1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_page { 67 struct scrub_block *sblock; 68 struct page *page; 69 struct btrfs_device *dev; 70 u64 flags; /* extent flags */ 71 u64 generation; 72 u64 logical; 73 u64 physical; 74 u64 physical_for_dev_replace; 75 atomic_t ref_count; 76 struct { 77 unsigned int mirror_num:8; 78 unsigned int have_csum:1; 79 unsigned int io_error:1; 80 }; 81 u8 csum[BTRFS_CSUM_SIZE]; 82 }; 83 84 struct scrub_bio { 85 int index; 86 struct scrub_ctx *sctx; 87 struct btrfs_device *dev; 88 struct bio *bio; 89 int err; 90 u64 logical; 91 u64 physical; 92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 94 #else 95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 96 #endif 97 int page_count; 98 int next_free; 99 struct btrfs_work work; 100 }; 101 102 struct scrub_block { 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 104 int page_count; 105 atomic_t outstanding_pages; 106 atomic_t ref_count; /* free mem on transition to zero */ 107 struct scrub_ctx *sctx; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 }; 114 }; 115 116 struct scrub_wr_ctx { 117 struct scrub_bio *wr_curr_bio; 118 struct btrfs_device *tgtdev; 119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 120 atomic_t flush_all_writes; 121 struct mutex wr_lock; 122 }; 123 124 struct scrub_ctx { 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 126 struct btrfs_root *dev_root; 127 int first_free; 128 int curr; 129 atomic_t bios_in_flight; 130 atomic_t workers_pending; 131 spinlock_t list_lock; 132 wait_queue_head_t list_wait; 133 u16 csum_size; 134 struct list_head csum_list; 135 atomic_t cancel_req; 136 int readonly; 137 int pages_per_rd_bio; 138 u32 sectorsize; 139 u32 nodesize; 140 141 int is_dev_replace; 142 struct scrub_wr_ctx wr_ctx; 143 144 /* 145 * statistics 146 */ 147 struct btrfs_scrub_progress stat; 148 spinlock_t stat_lock; 149 }; 150 151 struct scrub_fixup_nodatasum { 152 struct scrub_ctx *sctx; 153 struct btrfs_device *dev; 154 u64 logical; 155 struct btrfs_root *root; 156 struct btrfs_work work; 157 int mirror_num; 158 }; 159 160 struct scrub_nocow_inode { 161 u64 inum; 162 u64 offset; 163 u64 root; 164 struct list_head list; 165 }; 166 167 struct scrub_copy_nocow_ctx { 168 struct scrub_ctx *sctx; 169 u64 logical; 170 u64 len; 171 int mirror_num; 172 u64 physical_for_dev_replace; 173 struct list_head inodes; 174 struct btrfs_work work; 175 }; 176 177 struct scrub_warning { 178 struct btrfs_path *path; 179 u64 extent_item_size; 180 const char *errstr; 181 sector_t sector; 182 u64 logical; 183 struct btrfs_device *dev; 184 }; 185 186 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 187 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 188 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 189 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 190 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 192 struct btrfs_fs_info *fs_info, 193 struct scrub_block *original_sblock, 194 u64 length, u64 logical, 195 struct scrub_block *sblocks_for_recheck); 196 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 197 struct scrub_block *sblock, int is_metadata, 198 int have_csum, u8 *csum, u64 generation, 199 u16 csum_size); 200 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 201 struct scrub_block *sblock, 202 int is_metadata, int have_csum, 203 const u8 *csum, u64 generation, 204 u16 csum_size); 205 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 206 struct scrub_block *sblock_good, 207 int force_write); 208 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 209 struct scrub_block *sblock_good, 210 int page_num, int force_write); 211 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 212 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 213 int page_num); 214 static int scrub_checksum_data(struct scrub_block *sblock); 215 static int scrub_checksum_tree_block(struct scrub_block *sblock); 216 static int scrub_checksum_super(struct scrub_block *sblock); 217 static void scrub_block_get(struct scrub_block *sblock); 218 static void scrub_block_put(struct scrub_block *sblock); 219 static void scrub_page_get(struct scrub_page *spage); 220 static void scrub_page_put(struct scrub_page *spage); 221 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 222 struct scrub_page *spage); 223 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 224 u64 physical, struct btrfs_device *dev, u64 flags, 225 u64 gen, int mirror_num, u8 *csum, int force, 226 u64 physical_for_dev_replace); 227 static void scrub_bio_end_io(struct bio *bio, int err); 228 static void scrub_bio_end_io_worker(struct btrfs_work *work); 229 static void scrub_block_complete(struct scrub_block *sblock); 230 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 231 u64 extent_logical, u64 extent_len, 232 u64 *extent_physical, 233 struct btrfs_device **extent_dev, 234 int *extent_mirror_num); 235 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 236 struct scrub_wr_ctx *wr_ctx, 237 struct btrfs_fs_info *fs_info, 238 struct btrfs_device *dev, 239 int is_dev_replace); 240 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 241 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 242 struct scrub_page *spage); 243 static void scrub_wr_submit(struct scrub_ctx *sctx); 244 static void scrub_wr_bio_end_io(struct bio *bio, int err); 245 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 246 static int write_page_nocow(struct scrub_ctx *sctx, 247 u64 physical_for_dev_replace, struct page *page); 248 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 249 struct scrub_copy_nocow_ctx *ctx); 250 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 251 int mirror_num, u64 physical_for_dev_replace); 252 static void copy_nocow_pages_worker(struct btrfs_work *work); 253 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 254 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 255 256 257 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 258 { 259 atomic_inc(&sctx->bios_in_flight); 260 } 261 262 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 263 { 264 atomic_dec(&sctx->bios_in_flight); 265 wake_up(&sctx->list_wait); 266 } 267 268 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 269 { 270 while (atomic_read(&fs_info->scrub_pause_req)) { 271 mutex_unlock(&fs_info->scrub_lock); 272 wait_event(fs_info->scrub_pause_wait, 273 atomic_read(&fs_info->scrub_pause_req) == 0); 274 mutex_lock(&fs_info->scrub_lock); 275 } 276 } 277 278 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 279 { 280 atomic_inc(&fs_info->scrubs_paused); 281 wake_up(&fs_info->scrub_pause_wait); 282 283 mutex_lock(&fs_info->scrub_lock); 284 __scrub_blocked_if_needed(fs_info); 285 atomic_dec(&fs_info->scrubs_paused); 286 mutex_unlock(&fs_info->scrub_lock); 287 288 wake_up(&fs_info->scrub_pause_wait); 289 } 290 291 /* 292 * used for workers that require transaction commits (i.e., for the 293 * NOCOW case) 294 */ 295 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 296 { 297 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 298 299 /* 300 * increment scrubs_running to prevent cancel requests from 301 * completing as long as a worker is running. we must also 302 * increment scrubs_paused to prevent deadlocking on pause 303 * requests used for transactions commits (as the worker uses a 304 * transaction context). it is safe to regard the worker 305 * as paused for all matters practical. effectively, we only 306 * avoid cancellation requests from completing. 307 */ 308 mutex_lock(&fs_info->scrub_lock); 309 atomic_inc(&fs_info->scrubs_running); 310 atomic_inc(&fs_info->scrubs_paused); 311 mutex_unlock(&fs_info->scrub_lock); 312 313 /* 314 * check if @scrubs_running=@scrubs_paused condition 315 * inside wait_event() is not an atomic operation. 316 * which means we may inc/dec @scrub_running/paused 317 * at any time. Let's wake up @scrub_pause_wait as 318 * much as we can to let commit transaction blocked less. 319 */ 320 wake_up(&fs_info->scrub_pause_wait); 321 322 atomic_inc(&sctx->workers_pending); 323 } 324 325 /* used for workers that require transaction commits */ 326 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 327 { 328 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 329 330 /* 331 * see scrub_pending_trans_workers_inc() why we're pretending 332 * to be paused in the scrub counters 333 */ 334 mutex_lock(&fs_info->scrub_lock); 335 atomic_dec(&fs_info->scrubs_running); 336 atomic_dec(&fs_info->scrubs_paused); 337 mutex_unlock(&fs_info->scrub_lock); 338 atomic_dec(&sctx->workers_pending); 339 wake_up(&fs_info->scrub_pause_wait); 340 wake_up(&sctx->list_wait); 341 } 342 343 static void scrub_free_csums(struct scrub_ctx *sctx) 344 { 345 while (!list_empty(&sctx->csum_list)) { 346 struct btrfs_ordered_sum *sum; 347 sum = list_first_entry(&sctx->csum_list, 348 struct btrfs_ordered_sum, list); 349 list_del(&sum->list); 350 kfree(sum); 351 } 352 } 353 354 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 355 { 356 int i; 357 358 if (!sctx) 359 return; 360 361 scrub_free_wr_ctx(&sctx->wr_ctx); 362 363 /* this can happen when scrub is cancelled */ 364 if (sctx->curr != -1) { 365 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 366 367 for (i = 0; i < sbio->page_count; i++) { 368 WARN_ON(!sbio->pagev[i]->page); 369 scrub_block_put(sbio->pagev[i]->sblock); 370 } 371 bio_put(sbio->bio); 372 } 373 374 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 375 struct scrub_bio *sbio = sctx->bios[i]; 376 377 if (!sbio) 378 break; 379 kfree(sbio); 380 } 381 382 scrub_free_csums(sctx); 383 kfree(sctx); 384 } 385 386 static noinline_for_stack 387 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 388 { 389 struct scrub_ctx *sctx; 390 int i; 391 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 392 int pages_per_rd_bio; 393 int ret; 394 395 /* 396 * the setting of pages_per_rd_bio is correct for scrub but might 397 * be wrong for the dev_replace code where we might read from 398 * different devices in the initial huge bios. However, that 399 * code is able to correctly handle the case when adding a page 400 * to a bio fails. 401 */ 402 if (dev->bdev) 403 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO, 404 bio_get_nr_vecs(dev->bdev)); 405 else 406 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 407 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 408 if (!sctx) 409 goto nomem; 410 sctx->is_dev_replace = is_dev_replace; 411 sctx->pages_per_rd_bio = pages_per_rd_bio; 412 sctx->curr = -1; 413 sctx->dev_root = dev->dev_root; 414 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 415 struct scrub_bio *sbio; 416 417 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 418 if (!sbio) 419 goto nomem; 420 sctx->bios[i] = sbio; 421 422 sbio->index = i; 423 sbio->sctx = sctx; 424 sbio->page_count = 0; 425 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 426 scrub_bio_end_io_worker, NULL, NULL); 427 428 if (i != SCRUB_BIOS_PER_SCTX - 1) 429 sctx->bios[i]->next_free = i + 1; 430 else 431 sctx->bios[i]->next_free = -1; 432 } 433 sctx->first_free = 0; 434 sctx->nodesize = dev->dev_root->nodesize; 435 sctx->sectorsize = dev->dev_root->sectorsize; 436 atomic_set(&sctx->bios_in_flight, 0); 437 atomic_set(&sctx->workers_pending, 0); 438 atomic_set(&sctx->cancel_req, 0); 439 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 440 INIT_LIST_HEAD(&sctx->csum_list); 441 442 spin_lock_init(&sctx->list_lock); 443 spin_lock_init(&sctx->stat_lock); 444 init_waitqueue_head(&sctx->list_wait); 445 446 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 447 fs_info->dev_replace.tgtdev, is_dev_replace); 448 if (ret) { 449 scrub_free_ctx(sctx); 450 return ERR_PTR(ret); 451 } 452 return sctx; 453 454 nomem: 455 scrub_free_ctx(sctx); 456 return ERR_PTR(-ENOMEM); 457 } 458 459 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 460 void *warn_ctx) 461 { 462 u64 isize; 463 u32 nlink; 464 int ret; 465 int i; 466 struct extent_buffer *eb; 467 struct btrfs_inode_item *inode_item; 468 struct scrub_warning *swarn = warn_ctx; 469 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 470 struct inode_fs_paths *ipath = NULL; 471 struct btrfs_root *local_root; 472 struct btrfs_key root_key; 473 474 root_key.objectid = root; 475 root_key.type = BTRFS_ROOT_ITEM_KEY; 476 root_key.offset = (u64)-1; 477 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 478 if (IS_ERR(local_root)) { 479 ret = PTR_ERR(local_root); 480 goto err; 481 } 482 483 ret = inode_item_info(inum, 0, local_root, swarn->path); 484 if (ret) { 485 btrfs_release_path(swarn->path); 486 goto err; 487 } 488 489 eb = swarn->path->nodes[0]; 490 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 491 struct btrfs_inode_item); 492 isize = btrfs_inode_size(eb, inode_item); 493 nlink = btrfs_inode_nlink(eb, inode_item); 494 btrfs_release_path(swarn->path); 495 496 ipath = init_ipath(4096, local_root, swarn->path); 497 if (IS_ERR(ipath)) { 498 ret = PTR_ERR(ipath); 499 ipath = NULL; 500 goto err; 501 } 502 ret = paths_from_inode(inum, ipath); 503 504 if (ret < 0) 505 goto err; 506 507 /* 508 * we deliberately ignore the bit ipath might have been too small to 509 * hold all of the paths here 510 */ 511 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 512 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 513 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 514 "length %llu, links %u (path: %s)\n", swarn->errstr, 515 swarn->logical, rcu_str_deref(swarn->dev->name), 516 (unsigned long long)swarn->sector, root, inum, offset, 517 min(isize - offset, (u64)PAGE_SIZE), nlink, 518 (char *)(unsigned long)ipath->fspath->val[i]); 519 520 free_ipath(ipath); 521 return 0; 522 523 err: 524 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 525 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 526 "resolving failed with ret=%d\n", swarn->errstr, 527 swarn->logical, rcu_str_deref(swarn->dev->name), 528 (unsigned long long)swarn->sector, root, inum, offset, ret); 529 530 free_ipath(ipath); 531 return 0; 532 } 533 534 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 535 { 536 struct btrfs_device *dev; 537 struct btrfs_fs_info *fs_info; 538 struct btrfs_path *path; 539 struct btrfs_key found_key; 540 struct extent_buffer *eb; 541 struct btrfs_extent_item *ei; 542 struct scrub_warning swarn; 543 unsigned long ptr = 0; 544 u64 extent_item_pos; 545 u64 flags = 0; 546 u64 ref_root; 547 u32 item_size; 548 u8 ref_level; 549 int ret; 550 551 WARN_ON(sblock->page_count < 1); 552 dev = sblock->pagev[0]->dev; 553 fs_info = sblock->sctx->dev_root->fs_info; 554 555 path = btrfs_alloc_path(); 556 if (!path) 557 return; 558 559 swarn.sector = (sblock->pagev[0]->physical) >> 9; 560 swarn.logical = sblock->pagev[0]->logical; 561 swarn.errstr = errstr; 562 swarn.dev = NULL; 563 564 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 565 &flags); 566 if (ret < 0) 567 goto out; 568 569 extent_item_pos = swarn.logical - found_key.objectid; 570 swarn.extent_item_size = found_key.offset; 571 572 eb = path->nodes[0]; 573 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 574 item_size = btrfs_item_size_nr(eb, path->slots[0]); 575 576 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 577 do { 578 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 579 item_size, &ref_root, 580 &ref_level); 581 printk_in_rcu(KERN_WARNING 582 "BTRFS: %s at logical %llu on dev %s, " 583 "sector %llu: metadata %s (level %d) in tree " 584 "%llu\n", errstr, swarn.logical, 585 rcu_str_deref(dev->name), 586 (unsigned long long)swarn.sector, 587 ref_level ? "node" : "leaf", 588 ret < 0 ? -1 : ref_level, 589 ret < 0 ? -1 : ref_root); 590 } while (ret != 1); 591 btrfs_release_path(path); 592 } else { 593 btrfs_release_path(path); 594 swarn.path = path; 595 swarn.dev = dev; 596 iterate_extent_inodes(fs_info, found_key.objectid, 597 extent_item_pos, 1, 598 scrub_print_warning_inode, &swarn); 599 } 600 601 out: 602 btrfs_free_path(path); 603 } 604 605 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 606 { 607 struct page *page = NULL; 608 unsigned long index; 609 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 610 int ret; 611 int corrected = 0; 612 struct btrfs_key key; 613 struct inode *inode = NULL; 614 struct btrfs_fs_info *fs_info; 615 u64 end = offset + PAGE_SIZE - 1; 616 struct btrfs_root *local_root; 617 int srcu_index; 618 619 key.objectid = root; 620 key.type = BTRFS_ROOT_ITEM_KEY; 621 key.offset = (u64)-1; 622 623 fs_info = fixup->root->fs_info; 624 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 625 626 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 627 if (IS_ERR(local_root)) { 628 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 629 return PTR_ERR(local_root); 630 } 631 632 key.type = BTRFS_INODE_ITEM_KEY; 633 key.objectid = inum; 634 key.offset = 0; 635 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 636 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 637 if (IS_ERR(inode)) 638 return PTR_ERR(inode); 639 640 index = offset >> PAGE_CACHE_SHIFT; 641 642 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 643 if (!page) { 644 ret = -ENOMEM; 645 goto out; 646 } 647 648 if (PageUptodate(page)) { 649 if (PageDirty(page)) { 650 /* 651 * we need to write the data to the defect sector. the 652 * data that was in that sector is not in memory, 653 * because the page was modified. we must not write the 654 * modified page to that sector. 655 * 656 * TODO: what could be done here: wait for the delalloc 657 * runner to write out that page (might involve 658 * COW) and see whether the sector is still 659 * referenced afterwards. 660 * 661 * For the meantime, we'll treat this error 662 * incorrectable, although there is a chance that a 663 * later scrub will find the bad sector again and that 664 * there's no dirty page in memory, then. 665 */ 666 ret = -EIO; 667 goto out; 668 } 669 ret = repair_io_failure(inode, offset, PAGE_SIZE, 670 fixup->logical, page, 671 offset - page_offset(page), 672 fixup->mirror_num); 673 unlock_page(page); 674 corrected = !ret; 675 } else { 676 /* 677 * we need to get good data first. the general readpage path 678 * will call repair_io_failure for us, we just have to make 679 * sure we read the bad mirror. 680 */ 681 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 682 EXTENT_DAMAGED, GFP_NOFS); 683 if (ret) { 684 /* set_extent_bits should give proper error */ 685 WARN_ON(ret > 0); 686 if (ret > 0) 687 ret = -EFAULT; 688 goto out; 689 } 690 691 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 692 btrfs_get_extent, 693 fixup->mirror_num); 694 wait_on_page_locked(page); 695 696 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 697 end, EXTENT_DAMAGED, 0, NULL); 698 if (!corrected) 699 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 700 EXTENT_DAMAGED, GFP_NOFS); 701 } 702 703 out: 704 if (page) 705 put_page(page); 706 707 iput(inode); 708 709 if (ret < 0) 710 return ret; 711 712 if (ret == 0 && corrected) { 713 /* 714 * we only need to call readpage for one of the inodes belonging 715 * to this extent. so make iterate_extent_inodes stop 716 */ 717 return 1; 718 } 719 720 return -EIO; 721 } 722 723 static void scrub_fixup_nodatasum(struct btrfs_work *work) 724 { 725 int ret; 726 struct scrub_fixup_nodatasum *fixup; 727 struct scrub_ctx *sctx; 728 struct btrfs_trans_handle *trans = NULL; 729 struct btrfs_path *path; 730 int uncorrectable = 0; 731 732 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 733 sctx = fixup->sctx; 734 735 path = btrfs_alloc_path(); 736 if (!path) { 737 spin_lock(&sctx->stat_lock); 738 ++sctx->stat.malloc_errors; 739 spin_unlock(&sctx->stat_lock); 740 uncorrectable = 1; 741 goto out; 742 } 743 744 trans = btrfs_join_transaction(fixup->root); 745 if (IS_ERR(trans)) { 746 uncorrectable = 1; 747 goto out; 748 } 749 750 /* 751 * the idea is to trigger a regular read through the standard path. we 752 * read a page from the (failed) logical address by specifying the 753 * corresponding copynum of the failed sector. thus, that readpage is 754 * expected to fail. 755 * that is the point where on-the-fly error correction will kick in 756 * (once it's finished) and rewrite the failed sector if a good copy 757 * can be found. 758 */ 759 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 760 path, scrub_fixup_readpage, 761 fixup); 762 if (ret < 0) { 763 uncorrectable = 1; 764 goto out; 765 } 766 WARN_ON(ret != 1); 767 768 spin_lock(&sctx->stat_lock); 769 ++sctx->stat.corrected_errors; 770 spin_unlock(&sctx->stat_lock); 771 772 out: 773 if (trans && !IS_ERR(trans)) 774 btrfs_end_transaction(trans, fixup->root); 775 if (uncorrectable) { 776 spin_lock(&sctx->stat_lock); 777 ++sctx->stat.uncorrectable_errors; 778 spin_unlock(&sctx->stat_lock); 779 btrfs_dev_replace_stats_inc( 780 &sctx->dev_root->fs_info->dev_replace. 781 num_uncorrectable_read_errors); 782 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 783 "unable to fixup (nodatasum) error at logical %llu on dev %s\n", 784 fixup->logical, rcu_str_deref(fixup->dev->name)); 785 } 786 787 btrfs_free_path(path); 788 kfree(fixup); 789 790 scrub_pending_trans_workers_dec(sctx); 791 } 792 793 /* 794 * scrub_handle_errored_block gets called when either verification of the 795 * pages failed or the bio failed to read, e.g. with EIO. In the latter 796 * case, this function handles all pages in the bio, even though only one 797 * may be bad. 798 * The goal of this function is to repair the errored block by using the 799 * contents of one of the mirrors. 800 */ 801 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 802 { 803 struct scrub_ctx *sctx = sblock_to_check->sctx; 804 struct btrfs_device *dev; 805 struct btrfs_fs_info *fs_info; 806 u64 length; 807 u64 logical; 808 u64 generation; 809 unsigned int failed_mirror_index; 810 unsigned int is_metadata; 811 unsigned int have_csum; 812 u8 *csum; 813 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 814 struct scrub_block *sblock_bad; 815 int ret; 816 int mirror_index; 817 int page_num; 818 int success; 819 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 820 DEFAULT_RATELIMIT_BURST); 821 822 BUG_ON(sblock_to_check->page_count < 1); 823 fs_info = sctx->dev_root->fs_info; 824 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 825 /* 826 * if we find an error in a super block, we just report it. 827 * They will get written with the next transaction commit 828 * anyway 829 */ 830 spin_lock(&sctx->stat_lock); 831 ++sctx->stat.super_errors; 832 spin_unlock(&sctx->stat_lock); 833 return 0; 834 } 835 length = sblock_to_check->page_count * PAGE_SIZE; 836 logical = sblock_to_check->pagev[0]->logical; 837 generation = sblock_to_check->pagev[0]->generation; 838 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 839 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 840 is_metadata = !(sblock_to_check->pagev[0]->flags & 841 BTRFS_EXTENT_FLAG_DATA); 842 have_csum = sblock_to_check->pagev[0]->have_csum; 843 csum = sblock_to_check->pagev[0]->csum; 844 dev = sblock_to_check->pagev[0]->dev; 845 846 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 847 sblocks_for_recheck = NULL; 848 goto nodatasum_case; 849 } 850 851 /* 852 * read all mirrors one after the other. This includes to 853 * re-read the extent or metadata block that failed (that was 854 * the cause that this fixup code is called) another time, 855 * page by page this time in order to know which pages 856 * caused I/O errors and which ones are good (for all mirrors). 857 * It is the goal to handle the situation when more than one 858 * mirror contains I/O errors, but the errors do not 859 * overlap, i.e. the data can be repaired by selecting the 860 * pages from those mirrors without I/O error on the 861 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 862 * would be that mirror #1 has an I/O error on the first page, 863 * the second page is good, and mirror #2 has an I/O error on 864 * the second page, but the first page is good. 865 * Then the first page of the first mirror can be repaired by 866 * taking the first page of the second mirror, and the 867 * second page of the second mirror can be repaired by 868 * copying the contents of the 2nd page of the 1st mirror. 869 * One more note: if the pages of one mirror contain I/O 870 * errors, the checksum cannot be verified. In order to get 871 * the best data for repairing, the first attempt is to find 872 * a mirror without I/O errors and with a validated checksum. 873 * Only if this is not possible, the pages are picked from 874 * mirrors with I/O errors without considering the checksum. 875 * If the latter is the case, at the end, the checksum of the 876 * repaired area is verified in order to correctly maintain 877 * the statistics. 878 */ 879 880 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * 881 sizeof(*sblocks_for_recheck), 882 GFP_NOFS); 883 if (!sblocks_for_recheck) { 884 spin_lock(&sctx->stat_lock); 885 sctx->stat.malloc_errors++; 886 sctx->stat.read_errors++; 887 sctx->stat.uncorrectable_errors++; 888 spin_unlock(&sctx->stat_lock); 889 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 890 goto out; 891 } 892 893 /* setup the context, map the logical blocks and alloc the pages */ 894 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length, 895 logical, sblocks_for_recheck); 896 if (ret) { 897 spin_lock(&sctx->stat_lock); 898 sctx->stat.read_errors++; 899 sctx->stat.uncorrectable_errors++; 900 spin_unlock(&sctx->stat_lock); 901 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 902 goto out; 903 } 904 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 905 sblock_bad = sblocks_for_recheck + failed_mirror_index; 906 907 /* build and submit the bios for the failed mirror, check checksums */ 908 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 909 csum, generation, sctx->csum_size); 910 911 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 912 sblock_bad->no_io_error_seen) { 913 /* 914 * the error disappeared after reading page by page, or 915 * the area was part of a huge bio and other parts of the 916 * bio caused I/O errors, or the block layer merged several 917 * read requests into one and the error is caused by a 918 * different bio (usually one of the two latter cases is 919 * the cause) 920 */ 921 spin_lock(&sctx->stat_lock); 922 sctx->stat.unverified_errors++; 923 spin_unlock(&sctx->stat_lock); 924 925 if (sctx->is_dev_replace) 926 scrub_write_block_to_dev_replace(sblock_bad); 927 goto out; 928 } 929 930 if (!sblock_bad->no_io_error_seen) { 931 spin_lock(&sctx->stat_lock); 932 sctx->stat.read_errors++; 933 spin_unlock(&sctx->stat_lock); 934 if (__ratelimit(&_rs)) 935 scrub_print_warning("i/o error", sblock_to_check); 936 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 937 } else if (sblock_bad->checksum_error) { 938 spin_lock(&sctx->stat_lock); 939 sctx->stat.csum_errors++; 940 spin_unlock(&sctx->stat_lock); 941 if (__ratelimit(&_rs)) 942 scrub_print_warning("checksum error", sblock_to_check); 943 btrfs_dev_stat_inc_and_print(dev, 944 BTRFS_DEV_STAT_CORRUPTION_ERRS); 945 } else if (sblock_bad->header_error) { 946 spin_lock(&sctx->stat_lock); 947 sctx->stat.verify_errors++; 948 spin_unlock(&sctx->stat_lock); 949 if (__ratelimit(&_rs)) 950 scrub_print_warning("checksum/header error", 951 sblock_to_check); 952 if (sblock_bad->generation_error) 953 btrfs_dev_stat_inc_and_print(dev, 954 BTRFS_DEV_STAT_GENERATION_ERRS); 955 else 956 btrfs_dev_stat_inc_and_print(dev, 957 BTRFS_DEV_STAT_CORRUPTION_ERRS); 958 } 959 960 if (sctx->readonly) { 961 ASSERT(!sctx->is_dev_replace); 962 goto out; 963 } 964 965 if (!is_metadata && !have_csum) { 966 struct scrub_fixup_nodatasum *fixup_nodatasum; 967 968 nodatasum_case: 969 WARN_ON(sctx->is_dev_replace); 970 971 /* 972 * !is_metadata and !have_csum, this means that the data 973 * might not be COW'ed, that it might be modified 974 * concurrently. The general strategy to work on the 975 * commit root does not help in the case when COW is not 976 * used. 977 */ 978 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 979 if (!fixup_nodatasum) 980 goto did_not_correct_error; 981 fixup_nodatasum->sctx = sctx; 982 fixup_nodatasum->dev = dev; 983 fixup_nodatasum->logical = logical; 984 fixup_nodatasum->root = fs_info->extent_root; 985 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 986 scrub_pending_trans_workers_inc(sctx); 987 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 988 scrub_fixup_nodatasum, NULL, NULL); 989 btrfs_queue_work(fs_info->scrub_workers, 990 &fixup_nodatasum->work); 991 goto out; 992 } 993 994 /* 995 * now build and submit the bios for the other mirrors, check 996 * checksums. 997 * First try to pick the mirror which is completely without I/O 998 * errors and also does not have a checksum error. 999 * If one is found, and if a checksum is present, the full block 1000 * that is known to contain an error is rewritten. Afterwards 1001 * the block is known to be corrected. 1002 * If a mirror is found which is completely correct, and no 1003 * checksum is present, only those pages are rewritten that had 1004 * an I/O error in the block to be repaired, since it cannot be 1005 * determined, which copy of the other pages is better (and it 1006 * could happen otherwise that a correct page would be 1007 * overwritten by a bad one). 1008 */ 1009 for (mirror_index = 0; 1010 mirror_index < BTRFS_MAX_MIRRORS && 1011 sblocks_for_recheck[mirror_index].page_count > 0; 1012 mirror_index++) { 1013 struct scrub_block *sblock_other; 1014 1015 if (mirror_index == failed_mirror_index) 1016 continue; 1017 sblock_other = sblocks_for_recheck + mirror_index; 1018 1019 /* build and submit the bios, check checksums */ 1020 scrub_recheck_block(fs_info, sblock_other, is_metadata, 1021 have_csum, csum, generation, 1022 sctx->csum_size); 1023 1024 if (!sblock_other->header_error && 1025 !sblock_other->checksum_error && 1026 sblock_other->no_io_error_seen) { 1027 if (sctx->is_dev_replace) { 1028 scrub_write_block_to_dev_replace(sblock_other); 1029 } else { 1030 int force_write = is_metadata || have_csum; 1031 1032 ret = scrub_repair_block_from_good_copy( 1033 sblock_bad, sblock_other, 1034 force_write); 1035 } 1036 if (0 == ret) 1037 goto corrected_error; 1038 } 1039 } 1040 1041 /* 1042 * for dev_replace, pick good pages and write to the target device. 1043 */ 1044 if (sctx->is_dev_replace) { 1045 success = 1; 1046 for (page_num = 0; page_num < sblock_bad->page_count; 1047 page_num++) { 1048 int sub_success; 1049 1050 sub_success = 0; 1051 for (mirror_index = 0; 1052 mirror_index < BTRFS_MAX_MIRRORS && 1053 sblocks_for_recheck[mirror_index].page_count > 0; 1054 mirror_index++) { 1055 struct scrub_block *sblock_other = 1056 sblocks_for_recheck + mirror_index; 1057 struct scrub_page *page_other = 1058 sblock_other->pagev[page_num]; 1059 1060 if (!page_other->io_error) { 1061 ret = scrub_write_page_to_dev_replace( 1062 sblock_other, page_num); 1063 if (ret == 0) { 1064 /* succeeded for this page */ 1065 sub_success = 1; 1066 break; 1067 } else { 1068 btrfs_dev_replace_stats_inc( 1069 &sctx->dev_root-> 1070 fs_info->dev_replace. 1071 num_write_errors); 1072 } 1073 } 1074 } 1075 1076 if (!sub_success) { 1077 /* 1078 * did not find a mirror to fetch the page 1079 * from. scrub_write_page_to_dev_replace() 1080 * handles this case (page->io_error), by 1081 * filling the block with zeros before 1082 * submitting the write request 1083 */ 1084 success = 0; 1085 ret = scrub_write_page_to_dev_replace( 1086 sblock_bad, page_num); 1087 if (ret) 1088 btrfs_dev_replace_stats_inc( 1089 &sctx->dev_root->fs_info-> 1090 dev_replace.num_write_errors); 1091 } 1092 } 1093 1094 goto out; 1095 } 1096 1097 /* 1098 * for regular scrub, repair those pages that are errored. 1099 * In case of I/O errors in the area that is supposed to be 1100 * repaired, continue by picking good copies of those pages. 1101 * Select the good pages from mirrors to rewrite bad pages from 1102 * the area to fix. Afterwards verify the checksum of the block 1103 * that is supposed to be repaired. This verification step is 1104 * only done for the purpose of statistic counting and for the 1105 * final scrub report, whether errors remain. 1106 * A perfect algorithm could make use of the checksum and try 1107 * all possible combinations of pages from the different mirrors 1108 * until the checksum verification succeeds. For example, when 1109 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1110 * of mirror #2 is readable but the final checksum test fails, 1111 * then the 2nd page of mirror #3 could be tried, whether now 1112 * the final checksum succeedes. But this would be a rare 1113 * exception and is therefore not implemented. At least it is 1114 * avoided that the good copy is overwritten. 1115 * A more useful improvement would be to pick the sectors 1116 * without I/O error based on sector sizes (512 bytes on legacy 1117 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1118 * mirror could be repaired by taking 512 byte of a different 1119 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1120 * area are unreadable. 1121 */ 1122 1123 /* can only fix I/O errors from here on */ 1124 if (sblock_bad->no_io_error_seen) 1125 goto did_not_correct_error; 1126 1127 success = 1; 1128 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1129 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1130 1131 if (!page_bad->io_error) 1132 continue; 1133 1134 for (mirror_index = 0; 1135 mirror_index < BTRFS_MAX_MIRRORS && 1136 sblocks_for_recheck[mirror_index].page_count > 0; 1137 mirror_index++) { 1138 struct scrub_block *sblock_other = sblocks_for_recheck + 1139 mirror_index; 1140 struct scrub_page *page_other = sblock_other->pagev[ 1141 page_num]; 1142 1143 if (!page_other->io_error) { 1144 ret = scrub_repair_page_from_good_copy( 1145 sblock_bad, sblock_other, page_num, 0); 1146 if (0 == ret) { 1147 page_bad->io_error = 0; 1148 break; /* succeeded for this page */ 1149 } 1150 } 1151 } 1152 1153 if (page_bad->io_error) { 1154 /* did not find a mirror to copy the page from */ 1155 success = 0; 1156 } 1157 } 1158 1159 if (success) { 1160 if (is_metadata || have_csum) { 1161 /* 1162 * need to verify the checksum now that all 1163 * sectors on disk are repaired (the write 1164 * request for data to be repaired is on its way). 1165 * Just be lazy and use scrub_recheck_block() 1166 * which re-reads the data before the checksum 1167 * is verified, but most likely the data comes out 1168 * of the page cache. 1169 */ 1170 scrub_recheck_block(fs_info, sblock_bad, 1171 is_metadata, have_csum, csum, 1172 generation, sctx->csum_size); 1173 if (!sblock_bad->header_error && 1174 !sblock_bad->checksum_error && 1175 sblock_bad->no_io_error_seen) 1176 goto corrected_error; 1177 else 1178 goto did_not_correct_error; 1179 } else { 1180 corrected_error: 1181 spin_lock(&sctx->stat_lock); 1182 sctx->stat.corrected_errors++; 1183 spin_unlock(&sctx->stat_lock); 1184 printk_ratelimited_in_rcu(KERN_ERR 1185 "BTRFS: fixed up error at logical %llu on dev %s\n", 1186 logical, rcu_str_deref(dev->name)); 1187 } 1188 } else { 1189 did_not_correct_error: 1190 spin_lock(&sctx->stat_lock); 1191 sctx->stat.uncorrectable_errors++; 1192 spin_unlock(&sctx->stat_lock); 1193 printk_ratelimited_in_rcu(KERN_ERR 1194 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n", 1195 logical, rcu_str_deref(dev->name)); 1196 } 1197 1198 out: 1199 if (sblocks_for_recheck) { 1200 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1201 mirror_index++) { 1202 struct scrub_block *sblock = sblocks_for_recheck + 1203 mirror_index; 1204 int page_index; 1205 1206 for (page_index = 0; page_index < sblock->page_count; 1207 page_index++) { 1208 sblock->pagev[page_index]->sblock = NULL; 1209 scrub_page_put(sblock->pagev[page_index]); 1210 } 1211 } 1212 kfree(sblocks_for_recheck); 1213 } 1214 1215 return 0; 1216 } 1217 1218 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 1219 struct btrfs_fs_info *fs_info, 1220 struct scrub_block *original_sblock, 1221 u64 length, u64 logical, 1222 struct scrub_block *sblocks_for_recheck) 1223 { 1224 int page_index; 1225 int mirror_index; 1226 int ret; 1227 1228 /* 1229 * note: the two members ref_count and outstanding_pages 1230 * are not used (and not set) in the blocks that are used for 1231 * the recheck procedure 1232 */ 1233 1234 page_index = 0; 1235 while (length > 0) { 1236 u64 sublen = min_t(u64, length, PAGE_SIZE); 1237 u64 mapped_length = sublen; 1238 struct btrfs_bio *bbio = NULL; 1239 1240 /* 1241 * with a length of PAGE_SIZE, each returned stripe 1242 * represents one mirror 1243 */ 1244 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, 1245 &mapped_length, &bbio, 0); 1246 if (ret || !bbio || mapped_length < sublen) { 1247 kfree(bbio); 1248 return -EIO; 1249 } 1250 1251 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1252 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; 1253 mirror_index++) { 1254 struct scrub_block *sblock; 1255 struct scrub_page *page; 1256 1257 if (mirror_index >= BTRFS_MAX_MIRRORS) 1258 continue; 1259 1260 sblock = sblocks_for_recheck + mirror_index; 1261 sblock->sctx = sctx; 1262 page = kzalloc(sizeof(*page), GFP_NOFS); 1263 if (!page) { 1264 leave_nomem: 1265 spin_lock(&sctx->stat_lock); 1266 sctx->stat.malloc_errors++; 1267 spin_unlock(&sctx->stat_lock); 1268 kfree(bbio); 1269 return -ENOMEM; 1270 } 1271 scrub_page_get(page); 1272 sblock->pagev[page_index] = page; 1273 page->logical = logical; 1274 page->physical = bbio->stripes[mirror_index].physical; 1275 BUG_ON(page_index >= original_sblock->page_count); 1276 page->physical_for_dev_replace = 1277 original_sblock->pagev[page_index]-> 1278 physical_for_dev_replace; 1279 /* for missing devices, dev->bdev is NULL */ 1280 page->dev = bbio->stripes[mirror_index].dev; 1281 page->mirror_num = mirror_index + 1; 1282 sblock->page_count++; 1283 page->page = alloc_page(GFP_NOFS); 1284 if (!page->page) 1285 goto leave_nomem; 1286 } 1287 kfree(bbio); 1288 length -= sublen; 1289 logical += sublen; 1290 page_index++; 1291 } 1292 1293 return 0; 1294 } 1295 1296 /* 1297 * this function will check the on disk data for checksum errors, header 1298 * errors and read I/O errors. If any I/O errors happen, the exact pages 1299 * which are errored are marked as being bad. The goal is to enable scrub 1300 * to take those pages that are not errored from all the mirrors so that 1301 * the pages that are errored in the just handled mirror can be repaired. 1302 */ 1303 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1304 struct scrub_block *sblock, int is_metadata, 1305 int have_csum, u8 *csum, u64 generation, 1306 u16 csum_size) 1307 { 1308 int page_num; 1309 1310 sblock->no_io_error_seen = 1; 1311 sblock->header_error = 0; 1312 sblock->checksum_error = 0; 1313 1314 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1315 struct bio *bio; 1316 struct scrub_page *page = sblock->pagev[page_num]; 1317 1318 if (page->dev->bdev == NULL) { 1319 page->io_error = 1; 1320 sblock->no_io_error_seen = 0; 1321 continue; 1322 } 1323 1324 WARN_ON(!page->page); 1325 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1326 if (!bio) { 1327 page->io_error = 1; 1328 sblock->no_io_error_seen = 0; 1329 continue; 1330 } 1331 bio->bi_bdev = page->dev->bdev; 1332 bio->bi_iter.bi_sector = page->physical >> 9; 1333 1334 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1335 if (btrfsic_submit_bio_wait(READ, bio)) 1336 sblock->no_io_error_seen = 0; 1337 1338 bio_put(bio); 1339 } 1340 1341 if (sblock->no_io_error_seen) 1342 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1343 have_csum, csum, generation, 1344 csum_size); 1345 1346 return; 1347 } 1348 1349 static inline int scrub_check_fsid(u8 fsid[], 1350 struct scrub_page *spage) 1351 { 1352 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1353 int ret; 1354 1355 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1356 return !ret; 1357 } 1358 1359 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1360 struct scrub_block *sblock, 1361 int is_metadata, int have_csum, 1362 const u8 *csum, u64 generation, 1363 u16 csum_size) 1364 { 1365 int page_num; 1366 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1367 u32 crc = ~(u32)0; 1368 void *mapped_buffer; 1369 1370 WARN_ON(!sblock->pagev[0]->page); 1371 if (is_metadata) { 1372 struct btrfs_header *h; 1373 1374 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1375 h = (struct btrfs_header *)mapped_buffer; 1376 1377 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) || 1378 !scrub_check_fsid(h->fsid, sblock->pagev[0]) || 1379 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1380 BTRFS_UUID_SIZE)) { 1381 sblock->header_error = 1; 1382 } else if (generation != btrfs_stack_header_generation(h)) { 1383 sblock->header_error = 1; 1384 sblock->generation_error = 1; 1385 } 1386 csum = h->csum; 1387 } else { 1388 if (!have_csum) 1389 return; 1390 1391 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1392 } 1393 1394 for (page_num = 0;;) { 1395 if (page_num == 0 && is_metadata) 1396 crc = btrfs_csum_data( 1397 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1398 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1399 else 1400 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE); 1401 1402 kunmap_atomic(mapped_buffer); 1403 page_num++; 1404 if (page_num >= sblock->page_count) 1405 break; 1406 WARN_ON(!sblock->pagev[page_num]->page); 1407 1408 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1409 } 1410 1411 btrfs_csum_final(crc, calculated_csum); 1412 if (memcmp(calculated_csum, csum, csum_size)) 1413 sblock->checksum_error = 1; 1414 } 1415 1416 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1417 struct scrub_block *sblock_good, 1418 int force_write) 1419 { 1420 int page_num; 1421 int ret = 0; 1422 1423 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1424 int ret_sub; 1425 1426 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1427 sblock_good, 1428 page_num, 1429 force_write); 1430 if (ret_sub) 1431 ret = ret_sub; 1432 } 1433 1434 return ret; 1435 } 1436 1437 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1438 struct scrub_block *sblock_good, 1439 int page_num, int force_write) 1440 { 1441 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1442 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1443 1444 BUG_ON(page_bad->page == NULL); 1445 BUG_ON(page_good->page == NULL); 1446 if (force_write || sblock_bad->header_error || 1447 sblock_bad->checksum_error || page_bad->io_error) { 1448 struct bio *bio; 1449 int ret; 1450 1451 if (!page_bad->dev->bdev) { 1452 printk_ratelimited(KERN_WARNING "BTRFS: " 1453 "scrub_repair_page_from_good_copy(bdev == NULL) " 1454 "is unexpected!\n"); 1455 return -EIO; 1456 } 1457 1458 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1459 if (!bio) 1460 return -EIO; 1461 bio->bi_bdev = page_bad->dev->bdev; 1462 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1463 1464 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1465 if (PAGE_SIZE != ret) { 1466 bio_put(bio); 1467 return -EIO; 1468 } 1469 1470 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1471 btrfs_dev_stat_inc_and_print(page_bad->dev, 1472 BTRFS_DEV_STAT_WRITE_ERRS); 1473 btrfs_dev_replace_stats_inc( 1474 &sblock_bad->sctx->dev_root->fs_info-> 1475 dev_replace.num_write_errors); 1476 bio_put(bio); 1477 return -EIO; 1478 } 1479 bio_put(bio); 1480 } 1481 1482 return 0; 1483 } 1484 1485 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1486 { 1487 int page_num; 1488 1489 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1490 int ret; 1491 1492 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1493 if (ret) 1494 btrfs_dev_replace_stats_inc( 1495 &sblock->sctx->dev_root->fs_info->dev_replace. 1496 num_write_errors); 1497 } 1498 } 1499 1500 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1501 int page_num) 1502 { 1503 struct scrub_page *spage = sblock->pagev[page_num]; 1504 1505 BUG_ON(spage->page == NULL); 1506 if (spage->io_error) { 1507 void *mapped_buffer = kmap_atomic(spage->page); 1508 1509 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1510 flush_dcache_page(spage->page); 1511 kunmap_atomic(mapped_buffer); 1512 } 1513 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1514 } 1515 1516 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1517 struct scrub_page *spage) 1518 { 1519 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1520 struct scrub_bio *sbio; 1521 int ret; 1522 1523 mutex_lock(&wr_ctx->wr_lock); 1524 again: 1525 if (!wr_ctx->wr_curr_bio) { 1526 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1527 GFP_NOFS); 1528 if (!wr_ctx->wr_curr_bio) { 1529 mutex_unlock(&wr_ctx->wr_lock); 1530 return -ENOMEM; 1531 } 1532 wr_ctx->wr_curr_bio->sctx = sctx; 1533 wr_ctx->wr_curr_bio->page_count = 0; 1534 } 1535 sbio = wr_ctx->wr_curr_bio; 1536 if (sbio->page_count == 0) { 1537 struct bio *bio; 1538 1539 sbio->physical = spage->physical_for_dev_replace; 1540 sbio->logical = spage->logical; 1541 sbio->dev = wr_ctx->tgtdev; 1542 bio = sbio->bio; 1543 if (!bio) { 1544 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1545 if (!bio) { 1546 mutex_unlock(&wr_ctx->wr_lock); 1547 return -ENOMEM; 1548 } 1549 sbio->bio = bio; 1550 } 1551 1552 bio->bi_private = sbio; 1553 bio->bi_end_io = scrub_wr_bio_end_io; 1554 bio->bi_bdev = sbio->dev->bdev; 1555 bio->bi_iter.bi_sector = sbio->physical >> 9; 1556 sbio->err = 0; 1557 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1558 spage->physical_for_dev_replace || 1559 sbio->logical + sbio->page_count * PAGE_SIZE != 1560 spage->logical) { 1561 scrub_wr_submit(sctx); 1562 goto again; 1563 } 1564 1565 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1566 if (ret != PAGE_SIZE) { 1567 if (sbio->page_count < 1) { 1568 bio_put(sbio->bio); 1569 sbio->bio = NULL; 1570 mutex_unlock(&wr_ctx->wr_lock); 1571 return -EIO; 1572 } 1573 scrub_wr_submit(sctx); 1574 goto again; 1575 } 1576 1577 sbio->pagev[sbio->page_count] = spage; 1578 scrub_page_get(spage); 1579 sbio->page_count++; 1580 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1581 scrub_wr_submit(sctx); 1582 mutex_unlock(&wr_ctx->wr_lock); 1583 1584 return 0; 1585 } 1586 1587 static void scrub_wr_submit(struct scrub_ctx *sctx) 1588 { 1589 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1590 struct scrub_bio *sbio; 1591 1592 if (!wr_ctx->wr_curr_bio) 1593 return; 1594 1595 sbio = wr_ctx->wr_curr_bio; 1596 wr_ctx->wr_curr_bio = NULL; 1597 WARN_ON(!sbio->bio->bi_bdev); 1598 scrub_pending_bio_inc(sctx); 1599 /* process all writes in a single worker thread. Then the block layer 1600 * orders the requests before sending them to the driver which 1601 * doubled the write performance on spinning disks when measured 1602 * with Linux 3.5 */ 1603 btrfsic_submit_bio(WRITE, sbio->bio); 1604 } 1605 1606 static void scrub_wr_bio_end_io(struct bio *bio, int err) 1607 { 1608 struct scrub_bio *sbio = bio->bi_private; 1609 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1610 1611 sbio->err = err; 1612 sbio->bio = bio; 1613 1614 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1615 scrub_wr_bio_end_io_worker, NULL, NULL); 1616 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1617 } 1618 1619 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1620 { 1621 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1622 struct scrub_ctx *sctx = sbio->sctx; 1623 int i; 1624 1625 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1626 if (sbio->err) { 1627 struct btrfs_dev_replace *dev_replace = 1628 &sbio->sctx->dev_root->fs_info->dev_replace; 1629 1630 for (i = 0; i < sbio->page_count; i++) { 1631 struct scrub_page *spage = sbio->pagev[i]; 1632 1633 spage->io_error = 1; 1634 btrfs_dev_replace_stats_inc(&dev_replace-> 1635 num_write_errors); 1636 } 1637 } 1638 1639 for (i = 0; i < sbio->page_count; i++) 1640 scrub_page_put(sbio->pagev[i]); 1641 1642 bio_put(sbio->bio); 1643 kfree(sbio); 1644 scrub_pending_bio_dec(sctx); 1645 } 1646 1647 static int scrub_checksum(struct scrub_block *sblock) 1648 { 1649 u64 flags; 1650 int ret; 1651 1652 WARN_ON(sblock->page_count < 1); 1653 flags = sblock->pagev[0]->flags; 1654 ret = 0; 1655 if (flags & BTRFS_EXTENT_FLAG_DATA) 1656 ret = scrub_checksum_data(sblock); 1657 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1658 ret = scrub_checksum_tree_block(sblock); 1659 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1660 (void)scrub_checksum_super(sblock); 1661 else 1662 WARN_ON(1); 1663 if (ret) 1664 scrub_handle_errored_block(sblock); 1665 1666 return ret; 1667 } 1668 1669 static int scrub_checksum_data(struct scrub_block *sblock) 1670 { 1671 struct scrub_ctx *sctx = sblock->sctx; 1672 u8 csum[BTRFS_CSUM_SIZE]; 1673 u8 *on_disk_csum; 1674 struct page *page; 1675 void *buffer; 1676 u32 crc = ~(u32)0; 1677 int fail = 0; 1678 u64 len; 1679 int index; 1680 1681 BUG_ON(sblock->page_count < 1); 1682 if (!sblock->pagev[0]->have_csum) 1683 return 0; 1684 1685 on_disk_csum = sblock->pagev[0]->csum; 1686 page = sblock->pagev[0]->page; 1687 buffer = kmap_atomic(page); 1688 1689 len = sctx->sectorsize; 1690 index = 0; 1691 for (;;) { 1692 u64 l = min_t(u64, len, PAGE_SIZE); 1693 1694 crc = btrfs_csum_data(buffer, crc, l); 1695 kunmap_atomic(buffer); 1696 len -= l; 1697 if (len == 0) 1698 break; 1699 index++; 1700 BUG_ON(index >= sblock->page_count); 1701 BUG_ON(!sblock->pagev[index]->page); 1702 page = sblock->pagev[index]->page; 1703 buffer = kmap_atomic(page); 1704 } 1705 1706 btrfs_csum_final(crc, csum); 1707 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1708 fail = 1; 1709 1710 return fail; 1711 } 1712 1713 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1714 { 1715 struct scrub_ctx *sctx = sblock->sctx; 1716 struct btrfs_header *h; 1717 struct btrfs_root *root = sctx->dev_root; 1718 struct btrfs_fs_info *fs_info = root->fs_info; 1719 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1720 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1721 struct page *page; 1722 void *mapped_buffer; 1723 u64 mapped_size; 1724 void *p; 1725 u32 crc = ~(u32)0; 1726 int fail = 0; 1727 int crc_fail = 0; 1728 u64 len; 1729 int index; 1730 1731 BUG_ON(sblock->page_count < 1); 1732 page = sblock->pagev[0]->page; 1733 mapped_buffer = kmap_atomic(page); 1734 h = (struct btrfs_header *)mapped_buffer; 1735 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1736 1737 /* 1738 * we don't use the getter functions here, as we 1739 * a) don't have an extent buffer and 1740 * b) the page is already kmapped 1741 */ 1742 1743 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1744 ++fail; 1745 1746 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) 1747 ++fail; 1748 1749 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1750 ++fail; 1751 1752 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1753 BTRFS_UUID_SIZE)) 1754 ++fail; 1755 1756 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1757 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1758 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1759 index = 0; 1760 for (;;) { 1761 u64 l = min_t(u64, len, mapped_size); 1762 1763 crc = btrfs_csum_data(p, crc, l); 1764 kunmap_atomic(mapped_buffer); 1765 len -= l; 1766 if (len == 0) 1767 break; 1768 index++; 1769 BUG_ON(index >= sblock->page_count); 1770 BUG_ON(!sblock->pagev[index]->page); 1771 page = sblock->pagev[index]->page; 1772 mapped_buffer = kmap_atomic(page); 1773 mapped_size = PAGE_SIZE; 1774 p = mapped_buffer; 1775 } 1776 1777 btrfs_csum_final(crc, calculated_csum); 1778 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1779 ++crc_fail; 1780 1781 return fail || crc_fail; 1782 } 1783 1784 static int scrub_checksum_super(struct scrub_block *sblock) 1785 { 1786 struct btrfs_super_block *s; 1787 struct scrub_ctx *sctx = sblock->sctx; 1788 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1789 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1790 struct page *page; 1791 void *mapped_buffer; 1792 u64 mapped_size; 1793 void *p; 1794 u32 crc = ~(u32)0; 1795 int fail_gen = 0; 1796 int fail_cor = 0; 1797 u64 len; 1798 int index; 1799 1800 BUG_ON(sblock->page_count < 1); 1801 page = sblock->pagev[0]->page; 1802 mapped_buffer = kmap_atomic(page); 1803 s = (struct btrfs_super_block *)mapped_buffer; 1804 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1805 1806 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1807 ++fail_cor; 1808 1809 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1810 ++fail_gen; 1811 1812 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1813 ++fail_cor; 1814 1815 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1816 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1817 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1818 index = 0; 1819 for (;;) { 1820 u64 l = min_t(u64, len, mapped_size); 1821 1822 crc = btrfs_csum_data(p, crc, l); 1823 kunmap_atomic(mapped_buffer); 1824 len -= l; 1825 if (len == 0) 1826 break; 1827 index++; 1828 BUG_ON(index >= sblock->page_count); 1829 BUG_ON(!sblock->pagev[index]->page); 1830 page = sblock->pagev[index]->page; 1831 mapped_buffer = kmap_atomic(page); 1832 mapped_size = PAGE_SIZE; 1833 p = mapped_buffer; 1834 } 1835 1836 btrfs_csum_final(crc, calculated_csum); 1837 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1838 ++fail_cor; 1839 1840 if (fail_cor + fail_gen) { 1841 /* 1842 * if we find an error in a super block, we just report it. 1843 * They will get written with the next transaction commit 1844 * anyway 1845 */ 1846 spin_lock(&sctx->stat_lock); 1847 ++sctx->stat.super_errors; 1848 spin_unlock(&sctx->stat_lock); 1849 if (fail_cor) 1850 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1851 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1852 else 1853 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1854 BTRFS_DEV_STAT_GENERATION_ERRS); 1855 } 1856 1857 return fail_cor + fail_gen; 1858 } 1859 1860 static void scrub_block_get(struct scrub_block *sblock) 1861 { 1862 atomic_inc(&sblock->ref_count); 1863 } 1864 1865 static void scrub_block_put(struct scrub_block *sblock) 1866 { 1867 if (atomic_dec_and_test(&sblock->ref_count)) { 1868 int i; 1869 1870 for (i = 0; i < sblock->page_count; i++) 1871 scrub_page_put(sblock->pagev[i]); 1872 kfree(sblock); 1873 } 1874 } 1875 1876 static void scrub_page_get(struct scrub_page *spage) 1877 { 1878 atomic_inc(&spage->ref_count); 1879 } 1880 1881 static void scrub_page_put(struct scrub_page *spage) 1882 { 1883 if (atomic_dec_and_test(&spage->ref_count)) { 1884 if (spage->page) 1885 __free_page(spage->page); 1886 kfree(spage); 1887 } 1888 } 1889 1890 static void scrub_submit(struct scrub_ctx *sctx) 1891 { 1892 struct scrub_bio *sbio; 1893 1894 if (sctx->curr == -1) 1895 return; 1896 1897 sbio = sctx->bios[sctx->curr]; 1898 sctx->curr = -1; 1899 scrub_pending_bio_inc(sctx); 1900 1901 if (!sbio->bio->bi_bdev) { 1902 /* 1903 * this case should not happen. If btrfs_map_block() is 1904 * wrong, it could happen for dev-replace operations on 1905 * missing devices when no mirrors are available, but in 1906 * this case it should already fail the mount. 1907 * This case is handled correctly (but _very_ slowly). 1908 */ 1909 printk_ratelimited(KERN_WARNING 1910 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n"); 1911 bio_endio(sbio->bio, -EIO); 1912 } else { 1913 btrfsic_submit_bio(READ, sbio->bio); 1914 } 1915 } 1916 1917 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 1918 struct scrub_page *spage) 1919 { 1920 struct scrub_block *sblock = spage->sblock; 1921 struct scrub_bio *sbio; 1922 int ret; 1923 1924 again: 1925 /* 1926 * grab a fresh bio or wait for one to become available 1927 */ 1928 while (sctx->curr == -1) { 1929 spin_lock(&sctx->list_lock); 1930 sctx->curr = sctx->first_free; 1931 if (sctx->curr != -1) { 1932 sctx->first_free = sctx->bios[sctx->curr]->next_free; 1933 sctx->bios[sctx->curr]->next_free = -1; 1934 sctx->bios[sctx->curr]->page_count = 0; 1935 spin_unlock(&sctx->list_lock); 1936 } else { 1937 spin_unlock(&sctx->list_lock); 1938 wait_event(sctx->list_wait, sctx->first_free != -1); 1939 } 1940 } 1941 sbio = sctx->bios[sctx->curr]; 1942 if (sbio->page_count == 0) { 1943 struct bio *bio; 1944 1945 sbio->physical = spage->physical; 1946 sbio->logical = spage->logical; 1947 sbio->dev = spage->dev; 1948 bio = sbio->bio; 1949 if (!bio) { 1950 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 1951 if (!bio) 1952 return -ENOMEM; 1953 sbio->bio = bio; 1954 } 1955 1956 bio->bi_private = sbio; 1957 bio->bi_end_io = scrub_bio_end_io; 1958 bio->bi_bdev = sbio->dev->bdev; 1959 bio->bi_iter.bi_sector = sbio->physical >> 9; 1960 sbio->err = 0; 1961 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1962 spage->physical || 1963 sbio->logical + sbio->page_count * PAGE_SIZE != 1964 spage->logical || 1965 sbio->dev != spage->dev) { 1966 scrub_submit(sctx); 1967 goto again; 1968 } 1969 1970 sbio->pagev[sbio->page_count] = spage; 1971 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1972 if (ret != PAGE_SIZE) { 1973 if (sbio->page_count < 1) { 1974 bio_put(sbio->bio); 1975 sbio->bio = NULL; 1976 return -EIO; 1977 } 1978 scrub_submit(sctx); 1979 goto again; 1980 } 1981 1982 scrub_block_get(sblock); /* one for the page added to the bio */ 1983 atomic_inc(&sblock->outstanding_pages); 1984 sbio->page_count++; 1985 if (sbio->page_count == sctx->pages_per_rd_bio) 1986 scrub_submit(sctx); 1987 1988 return 0; 1989 } 1990 1991 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 1992 u64 physical, struct btrfs_device *dev, u64 flags, 1993 u64 gen, int mirror_num, u8 *csum, int force, 1994 u64 physical_for_dev_replace) 1995 { 1996 struct scrub_block *sblock; 1997 int index; 1998 1999 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2000 if (!sblock) { 2001 spin_lock(&sctx->stat_lock); 2002 sctx->stat.malloc_errors++; 2003 spin_unlock(&sctx->stat_lock); 2004 return -ENOMEM; 2005 } 2006 2007 /* one ref inside this function, plus one for each page added to 2008 * a bio later on */ 2009 atomic_set(&sblock->ref_count, 1); 2010 sblock->sctx = sctx; 2011 sblock->no_io_error_seen = 1; 2012 2013 for (index = 0; len > 0; index++) { 2014 struct scrub_page *spage; 2015 u64 l = min_t(u64, len, PAGE_SIZE); 2016 2017 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2018 if (!spage) { 2019 leave_nomem: 2020 spin_lock(&sctx->stat_lock); 2021 sctx->stat.malloc_errors++; 2022 spin_unlock(&sctx->stat_lock); 2023 scrub_block_put(sblock); 2024 return -ENOMEM; 2025 } 2026 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2027 scrub_page_get(spage); 2028 sblock->pagev[index] = spage; 2029 spage->sblock = sblock; 2030 spage->dev = dev; 2031 spage->flags = flags; 2032 spage->generation = gen; 2033 spage->logical = logical; 2034 spage->physical = physical; 2035 spage->physical_for_dev_replace = physical_for_dev_replace; 2036 spage->mirror_num = mirror_num; 2037 if (csum) { 2038 spage->have_csum = 1; 2039 memcpy(spage->csum, csum, sctx->csum_size); 2040 } else { 2041 spage->have_csum = 0; 2042 } 2043 sblock->page_count++; 2044 spage->page = alloc_page(GFP_NOFS); 2045 if (!spage->page) 2046 goto leave_nomem; 2047 len -= l; 2048 logical += l; 2049 physical += l; 2050 physical_for_dev_replace += l; 2051 } 2052 2053 WARN_ON(sblock->page_count == 0); 2054 for (index = 0; index < sblock->page_count; index++) { 2055 struct scrub_page *spage = sblock->pagev[index]; 2056 int ret; 2057 2058 ret = scrub_add_page_to_rd_bio(sctx, spage); 2059 if (ret) { 2060 scrub_block_put(sblock); 2061 return ret; 2062 } 2063 } 2064 2065 if (force) 2066 scrub_submit(sctx); 2067 2068 /* last one frees, either here or in bio completion for last page */ 2069 scrub_block_put(sblock); 2070 return 0; 2071 } 2072 2073 static void scrub_bio_end_io(struct bio *bio, int err) 2074 { 2075 struct scrub_bio *sbio = bio->bi_private; 2076 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2077 2078 sbio->err = err; 2079 sbio->bio = bio; 2080 2081 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2082 } 2083 2084 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2085 { 2086 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2087 struct scrub_ctx *sctx = sbio->sctx; 2088 int i; 2089 2090 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2091 if (sbio->err) { 2092 for (i = 0; i < sbio->page_count; i++) { 2093 struct scrub_page *spage = sbio->pagev[i]; 2094 2095 spage->io_error = 1; 2096 spage->sblock->no_io_error_seen = 0; 2097 } 2098 } 2099 2100 /* now complete the scrub_block items that have all pages completed */ 2101 for (i = 0; i < sbio->page_count; i++) { 2102 struct scrub_page *spage = sbio->pagev[i]; 2103 struct scrub_block *sblock = spage->sblock; 2104 2105 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2106 scrub_block_complete(sblock); 2107 scrub_block_put(sblock); 2108 } 2109 2110 bio_put(sbio->bio); 2111 sbio->bio = NULL; 2112 spin_lock(&sctx->list_lock); 2113 sbio->next_free = sctx->first_free; 2114 sctx->first_free = sbio->index; 2115 spin_unlock(&sctx->list_lock); 2116 2117 if (sctx->is_dev_replace && 2118 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2119 mutex_lock(&sctx->wr_ctx.wr_lock); 2120 scrub_wr_submit(sctx); 2121 mutex_unlock(&sctx->wr_ctx.wr_lock); 2122 } 2123 2124 scrub_pending_bio_dec(sctx); 2125 } 2126 2127 static void scrub_block_complete(struct scrub_block *sblock) 2128 { 2129 if (!sblock->no_io_error_seen) { 2130 scrub_handle_errored_block(sblock); 2131 } else { 2132 /* 2133 * if has checksum error, write via repair mechanism in 2134 * dev replace case, otherwise write here in dev replace 2135 * case. 2136 */ 2137 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace) 2138 scrub_write_block_to_dev_replace(sblock); 2139 } 2140 } 2141 2142 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2143 u8 *csum) 2144 { 2145 struct btrfs_ordered_sum *sum = NULL; 2146 unsigned long index; 2147 unsigned long num_sectors; 2148 2149 while (!list_empty(&sctx->csum_list)) { 2150 sum = list_first_entry(&sctx->csum_list, 2151 struct btrfs_ordered_sum, list); 2152 if (sum->bytenr > logical) 2153 return 0; 2154 if (sum->bytenr + sum->len > logical) 2155 break; 2156 2157 ++sctx->stat.csum_discards; 2158 list_del(&sum->list); 2159 kfree(sum); 2160 sum = NULL; 2161 } 2162 if (!sum) 2163 return 0; 2164 2165 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2166 num_sectors = sum->len / sctx->sectorsize; 2167 memcpy(csum, sum->sums + index, sctx->csum_size); 2168 if (index == num_sectors - 1) { 2169 list_del(&sum->list); 2170 kfree(sum); 2171 } 2172 return 1; 2173 } 2174 2175 /* scrub extent tries to collect up to 64 kB for each bio */ 2176 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2177 u64 physical, struct btrfs_device *dev, u64 flags, 2178 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2179 { 2180 int ret; 2181 u8 csum[BTRFS_CSUM_SIZE]; 2182 u32 blocksize; 2183 2184 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2185 blocksize = sctx->sectorsize; 2186 spin_lock(&sctx->stat_lock); 2187 sctx->stat.data_extents_scrubbed++; 2188 sctx->stat.data_bytes_scrubbed += len; 2189 spin_unlock(&sctx->stat_lock); 2190 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2191 blocksize = sctx->nodesize; 2192 spin_lock(&sctx->stat_lock); 2193 sctx->stat.tree_extents_scrubbed++; 2194 sctx->stat.tree_bytes_scrubbed += len; 2195 spin_unlock(&sctx->stat_lock); 2196 } else { 2197 blocksize = sctx->sectorsize; 2198 WARN_ON(1); 2199 } 2200 2201 while (len) { 2202 u64 l = min_t(u64, len, blocksize); 2203 int have_csum = 0; 2204 2205 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2206 /* push csums to sbio */ 2207 have_csum = scrub_find_csum(sctx, logical, l, csum); 2208 if (have_csum == 0) 2209 ++sctx->stat.no_csum; 2210 if (sctx->is_dev_replace && !have_csum) { 2211 ret = copy_nocow_pages(sctx, logical, l, 2212 mirror_num, 2213 physical_for_dev_replace); 2214 goto behind_scrub_pages; 2215 } 2216 } 2217 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2218 mirror_num, have_csum ? csum : NULL, 0, 2219 physical_for_dev_replace); 2220 behind_scrub_pages: 2221 if (ret) 2222 return ret; 2223 len -= l; 2224 logical += l; 2225 physical += l; 2226 physical_for_dev_replace += l; 2227 } 2228 return 0; 2229 } 2230 2231 /* 2232 * Given a physical address, this will calculate it's 2233 * logical offset. if this is a parity stripe, it will return 2234 * the most left data stripe's logical offset. 2235 * 2236 * return 0 if it is a data stripe, 1 means parity stripe. 2237 */ 2238 static int get_raid56_logic_offset(u64 physical, int num, 2239 struct map_lookup *map, u64 *offset) 2240 { 2241 int i; 2242 int j = 0; 2243 u64 stripe_nr; 2244 u64 last_offset; 2245 int stripe_index; 2246 int rot; 2247 2248 last_offset = (physical - map->stripes[num].physical) * 2249 nr_data_stripes(map); 2250 *offset = last_offset; 2251 for (i = 0; i < nr_data_stripes(map); i++) { 2252 *offset = last_offset + i * map->stripe_len; 2253 2254 stripe_nr = *offset; 2255 do_div(stripe_nr, map->stripe_len); 2256 do_div(stripe_nr, nr_data_stripes(map)); 2257 2258 /* Work out the disk rotation on this stripe-set */ 2259 rot = do_div(stripe_nr, map->num_stripes); 2260 /* calculate which stripe this data locates */ 2261 rot += i; 2262 stripe_index = rot % map->num_stripes; 2263 if (stripe_index == num) 2264 return 0; 2265 if (stripe_index < num) 2266 j++; 2267 } 2268 *offset = last_offset + j * map->stripe_len; 2269 return 1; 2270 } 2271 2272 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2273 struct map_lookup *map, 2274 struct btrfs_device *scrub_dev, 2275 int num, u64 base, u64 length, 2276 int is_dev_replace) 2277 { 2278 struct btrfs_path *path; 2279 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2280 struct btrfs_root *root = fs_info->extent_root; 2281 struct btrfs_root *csum_root = fs_info->csum_root; 2282 struct btrfs_extent_item *extent; 2283 struct blk_plug plug; 2284 u64 flags; 2285 int ret; 2286 int slot; 2287 u64 nstripes; 2288 struct extent_buffer *l; 2289 struct btrfs_key key; 2290 u64 physical; 2291 u64 logical; 2292 u64 logic_end; 2293 u64 physical_end; 2294 u64 generation; 2295 int mirror_num; 2296 struct reada_control *reada1; 2297 struct reada_control *reada2; 2298 struct btrfs_key key_start; 2299 struct btrfs_key key_end; 2300 u64 increment = map->stripe_len; 2301 u64 offset; 2302 u64 extent_logical; 2303 u64 extent_physical; 2304 u64 extent_len; 2305 struct btrfs_device *extent_dev; 2306 int extent_mirror_num; 2307 int stop_loop = 0; 2308 2309 nstripes = length; 2310 physical = map->stripes[num].physical; 2311 offset = 0; 2312 do_div(nstripes, map->stripe_len); 2313 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 2314 offset = map->stripe_len * num; 2315 increment = map->stripe_len * map->num_stripes; 2316 mirror_num = 1; 2317 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 2318 int factor = map->num_stripes / map->sub_stripes; 2319 offset = map->stripe_len * (num / map->sub_stripes); 2320 increment = map->stripe_len * factor; 2321 mirror_num = num % map->sub_stripes + 1; 2322 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 2323 increment = map->stripe_len; 2324 mirror_num = num % map->num_stripes + 1; 2325 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 2326 increment = map->stripe_len; 2327 mirror_num = num % map->num_stripes + 1; 2328 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2329 BTRFS_BLOCK_GROUP_RAID6)) { 2330 get_raid56_logic_offset(physical, num, map, &offset); 2331 increment = map->stripe_len * nr_data_stripes(map); 2332 mirror_num = 1; 2333 } else { 2334 increment = map->stripe_len; 2335 mirror_num = 1; 2336 } 2337 2338 path = btrfs_alloc_path(); 2339 if (!path) 2340 return -ENOMEM; 2341 2342 /* 2343 * work on commit root. The related disk blocks are static as 2344 * long as COW is applied. This means, it is save to rewrite 2345 * them to repair disk errors without any race conditions 2346 */ 2347 path->search_commit_root = 1; 2348 path->skip_locking = 1; 2349 2350 /* 2351 * trigger the readahead for extent tree csum tree and wait for 2352 * completion. During readahead, the scrub is officially paused 2353 * to not hold off transaction commits 2354 */ 2355 logical = base + offset; 2356 physical_end = physical + nstripes * map->stripe_len; 2357 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2358 BTRFS_BLOCK_GROUP_RAID6)) { 2359 get_raid56_logic_offset(physical_end, num, 2360 map, &logic_end); 2361 logic_end += base; 2362 } else { 2363 logic_end = logical + increment * nstripes; 2364 } 2365 wait_event(sctx->list_wait, 2366 atomic_read(&sctx->bios_in_flight) == 0); 2367 scrub_blocked_if_needed(fs_info); 2368 2369 /* FIXME it might be better to start readahead at commit root */ 2370 key_start.objectid = logical; 2371 key_start.type = BTRFS_EXTENT_ITEM_KEY; 2372 key_start.offset = (u64)0; 2373 key_end.objectid = logic_end; 2374 key_end.type = BTRFS_METADATA_ITEM_KEY; 2375 key_end.offset = (u64)-1; 2376 reada1 = btrfs_reada_add(root, &key_start, &key_end); 2377 2378 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2379 key_start.type = BTRFS_EXTENT_CSUM_KEY; 2380 key_start.offset = logical; 2381 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2382 key_end.type = BTRFS_EXTENT_CSUM_KEY; 2383 key_end.offset = logic_end; 2384 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 2385 2386 if (!IS_ERR(reada1)) 2387 btrfs_reada_wait(reada1); 2388 if (!IS_ERR(reada2)) 2389 btrfs_reada_wait(reada2); 2390 2391 2392 /* 2393 * collect all data csums for the stripe to avoid seeking during 2394 * the scrub. This might currently (crc32) end up to be about 1MB 2395 */ 2396 blk_start_plug(&plug); 2397 2398 /* 2399 * now find all extents for each stripe and scrub them 2400 */ 2401 ret = 0; 2402 while (physical < physical_end) { 2403 /* for raid56, we skip parity stripe */ 2404 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2405 BTRFS_BLOCK_GROUP_RAID6)) { 2406 ret = get_raid56_logic_offset(physical, num, 2407 map, &logical); 2408 logical += base; 2409 if (ret) 2410 goto skip; 2411 } 2412 /* 2413 * canceled? 2414 */ 2415 if (atomic_read(&fs_info->scrub_cancel_req) || 2416 atomic_read(&sctx->cancel_req)) { 2417 ret = -ECANCELED; 2418 goto out; 2419 } 2420 /* 2421 * check to see if we have to pause 2422 */ 2423 if (atomic_read(&fs_info->scrub_pause_req)) { 2424 /* push queued extents */ 2425 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2426 scrub_submit(sctx); 2427 mutex_lock(&sctx->wr_ctx.wr_lock); 2428 scrub_wr_submit(sctx); 2429 mutex_unlock(&sctx->wr_ctx.wr_lock); 2430 wait_event(sctx->list_wait, 2431 atomic_read(&sctx->bios_in_flight) == 0); 2432 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2433 scrub_blocked_if_needed(fs_info); 2434 } 2435 2436 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2437 key.type = BTRFS_METADATA_ITEM_KEY; 2438 else 2439 key.type = BTRFS_EXTENT_ITEM_KEY; 2440 key.objectid = logical; 2441 key.offset = (u64)-1; 2442 2443 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2444 if (ret < 0) 2445 goto out; 2446 2447 if (ret > 0) { 2448 ret = btrfs_previous_extent_item(root, path, 0); 2449 if (ret < 0) 2450 goto out; 2451 if (ret > 0) { 2452 /* there's no smaller item, so stick with the 2453 * larger one */ 2454 btrfs_release_path(path); 2455 ret = btrfs_search_slot(NULL, root, &key, 2456 path, 0, 0); 2457 if (ret < 0) 2458 goto out; 2459 } 2460 } 2461 2462 stop_loop = 0; 2463 while (1) { 2464 u64 bytes; 2465 2466 l = path->nodes[0]; 2467 slot = path->slots[0]; 2468 if (slot >= btrfs_header_nritems(l)) { 2469 ret = btrfs_next_leaf(root, path); 2470 if (ret == 0) 2471 continue; 2472 if (ret < 0) 2473 goto out; 2474 2475 stop_loop = 1; 2476 break; 2477 } 2478 btrfs_item_key_to_cpu(l, &key, slot); 2479 2480 if (key.type == BTRFS_METADATA_ITEM_KEY) 2481 bytes = root->nodesize; 2482 else 2483 bytes = key.offset; 2484 2485 if (key.objectid + bytes <= logical) 2486 goto next; 2487 2488 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2489 key.type != BTRFS_METADATA_ITEM_KEY) 2490 goto next; 2491 2492 if (key.objectid >= logical + map->stripe_len) { 2493 /* out of this device extent */ 2494 if (key.objectid >= logic_end) 2495 stop_loop = 1; 2496 break; 2497 } 2498 2499 extent = btrfs_item_ptr(l, slot, 2500 struct btrfs_extent_item); 2501 flags = btrfs_extent_flags(l, extent); 2502 generation = btrfs_extent_generation(l, extent); 2503 2504 if (key.objectid < logical && 2505 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 2506 btrfs_err(fs_info, 2507 "scrub: tree block %llu spanning " 2508 "stripes, ignored. logical=%llu", 2509 key.objectid, logical); 2510 goto next; 2511 } 2512 2513 again: 2514 extent_logical = key.objectid; 2515 extent_len = bytes; 2516 2517 /* 2518 * trim extent to this stripe 2519 */ 2520 if (extent_logical < logical) { 2521 extent_len -= logical - extent_logical; 2522 extent_logical = logical; 2523 } 2524 if (extent_logical + extent_len > 2525 logical + map->stripe_len) { 2526 extent_len = logical + map->stripe_len - 2527 extent_logical; 2528 } 2529 2530 extent_physical = extent_logical - logical + physical; 2531 extent_dev = scrub_dev; 2532 extent_mirror_num = mirror_num; 2533 if (is_dev_replace) 2534 scrub_remap_extent(fs_info, extent_logical, 2535 extent_len, &extent_physical, 2536 &extent_dev, 2537 &extent_mirror_num); 2538 2539 ret = btrfs_lookup_csums_range(csum_root, logical, 2540 logical + map->stripe_len - 1, 2541 &sctx->csum_list, 1); 2542 if (ret) 2543 goto out; 2544 2545 ret = scrub_extent(sctx, extent_logical, extent_len, 2546 extent_physical, extent_dev, flags, 2547 generation, extent_mirror_num, 2548 extent_logical - logical + physical); 2549 if (ret) 2550 goto out; 2551 2552 scrub_free_csums(sctx); 2553 if (extent_logical + extent_len < 2554 key.objectid + bytes) { 2555 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2556 BTRFS_BLOCK_GROUP_RAID6)) { 2557 /* 2558 * loop until we find next data stripe 2559 * or we have finished all stripes. 2560 */ 2561 do { 2562 physical += map->stripe_len; 2563 ret = get_raid56_logic_offset( 2564 physical, num, 2565 map, &logical); 2566 logical += base; 2567 } while (physical < physical_end && ret); 2568 } else { 2569 physical += map->stripe_len; 2570 logical += increment; 2571 } 2572 if (logical < key.objectid + bytes) { 2573 cond_resched(); 2574 goto again; 2575 } 2576 2577 if (physical >= physical_end) { 2578 stop_loop = 1; 2579 break; 2580 } 2581 } 2582 next: 2583 path->slots[0]++; 2584 } 2585 btrfs_release_path(path); 2586 skip: 2587 logical += increment; 2588 physical += map->stripe_len; 2589 spin_lock(&sctx->stat_lock); 2590 if (stop_loop) 2591 sctx->stat.last_physical = map->stripes[num].physical + 2592 length; 2593 else 2594 sctx->stat.last_physical = physical; 2595 spin_unlock(&sctx->stat_lock); 2596 if (stop_loop) 2597 break; 2598 } 2599 out: 2600 /* push queued extents */ 2601 scrub_submit(sctx); 2602 mutex_lock(&sctx->wr_ctx.wr_lock); 2603 scrub_wr_submit(sctx); 2604 mutex_unlock(&sctx->wr_ctx.wr_lock); 2605 2606 blk_finish_plug(&plug); 2607 btrfs_free_path(path); 2608 return ret < 0 ? ret : 0; 2609 } 2610 2611 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2612 struct btrfs_device *scrub_dev, 2613 u64 chunk_tree, u64 chunk_objectid, 2614 u64 chunk_offset, u64 length, 2615 u64 dev_offset, int is_dev_replace) 2616 { 2617 struct btrfs_mapping_tree *map_tree = 2618 &sctx->dev_root->fs_info->mapping_tree; 2619 struct map_lookup *map; 2620 struct extent_map *em; 2621 int i; 2622 int ret = 0; 2623 2624 read_lock(&map_tree->map_tree.lock); 2625 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 2626 read_unlock(&map_tree->map_tree.lock); 2627 2628 if (!em) 2629 return -EINVAL; 2630 2631 map = (struct map_lookup *)em->bdev; 2632 if (em->start != chunk_offset) 2633 goto out; 2634 2635 if (em->len < length) 2636 goto out; 2637 2638 for (i = 0; i < map->num_stripes; ++i) { 2639 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2640 map->stripes[i].physical == dev_offset) { 2641 ret = scrub_stripe(sctx, map, scrub_dev, i, 2642 chunk_offset, length, 2643 is_dev_replace); 2644 if (ret) 2645 goto out; 2646 } 2647 } 2648 out: 2649 free_extent_map(em); 2650 2651 return ret; 2652 } 2653 2654 static noinline_for_stack 2655 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2656 struct btrfs_device *scrub_dev, u64 start, u64 end, 2657 int is_dev_replace) 2658 { 2659 struct btrfs_dev_extent *dev_extent = NULL; 2660 struct btrfs_path *path; 2661 struct btrfs_root *root = sctx->dev_root; 2662 struct btrfs_fs_info *fs_info = root->fs_info; 2663 u64 length; 2664 u64 chunk_tree; 2665 u64 chunk_objectid; 2666 u64 chunk_offset; 2667 int ret; 2668 int slot; 2669 struct extent_buffer *l; 2670 struct btrfs_key key; 2671 struct btrfs_key found_key; 2672 struct btrfs_block_group_cache *cache; 2673 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2674 2675 path = btrfs_alloc_path(); 2676 if (!path) 2677 return -ENOMEM; 2678 2679 path->reada = 2; 2680 path->search_commit_root = 1; 2681 path->skip_locking = 1; 2682 2683 key.objectid = scrub_dev->devid; 2684 key.offset = 0ull; 2685 key.type = BTRFS_DEV_EXTENT_KEY; 2686 2687 while (1) { 2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2689 if (ret < 0) 2690 break; 2691 if (ret > 0) { 2692 if (path->slots[0] >= 2693 btrfs_header_nritems(path->nodes[0])) { 2694 ret = btrfs_next_leaf(root, path); 2695 if (ret) 2696 break; 2697 } 2698 } 2699 2700 l = path->nodes[0]; 2701 slot = path->slots[0]; 2702 2703 btrfs_item_key_to_cpu(l, &found_key, slot); 2704 2705 if (found_key.objectid != scrub_dev->devid) 2706 break; 2707 2708 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2709 break; 2710 2711 if (found_key.offset >= end) 2712 break; 2713 2714 if (found_key.offset < key.offset) 2715 break; 2716 2717 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2718 length = btrfs_dev_extent_length(l, dev_extent); 2719 2720 if (found_key.offset + length <= start) 2721 goto skip; 2722 2723 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 2724 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 2725 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2726 2727 /* 2728 * get a reference on the corresponding block group to prevent 2729 * the chunk from going away while we scrub it 2730 */ 2731 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2732 2733 /* some chunks are removed but not committed to disk yet, 2734 * continue scrubbing */ 2735 if (!cache) 2736 goto skip; 2737 2738 dev_replace->cursor_right = found_key.offset + length; 2739 dev_replace->cursor_left = found_key.offset; 2740 dev_replace->item_needs_writeback = 1; 2741 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 2742 chunk_offset, length, found_key.offset, 2743 is_dev_replace); 2744 2745 /* 2746 * flush, submit all pending read and write bios, afterwards 2747 * wait for them. 2748 * Note that in the dev replace case, a read request causes 2749 * write requests that are submitted in the read completion 2750 * worker. Therefore in the current situation, it is required 2751 * that all write requests are flushed, so that all read and 2752 * write requests are really completed when bios_in_flight 2753 * changes to 0. 2754 */ 2755 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2756 scrub_submit(sctx); 2757 mutex_lock(&sctx->wr_ctx.wr_lock); 2758 scrub_wr_submit(sctx); 2759 mutex_unlock(&sctx->wr_ctx.wr_lock); 2760 2761 wait_event(sctx->list_wait, 2762 atomic_read(&sctx->bios_in_flight) == 0); 2763 atomic_inc(&fs_info->scrubs_paused); 2764 wake_up(&fs_info->scrub_pause_wait); 2765 2766 /* 2767 * must be called before we decrease @scrub_paused. 2768 * make sure we don't block transaction commit while 2769 * we are waiting pending workers finished. 2770 */ 2771 wait_event(sctx->list_wait, 2772 atomic_read(&sctx->workers_pending) == 0); 2773 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2774 2775 mutex_lock(&fs_info->scrub_lock); 2776 __scrub_blocked_if_needed(fs_info); 2777 atomic_dec(&fs_info->scrubs_paused); 2778 mutex_unlock(&fs_info->scrub_lock); 2779 wake_up(&fs_info->scrub_pause_wait); 2780 2781 btrfs_put_block_group(cache); 2782 if (ret) 2783 break; 2784 if (is_dev_replace && 2785 atomic64_read(&dev_replace->num_write_errors) > 0) { 2786 ret = -EIO; 2787 break; 2788 } 2789 if (sctx->stat.malloc_errors > 0) { 2790 ret = -ENOMEM; 2791 break; 2792 } 2793 2794 dev_replace->cursor_left = dev_replace->cursor_right; 2795 dev_replace->item_needs_writeback = 1; 2796 skip: 2797 key.offset = found_key.offset + length; 2798 btrfs_release_path(path); 2799 } 2800 2801 btrfs_free_path(path); 2802 2803 /* 2804 * ret can still be 1 from search_slot or next_leaf, 2805 * that's not an error 2806 */ 2807 return ret < 0 ? ret : 0; 2808 } 2809 2810 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2811 struct btrfs_device *scrub_dev) 2812 { 2813 int i; 2814 u64 bytenr; 2815 u64 gen; 2816 int ret; 2817 struct btrfs_root *root = sctx->dev_root; 2818 2819 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 2820 return -EIO; 2821 2822 /* Seed devices of a new filesystem has their own generation. */ 2823 if (scrub_dev->fs_devices != root->fs_info->fs_devices) 2824 gen = scrub_dev->generation; 2825 else 2826 gen = root->fs_info->last_trans_committed; 2827 2828 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2829 bytenr = btrfs_sb_offset(i); 2830 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2831 scrub_dev->commit_total_bytes) 2832 break; 2833 2834 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 2835 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 2836 NULL, 1, bytenr); 2837 if (ret) 2838 return ret; 2839 } 2840 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2841 2842 return 0; 2843 } 2844 2845 /* 2846 * get a reference count on fs_info->scrub_workers. start worker if necessary 2847 */ 2848 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2849 int is_dev_replace) 2850 { 2851 int ret = 0; 2852 int flags = WQ_FREEZABLE | WQ_UNBOUND; 2853 int max_active = fs_info->thread_pool_size; 2854 2855 if (fs_info->scrub_workers_refcnt == 0) { 2856 if (is_dev_replace) 2857 fs_info->scrub_workers = 2858 btrfs_alloc_workqueue("btrfs-scrub", flags, 2859 1, 4); 2860 else 2861 fs_info->scrub_workers = 2862 btrfs_alloc_workqueue("btrfs-scrub", flags, 2863 max_active, 4); 2864 if (!fs_info->scrub_workers) { 2865 ret = -ENOMEM; 2866 goto out; 2867 } 2868 fs_info->scrub_wr_completion_workers = 2869 btrfs_alloc_workqueue("btrfs-scrubwrc", flags, 2870 max_active, 2); 2871 if (!fs_info->scrub_wr_completion_workers) { 2872 ret = -ENOMEM; 2873 goto out; 2874 } 2875 fs_info->scrub_nocow_workers = 2876 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0); 2877 if (!fs_info->scrub_nocow_workers) { 2878 ret = -ENOMEM; 2879 goto out; 2880 } 2881 } 2882 ++fs_info->scrub_workers_refcnt; 2883 out: 2884 return ret; 2885 } 2886 2887 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 2888 { 2889 if (--fs_info->scrub_workers_refcnt == 0) { 2890 btrfs_destroy_workqueue(fs_info->scrub_workers); 2891 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 2892 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 2893 } 2894 WARN_ON(fs_info->scrub_workers_refcnt < 0); 2895 } 2896 2897 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2898 u64 end, struct btrfs_scrub_progress *progress, 2899 int readonly, int is_dev_replace) 2900 { 2901 struct scrub_ctx *sctx; 2902 int ret; 2903 struct btrfs_device *dev; 2904 struct rcu_string *name; 2905 2906 if (btrfs_fs_closing(fs_info)) 2907 return -EINVAL; 2908 2909 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 2910 /* 2911 * in this case scrub is unable to calculate the checksum 2912 * the way scrub is implemented. Do not handle this 2913 * situation at all because it won't ever happen. 2914 */ 2915 btrfs_err(fs_info, 2916 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 2917 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 2918 return -EINVAL; 2919 } 2920 2921 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 2922 /* not supported for data w/o checksums */ 2923 btrfs_err(fs_info, 2924 "scrub: size assumption sectorsize != PAGE_SIZE " 2925 "(%d != %lu) fails", 2926 fs_info->chunk_root->sectorsize, PAGE_SIZE); 2927 return -EINVAL; 2928 } 2929 2930 if (fs_info->chunk_root->nodesize > 2931 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 2932 fs_info->chunk_root->sectorsize > 2933 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 2934 /* 2935 * would exhaust the array bounds of pagev member in 2936 * struct scrub_block 2937 */ 2938 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize " 2939 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 2940 fs_info->chunk_root->nodesize, 2941 SCRUB_MAX_PAGES_PER_BLOCK, 2942 fs_info->chunk_root->sectorsize, 2943 SCRUB_MAX_PAGES_PER_BLOCK); 2944 return -EINVAL; 2945 } 2946 2947 2948 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2949 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 2950 if (!dev || (dev->missing && !is_dev_replace)) { 2951 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2952 return -ENODEV; 2953 } 2954 2955 if (!is_dev_replace && !readonly && !dev->writeable) { 2956 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2957 rcu_read_lock(); 2958 name = rcu_dereference(dev->name); 2959 btrfs_err(fs_info, "scrub: device %s is not writable", 2960 name->str); 2961 rcu_read_unlock(); 2962 return -EROFS; 2963 } 2964 2965 mutex_lock(&fs_info->scrub_lock); 2966 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 2967 mutex_unlock(&fs_info->scrub_lock); 2968 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2969 return -EIO; 2970 } 2971 2972 btrfs_dev_replace_lock(&fs_info->dev_replace); 2973 if (dev->scrub_device || 2974 (!is_dev_replace && 2975 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2976 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2977 mutex_unlock(&fs_info->scrub_lock); 2978 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2979 return -EINPROGRESS; 2980 } 2981 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2982 2983 ret = scrub_workers_get(fs_info, is_dev_replace); 2984 if (ret) { 2985 mutex_unlock(&fs_info->scrub_lock); 2986 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2987 return ret; 2988 } 2989 2990 sctx = scrub_setup_ctx(dev, is_dev_replace); 2991 if (IS_ERR(sctx)) { 2992 mutex_unlock(&fs_info->scrub_lock); 2993 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2994 scrub_workers_put(fs_info); 2995 return PTR_ERR(sctx); 2996 } 2997 sctx->readonly = readonly; 2998 dev->scrub_device = sctx; 2999 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3000 3001 /* 3002 * checking @scrub_pause_req here, we can avoid 3003 * race between committing transaction and scrubbing. 3004 */ 3005 __scrub_blocked_if_needed(fs_info); 3006 atomic_inc(&fs_info->scrubs_running); 3007 mutex_unlock(&fs_info->scrub_lock); 3008 3009 if (!is_dev_replace) { 3010 /* 3011 * by holding device list mutex, we can 3012 * kick off writing super in log tree sync. 3013 */ 3014 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3015 ret = scrub_supers(sctx, dev); 3016 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3017 } 3018 3019 if (!ret) 3020 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3021 is_dev_replace); 3022 3023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3024 atomic_dec(&fs_info->scrubs_running); 3025 wake_up(&fs_info->scrub_pause_wait); 3026 3027 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3028 3029 if (progress) 3030 memcpy(progress, &sctx->stat, sizeof(*progress)); 3031 3032 mutex_lock(&fs_info->scrub_lock); 3033 dev->scrub_device = NULL; 3034 scrub_workers_put(fs_info); 3035 mutex_unlock(&fs_info->scrub_lock); 3036 3037 scrub_free_ctx(sctx); 3038 3039 return ret; 3040 } 3041 3042 void btrfs_scrub_pause(struct btrfs_root *root) 3043 { 3044 struct btrfs_fs_info *fs_info = root->fs_info; 3045 3046 mutex_lock(&fs_info->scrub_lock); 3047 atomic_inc(&fs_info->scrub_pause_req); 3048 while (atomic_read(&fs_info->scrubs_paused) != 3049 atomic_read(&fs_info->scrubs_running)) { 3050 mutex_unlock(&fs_info->scrub_lock); 3051 wait_event(fs_info->scrub_pause_wait, 3052 atomic_read(&fs_info->scrubs_paused) == 3053 atomic_read(&fs_info->scrubs_running)); 3054 mutex_lock(&fs_info->scrub_lock); 3055 } 3056 mutex_unlock(&fs_info->scrub_lock); 3057 } 3058 3059 void btrfs_scrub_continue(struct btrfs_root *root) 3060 { 3061 struct btrfs_fs_info *fs_info = root->fs_info; 3062 3063 atomic_dec(&fs_info->scrub_pause_req); 3064 wake_up(&fs_info->scrub_pause_wait); 3065 } 3066 3067 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3068 { 3069 mutex_lock(&fs_info->scrub_lock); 3070 if (!atomic_read(&fs_info->scrubs_running)) { 3071 mutex_unlock(&fs_info->scrub_lock); 3072 return -ENOTCONN; 3073 } 3074 3075 atomic_inc(&fs_info->scrub_cancel_req); 3076 while (atomic_read(&fs_info->scrubs_running)) { 3077 mutex_unlock(&fs_info->scrub_lock); 3078 wait_event(fs_info->scrub_pause_wait, 3079 atomic_read(&fs_info->scrubs_running) == 0); 3080 mutex_lock(&fs_info->scrub_lock); 3081 } 3082 atomic_dec(&fs_info->scrub_cancel_req); 3083 mutex_unlock(&fs_info->scrub_lock); 3084 3085 return 0; 3086 } 3087 3088 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3089 struct btrfs_device *dev) 3090 { 3091 struct scrub_ctx *sctx; 3092 3093 mutex_lock(&fs_info->scrub_lock); 3094 sctx = dev->scrub_device; 3095 if (!sctx) { 3096 mutex_unlock(&fs_info->scrub_lock); 3097 return -ENOTCONN; 3098 } 3099 atomic_inc(&sctx->cancel_req); 3100 while (dev->scrub_device) { 3101 mutex_unlock(&fs_info->scrub_lock); 3102 wait_event(fs_info->scrub_pause_wait, 3103 dev->scrub_device == NULL); 3104 mutex_lock(&fs_info->scrub_lock); 3105 } 3106 mutex_unlock(&fs_info->scrub_lock); 3107 3108 return 0; 3109 } 3110 3111 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 3112 struct btrfs_scrub_progress *progress) 3113 { 3114 struct btrfs_device *dev; 3115 struct scrub_ctx *sctx = NULL; 3116 3117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3118 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 3119 if (dev) 3120 sctx = dev->scrub_device; 3121 if (sctx) 3122 memcpy(progress, &sctx->stat, sizeof(*progress)); 3123 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3124 3125 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3126 } 3127 3128 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3129 u64 extent_logical, u64 extent_len, 3130 u64 *extent_physical, 3131 struct btrfs_device **extent_dev, 3132 int *extent_mirror_num) 3133 { 3134 u64 mapped_length; 3135 struct btrfs_bio *bbio = NULL; 3136 int ret; 3137 3138 mapped_length = extent_len; 3139 ret = btrfs_map_block(fs_info, READ, extent_logical, 3140 &mapped_length, &bbio, 0); 3141 if (ret || !bbio || mapped_length < extent_len || 3142 !bbio->stripes[0].dev->bdev) { 3143 kfree(bbio); 3144 return; 3145 } 3146 3147 *extent_physical = bbio->stripes[0].physical; 3148 *extent_mirror_num = bbio->mirror_num; 3149 *extent_dev = bbio->stripes[0].dev; 3150 kfree(bbio); 3151 } 3152 3153 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 3154 struct scrub_wr_ctx *wr_ctx, 3155 struct btrfs_fs_info *fs_info, 3156 struct btrfs_device *dev, 3157 int is_dev_replace) 3158 { 3159 WARN_ON(wr_ctx->wr_curr_bio != NULL); 3160 3161 mutex_init(&wr_ctx->wr_lock); 3162 wr_ctx->wr_curr_bio = NULL; 3163 if (!is_dev_replace) 3164 return 0; 3165 3166 WARN_ON(!dev->bdev); 3167 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO, 3168 bio_get_nr_vecs(dev->bdev)); 3169 wr_ctx->tgtdev = dev; 3170 atomic_set(&wr_ctx->flush_all_writes, 0); 3171 return 0; 3172 } 3173 3174 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 3175 { 3176 mutex_lock(&wr_ctx->wr_lock); 3177 kfree(wr_ctx->wr_curr_bio); 3178 wr_ctx->wr_curr_bio = NULL; 3179 mutex_unlock(&wr_ctx->wr_lock); 3180 } 3181 3182 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 3183 int mirror_num, u64 physical_for_dev_replace) 3184 { 3185 struct scrub_copy_nocow_ctx *nocow_ctx; 3186 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3187 3188 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 3189 if (!nocow_ctx) { 3190 spin_lock(&sctx->stat_lock); 3191 sctx->stat.malloc_errors++; 3192 spin_unlock(&sctx->stat_lock); 3193 return -ENOMEM; 3194 } 3195 3196 scrub_pending_trans_workers_inc(sctx); 3197 3198 nocow_ctx->sctx = sctx; 3199 nocow_ctx->logical = logical; 3200 nocow_ctx->len = len; 3201 nocow_ctx->mirror_num = mirror_num; 3202 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 3203 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 3204 copy_nocow_pages_worker, NULL, NULL); 3205 INIT_LIST_HEAD(&nocow_ctx->inodes); 3206 btrfs_queue_work(fs_info->scrub_nocow_workers, 3207 &nocow_ctx->work); 3208 3209 return 0; 3210 } 3211 3212 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 3213 { 3214 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 3215 struct scrub_nocow_inode *nocow_inode; 3216 3217 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 3218 if (!nocow_inode) 3219 return -ENOMEM; 3220 nocow_inode->inum = inum; 3221 nocow_inode->offset = offset; 3222 nocow_inode->root = root; 3223 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 3224 return 0; 3225 } 3226 3227 #define COPY_COMPLETE 1 3228 3229 static void copy_nocow_pages_worker(struct btrfs_work *work) 3230 { 3231 struct scrub_copy_nocow_ctx *nocow_ctx = 3232 container_of(work, struct scrub_copy_nocow_ctx, work); 3233 struct scrub_ctx *sctx = nocow_ctx->sctx; 3234 u64 logical = nocow_ctx->logical; 3235 u64 len = nocow_ctx->len; 3236 int mirror_num = nocow_ctx->mirror_num; 3237 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3238 int ret; 3239 struct btrfs_trans_handle *trans = NULL; 3240 struct btrfs_fs_info *fs_info; 3241 struct btrfs_path *path; 3242 struct btrfs_root *root; 3243 int not_written = 0; 3244 3245 fs_info = sctx->dev_root->fs_info; 3246 root = fs_info->extent_root; 3247 3248 path = btrfs_alloc_path(); 3249 if (!path) { 3250 spin_lock(&sctx->stat_lock); 3251 sctx->stat.malloc_errors++; 3252 spin_unlock(&sctx->stat_lock); 3253 not_written = 1; 3254 goto out; 3255 } 3256 3257 trans = btrfs_join_transaction(root); 3258 if (IS_ERR(trans)) { 3259 not_written = 1; 3260 goto out; 3261 } 3262 3263 ret = iterate_inodes_from_logical(logical, fs_info, path, 3264 record_inode_for_nocow, nocow_ctx); 3265 if (ret != 0 && ret != -ENOENT) { 3266 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, " 3267 "phys %llu, len %llu, mir %u, ret %d", 3268 logical, physical_for_dev_replace, len, mirror_num, 3269 ret); 3270 not_written = 1; 3271 goto out; 3272 } 3273 3274 btrfs_end_transaction(trans, root); 3275 trans = NULL; 3276 while (!list_empty(&nocow_ctx->inodes)) { 3277 struct scrub_nocow_inode *entry; 3278 entry = list_first_entry(&nocow_ctx->inodes, 3279 struct scrub_nocow_inode, 3280 list); 3281 list_del_init(&entry->list); 3282 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 3283 entry->root, nocow_ctx); 3284 kfree(entry); 3285 if (ret == COPY_COMPLETE) { 3286 ret = 0; 3287 break; 3288 } else if (ret) { 3289 break; 3290 } 3291 } 3292 out: 3293 while (!list_empty(&nocow_ctx->inodes)) { 3294 struct scrub_nocow_inode *entry; 3295 entry = list_first_entry(&nocow_ctx->inodes, 3296 struct scrub_nocow_inode, 3297 list); 3298 list_del_init(&entry->list); 3299 kfree(entry); 3300 } 3301 if (trans && !IS_ERR(trans)) 3302 btrfs_end_transaction(trans, root); 3303 if (not_written) 3304 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 3305 num_uncorrectable_read_errors); 3306 3307 btrfs_free_path(path); 3308 kfree(nocow_ctx); 3309 3310 scrub_pending_trans_workers_dec(sctx); 3311 } 3312 3313 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 3314 struct scrub_copy_nocow_ctx *nocow_ctx) 3315 { 3316 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 3317 struct btrfs_key key; 3318 struct inode *inode; 3319 struct page *page; 3320 struct btrfs_root *local_root; 3321 struct btrfs_ordered_extent *ordered; 3322 struct extent_map *em; 3323 struct extent_state *cached_state = NULL; 3324 struct extent_io_tree *io_tree; 3325 u64 physical_for_dev_replace; 3326 u64 len = nocow_ctx->len; 3327 u64 lockstart = offset, lockend = offset + len - 1; 3328 unsigned long index; 3329 int srcu_index; 3330 int ret = 0; 3331 int err = 0; 3332 3333 key.objectid = root; 3334 key.type = BTRFS_ROOT_ITEM_KEY; 3335 key.offset = (u64)-1; 3336 3337 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 3338 3339 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 3340 if (IS_ERR(local_root)) { 3341 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3342 return PTR_ERR(local_root); 3343 } 3344 3345 key.type = BTRFS_INODE_ITEM_KEY; 3346 key.objectid = inum; 3347 key.offset = 0; 3348 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 3349 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3350 if (IS_ERR(inode)) 3351 return PTR_ERR(inode); 3352 3353 /* Avoid truncate/dio/punch hole.. */ 3354 mutex_lock(&inode->i_mutex); 3355 inode_dio_wait(inode); 3356 3357 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3358 io_tree = &BTRFS_I(inode)->io_tree; 3359 3360 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state); 3361 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 3362 if (ordered) { 3363 btrfs_put_ordered_extent(ordered); 3364 goto out_unlock; 3365 } 3366 3367 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0); 3368 if (IS_ERR(em)) { 3369 ret = PTR_ERR(em); 3370 goto out_unlock; 3371 } 3372 3373 /* 3374 * This extent does not actually cover the logical extent anymore, 3375 * move on to the next inode. 3376 */ 3377 if (em->block_start > nocow_ctx->logical || 3378 em->block_start + em->block_len < nocow_ctx->logical + len) { 3379 free_extent_map(em); 3380 goto out_unlock; 3381 } 3382 free_extent_map(em); 3383 3384 while (len >= PAGE_CACHE_SIZE) { 3385 index = offset >> PAGE_CACHE_SHIFT; 3386 again: 3387 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 3388 if (!page) { 3389 btrfs_err(fs_info, "find_or_create_page() failed"); 3390 ret = -ENOMEM; 3391 goto out; 3392 } 3393 3394 if (PageUptodate(page)) { 3395 if (PageDirty(page)) 3396 goto next_page; 3397 } else { 3398 ClearPageError(page); 3399 err = extent_read_full_page_nolock(io_tree, page, 3400 btrfs_get_extent, 3401 nocow_ctx->mirror_num); 3402 if (err) { 3403 ret = err; 3404 goto next_page; 3405 } 3406 3407 lock_page(page); 3408 /* 3409 * If the page has been remove from the page cache, 3410 * the data on it is meaningless, because it may be 3411 * old one, the new data may be written into the new 3412 * page in the page cache. 3413 */ 3414 if (page->mapping != inode->i_mapping) { 3415 unlock_page(page); 3416 page_cache_release(page); 3417 goto again; 3418 } 3419 if (!PageUptodate(page)) { 3420 ret = -EIO; 3421 goto next_page; 3422 } 3423 } 3424 err = write_page_nocow(nocow_ctx->sctx, 3425 physical_for_dev_replace, page); 3426 if (err) 3427 ret = err; 3428 next_page: 3429 unlock_page(page); 3430 page_cache_release(page); 3431 3432 if (ret) 3433 break; 3434 3435 offset += PAGE_CACHE_SIZE; 3436 physical_for_dev_replace += PAGE_CACHE_SIZE; 3437 len -= PAGE_CACHE_SIZE; 3438 } 3439 ret = COPY_COMPLETE; 3440 out_unlock: 3441 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 3442 GFP_NOFS); 3443 out: 3444 mutex_unlock(&inode->i_mutex); 3445 iput(inode); 3446 return ret; 3447 } 3448 3449 static int write_page_nocow(struct scrub_ctx *sctx, 3450 u64 physical_for_dev_replace, struct page *page) 3451 { 3452 struct bio *bio; 3453 struct btrfs_device *dev; 3454 int ret; 3455 3456 dev = sctx->wr_ctx.tgtdev; 3457 if (!dev) 3458 return -EIO; 3459 if (!dev->bdev) { 3460 printk_ratelimited(KERN_WARNING 3461 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 3462 return -EIO; 3463 } 3464 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 3465 if (!bio) { 3466 spin_lock(&sctx->stat_lock); 3467 sctx->stat.malloc_errors++; 3468 spin_unlock(&sctx->stat_lock); 3469 return -ENOMEM; 3470 } 3471 bio->bi_iter.bi_size = 0; 3472 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 3473 bio->bi_bdev = dev->bdev; 3474 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 3475 if (ret != PAGE_CACHE_SIZE) { 3476 leave_with_eio: 3477 bio_put(bio); 3478 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 3479 return -EIO; 3480 } 3481 3482 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 3483 goto leave_with_eio; 3484 3485 bio_put(bio); 3486 return 0; 3487 } 3488