Contains data from commit tree
2488 		 *
2489 		 * If target block group is not marked RO, nocow writes can
2490 		 * be overwritten by scrub copy, causing data corruption.
2491 		 * So for dev-replace, it's not allowed to continue if a block
2492 		 * group is not RO.
2493 		 */
2494 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2495 		if (!ret && sctx->is_dev_replace) {
2496 			ret = finish_extent_writes_for_zoned(root, cache);
2497 			if (ret) {
2498 				btrfs_dec_block_group_ro(cache);
2499 				scrub_pause_off(fs_info);
2500 				btrfs_put_block_group(cache);
2501 				break;
2502 			}
2503 		}
2504 
2505 		if (ret == 0) {
2506 			ro_set = 1;
2507 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2508 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2509 			/*
2510 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2511 			 * failed in creating new chunk for metadata.
2512 			 * It is not a problem for scrub, because
2513 			 * metadata are always cowed, and our scrub paused
2514 			 * commit_transactions.
2515 			 *
2516 			 * For RAID56 chunks, we have to mark them read-only
2517 			 * for scrub, as later we would use our own cache
2518 			 * out of RAID56 realm.
2519 			 * Thus we want the RAID56 bg to be marked RO to
2520 			 * prevent RMW from screwing up out cache.
2521 			 */
2522 			ro_set = 0;
2523 		} else if (ret == -ETXTBSY) {
2524 			btrfs_warn(fs_info,
2525 		   "skipping scrub of block group %llu due to active swapfile",
2526 				   cache->start);
2527 			scrub_pause_off(fs_info);
2528 			ret = 0;
2529 			goto skip_unfreeze;
2530 		} else {
2531 			btrfs_warn(fs_info,
2532 				   "failed setting block group ro: %d", ret);
2533 			btrfs_unfreeze_block_group(cache);
2534 			btrfs_put_block_group(cache);
2535 			scrub_pause_off(fs_info);
2536 			break;
2537 		}
2538 
2539 		/*
2540 		 * Now the target block is marked RO, wait for nocow writes to
2541 		 * finish before dev-replace.
2542 		 * COW is fine, as COW never overwrites extents in commit tree.
2543 		 */
2544 		if (sctx->is_dev_replace) {
2545 			btrfs_wait_nocow_writers(cache);
2546 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2547 					cache->length);
2548 		}
2549 
2550 		scrub_pause_off(fs_info);
2551 		down_write(&dev_replace->rwsem);
2552 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2553 		dev_replace->cursor_left = found_key.offset;
2554 		dev_replace->item_needs_writeback = 1;
2555 		up_write(&dev_replace->rwsem);
2556 
2557 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2558 				  dev_extent_len);
2559 		if (sctx->is_dev_replace &&
2560 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2561 						      cache, found_key.offset))
2562 			ro_set = 0;
2563 
2564 		down_write(&dev_replace->rwsem);
2565 		dev_replace->cursor_left = dev_replace->cursor_right;
2566 		dev_replace->item_needs_writeback = 1;
2567 		up_write(&dev_replace->rwsem);
2568 
2569 		if (ro_set)
2570 			btrfs_dec_block_group_ro(cache);
2571 
2572 		/*
2573 		 * We might have prevented the cleaner kthread from deleting
2574 		 * this block group if it was already unused because we raced
2575 		 * and set it to RO mode first. So add it back to the unused
2576 		 * list, otherwise it might not ever be deleted unless a manual
2577 		 * balance is triggered or it becomes used and unused again.
2578 		 */
2579 		spin_lock(&cache->lock);
2580 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2581 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2582 			spin_unlock(&cache->lock);
2583 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2584 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2585 							 cache);
2586 			else
2587 				btrfs_mark_bg_unused(cache);
2588 		} else {
2589 			spin_unlock(&cache->lock);
2590 		}
2591 skip_unfreeze:
2592 		btrfs_unfreeze_block_group(cache);
2593 		btrfs_put_block_group(cache);
2594 		if (ret)
2595 			break;
2596 		if (sctx->is_dev_replace &&
2597 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2598 			ret = -EIO;
2599 			break;
2600 		}
2601 		if (sctx->stat.malloc_errors > 0) {
2602 			ret = -ENOMEM;
2603 			break;
2604 		}
2605 skip:
2606 		key.offset = found_key.offset + dev_extent_len;
2607 		btrfs_release_path(path);
2608 	}
2609 
2610 	btrfs_free_path(path);
2611 
2612 	return ret;
2613 }
2614 
2615 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2616 			   struct page *page, u64 physical, u64 generation)
2617 {
2618 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2619 	struct bio_vec bvec;
2620 	struct bio bio;
2621 	struct btrfs_super_block *sb = page_address(page);
2622 	int ret;
2623 
2624 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2625 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2626 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2627 	ret = submit_bio_wait(&bio);
2628 	bio_uninit(&bio);
2629 
2630 	if (ret < 0)
2631 		return ret;
2632 	ret = btrfs_check_super_csum(fs_info, sb);
2633 	if (ret != 0) {
2634 		btrfs_err_rl(fs_info,
2635 			"super block at physical %llu devid %llu has bad csum",
2636 			physical, dev->devid);
2637 		return -EIO;
2638 	}
2639 	if (btrfs_super_generation(sb) != generation) {
2640 		btrfs_err_rl(fs_info,
2641 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2642 			     physical, dev->devid,
2643 			     btrfs_super_generation(sb), generation);
2644 		return -EUCLEAN;
2645 	}
2646 
2647 	return btrfs_validate_super(fs_info, sb, -1);
2648 }
2649 
2650 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2651 					   struct btrfs_device *scrub_dev)
2652 {
2653 	int	i;
2654 	u64	bytenr;
2655 	u64	gen;
2656 	int ret = 0;
2657 	struct page *page;
2658 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2659 
2660 	if (BTRFS_FS_ERROR(fs_info))
2661 		return -EROFS;
2662 
2663 	page = alloc_page(GFP_KERNEL);
2664 	if (!page) {
2665 		spin_lock(&sctx->stat_lock);
2666 		sctx->stat.malloc_errors++;
2667 		spin_unlock(&sctx->stat_lock);
2668 		return -ENOMEM;
2669 	}
2670 
2671 	/* Seed devices of a new filesystem has their own generation. */
2672 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2673 		gen = scrub_dev->generation;
2674 	else
2675 		gen = fs_info->last_trans_committed;
2676 
2677 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2678 		bytenr = btrfs_sb_offset(i);
2679 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2680 		    scrub_dev->commit_total_bytes)
2681 			break;
2682 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2683 			continue;
2684 
2685 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2686 		if (ret) {
2687 			spin_lock(&sctx->stat_lock);
2688 			sctx->stat.super_errors++;
2689 			spin_unlock(&sctx->stat_lock);
2690 		}
2691 	}
2692 	__free_page(page);
2693 	return 0;
2694 }
2695 
2696 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2697 {
2698 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2699 					&fs_info->scrub_lock)) {
2700 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2701 
2702 		fs_info->scrub_workers = NULL;
2703 		mutex_unlock(&fs_info->scrub_lock);
2704 
2705 		if (scrub_workers)
2706 			destroy_workqueue(scrub_workers);
2707 	}
2708 }
2709 
2710 /*
2711  * get a reference count on fs_info->scrub_workers. start worker if necessary
2712  */
2713 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2714 						int is_dev_replace)
2715 {
2716 	struct workqueue_struct *scrub_workers = NULL;
2717 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2718 	int max_active = fs_info->thread_pool_size;
2719 	int ret = -ENOMEM;
2720 
2721 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2722 		return 0;
2723 
2724 	if (is_dev_replace)
2725 		scrub_workers = alloc_ordered_workqueue("btrfs-scrub", flags);
2726 	else
2727 		scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2728 	if (!scrub_workers)
2729 		return -ENOMEM;
2730 
2731 	mutex_lock(&fs_info->scrub_lock);
2732 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2733 		ASSERT(fs_info->scrub_workers == NULL);
2734 		fs_info->scrub_workers = scrub_workers;
2735 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2736 		mutex_unlock(&fs_info->scrub_lock);
2737 		return 0;
2738 	}
2739 	/* Other thread raced in and created the workers for us */
2740 	refcount_inc(&fs_info->scrub_workers_refcnt);
2741 	mutex_unlock(&fs_info->scrub_lock);
2742 
2743 	ret = 0;
2744 
2745 	destroy_workqueue(scrub_workers);
2746 	return ret;
2747 }
2748 
2749 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2750 		    u64 end, struct btrfs_scrub_progress *progress,
2751 		    int readonly, int is_dev_replace)
2752 {
2753 	struct btrfs_dev_lookup_args args = { .devid = devid };
2754 	struct scrub_ctx *sctx;
2755 	int ret;
2756 	struct btrfs_device *dev;
2757 	unsigned int nofs_flag;
2758 	bool need_commit = false;
2759 
2760 	if (btrfs_fs_closing(fs_info))
2761 		return -EAGAIN;
2762 
2763 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2764 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2765 
2766 	/*
2767 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2768 	 * value (max nodesize / min sectorsize), thus nodesize should always
2769 	 * be fine.
2770 	 */
2771 	ASSERT(fs_info->nodesize <=
2772 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2773 
2774 	/* Allocate outside of device_list_mutex */
2775 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2776 	if (IS_ERR(sctx))
2777 		return PTR_ERR(sctx);
2778 
2779 	ret = scrub_workers_get(fs_info, is_dev_replace);
2780 	if (ret)
2781 		goto out_free_ctx;
2782 
2783 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2784 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2785 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2786 		     !is_dev_replace)) {
2787 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2788 		ret = -ENODEV;
2789 		goto out;
2790 	}
2791 
2792 	if (!is_dev_replace && !readonly &&
2793 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2794 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2795 		btrfs_err_in_rcu(fs_info,
2796 			"scrub on devid %llu: filesystem on %s is not writable",
2797 				 devid, btrfs_dev_name(dev));
2798 		ret = -EROFS;
2799 		goto out;
2800 	}
2801 
2802 	mutex_lock(&fs_info->scrub_lock);
2803 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2804 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2805 		mutex_unlock(&fs_info->scrub_lock);
2806 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2807 		ret = -EIO;
2808 		goto out;
2809 	}
2810 
2811 	down_read(&fs_info->dev_replace.rwsem);
2812 	if (dev->scrub_ctx ||
2813 	    (!is_dev_replace &&
2814 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2815 		up_read(&fs_info->dev_replace.rwsem);
2816 		mutex_unlock(&fs_info->scrub_lock);
2817 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2818 		ret = -EINPROGRESS;
2819 		goto out;
2820 	}
2821 	up_read(&fs_info->dev_replace.rwsem);
2822 
2823 	sctx->readonly = readonly;
2824 	dev->scrub_ctx = sctx;
2825 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2826 
2827 	/*
2828 	 * checking @scrub_pause_req here, we can avoid
2829 	 * race between committing transaction and scrubbing.
2830 	 */
2831 	__scrub_blocked_if_needed(fs_info);
2832 	atomic_inc(&fs_info->scrubs_running);
2833 	mutex_unlock(&fs_info->scrub_lock);
2834 
2835 	/*
2836 	 * In order to avoid deadlock with reclaim when there is a transaction
2837 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2838 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2839 	 * invoked by our callees. The pausing request is done when the
2840 	 * transaction commit starts, and it blocks the transaction until scrub
2841 	 * is paused (done at specific points at scrub_stripe() or right above
2842 	 * before incrementing fs_info->scrubs_running).
2843 	 */
2844 	nofs_flag = memalloc_nofs_save();
2845 	if (!is_dev_replace) {
2846 		u64 old_super_errors;
2847 
2848 		spin_lock(&sctx->stat_lock);
2849 		old_super_errors = sctx->stat.super_errors;
2850 		spin_unlock(&sctx->stat_lock);
2851 
2852 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2853 		/*
2854 		 * by holding device list mutex, we can
2855 		 * kick off writing super in log tree sync.
2856 		 */
2857 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2858 		ret = scrub_supers(sctx, dev);
2859 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2860 
2861 		spin_lock(&sctx->stat_lock);
2862 		/*
2863 		 * Super block errors found, but we can not commit transaction
2864 		 * at current context, since btrfs_commit_transaction() needs
2865 		 * to pause the current running scrub (hold by ourselves).
2866 		 */
2867 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2868 			need_commit = true;
2869 		spin_unlock(&sctx->stat_lock);
2870 	}
2871 
2872 	if (!ret)
2873 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2874 	memalloc_nofs_restore(nofs_flag);
2875 
2876 	atomic_dec(&fs_info->scrubs_running);
2877 	wake_up(&fs_info->scrub_pause_wait);
2878 
2879 	if (progress)
2880 		memcpy(progress, &sctx->stat, sizeof(*progress));
2881 
2882 	if (!is_dev_replace)
2883 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2884 			ret ? "not finished" : "finished", devid, ret);
2885 
2886 	mutex_lock(&fs_info->scrub_lock);
2887 	dev->scrub_ctx = NULL;
2888 	mutex_unlock(&fs_info->scrub_lock);
2889 
2890 	scrub_workers_put(fs_info);
2891 	scrub_put_ctx(sctx);
2892 
2893 	/*
2894 	 * We found some super block errors before, now try to force a
2895 	 * transaction commit, as scrub has finished.
2896 	 */
2897 	if (need_commit) {
2898 		struct btrfs_trans_handle *trans;
2899 
2900 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
2901 		if (IS_ERR(trans)) {
2902 			ret = PTR_ERR(trans);
2903 			btrfs_err(fs_info,
2904 	"scrub: failed to start transaction to fix super block errors: %d", ret);
2905 			return ret;
2906 		}
2907 		ret = btrfs_commit_transaction(trans);
2908 		if (ret < 0)
2909 			btrfs_err(fs_info,
2910 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
2911 	}
2912 	return ret;
2913 out:
2914 	scrub_workers_put(fs_info);
2915 out_free_ctx:
2916 	scrub_free_ctx(sctx);
2917 
2918 	return ret;
2919 }
2920 
2921 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2922 {
2923 	mutex_lock(&fs_info->scrub_lock);
2924 	atomic_inc(&fs_info->scrub_pause_req);
2925 	while (atomic_read(&fs_info->scrubs_paused) !=
2926 	       atomic_read(&fs_info->scrubs_running)) {
2927 		mutex_unlock(&fs_info->scrub_lock);
2928 		wait_event(fs_info->scrub_pause_wait,
2929 			   atomic_read(&fs_info->scrubs_paused) ==
2930 			   atomic_read(&fs_info->scrubs_running));
2931 		mutex_lock(&fs_info->scrub_lock);
2932 	}
2933 	mutex_unlock(&fs_info->scrub_lock);
2934 }
2935 
2936 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
2937 {
2938 	atomic_dec(&fs_info->scrub_pause_req);
2939 	wake_up(&fs_info->scrub_pause_wait);
2940 }
2941 
2942 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2943 {
2944 	mutex_lock(&fs_info->scrub_lock);
2945 	if (!atomic_read(&fs_info->scrubs_running)) {
2946 		mutex_unlock(&fs_info->scrub_lock);
2947 		return -ENOTCONN;
2948 	}
2949 
2950 	atomic_inc(&fs_info->scrub_cancel_req);
2951 	while (atomic_read(&fs_info->scrubs_running)) {
2952 		mutex_unlock(&fs_info->scrub_lock);
2953 		wait_event(fs_info->scrub_pause_wait,
2954 			   atomic_read(&fs_info->scrubs_running) == 0);
2955 		mutex_lock(&fs_info->scrub_lock);
2956 	}
2957 	atomic_dec(&fs_info->scrub_cancel_req);
2958 	mutex_unlock(&fs_info->scrub_lock);
2959 
2960 	return 0;
2961 }
2962 
2963 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
2964 {
2965 	struct btrfs_fs_info *fs_info = dev->fs_info;
2966 	struct scrub_ctx *sctx;
2967 
2968 	mutex_lock(&fs_info->scrub_lock);
2969 	sctx = dev->scrub_ctx;
2970 	if (!sctx) {
2971 		mutex_unlock(&fs_info->scrub_lock);
2972 		return -ENOTCONN;
2973 	}
2974 	atomic_inc(&sctx->cancel_req);
2975 	while (dev->scrub_ctx) {
2976 		mutex_unlock(&fs_info->scrub_lock);
2977 		wait_event(fs_info->scrub_pause_wait,
2978 			   dev->scrub_ctx == NULL);
2979 		mutex_lock(&fs_info->scrub_lock);
2980 	}
2981 	mutex_unlock(&fs_info->scrub_lock);
2982 
2983 	return 0;
2984 }
2985 
2986 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
2987 			 struct btrfs_scrub_progress *progress)
2988 {
2989 	struct btrfs_dev_lookup_args args = { .devid = devid };
2990 	struct btrfs_device *dev;
2991 	struct scrub_ctx *sctx = NULL;
2992 
2993 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2994 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2995 	if (dev)
2996 		sctx = dev->scrub_ctx;
2997 	if (sctx)
2998 		memcpy(progress, &sctx->stat, sizeof(*progress));
2999 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3000 
3001 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3002 }
3003