xref: /openbmc/linux/fs/btrfs/scrub.c (revision 3c6a73cc)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_page {
67 	struct scrub_block	*sblock;
68 	struct page		*page;
69 	struct btrfs_device	*dev;
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			logical;
73 	u64			physical;
74 	u64			physical_for_dev_replace;
75 	atomic_t		ref_count;
76 	struct {
77 		unsigned int	mirror_num:8;
78 		unsigned int	have_csum:1;
79 		unsigned int	io_error:1;
80 	};
81 	u8			csum[BTRFS_CSUM_SIZE];
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	int			err;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	atomic_t		ref_count; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 	};
114 };
115 
116 struct scrub_wr_ctx {
117 	struct scrub_bio *wr_curr_bio;
118 	struct btrfs_device *tgtdev;
119 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 	atomic_t flush_all_writes;
121 	struct mutex wr_lock;
122 };
123 
124 struct scrub_ctx {
125 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126 	struct btrfs_root	*dev_root;
127 	int			first_free;
128 	int			curr;
129 	atomic_t		bios_in_flight;
130 	atomic_t		workers_pending;
131 	spinlock_t		list_lock;
132 	wait_queue_head_t	list_wait;
133 	u16			csum_size;
134 	struct list_head	csum_list;
135 	atomic_t		cancel_req;
136 	int			readonly;
137 	int			pages_per_rd_bio;
138 	u32			sectorsize;
139 	u32			nodesize;
140 
141 	int			is_dev_replace;
142 	struct scrub_wr_ctx	wr_ctx;
143 
144 	/*
145 	 * statistics
146 	 */
147 	struct btrfs_scrub_progress stat;
148 	spinlock_t		stat_lock;
149 };
150 
151 struct scrub_fixup_nodatasum {
152 	struct scrub_ctx	*sctx;
153 	struct btrfs_device	*dev;
154 	u64			logical;
155 	struct btrfs_root	*root;
156 	struct btrfs_work	work;
157 	int			mirror_num;
158 };
159 
160 struct scrub_nocow_inode {
161 	u64			inum;
162 	u64			offset;
163 	u64			root;
164 	struct list_head	list;
165 };
166 
167 struct scrub_copy_nocow_ctx {
168 	struct scrub_ctx	*sctx;
169 	u64			logical;
170 	u64			len;
171 	int			mirror_num;
172 	u64			physical_for_dev_replace;
173 	struct list_head	inodes;
174 	struct btrfs_work	work;
175 };
176 
177 struct scrub_warning {
178 	struct btrfs_path	*path;
179 	u64			extent_item_size;
180 	const char		*errstr;
181 	sector_t		sector;
182 	u64			logical;
183 	struct btrfs_device	*dev;
184 };
185 
186 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
188 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
189 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
190 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
192 				     struct btrfs_fs_info *fs_info,
193 				     struct scrub_block *original_sblock,
194 				     u64 length, u64 logical,
195 				     struct scrub_block *sblocks_for_recheck);
196 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
197 				struct scrub_block *sblock, int is_metadata,
198 				int have_csum, u8 *csum, u64 generation,
199 				u16 csum_size);
200 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
201 					 struct scrub_block *sblock,
202 					 int is_metadata, int have_csum,
203 					 const u8 *csum, u64 generation,
204 					 u16 csum_size);
205 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
206 					     struct scrub_block *sblock_good,
207 					     int force_write);
208 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
209 					    struct scrub_block *sblock_good,
210 					    int page_num, int force_write);
211 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
212 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
213 					   int page_num);
214 static int scrub_checksum_data(struct scrub_block *sblock);
215 static int scrub_checksum_tree_block(struct scrub_block *sblock);
216 static int scrub_checksum_super(struct scrub_block *sblock);
217 static void scrub_block_get(struct scrub_block *sblock);
218 static void scrub_block_put(struct scrub_block *sblock);
219 static void scrub_page_get(struct scrub_page *spage);
220 static void scrub_page_put(struct scrub_page *spage);
221 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
222 				    struct scrub_page *spage);
223 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
224 		       u64 physical, struct btrfs_device *dev, u64 flags,
225 		       u64 gen, int mirror_num, u8 *csum, int force,
226 		       u64 physical_for_dev_replace);
227 static void scrub_bio_end_io(struct bio *bio, int err);
228 static void scrub_bio_end_io_worker(struct btrfs_work *work);
229 static void scrub_block_complete(struct scrub_block *sblock);
230 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
231 			       u64 extent_logical, u64 extent_len,
232 			       u64 *extent_physical,
233 			       struct btrfs_device **extent_dev,
234 			       int *extent_mirror_num);
235 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
236 			      struct scrub_wr_ctx *wr_ctx,
237 			      struct btrfs_fs_info *fs_info,
238 			      struct btrfs_device *dev,
239 			      int is_dev_replace);
240 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
241 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
242 				    struct scrub_page *spage);
243 static void scrub_wr_submit(struct scrub_ctx *sctx);
244 static void scrub_wr_bio_end_io(struct bio *bio, int err);
245 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
246 static int write_page_nocow(struct scrub_ctx *sctx,
247 			    u64 physical_for_dev_replace, struct page *page);
248 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
249 				      struct scrub_copy_nocow_ctx *ctx);
250 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
251 			    int mirror_num, u64 physical_for_dev_replace);
252 static void copy_nocow_pages_worker(struct btrfs_work *work);
253 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255 
256 
257 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
258 {
259 	atomic_inc(&sctx->bios_in_flight);
260 }
261 
262 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
263 {
264 	atomic_dec(&sctx->bios_in_flight);
265 	wake_up(&sctx->list_wait);
266 }
267 
268 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
269 {
270 	while (atomic_read(&fs_info->scrub_pause_req)) {
271 		mutex_unlock(&fs_info->scrub_lock);
272 		wait_event(fs_info->scrub_pause_wait,
273 		   atomic_read(&fs_info->scrub_pause_req) == 0);
274 		mutex_lock(&fs_info->scrub_lock);
275 	}
276 }
277 
278 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279 {
280 	atomic_inc(&fs_info->scrubs_paused);
281 	wake_up(&fs_info->scrub_pause_wait);
282 
283 	mutex_lock(&fs_info->scrub_lock);
284 	__scrub_blocked_if_needed(fs_info);
285 	atomic_dec(&fs_info->scrubs_paused);
286 	mutex_unlock(&fs_info->scrub_lock);
287 
288 	wake_up(&fs_info->scrub_pause_wait);
289 }
290 
291 /*
292  * used for workers that require transaction commits (i.e., for the
293  * NOCOW case)
294  */
295 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
296 {
297 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
298 
299 	/*
300 	 * increment scrubs_running to prevent cancel requests from
301 	 * completing as long as a worker is running. we must also
302 	 * increment scrubs_paused to prevent deadlocking on pause
303 	 * requests used for transactions commits (as the worker uses a
304 	 * transaction context). it is safe to regard the worker
305 	 * as paused for all matters practical. effectively, we only
306 	 * avoid cancellation requests from completing.
307 	 */
308 	mutex_lock(&fs_info->scrub_lock);
309 	atomic_inc(&fs_info->scrubs_running);
310 	atomic_inc(&fs_info->scrubs_paused);
311 	mutex_unlock(&fs_info->scrub_lock);
312 
313 	/*
314 	 * check if @scrubs_running=@scrubs_paused condition
315 	 * inside wait_event() is not an atomic operation.
316 	 * which means we may inc/dec @scrub_running/paused
317 	 * at any time. Let's wake up @scrub_pause_wait as
318 	 * much as we can to let commit transaction blocked less.
319 	 */
320 	wake_up(&fs_info->scrub_pause_wait);
321 
322 	atomic_inc(&sctx->workers_pending);
323 }
324 
325 /* used for workers that require transaction commits */
326 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
327 {
328 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
329 
330 	/*
331 	 * see scrub_pending_trans_workers_inc() why we're pretending
332 	 * to be paused in the scrub counters
333 	 */
334 	mutex_lock(&fs_info->scrub_lock);
335 	atomic_dec(&fs_info->scrubs_running);
336 	atomic_dec(&fs_info->scrubs_paused);
337 	mutex_unlock(&fs_info->scrub_lock);
338 	atomic_dec(&sctx->workers_pending);
339 	wake_up(&fs_info->scrub_pause_wait);
340 	wake_up(&sctx->list_wait);
341 }
342 
343 static void scrub_free_csums(struct scrub_ctx *sctx)
344 {
345 	while (!list_empty(&sctx->csum_list)) {
346 		struct btrfs_ordered_sum *sum;
347 		sum = list_first_entry(&sctx->csum_list,
348 				       struct btrfs_ordered_sum, list);
349 		list_del(&sum->list);
350 		kfree(sum);
351 	}
352 }
353 
354 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
355 {
356 	int i;
357 
358 	if (!sctx)
359 		return;
360 
361 	scrub_free_wr_ctx(&sctx->wr_ctx);
362 
363 	/* this can happen when scrub is cancelled */
364 	if (sctx->curr != -1) {
365 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
366 
367 		for (i = 0; i < sbio->page_count; i++) {
368 			WARN_ON(!sbio->pagev[i]->page);
369 			scrub_block_put(sbio->pagev[i]->sblock);
370 		}
371 		bio_put(sbio->bio);
372 	}
373 
374 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
375 		struct scrub_bio *sbio = sctx->bios[i];
376 
377 		if (!sbio)
378 			break;
379 		kfree(sbio);
380 	}
381 
382 	scrub_free_csums(sctx);
383 	kfree(sctx);
384 }
385 
386 static noinline_for_stack
387 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
388 {
389 	struct scrub_ctx *sctx;
390 	int		i;
391 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
392 	int pages_per_rd_bio;
393 	int ret;
394 
395 	/*
396 	 * the setting of pages_per_rd_bio is correct for scrub but might
397 	 * be wrong for the dev_replace code where we might read from
398 	 * different devices in the initial huge bios. However, that
399 	 * code is able to correctly handle the case when adding a page
400 	 * to a bio fails.
401 	 */
402 	if (dev->bdev)
403 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
404 					 bio_get_nr_vecs(dev->bdev));
405 	else
406 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
407 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
408 	if (!sctx)
409 		goto nomem;
410 	sctx->is_dev_replace = is_dev_replace;
411 	sctx->pages_per_rd_bio = pages_per_rd_bio;
412 	sctx->curr = -1;
413 	sctx->dev_root = dev->dev_root;
414 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
415 		struct scrub_bio *sbio;
416 
417 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
418 		if (!sbio)
419 			goto nomem;
420 		sctx->bios[i] = sbio;
421 
422 		sbio->index = i;
423 		sbio->sctx = sctx;
424 		sbio->page_count = 0;
425 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
426 				scrub_bio_end_io_worker, NULL, NULL);
427 
428 		if (i != SCRUB_BIOS_PER_SCTX - 1)
429 			sctx->bios[i]->next_free = i + 1;
430 		else
431 			sctx->bios[i]->next_free = -1;
432 	}
433 	sctx->first_free = 0;
434 	sctx->nodesize = dev->dev_root->nodesize;
435 	sctx->sectorsize = dev->dev_root->sectorsize;
436 	atomic_set(&sctx->bios_in_flight, 0);
437 	atomic_set(&sctx->workers_pending, 0);
438 	atomic_set(&sctx->cancel_req, 0);
439 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
440 	INIT_LIST_HEAD(&sctx->csum_list);
441 
442 	spin_lock_init(&sctx->list_lock);
443 	spin_lock_init(&sctx->stat_lock);
444 	init_waitqueue_head(&sctx->list_wait);
445 
446 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
447 				 fs_info->dev_replace.tgtdev, is_dev_replace);
448 	if (ret) {
449 		scrub_free_ctx(sctx);
450 		return ERR_PTR(ret);
451 	}
452 	return sctx;
453 
454 nomem:
455 	scrub_free_ctx(sctx);
456 	return ERR_PTR(-ENOMEM);
457 }
458 
459 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
460 				     void *warn_ctx)
461 {
462 	u64 isize;
463 	u32 nlink;
464 	int ret;
465 	int i;
466 	struct extent_buffer *eb;
467 	struct btrfs_inode_item *inode_item;
468 	struct scrub_warning *swarn = warn_ctx;
469 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
470 	struct inode_fs_paths *ipath = NULL;
471 	struct btrfs_root *local_root;
472 	struct btrfs_key root_key;
473 
474 	root_key.objectid = root;
475 	root_key.type = BTRFS_ROOT_ITEM_KEY;
476 	root_key.offset = (u64)-1;
477 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
478 	if (IS_ERR(local_root)) {
479 		ret = PTR_ERR(local_root);
480 		goto err;
481 	}
482 
483 	ret = inode_item_info(inum, 0, local_root, swarn->path);
484 	if (ret) {
485 		btrfs_release_path(swarn->path);
486 		goto err;
487 	}
488 
489 	eb = swarn->path->nodes[0];
490 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
491 					struct btrfs_inode_item);
492 	isize = btrfs_inode_size(eb, inode_item);
493 	nlink = btrfs_inode_nlink(eb, inode_item);
494 	btrfs_release_path(swarn->path);
495 
496 	ipath = init_ipath(4096, local_root, swarn->path);
497 	if (IS_ERR(ipath)) {
498 		ret = PTR_ERR(ipath);
499 		ipath = NULL;
500 		goto err;
501 	}
502 	ret = paths_from_inode(inum, ipath);
503 
504 	if (ret < 0)
505 		goto err;
506 
507 	/*
508 	 * we deliberately ignore the bit ipath might have been too small to
509 	 * hold all of the paths here
510 	 */
511 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
512 		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
513 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
514 			"length %llu, links %u (path: %s)\n", swarn->errstr,
515 			swarn->logical, rcu_str_deref(swarn->dev->name),
516 			(unsigned long long)swarn->sector, root, inum, offset,
517 			min(isize - offset, (u64)PAGE_SIZE), nlink,
518 			(char *)(unsigned long)ipath->fspath->val[i]);
519 
520 	free_ipath(ipath);
521 	return 0;
522 
523 err:
524 	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
525 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
526 		"resolving failed with ret=%d\n", swarn->errstr,
527 		swarn->logical, rcu_str_deref(swarn->dev->name),
528 		(unsigned long long)swarn->sector, root, inum, offset, ret);
529 
530 	free_ipath(ipath);
531 	return 0;
532 }
533 
534 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
535 {
536 	struct btrfs_device *dev;
537 	struct btrfs_fs_info *fs_info;
538 	struct btrfs_path *path;
539 	struct btrfs_key found_key;
540 	struct extent_buffer *eb;
541 	struct btrfs_extent_item *ei;
542 	struct scrub_warning swarn;
543 	unsigned long ptr = 0;
544 	u64 extent_item_pos;
545 	u64 flags = 0;
546 	u64 ref_root;
547 	u32 item_size;
548 	u8 ref_level;
549 	int ret;
550 
551 	WARN_ON(sblock->page_count < 1);
552 	dev = sblock->pagev[0]->dev;
553 	fs_info = sblock->sctx->dev_root->fs_info;
554 
555 	path = btrfs_alloc_path();
556 	if (!path)
557 		return;
558 
559 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
560 	swarn.logical = sblock->pagev[0]->logical;
561 	swarn.errstr = errstr;
562 	swarn.dev = NULL;
563 
564 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
565 				  &flags);
566 	if (ret < 0)
567 		goto out;
568 
569 	extent_item_pos = swarn.logical - found_key.objectid;
570 	swarn.extent_item_size = found_key.offset;
571 
572 	eb = path->nodes[0];
573 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
574 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
575 
576 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
577 		do {
578 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
579 						      item_size, &ref_root,
580 						      &ref_level);
581 			printk_in_rcu(KERN_WARNING
582 				"BTRFS: %s at logical %llu on dev %s, "
583 				"sector %llu: metadata %s (level %d) in tree "
584 				"%llu\n", errstr, swarn.logical,
585 				rcu_str_deref(dev->name),
586 				(unsigned long long)swarn.sector,
587 				ref_level ? "node" : "leaf",
588 				ret < 0 ? -1 : ref_level,
589 				ret < 0 ? -1 : ref_root);
590 		} while (ret != 1);
591 		btrfs_release_path(path);
592 	} else {
593 		btrfs_release_path(path);
594 		swarn.path = path;
595 		swarn.dev = dev;
596 		iterate_extent_inodes(fs_info, found_key.objectid,
597 					extent_item_pos, 1,
598 					scrub_print_warning_inode, &swarn);
599 	}
600 
601 out:
602 	btrfs_free_path(path);
603 }
604 
605 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
606 {
607 	struct page *page = NULL;
608 	unsigned long index;
609 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
610 	int ret;
611 	int corrected = 0;
612 	struct btrfs_key key;
613 	struct inode *inode = NULL;
614 	struct btrfs_fs_info *fs_info;
615 	u64 end = offset + PAGE_SIZE - 1;
616 	struct btrfs_root *local_root;
617 	int srcu_index;
618 
619 	key.objectid = root;
620 	key.type = BTRFS_ROOT_ITEM_KEY;
621 	key.offset = (u64)-1;
622 
623 	fs_info = fixup->root->fs_info;
624 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
625 
626 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
627 	if (IS_ERR(local_root)) {
628 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
629 		return PTR_ERR(local_root);
630 	}
631 
632 	key.type = BTRFS_INODE_ITEM_KEY;
633 	key.objectid = inum;
634 	key.offset = 0;
635 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
636 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
637 	if (IS_ERR(inode))
638 		return PTR_ERR(inode);
639 
640 	index = offset >> PAGE_CACHE_SHIFT;
641 
642 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
643 	if (!page) {
644 		ret = -ENOMEM;
645 		goto out;
646 	}
647 
648 	if (PageUptodate(page)) {
649 		if (PageDirty(page)) {
650 			/*
651 			 * we need to write the data to the defect sector. the
652 			 * data that was in that sector is not in memory,
653 			 * because the page was modified. we must not write the
654 			 * modified page to that sector.
655 			 *
656 			 * TODO: what could be done here: wait for the delalloc
657 			 *       runner to write out that page (might involve
658 			 *       COW) and see whether the sector is still
659 			 *       referenced afterwards.
660 			 *
661 			 * For the meantime, we'll treat this error
662 			 * incorrectable, although there is a chance that a
663 			 * later scrub will find the bad sector again and that
664 			 * there's no dirty page in memory, then.
665 			 */
666 			ret = -EIO;
667 			goto out;
668 		}
669 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
670 					fixup->logical, page,
671 					offset - page_offset(page),
672 					fixup->mirror_num);
673 		unlock_page(page);
674 		corrected = !ret;
675 	} else {
676 		/*
677 		 * we need to get good data first. the general readpage path
678 		 * will call repair_io_failure for us, we just have to make
679 		 * sure we read the bad mirror.
680 		 */
681 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
682 					EXTENT_DAMAGED, GFP_NOFS);
683 		if (ret) {
684 			/* set_extent_bits should give proper error */
685 			WARN_ON(ret > 0);
686 			if (ret > 0)
687 				ret = -EFAULT;
688 			goto out;
689 		}
690 
691 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
692 						btrfs_get_extent,
693 						fixup->mirror_num);
694 		wait_on_page_locked(page);
695 
696 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
697 						end, EXTENT_DAMAGED, 0, NULL);
698 		if (!corrected)
699 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
700 						EXTENT_DAMAGED, GFP_NOFS);
701 	}
702 
703 out:
704 	if (page)
705 		put_page(page);
706 
707 	iput(inode);
708 
709 	if (ret < 0)
710 		return ret;
711 
712 	if (ret == 0 && corrected) {
713 		/*
714 		 * we only need to call readpage for one of the inodes belonging
715 		 * to this extent. so make iterate_extent_inodes stop
716 		 */
717 		return 1;
718 	}
719 
720 	return -EIO;
721 }
722 
723 static void scrub_fixup_nodatasum(struct btrfs_work *work)
724 {
725 	int ret;
726 	struct scrub_fixup_nodatasum *fixup;
727 	struct scrub_ctx *sctx;
728 	struct btrfs_trans_handle *trans = NULL;
729 	struct btrfs_path *path;
730 	int uncorrectable = 0;
731 
732 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
733 	sctx = fixup->sctx;
734 
735 	path = btrfs_alloc_path();
736 	if (!path) {
737 		spin_lock(&sctx->stat_lock);
738 		++sctx->stat.malloc_errors;
739 		spin_unlock(&sctx->stat_lock);
740 		uncorrectable = 1;
741 		goto out;
742 	}
743 
744 	trans = btrfs_join_transaction(fixup->root);
745 	if (IS_ERR(trans)) {
746 		uncorrectable = 1;
747 		goto out;
748 	}
749 
750 	/*
751 	 * the idea is to trigger a regular read through the standard path. we
752 	 * read a page from the (failed) logical address by specifying the
753 	 * corresponding copynum of the failed sector. thus, that readpage is
754 	 * expected to fail.
755 	 * that is the point where on-the-fly error correction will kick in
756 	 * (once it's finished) and rewrite the failed sector if a good copy
757 	 * can be found.
758 	 */
759 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
760 						path, scrub_fixup_readpage,
761 						fixup);
762 	if (ret < 0) {
763 		uncorrectable = 1;
764 		goto out;
765 	}
766 	WARN_ON(ret != 1);
767 
768 	spin_lock(&sctx->stat_lock);
769 	++sctx->stat.corrected_errors;
770 	spin_unlock(&sctx->stat_lock);
771 
772 out:
773 	if (trans && !IS_ERR(trans))
774 		btrfs_end_transaction(trans, fixup->root);
775 	if (uncorrectable) {
776 		spin_lock(&sctx->stat_lock);
777 		++sctx->stat.uncorrectable_errors;
778 		spin_unlock(&sctx->stat_lock);
779 		btrfs_dev_replace_stats_inc(
780 			&sctx->dev_root->fs_info->dev_replace.
781 			num_uncorrectable_read_errors);
782 		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
783 		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
784 			fixup->logical, rcu_str_deref(fixup->dev->name));
785 	}
786 
787 	btrfs_free_path(path);
788 	kfree(fixup);
789 
790 	scrub_pending_trans_workers_dec(sctx);
791 }
792 
793 /*
794  * scrub_handle_errored_block gets called when either verification of the
795  * pages failed or the bio failed to read, e.g. with EIO. In the latter
796  * case, this function handles all pages in the bio, even though only one
797  * may be bad.
798  * The goal of this function is to repair the errored block by using the
799  * contents of one of the mirrors.
800  */
801 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
802 {
803 	struct scrub_ctx *sctx = sblock_to_check->sctx;
804 	struct btrfs_device *dev;
805 	struct btrfs_fs_info *fs_info;
806 	u64 length;
807 	u64 logical;
808 	u64 generation;
809 	unsigned int failed_mirror_index;
810 	unsigned int is_metadata;
811 	unsigned int have_csum;
812 	u8 *csum;
813 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
814 	struct scrub_block *sblock_bad;
815 	int ret;
816 	int mirror_index;
817 	int page_num;
818 	int success;
819 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
820 				      DEFAULT_RATELIMIT_BURST);
821 
822 	BUG_ON(sblock_to_check->page_count < 1);
823 	fs_info = sctx->dev_root->fs_info;
824 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
825 		/*
826 		 * if we find an error in a super block, we just report it.
827 		 * They will get written with the next transaction commit
828 		 * anyway
829 		 */
830 		spin_lock(&sctx->stat_lock);
831 		++sctx->stat.super_errors;
832 		spin_unlock(&sctx->stat_lock);
833 		return 0;
834 	}
835 	length = sblock_to_check->page_count * PAGE_SIZE;
836 	logical = sblock_to_check->pagev[0]->logical;
837 	generation = sblock_to_check->pagev[0]->generation;
838 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
839 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
840 	is_metadata = !(sblock_to_check->pagev[0]->flags &
841 			BTRFS_EXTENT_FLAG_DATA);
842 	have_csum = sblock_to_check->pagev[0]->have_csum;
843 	csum = sblock_to_check->pagev[0]->csum;
844 	dev = sblock_to_check->pagev[0]->dev;
845 
846 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
847 		sblocks_for_recheck = NULL;
848 		goto nodatasum_case;
849 	}
850 
851 	/*
852 	 * read all mirrors one after the other. This includes to
853 	 * re-read the extent or metadata block that failed (that was
854 	 * the cause that this fixup code is called) another time,
855 	 * page by page this time in order to know which pages
856 	 * caused I/O errors and which ones are good (for all mirrors).
857 	 * It is the goal to handle the situation when more than one
858 	 * mirror contains I/O errors, but the errors do not
859 	 * overlap, i.e. the data can be repaired by selecting the
860 	 * pages from those mirrors without I/O error on the
861 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
862 	 * would be that mirror #1 has an I/O error on the first page,
863 	 * the second page is good, and mirror #2 has an I/O error on
864 	 * the second page, but the first page is good.
865 	 * Then the first page of the first mirror can be repaired by
866 	 * taking the first page of the second mirror, and the
867 	 * second page of the second mirror can be repaired by
868 	 * copying the contents of the 2nd page of the 1st mirror.
869 	 * One more note: if the pages of one mirror contain I/O
870 	 * errors, the checksum cannot be verified. In order to get
871 	 * the best data for repairing, the first attempt is to find
872 	 * a mirror without I/O errors and with a validated checksum.
873 	 * Only if this is not possible, the pages are picked from
874 	 * mirrors with I/O errors without considering the checksum.
875 	 * If the latter is the case, at the end, the checksum of the
876 	 * repaired area is verified in order to correctly maintain
877 	 * the statistics.
878 	 */
879 
880 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
881 				     sizeof(*sblocks_for_recheck),
882 				     GFP_NOFS);
883 	if (!sblocks_for_recheck) {
884 		spin_lock(&sctx->stat_lock);
885 		sctx->stat.malloc_errors++;
886 		sctx->stat.read_errors++;
887 		sctx->stat.uncorrectable_errors++;
888 		spin_unlock(&sctx->stat_lock);
889 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
890 		goto out;
891 	}
892 
893 	/* setup the context, map the logical blocks and alloc the pages */
894 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
895 					logical, sblocks_for_recheck);
896 	if (ret) {
897 		spin_lock(&sctx->stat_lock);
898 		sctx->stat.read_errors++;
899 		sctx->stat.uncorrectable_errors++;
900 		spin_unlock(&sctx->stat_lock);
901 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
902 		goto out;
903 	}
904 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
905 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
906 
907 	/* build and submit the bios for the failed mirror, check checksums */
908 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
909 			    csum, generation, sctx->csum_size);
910 
911 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
912 	    sblock_bad->no_io_error_seen) {
913 		/*
914 		 * the error disappeared after reading page by page, or
915 		 * the area was part of a huge bio and other parts of the
916 		 * bio caused I/O errors, or the block layer merged several
917 		 * read requests into one and the error is caused by a
918 		 * different bio (usually one of the two latter cases is
919 		 * the cause)
920 		 */
921 		spin_lock(&sctx->stat_lock);
922 		sctx->stat.unverified_errors++;
923 		spin_unlock(&sctx->stat_lock);
924 
925 		if (sctx->is_dev_replace)
926 			scrub_write_block_to_dev_replace(sblock_bad);
927 		goto out;
928 	}
929 
930 	if (!sblock_bad->no_io_error_seen) {
931 		spin_lock(&sctx->stat_lock);
932 		sctx->stat.read_errors++;
933 		spin_unlock(&sctx->stat_lock);
934 		if (__ratelimit(&_rs))
935 			scrub_print_warning("i/o error", sblock_to_check);
936 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
937 	} else if (sblock_bad->checksum_error) {
938 		spin_lock(&sctx->stat_lock);
939 		sctx->stat.csum_errors++;
940 		spin_unlock(&sctx->stat_lock);
941 		if (__ratelimit(&_rs))
942 			scrub_print_warning("checksum error", sblock_to_check);
943 		btrfs_dev_stat_inc_and_print(dev,
944 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
945 	} else if (sblock_bad->header_error) {
946 		spin_lock(&sctx->stat_lock);
947 		sctx->stat.verify_errors++;
948 		spin_unlock(&sctx->stat_lock);
949 		if (__ratelimit(&_rs))
950 			scrub_print_warning("checksum/header error",
951 					    sblock_to_check);
952 		if (sblock_bad->generation_error)
953 			btrfs_dev_stat_inc_and_print(dev,
954 				BTRFS_DEV_STAT_GENERATION_ERRS);
955 		else
956 			btrfs_dev_stat_inc_and_print(dev,
957 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
958 	}
959 
960 	if (sctx->readonly) {
961 		ASSERT(!sctx->is_dev_replace);
962 		goto out;
963 	}
964 
965 	if (!is_metadata && !have_csum) {
966 		struct scrub_fixup_nodatasum *fixup_nodatasum;
967 
968 nodatasum_case:
969 		WARN_ON(sctx->is_dev_replace);
970 
971 		/*
972 		 * !is_metadata and !have_csum, this means that the data
973 		 * might not be COW'ed, that it might be modified
974 		 * concurrently. The general strategy to work on the
975 		 * commit root does not help in the case when COW is not
976 		 * used.
977 		 */
978 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
979 		if (!fixup_nodatasum)
980 			goto did_not_correct_error;
981 		fixup_nodatasum->sctx = sctx;
982 		fixup_nodatasum->dev = dev;
983 		fixup_nodatasum->logical = logical;
984 		fixup_nodatasum->root = fs_info->extent_root;
985 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
986 		scrub_pending_trans_workers_inc(sctx);
987 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
988 				scrub_fixup_nodatasum, NULL, NULL);
989 		btrfs_queue_work(fs_info->scrub_workers,
990 				 &fixup_nodatasum->work);
991 		goto out;
992 	}
993 
994 	/*
995 	 * now build and submit the bios for the other mirrors, check
996 	 * checksums.
997 	 * First try to pick the mirror which is completely without I/O
998 	 * errors and also does not have a checksum error.
999 	 * If one is found, and if a checksum is present, the full block
1000 	 * that is known to contain an error is rewritten. Afterwards
1001 	 * the block is known to be corrected.
1002 	 * If a mirror is found which is completely correct, and no
1003 	 * checksum is present, only those pages are rewritten that had
1004 	 * an I/O error in the block to be repaired, since it cannot be
1005 	 * determined, which copy of the other pages is better (and it
1006 	 * could happen otherwise that a correct page would be
1007 	 * overwritten by a bad one).
1008 	 */
1009 	for (mirror_index = 0;
1010 	     mirror_index < BTRFS_MAX_MIRRORS &&
1011 	     sblocks_for_recheck[mirror_index].page_count > 0;
1012 	     mirror_index++) {
1013 		struct scrub_block *sblock_other;
1014 
1015 		if (mirror_index == failed_mirror_index)
1016 			continue;
1017 		sblock_other = sblocks_for_recheck + mirror_index;
1018 
1019 		/* build and submit the bios, check checksums */
1020 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1021 				    have_csum, csum, generation,
1022 				    sctx->csum_size);
1023 
1024 		if (!sblock_other->header_error &&
1025 		    !sblock_other->checksum_error &&
1026 		    sblock_other->no_io_error_seen) {
1027 			if (sctx->is_dev_replace) {
1028 				scrub_write_block_to_dev_replace(sblock_other);
1029 			} else {
1030 				int force_write = is_metadata || have_csum;
1031 
1032 				ret = scrub_repair_block_from_good_copy(
1033 						sblock_bad, sblock_other,
1034 						force_write);
1035 			}
1036 			if (0 == ret)
1037 				goto corrected_error;
1038 		}
1039 	}
1040 
1041 	/*
1042 	 * for dev_replace, pick good pages and write to the target device.
1043 	 */
1044 	if (sctx->is_dev_replace) {
1045 		success = 1;
1046 		for (page_num = 0; page_num < sblock_bad->page_count;
1047 		     page_num++) {
1048 			int sub_success;
1049 
1050 			sub_success = 0;
1051 			for (mirror_index = 0;
1052 			     mirror_index < BTRFS_MAX_MIRRORS &&
1053 			     sblocks_for_recheck[mirror_index].page_count > 0;
1054 			     mirror_index++) {
1055 				struct scrub_block *sblock_other =
1056 					sblocks_for_recheck + mirror_index;
1057 				struct scrub_page *page_other =
1058 					sblock_other->pagev[page_num];
1059 
1060 				if (!page_other->io_error) {
1061 					ret = scrub_write_page_to_dev_replace(
1062 							sblock_other, page_num);
1063 					if (ret == 0) {
1064 						/* succeeded for this page */
1065 						sub_success = 1;
1066 						break;
1067 					} else {
1068 						btrfs_dev_replace_stats_inc(
1069 							&sctx->dev_root->
1070 							fs_info->dev_replace.
1071 							num_write_errors);
1072 					}
1073 				}
1074 			}
1075 
1076 			if (!sub_success) {
1077 				/*
1078 				 * did not find a mirror to fetch the page
1079 				 * from. scrub_write_page_to_dev_replace()
1080 				 * handles this case (page->io_error), by
1081 				 * filling the block with zeros before
1082 				 * submitting the write request
1083 				 */
1084 				success = 0;
1085 				ret = scrub_write_page_to_dev_replace(
1086 						sblock_bad, page_num);
1087 				if (ret)
1088 					btrfs_dev_replace_stats_inc(
1089 						&sctx->dev_root->fs_info->
1090 						dev_replace.num_write_errors);
1091 			}
1092 		}
1093 
1094 		goto out;
1095 	}
1096 
1097 	/*
1098 	 * for regular scrub, repair those pages that are errored.
1099 	 * In case of I/O errors in the area that is supposed to be
1100 	 * repaired, continue by picking good copies of those pages.
1101 	 * Select the good pages from mirrors to rewrite bad pages from
1102 	 * the area to fix. Afterwards verify the checksum of the block
1103 	 * that is supposed to be repaired. This verification step is
1104 	 * only done for the purpose of statistic counting and for the
1105 	 * final scrub report, whether errors remain.
1106 	 * A perfect algorithm could make use of the checksum and try
1107 	 * all possible combinations of pages from the different mirrors
1108 	 * until the checksum verification succeeds. For example, when
1109 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1110 	 * of mirror #2 is readable but the final checksum test fails,
1111 	 * then the 2nd page of mirror #3 could be tried, whether now
1112 	 * the final checksum succeedes. But this would be a rare
1113 	 * exception and is therefore not implemented. At least it is
1114 	 * avoided that the good copy is overwritten.
1115 	 * A more useful improvement would be to pick the sectors
1116 	 * without I/O error based on sector sizes (512 bytes on legacy
1117 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1118 	 * mirror could be repaired by taking 512 byte of a different
1119 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1120 	 * area are unreadable.
1121 	 */
1122 
1123 	/* can only fix I/O errors from here on */
1124 	if (sblock_bad->no_io_error_seen)
1125 		goto did_not_correct_error;
1126 
1127 	success = 1;
1128 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1129 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1130 
1131 		if (!page_bad->io_error)
1132 			continue;
1133 
1134 		for (mirror_index = 0;
1135 		     mirror_index < BTRFS_MAX_MIRRORS &&
1136 		     sblocks_for_recheck[mirror_index].page_count > 0;
1137 		     mirror_index++) {
1138 			struct scrub_block *sblock_other = sblocks_for_recheck +
1139 							   mirror_index;
1140 			struct scrub_page *page_other = sblock_other->pagev[
1141 							page_num];
1142 
1143 			if (!page_other->io_error) {
1144 				ret = scrub_repair_page_from_good_copy(
1145 					sblock_bad, sblock_other, page_num, 0);
1146 				if (0 == ret) {
1147 					page_bad->io_error = 0;
1148 					break; /* succeeded for this page */
1149 				}
1150 			}
1151 		}
1152 
1153 		if (page_bad->io_error) {
1154 			/* did not find a mirror to copy the page from */
1155 			success = 0;
1156 		}
1157 	}
1158 
1159 	if (success) {
1160 		if (is_metadata || have_csum) {
1161 			/*
1162 			 * need to verify the checksum now that all
1163 			 * sectors on disk are repaired (the write
1164 			 * request for data to be repaired is on its way).
1165 			 * Just be lazy and use scrub_recheck_block()
1166 			 * which re-reads the data before the checksum
1167 			 * is verified, but most likely the data comes out
1168 			 * of the page cache.
1169 			 */
1170 			scrub_recheck_block(fs_info, sblock_bad,
1171 					    is_metadata, have_csum, csum,
1172 					    generation, sctx->csum_size);
1173 			if (!sblock_bad->header_error &&
1174 			    !sblock_bad->checksum_error &&
1175 			    sblock_bad->no_io_error_seen)
1176 				goto corrected_error;
1177 			else
1178 				goto did_not_correct_error;
1179 		} else {
1180 corrected_error:
1181 			spin_lock(&sctx->stat_lock);
1182 			sctx->stat.corrected_errors++;
1183 			spin_unlock(&sctx->stat_lock);
1184 			printk_ratelimited_in_rcu(KERN_ERR
1185 				"BTRFS: fixed up error at logical %llu on dev %s\n",
1186 				logical, rcu_str_deref(dev->name));
1187 		}
1188 	} else {
1189 did_not_correct_error:
1190 		spin_lock(&sctx->stat_lock);
1191 		sctx->stat.uncorrectable_errors++;
1192 		spin_unlock(&sctx->stat_lock);
1193 		printk_ratelimited_in_rcu(KERN_ERR
1194 			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1195 			logical, rcu_str_deref(dev->name));
1196 	}
1197 
1198 out:
1199 	if (sblocks_for_recheck) {
1200 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1201 		     mirror_index++) {
1202 			struct scrub_block *sblock = sblocks_for_recheck +
1203 						     mirror_index;
1204 			int page_index;
1205 
1206 			for (page_index = 0; page_index < sblock->page_count;
1207 			     page_index++) {
1208 				sblock->pagev[page_index]->sblock = NULL;
1209 				scrub_page_put(sblock->pagev[page_index]);
1210 			}
1211 		}
1212 		kfree(sblocks_for_recheck);
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1219 				     struct btrfs_fs_info *fs_info,
1220 				     struct scrub_block *original_sblock,
1221 				     u64 length, u64 logical,
1222 				     struct scrub_block *sblocks_for_recheck)
1223 {
1224 	int page_index;
1225 	int mirror_index;
1226 	int ret;
1227 
1228 	/*
1229 	 * note: the two members ref_count and outstanding_pages
1230 	 * are not used (and not set) in the blocks that are used for
1231 	 * the recheck procedure
1232 	 */
1233 
1234 	page_index = 0;
1235 	while (length > 0) {
1236 		u64 sublen = min_t(u64, length, PAGE_SIZE);
1237 		u64 mapped_length = sublen;
1238 		struct btrfs_bio *bbio = NULL;
1239 
1240 		/*
1241 		 * with a length of PAGE_SIZE, each returned stripe
1242 		 * represents one mirror
1243 		 */
1244 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1245 				      &mapped_length, &bbio, 0);
1246 		if (ret || !bbio || mapped_length < sublen) {
1247 			kfree(bbio);
1248 			return -EIO;
1249 		}
1250 
1251 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1252 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1253 		     mirror_index++) {
1254 			struct scrub_block *sblock;
1255 			struct scrub_page *page;
1256 
1257 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1258 				continue;
1259 
1260 			sblock = sblocks_for_recheck + mirror_index;
1261 			sblock->sctx = sctx;
1262 			page = kzalloc(sizeof(*page), GFP_NOFS);
1263 			if (!page) {
1264 leave_nomem:
1265 				spin_lock(&sctx->stat_lock);
1266 				sctx->stat.malloc_errors++;
1267 				spin_unlock(&sctx->stat_lock);
1268 				kfree(bbio);
1269 				return -ENOMEM;
1270 			}
1271 			scrub_page_get(page);
1272 			sblock->pagev[page_index] = page;
1273 			page->logical = logical;
1274 			page->physical = bbio->stripes[mirror_index].physical;
1275 			BUG_ON(page_index >= original_sblock->page_count);
1276 			page->physical_for_dev_replace =
1277 				original_sblock->pagev[page_index]->
1278 				physical_for_dev_replace;
1279 			/* for missing devices, dev->bdev is NULL */
1280 			page->dev = bbio->stripes[mirror_index].dev;
1281 			page->mirror_num = mirror_index + 1;
1282 			sblock->page_count++;
1283 			page->page = alloc_page(GFP_NOFS);
1284 			if (!page->page)
1285 				goto leave_nomem;
1286 		}
1287 		kfree(bbio);
1288 		length -= sublen;
1289 		logical += sublen;
1290 		page_index++;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * this function will check the on disk data for checksum errors, header
1298  * errors and read I/O errors. If any I/O errors happen, the exact pages
1299  * which are errored are marked as being bad. The goal is to enable scrub
1300  * to take those pages that are not errored from all the mirrors so that
1301  * the pages that are errored in the just handled mirror can be repaired.
1302  */
1303 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1304 				struct scrub_block *sblock, int is_metadata,
1305 				int have_csum, u8 *csum, u64 generation,
1306 				u16 csum_size)
1307 {
1308 	int page_num;
1309 
1310 	sblock->no_io_error_seen = 1;
1311 	sblock->header_error = 0;
1312 	sblock->checksum_error = 0;
1313 
1314 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1315 		struct bio *bio;
1316 		struct scrub_page *page = sblock->pagev[page_num];
1317 
1318 		if (page->dev->bdev == NULL) {
1319 			page->io_error = 1;
1320 			sblock->no_io_error_seen = 0;
1321 			continue;
1322 		}
1323 
1324 		WARN_ON(!page->page);
1325 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1326 		if (!bio) {
1327 			page->io_error = 1;
1328 			sblock->no_io_error_seen = 0;
1329 			continue;
1330 		}
1331 		bio->bi_bdev = page->dev->bdev;
1332 		bio->bi_iter.bi_sector = page->physical >> 9;
1333 
1334 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1335 		if (btrfsic_submit_bio_wait(READ, bio))
1336 			sblock->no_io_error_seen = 0;
1337 
1338 		bio_put(bio);
1339 	}
1340 
1341 	if (sblock->no_io_error_seen)
1342 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1343 					     have_csum, csum, generation,
1344 					     csum_size);
1345 
1346 	return;
1347 }
1348 
1349 static inline int scrub_check_fsid(u8 fsid[],
1350 				   struct scrub_page *spage)
1351 {
1352 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1353 	int ret;
1354 
1355 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1356 	return !ret;
1357 }
1358 
1359 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1360 					 struct scrub_block *sblock,
1361 					 int is_metadata, int have_csum,
1362 					 const u8 *csum, u64 generation,
1363 					 u16 csum_size)
1364 {
1365 	int page_num;
1366 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1367 	u32 crc = ~(u32)0;
1368 	void *mapped_buffer;
1369 
1370 	WARN_ON(!sblock->pagev[0]->page);
1371 	if (is_metadata) {
1372 		struct btrfs_header *h;
1373 
1374 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1375 		h = (struct btrfs_header *)mapped_buffer;
1376 
1377 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1378 		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1379 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1380 			   BTRFS_UUID_SIZE)) {
1381 			sblock->header_error = 1;
1382 		} else if (generation != btrfs_stack_header_generation(h)) {
1383 			sblock->header_error = 1;
1384 			sblock->generation_error = 1;
1385 		}
1386 		csum = h->csum;
1387 	} else {
1388 		if (!have_csum)
1389 			return;
1390 
1391 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1392 	}
1393 
1394 	for (page_num = 0;;) {
1395 		if (page_num == 0 && is_metadata)
1396 			crc = btrfs_csum_data(
1397 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1398 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1399 		else
1400 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1401 
1402 		kunmap_atomic(mapped_buffer);
1403 		page_num++;
1404 		if (page_num >= sblock->page_count)
1405 			break;
1406 		WARN_ON(!sblock->pagev[page_num]->page);
1407 
1408 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1409 	}
1410 
1411 	btrfs_csum_final(crc, calculated_csum);
1412 	if (memcmp(calculated_csum, csum, csum_size))
1413 		sblock->checksum_error = 1;
1414 }
1415 
1416 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1417 					     struct scrub_block *sblock_good,
1418 					     int force_write)
1419 {
1420 	int page_num;
1421 	int ret = 0;
1422 
1423 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1424 		int ret_sub;
1425 
1426 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1427 							   sblock_good,
1428 							   page_num,
1429 							   force_write);
1430 		if (ret_sub)
1431 			ret = ret_sub;
1432 	}
1433 
1434 	return ret;
1435 }
1436 
1437 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1438 					    struct scrub_block *sblock_good,
1439 					    int page_num, int force_write)
1440 {
1441 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1442 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1443 
1444 	BUG_ON(page_bad->page == NULL);
1445 	BUG_ON(page_good->page == NULL);
1446 	if (force_write || sblock_bad->header_error ||
1447 	    sblock_bad->checksum_error || page_bad->io_error) {
1448 		struct bio *bio;
1449 		int ret;
1450 
1451 		if (!page_bad->dev->bdev) {
1452 			printk_ratelimited(KERN_WARNING "BTRFS: "
1453 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1454 				"is unexpected!\n");
1455 			return -EIO;
1456 		}
1457 
1458 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1459 		if (!bio)
1460 			return -EIO;
1461 		bio->bi_bdev = page_bad->dev->bdev;
1462 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1463 
1464 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1465 		if (PAGE_SIZE != ret) {
1466 			bio_put(bio);
1467 			return -EIO;
1468 		}
1469 
1470 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1471 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1472 				BTRFS_DEV_STAT_WRITE_ERRS);
1473 			btrfs_dev_replace_stats_inc(
1474 				&sblock_bad->sctx->dev_root->fs_info->
1475 				dev_replace.num_write_errors);
1476 			bio_put(bio);
1477 			return -EIO;
1478 		}
1479 		bio_put(bio);
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1486 {
1487 	int page_num;
1488 
1489 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1490 		int ret;
1491 
1492 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1493 		if (ret)
1494 			btrfs_dev_replace_stats_inc(
1495 				&sblock->sctx->dev_root->fs_info->dev_replace.
1496 				num_write_errors);
1497 	}
1498 }
1499 
1500 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1501 					   int page_num)
1502 {
1503 	struct scrub_page *spage = sblock->pagev[page_num];
1504 
1505 	BUG_ON(spage->page == NULL);
1506 	if (spage->io_error) {
1507 		void *mapped_buffer = kmap_atomic(spage->page);
1508 
1509 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1510 		flush_dcache_page(spage->page);
1511 		kunmap_atomic(mapped_buffer);
1512 	}
1513 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1514 }
1515 
1516 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1517 				    struct scrub_page *spage)
1518 {
1519 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1520 	struct scrub_bio *sbio;
1521 	int ret;
1522 
1523 	mutex_lock(&wr_ctx->wr_lock);
1524 again:
1525 	if (!wr_ctx->wr_curr_bio) {
1526 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1527 					      GFP_NOFS);
1528 		if (!wr_ctx->wr_curr_bio) {
1529 			mutex_unlock(&wr_ctx->wr_lock);
1530 			return -ENOMEM;
1531 		}
1532 		wr_ctx->wr_curr_bio->sctx = sctx;
1533 		wr_ctx->wr_curr_bio->page_count = 0;
1534 	}
1535 	sbio = wr_ctx->wr_curr_bio;
1536 	if (sbio->page_count == 0) {
1537 		struct bio *bio;
1538 
1539 		sbio->physical = spage->physical_for_dev_replace;
1540 		sbio->logical = spage->logical;
1541 		sbio->dev = wr_ctx->tgtdev;
1542 		bio = sbio->bio;
1543 		if (!bio) {
1544 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1545 			if (!bio) {
1546 				mutex_unlock(&wr_ctx->wr_lock);
1547 				return -ENOMEM;
1548 			}
1549 			sbio->bio = bio;
1550 		}
1551 
1552 		bio->bi_private = sbio;
1553 		bio->bi_end_io = scrub_wr_bio_end_io;
1554 		bio->bi_bdev = sbio->dev->bdev;
1555 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1556 		sbio->err = 0;
1557 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1558 		   spage->physical_for_dev_replace ||
1559 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1560 		   spage->logical) {
1561 		scrub_wr_submit(sctx);
1562 		goto again;
1563 	}
1564 
1565 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1566 	if (ret != PAGE_SIZE) {
1567 		if (sbio->page_count < 1) {
1568 			bio_put(sbio->bio);
1569 			sbio->bio = NULL;
1570 			mutex_unlock(&wr_ctx->wr_lock);
1571 			return -EIO;
1572 		}
1573 		scrub_wr_submit(sctx);
1574 		goto again;
1575 	}
1576 
1577 	sbio->pagev[sbio->page_count] = spage;
1578 	scrub_page_get(spage);
1579 	sbio->page_count++;
1580 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1581 		scrub_wr_submit(sctx);
1582 	mutex_unlock(&wr_ctx->wr_lock);
1583 
1584 	return 0;
1585 }
1586 
1587 static void scrub_wr_submit(struct scrub_ctx *sctx)
1588 {
1589 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1590 	struct scrub_bio *sbio;
1591 
1592 	if (!wr_ctx->wr_curr_bio)
1593 		return;
1594 
1595 	sbio = wr_ctx->wr_curr_bio;
1596 	wr_ctx->wr_curr_bio = NULL;
1597 	WARN_ON(!sbio->bio->bi_bdev);
1598 	scrub_pending_bio_inc(sctx);
1599 	/* process all writes in a single worker thread. Then the block layer
1600 	 * orders the requests before sending them to the driver which
1601 	 * doubled the write performance on spinning disks when measured
1602 	 * with Linux 3.5 */
1603 	btrfsic_submit_bio(WRITE, sbio->bio);
1604 }
1605 
1606 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1607 {
1608 	struct scrub_bio *sbio = bio->bi_private;
1609 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1610 
1611 	sbio->err = err;
1612 	sbio->bio = bio;
1613 
1614 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1615 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1616 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1617 }
1618 
1619 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1620 {
1621 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1622 	struct scrub_ctx *sctx = sbio->sctx;
1623 	int i;
1624 
1625 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1626 	if (sbio->err) {
1627 		struct btrfs_dev_replace *dev_replace =
1628 			&sbio->sctx->dev_root->fs_info->dev_replace;
1629 
1630 		for (i = 0; i < sbio->page_count; i++) {
1631 			struct scrub_page *spage = sbio->pagev[i];
1632 
1633 			spage->io_error = 1;
1634 			btrfs_dev_replace_stats_inc(&dev_replace->
1635 						    num_write_errors);
1636 		}
1637 	}
1638 
1639 	for (i = 0; i < sbio->page_count; i++)
1640 		scrub_page_put(sbio->pagev[i]);
1641 
1642 	bio_put(sbio->bio);
1643 	kfree(sbio);
1644 	scrub_pending_bio_dec(sctx);
1645 }
1646 
1647 static int scrub_checksum(struct scrub_block *sblock)
1648 {
1649 	u64 flags;
1650 	int ret;
1651 
1652 	WARN_ON(sblock->page_count < 1);
1653 	flags = sblock->pagev[0]->flags;
1654 	ret = 0;
1655 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1656 		ret = scrub_checksum_data(sblock);
1657 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1658 		ret = scrub_checksum_tree_block(sblock);
1659 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1660 		(void)scrub_checksum_super(sblock);
1661 	else
1662 		WARN_ON(1);
1663 	if (ret)
1664 		scrub_handle_errored_block(sblock);
1665 
1666 	return ret;
1667 }
1668 
1669 static int scrub_checksum_data(struct scrub_block *sblock)
1670 {
1671 	struct scrub_ctx *sctx = sblock->sctx;
1672 	u8 csum[BTRFS_CSUM_SIZE];
1673 	u8 *on_disk_csum;
1674 	struct page *page;
1675 	void *buffer;
1676 	u32 crc = ~(u32)0;
1677 	int fail = 0;
1678 	u64 len;
1679 	int index;
1680 
1681 	BUG_ON(sblock->page_count < 1);
1682 	if (!sblock->pagev[0]->have_csum)
1683 		return 0;
1684 
1685 	on_disk_csum = sblock->pagev[0]->csum;
1686 	page = sblock->pagev[0]->page;
1687 	buffer = kmap_atomic(page);
1688 
1689 	len = sctx->sectorsize;
1690 	index = 0;
1691 	for (;;) {
1692 		u64 l = min_t(u64, len, PAGE_SIZE);
1693 
1694 		crc = btrfs_csum_data(buffer, crc, l);
1695 		kunmap_atomic(buffer);
1696 		len -= l;
1697 		if (len == 0)
1698 			break;
1699 		index++;
1700 		BUG_ON(index >= sblock->page_count);
1701 		BUG_ON(!sblock->pagev[index]->page);
1702 		page = sblock->pagev[index]->page;
1703 		buffer = kmap_atomic(page);
1704 	}
1705 
1706 	btrfs_csum_final(crc, csum);
1707 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1708 		fail = 1;
1709 
1710 	return fail;
1711 }
1712 
1713 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1714 {
1715 	struct scrub_ctx *sctx = sblock->sctx;
1716 	struct btrfs_header *h;
1717 	struct btrfs_root *root = sctx->dev_root;
1718 	struct btrfs_fs_info *fs_info = root->fs_info;
1719 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1720 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1721 	struct page *page;
1722 	void *mapped_buffer;
1723 	u64 mapped_size;
1724 	void *p;
1725 	u32 crc = ~(u32)0;
1726 	int fail = 0;
1727 	int crc_fail = 0;
1728 	u64 len;
1729 	int index;
1730 
1731 	BUG_ON(sblock->page_count < 1);
1732 	page = sblock->pagev[0]->page;
1733 	mapped_buffer = kmap_atomic(page);
1734 	h = (struct btrfs_header *)mapped_buffer;
1735 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1736 
1737 	/*
1738 	 * we don't use the getter functions here, as we
1739 	 * a) don't have an extent buffer and
1740 	 * b) the page is already kmapped
1741 	 */
1742 
1743 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1744 		++fail;
1745 
1746 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1747 		++fail;
1748 
1749 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1750 		++fail;
1751 
1752 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1753 		   BTRFS_UUID_SIZE))
1754 		++fail;
1755 
1756 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1757 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1758 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1759 	index = 0;
1760 	for (;;) {
1761 		u64 l = min_t(u64, len, mapped_size);
1762 
1763 		crc = btrfs_csum_data(p, crc, l);
1764 		kunmap_atomic(mapped_buffer);
1765 		len -= l;
1766 		if (len == 0)
1767 			break;
1768 		index++;
1769 		BUG_ON(index >= sblock->page_count);
1770 		BUG_ON(!sblock->pagev[index]->page);
1771 		page = sblock->pagev[index]->page;
1772 		mapped_buffer = kmap_atomic(page);
1773 		mapped_size = PAGE_SIZE;
1774 		p = mapped_buffer;
1775 	}
1776 
1777 	btrfs_csum_final(crc, calculated_csum);
1778 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1779 		++crc_fail;
1780 
1781 	return fail || crc_fail;
1782 }
1783 
1784 static int scrub_checksum_super(struct scrub_block *sblock)
1785 {
1786 	struct btrfs_super_block *s;
1787 	struct scrub_ctx *sctx = sblock->sctx;
1788 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1789 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1790 	struct page *page;
1791 	void *mapped_buffer;
1792 	u64 mapped_size;
1793 	void *p;
1794 	u32 crc = ~(u32)0;
1795 	int fail_gen = 0;
1796 	int fail_cor = 0;
1797 	u64 len;
1798 	int index;
1799 
1800 	BUG_ON(sblock->page_count < 1);
1801 	page = sblock->pagev[0]->page;
1802 	mapped_buffer = kmap_atomic(page);
1803 	s = (struct btrfs_super_block *)mapped_buffer;
1804 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1805 
1806 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1807 		++fail_cor;
1808 
1809 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1810 		++fail_gen;
1811 
1812 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1813 		++fail_cor;
1814 
1815 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1816 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1817 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1818 	index = 0;
1819 	for (;;) {
1820 		u64 l = min_t(u64, len, mapped_size);
1821 
1822 		crc = btrfs_csum_data(p, crc, l);
1823 		kunmap_atomic(mapped_buffer);
1824 		len -= l;
1825 		if (len == 0)
1826 			break;
1827 		index++;
1828 		BUG_ON(index >= sblock->page_count);
1829 		BUG_ON(!sblock->pagev[index]->page);
1830 		page = sblock->pagev[index]->page;
1831 		mapped_buffer = kmap_atomic(page);
1832 		mapped_size = PAGE_SIZE;
1833 		p = mapped_buffer;
1834 	}
1835 
1836 	btrfs_csum_final(crc, calculated_csum);
1837 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1838 		++fail_cor;
1839 
1840 	if (fail_cor + fail_gen) {
1841 		/*
1842 		 * if we find an error in a super block, we just report it.
1843 		 * They will get written with the next transaction commit
1844 		 * anyway
1845 		 */
1846 		spin_lock(&sctx->stat_lock);
1847 		++sctx->stat.super_errors;
1848 		spin_unlock(&sctx->stat_lock);
1849 		if (fail_cor)
1850 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1851 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1852 		else
1853 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1854 				BTRFS_DEV_STAT_GENERATION_ERRS);
1855 	}
1856 
1857 	return fail_cor + fail_gen;
1858 }
1859 
1860 static void scrub_block_get(struct scrub_block *sblock)
1861 {
1862 	atomic_inc(&sblock->ref_count);
1863 }
1864 
1865 static void scrub_block_put(struct scrub_block *sblock)
1866 {
1867 	if (atomic_dec_and_test(&sblock->ref_count)) {
1868 		int i;
1869 
1870 		for (i = 0; i < sblock->page_count; i++)
1871 			scrub_page_put(sblock->pagev[i]);
1872 		kfree(sblock);
1873 	}
1874 }
1875 
1876 static void scrub_page_get(struct scrub_page *spage)
1877 {
1878 	atomic_inc(&spage->ref_count);
1879 }
1880 
1881 static void scrub_page_put(struct scrub_page *spage)
1882 {
1883 	if (atomic_dec_and_test(&spage->ref_count)) {
1884 		if (spage->page)
1885 			__free_page(spage->page);
1886 		kfree(spage);
1887 	}
1888 }
1889 
1890 static void scrub_submit(struct scrub_ctx *sctx)
1891 {
1892 	struct scrub_bio *sbio;
1893 
1894 	if (sctx->curr == -1)
1895 		return;
1896 
1897 	sbio = sctx->bios[sctx->curr];
1898 	sctx->curr = -1;
1899 	scrub_pending_bio_inc(sctx);
1900 
1901 	if (!sbio->bio->bi_bdev) {
1902 		/*
1903 		 * this case should not happen. If btrfs_map_block() is
1904 		 * wrong, it could happen for dev-replace operations on
1905 		 * missing devices when no mirrors are available, but in
1906 		 * this case it should already fail the mount.
1907 		 * This case is handled correctly (but _very_ slowly).
1908 		 */
1909 		printk_ratelimited(KERN_WARNING
1910 			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1911 		bio_endio(sbio->bio, -EIO);
1912 	} else {
1913 		btrfsic_submit_bio(READ, sbio->bio);
1914 	}
1915 }
1916 
1917 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1918 				    struct scrub_page *spage)
1919 {
1920 	struct scrub_block *sblock = spage->sblock;
1921 	struct scrub_bio *sbio;
1922 	int ret;
1923 
1924 again:
1925 	/*
1926 	 * grab a fresh bio or wait for one to become available
1927 	 */
1928 	while (sctx->curr == -1) {
1929 		spin_lock(&sctx->list_lock);
1930 		sctx->curr = sctx->first_free;
1931 		if (sctx->curr != -1) {
1932 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1933 			sctx->bios[sctx->curr]->next_free = -1;
1934 			sctx->bios[sctx->curr]->page_count = 0;
1935 			spin_unlock(&sctx->list_lock);
1936 		} else {
1937 			spin_unlock(&sctx->list_lock);
1938 			wait_event(sctx->list_wait, sctx->first_free != -1);
1939 		}
1940 	}
1941 	sbio = sctx->bios[sctx->curr];
1942 	if (sbio->page_count == 0) {
1943 		struct bio *bio;
1944 
1945 		sbio->physical = spage->physical;
1946 		sbio->logical = spage->logical;
1947 		sbio->dev = spage->dev;
1948 		bio = sbio->bio;
1949 		if (!bio) {
1950 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1951 			if (!bio)
1952 				return -ENOMEM;
1953 			sbio->bio = bio;
1954 		}
1955 
1956 		bio->bi_private = sbio;
1957 		bio->bi_end_io = scrub_bio_end_io;
1958 		bio->bi_bdev = sbio->dev->bdev;
1959 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1960 		sbio->err = 0;
1961 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1962 		   spage->physical ||
1963 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1964 		   spage->logical ||
1965 		   sbio->dev != spage->dev) {
1966 		scrub_submit(sctx);
1967 		goto again;
1968 	}
1969 
1970 	sbio->pagev[sbio->page_count] = spage;
1971 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1972 	if (ret != PAGE_SIZE) {
1973 		if (sbio->page_count < 1) {
1974 			bio_put(sbio->bio);
1975 			sbio->bio = NULL;
1976 			return -EIO;
1977 		}
1978 		scrub_submit(sctx);
1979 		goto again;
1980 	}
1981 
1982 	scrub_block_get(sblock); /* one for the page added to the bio */
1983 	atomic_inc(&sblock->outstanding_pages);
1984 	sbio->page_count++;
1985 	if (sbio->page_count == sctx->pages_per_rd_bio)
1986 		scrub_submit(sctx);
1987 
1988 	return 0;
1989 }
1990 
1991 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1992 		       u64 physical, struct btrfs_device *dev, u64 flags,
1993 		       u64 gen, int mirror_num, u8 *csum, int force,
1994 		       u64 physical_for_dev_replace)
1995 {
1996 	struct scrub_block *sblock;
1997 	int index;
1998 
1999 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2000 	if (!sblock) {
2001 		spin_lock(&sctx->stat_lock);
2002 		sctx->stat.malloc_errors++;
2003 		spin_unlock(&sctx->stat_lock);
2004 		return -ENOMEM;
2005 	}
2006 
2007 	/* one ref inside this function, plus one for each page added to
2008 	 * a bio later on */
2009 	atomic_set(&sblock->ref_count, 1);
2010 	sblock->sctx = sctx;
2011 	sblock->no_io_error_seen = 1;
2012 
2013 	for (index = 0; len > 0; index++) {
2014 		struct scrub_page *spage;
2015 		u64 l = min_t(u64, len, PAGE_SIZE);
2016 
2017 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2018 		if (!spage) {
2019 leave_nomem:
2020 			spin_lock(&sctx->stat_lock);
2021 			sctx->stat.malloc_errors++;
2022 			spin_unlock(&sctx->stat_lock);
2023 			scrub_block_put(sblock);
2024 			return -ENOMEM;
2025 		}
2026 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2027 		scrub_page_get(spage);
2028 		sblock->pagev[index] = spage;
2029 		spage->sblock = sblock;
2030 		spage->dev = dev;
2031 		spage->flags = flags;
2032 		spage->generation = gen;
2033 		spage->logical = logical;
2034 		spage->physical = physical;
2035 		spage->physical_for_dev_replace = physical_for_dev_replace;
2036 		spage->mirror_num = mirror_num;
2037 		if (csum) {
2038 			spage->have_csum = 1;
2039 			memcpy(spage->csum, csum, sctx->csum_size);
2040 		} else {
2041 			spage->have_csum = 0;
2042 		}
2043 		sblock->page_count++;
2044 		spage->page = alloc_page(GFP_NOFS);
2045 		if (!spage->page)
2046 			goto leave_nomem;
2047 		len -= l;
2048 		logical += l;
2049 		physical += l;
2050 		physical_for_dev_replace += l;
2051 	}
2052 
2053 	WARN_ON(sblock->page_count == 0);
2054 	for (index = 0; index < sblock->page_count; index++) {
2055 		struct scrub_page *spage = sblock->pagev[index];
2056 		int ret;
2057 
2058 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2059 		if (ret) {
2060 			scrub_block_put(sblock);
2061 			return ret;
2062 		}
2063 	}
2064 
2065 	if (force)
2066 		scrub_submit(sctx);
2067 
2068 	/* last one frees, either here or in bio completion for last page */
2069 	scrub_block_put(sblock);
2070 	return 0;
2071 }
2072 
2073 static void scrub_bio_end_io(struct bio *bio, int err)
2074 {
2075 	struct scrub_bio *sbio = bio->bi_private;
2076 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2077 
2078 	sbio->err = err;
2079 	sbio->bio = bio;
2080 
2081 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2082 }
2083 
2084 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2085 {
2086 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2087 	struct scrub_ctx *sctx = sbio->sctx;
2088 	int i;
2089 
2090 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2091 	if (sbio->err) {
2092 		for (i = 0; i < sbio->page_count; i++) {
2093 			struct scrub_page *spage = sbio->pagev[i];
2094 
2095 			spage->io_error = 1;
2096 			spage->sblock->no_io_error_seen = 0;
2097 		}
2098 	}
2099 
2100 	/* now complete the scrub_block items that have all pages completed */
2101 	for (i = 0; i < sbio->page_count; i++) {
2102 		struct scrub_page *spage = sbio->pagev[i];
2103 		struct scrub_block *sblock = spage->sblock;
2104 
2105 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2106 			scrub_block_complete(sblock);
2107 		scrub_block_put(sblock);
2108 	}
2109 
2110 	bio_put(sbio->bio);
2111 	sbio->bio = NULL;
2112 	spin_lock(&sctx->list_lock);
2113 	sbio->next_free = sctx->first_free;
2114 	sctx->first_free = sbio->index;
2115 	spin_unlock(&sctx->list_lock);
2116 
2117 	if (sctx->is_dev_replace &&
2118 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2119 		mutex_lock(&sctx->wr_ctx.wr_lock);
2120 		scrub_wr_submit(sctx);
2121 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2122 	}
2123 
2124 	scrub_pending_bio_dec(sctx);
2125 }
2126 
2127 static void scrub_block_complete(struct scrub_block *sblock)
2128 {
2129 	if (!sblock->no_io_error_seen) {
2130 		scrub_handle_errored_block(sblock);
2131 	} else {
2132 		/*
2133 		 * if has checksum error, write via repair mechanism in
2134 		 * dev replace case, otherwise write here in dev replace
2135 		 * case.
2136 		 */
2137 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2138 			scrub_write_block_to_dev_replace(sblock);
2139 	}
2140 }
2141 
2142 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2143 			   u8 *csum)
2144 {
2145 	struct btrfs_ordered_sum *sum = NULL;
2146 	unsigned long index;
2147 	unsigned long num_sectors;
2148 
2149 	while (!list_empty(&sctx->csum_list)) {
2150 		sum = list_first_entry(&sctx->csum_list,
2151 				       struct btrfs_ordered_sum, list);
2152 		if (sum->bytenr > logical)
2153 			return 0;
2154 		if (sum->bytenr + sum->len > logical)
2155 			break;
2156 
2157 		++sctx->stat.csum_discards;
2158 		list_del(&sum->list);
2159 		kfree(sum);
2160 		sum = NULL;
2161 	}
2162 	if (!sum)
2163 		return 0;
2164 
2165 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2166 	num_sectors = sum->len / sctx->sectorsize;
2167 	memcpy(csum, sum->sums + index, sctx->csum_size);
2168 	if (index == num_sectors - 1) {
2169 		list_del(&sum->list);
2170 		kfree(sum);
2171 	}
2172 	return 1;
2173 }
2174 
2175 /* scrub extent tries to collect up to 64 kB for each bio */
2176 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2177 			u64 physical, struct btrfs_device *dev, u64 flags,
2178 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2179 {
2180 	int ret;
2181 	u8 csum[BTRFS_CSUM_SIZE];
2182 	u32 blocksize;
2183 
2184 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2185 		blocksize = sctx->sectorsize;
2186 		spin_lock(&sctx->stat_lock);
2187 		sctx->stat.data_extents_scrubbed++;
2188 		sctx->stat.data_bytes_scrubbed += len;
2189 		spin_unlock(&sctx->stat_lock);
2190 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2191 		blocksize = sctx->nodesize;
2192 		spin_lock(&sctx->stat_lock);
2193 		sctx->stat.tree_extents_scrubbed++;
2194 		sctx->stat.tree_bytes_scrubbed += len;
2195 		spin_unlock(&sctx->stat_lock);
2196 	} else {
2197 		blocksize = sctx->sectorsize;
2198 		WARN_ON(1);
2199 	}
2200 
2201 	while (len) {
2202 		u64 l = min_t(u64, len, blocksize);
2203 		int have_csum = 0;
2204 
2205 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2206 			/* push csums to sbio */
2207 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2208 			if (have_csum == 0)
2209 				++sctx->stat.no_csum;
2210 			if (sctx->is_dev_replace && !have_csum) {
2211 				ret = copy_nocow_pages(sctx, logical, l,
2212 						       mirror_num,
2213 						      physical_for_dev_replace);
2214 				goto behind_scrub_pages;
2215 			}
2216 		}
2217 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2218 				  mirror_num, have_csum ? csum : NULL, 0,
2219 				  physical_for_dev_replace);
2220 behind_scrub_pages:
2221 		if (ret)
2222 			return ret;
2223 		len -= l;
2224 		logical += l;
2225 		physical += l;
2226 		physical_for_dev_replace += l;
2227 	}
2228 	return 0;
2229 }
2230 
2231 /*
2232  * Given a physical address, this will calculate it's
2233  * logical offset. if this is a parity stripe, it will return
2234  * the most left data stripe's logical offset.
2235  *
2236  * return 0 if it is a data stripe, 1 means parity stripe.
2237  */
2238 static int get_raid56_logic_offset(u64 physical, int num,
2239 				   struct map_lookup *map, u64 *offset)
2240 {
2241 	int i;
2242 	int j = 0;
2243 	u64 stripe_nr;
2244 	u64 last_offset;
2245 	int stripe_index;
2246 	int rot;
2247 
2248 	last_offset = (physical - map->stripes[num].physical) *
2249 		      nr_data_stripes(map);
2250 	*offset = last_offset;
2251 	for (i = 0; i < nr_data_stripes(map); i++) {
2252 		*offset = last_offset + i * map->stripe_len;
2253 
2254 		stripe_nr = *offset;
2255 		do_div(stripe_nr, map->stripe_len);
2256 		do_div(stripe_nr, nr_data_stripes(map));
2257 
2258 		/* Work out the disk rotation on this stripe-set */
2259 		rot = do_div(stripe_nr, map->num_stripes);
2260 		/* calculate which stripe this data locates */
2261 		rot += i;
2262 		stripe_index = rot % map->num_stripes;
2263 		if (stripe_index == num)
2264 			return 0;
2265 		if (stripe_index < num)
2266 			j++;
2267 	}
2268 	*offset = last_offset + j * map->stripe_len;
2269 	return 1;
2270 }
2271 
2272 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2273 					   struct map_lookup *map,
2274 					   struct btrfs_device *scrub_dev,
2275 					   int num, u64 base, u64 length,
2276 					   int is_dev_replace)
2277 {
2278 	struct btrfs_path *path;
2279 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2280 	struct btrfs_root *root = fs_info->extent_root;
2281 	struct btrfs_root *csum_root = fs_info->csum_root;
2282 	struct btrfs_extent_item *extent;
2283 	struct blk_plug plug;
2284 	u64 flags;
2285 	int ret;
2286 	int slot;
2287 	u64 nstripes;
2288 	struct extent_buffer *l;
2289 	struct btrfs_key key;
2290 	u64 physical;
2291 	u64 logical;
2292 	u64 logic_end;
2293 	u64 physical_end;
2294 	u64 generation;
2295 	int mirror_num;
2296 	struct reada_control *reada1;
2297 	struct reada_control *reada2;
2298 	struct btrfs_key key_start;
2299 	struct btrfs_key key_end;
2300 	u64 increment = map->stripe_len;
2301 	u64 offset;
2302 	u64 extent_logical;
2303 	u64 extent_physical;
2304 	u64 extent_len;
2305 	struct btrfs_device *extent_dev;
2306 	int extent_mirror_num;
2307 	int stop_loop = 0;
2308 
2309 	nstripes = length;
2310 	physical = map->stripes[num].physical;
2311 	offset = 0;
2312 	do_div(nstripes, map->stripe_len);
2313 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2314 		offset = map->stripe_len * num;
2315 		increment = map->stripe_len * map->num_stripes;
2316 		mirror_num = 1;
2317 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2318 		int factor = map->num_stripes / map->sub_stripes;
2319 		offset = map->stripe_len * (num / map->sub_stripes);
2320 		increment = map->stripe_len * factor;
2321 		mirror_num = num % map->sub_stripes + 1;
2322 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2323 		increment = map->stripe_len;
2324 		mirror_num = num % map->num_stripes + 1;
2325 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2326 		increment = map->stripe_len;
2327 		mirror_num = num % map->num_stripes + 1;
2328 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2329 				BTRFS_BLOCK_GROUP_RAID6)) {
2330 		get_raid56_logic_offset(physical, num, map, &offset);
2331 		increment = map->stripe_len * nr_data_stripes(map);
2332 		mirror_num = 1;
2333 	} else {
2334 		increment = map->stripe_len;
2335 		mirror_num = 1;
2336 	}
2337 
2338 	path = btrfs_alloc_path();
2339 	if (!path)
2340 		return -ENOMEM;
2341 
2342 	/*
2343 	 * work on commit root. The related disk blocks are static as
2344 	 * long as COW is applied. This means, it is save to rewrite
2345 	 * them to repair disk errors without any race conditions
2346 	 */
2347 	path->search_commit_root = 1;
2348 	path->skip_locking = 1;
2349 
2350 	/*
2351 	 * trigger the readahead for extent tree csum tree and wait for
2352 	 * completion. During readahead, the scrub is officially paused
2353 	 * to not hold off transaction commits
2354 	 */
2355 	logical = base + offset;
2356 	physical_end = physical + nstripes * map->stripe_len;
2357 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2358 			 BTRFS_BLOCK_GROUP_RAID6)) {
2359 		get_raid56_logic_offset(physical_end, num,
2360 					map, &logic_end);
2361 		logic_end += base;
2362 	} else {
2363 		logic_end = logical + increment * nstripes;
2364 	}
2365 	wait_event(sctx->list_wait,
2366 		   atomic_read(&sctx->bios_in_flight) == 0);
2367 	scrub_blocked_if_needed(fs_info);
2368 
2369 	/* FIXME it might be better to start readahead at commit root */
2370 	key_start.objectid = logical;
2371 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2372 	key_start.offset = (u64)0;
2373 	key_end.objectid = logic_end;
2374 	key_end.type = BTRFS_METADATA_ITEM_KEY;
2375 	key_end.offset = (u64)-1;
2376 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2377 
2378 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2379 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2380 	key_start.offset = logical;
2381 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2382 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2383 	key_end.offset = logic_end;
2384 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2385 
2386 	if (!IS_ERR(reada1))
2387 		btrfs_reada_wait(reada1);
2388 	if (!IS_ERR(reada2))
2389 		btrfs_reada_wait(reada2);
2390 
2391 
2392 	/*
2393 	 * collect all data csums for the stripe to avoid seeking during
2394 	 * the scrub. This might currently (crc32) end up to be about 1MB
2395 	 */
2396 	blk_start_plug(&plug);
2397 
2398 	/*
2399 	 * now find all extents for each stripe and scrub them
2400 	 */
2401 	ret = 0;
2402 	while (physical < physical_end) {
2403 		/* for raid56, we skip parity stripe */
2404 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2405 				BTRFS_BLOCK_GROUP_RAID6)) {
2406 			ret = get_raid56_logic_offset(physical, num,
2407 					map, &logical);
2408 			logical += base;
2409 			if (ret)
2410 				goto skip;
2411 		}
2412 		/*
2413 		 * canceled?
2414 		 */
2415 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2416 		    atomic_read(&sctx->cancel_req)) {
2417 			ret = -ECANCELED;
2418 			goto out;
2419 		}
2420 		/*
2421 		 * check to see if we have to pause
2422 		 */
2423 		if (atomic_read(&fs_info->scrub_pause_req)) {
2424 			/* push queued extents */
2425 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2426 			scrub_submit(sctx);
2427 			mutex_lock(&sctx->wr_ctx.wr_lock);
2428 			scrub_wr_submit(sctx);
2429 			mutex_unlock(&sctx->wr_ctx.wr_lock);
2430 			wait_event(sctx->list_wait,
2431 				   atomic_read(&sctx->bios_in_flight) == 0);
2432 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2433 			scrub_blocked_if_needed(fs_info);
2434 		}
2435 
2436 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2437 			key.type = BTRFS_METADATA_ITEM_KEY;
2438 		else
2439 			key.type = BTRFS_EXTENT_ITEM_KEY;
2440 		key.objectid = logical;
2441 		key.offset = (u64)-1;
2442 
2443 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2444 		if (ret < 0)
2445 			goto out;
2446 
2447 		if (ret > 0) {
2448 			ret = btrfs_previous_extent_item(root, path, 0);
2449 			if (ret < 0)
2450 				goto out;
2451 			if (ret > 0) {
2452 				/* there's no smaller item, so stick with the
2453 				 * larger one */
2454 				btrfs_release_path(path);
2455 				ret = btrfs_search_slot(NULL, root, &key,
2456 							path, 0, 0);
2457 				if (ret < 0)
2458 					goto out;
2459 			}
2460 		}
2461 
2462 		stop_loop = 0;
2463 		while (1) {
2464 			u64 bytes;
2465 
2466 			l = path->nodes[0];
2467 			slot = path->slots[0];
2468 			if (slot >= btrfs_header_nritems(l)) {
2469 				ret = btrfs_next_leaf(root, path);
2470 				if (ret == 0)
2471 					continue;
2472 				if (ret < 0)
2473 					goto out;
2474 
2475 				stop_loop = 1;
2476 				break;
2477 			}
2478 			btrfs_item_key_to_cpu(l, &key, slot);
2479 
2480 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2481 				bytes = root->nodesize;
2482 			else
2483 				bytes = key.offset;
2484 
2485 			if (key.objectid + bytes <= logical)
2486 				goto next;
2487 
2488 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2489 			    key.type != BTRFS_METADATA_ITEM_KEY)
2490 				goto next;
2491 
2492 			if (key.objectid >= logical + map->stripe_len) {
2493 				/* out of this device extent */
2494 				if (key.objectid >= logic_end)
2495 					stop_loop = 1;
2496 				break;
2497 			}
2498 
2499 			extent = btrfs_item_ptr(l, slot,
2500 						struct btrfs_extent_item);
2501 			flags = btrfs_extent_flags(l, extent);
2502 			generation = btrfs_extent_generation(l, extent);
2503 
2504 			if (key.objectid < logical &&
2505 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2506 				btrfs_err(fs_info,
2507 					   "scrub: tree block %llu spanning "
2508 					   "stripes, ignored. logical=%llu",
2509 				       key.objectid, logical);
2510 				goto next;
2511 			}
2512 
2513 again:
2514 			extent_logical = key.objectid;
2515 			extent_len = bytes;
2516 
2517 			/*
2518 			 * trim extent to this stripe
2519 			 */
2520 			if (extent_logical < logical) {
2521 				extent_len -= logical - extent_logical;
2522 				extent_logical = logical;
2523 			}
2524 			if (extent_logical + extent_len >
2525 			    logical + map->stripe_len) {
2526 				extent_len = logical + map->stripe_len -
2527 					     extent_logical;
2528 			}
2529 
2530 			extent_physical = extent_logical - logical + physical;
2531 			extent_dev = scrub_dev;
2532 			extent_mirror_num = mirror_num;
2533 			if (is_dev_replace)
2534 				scrub_remap_extent(fs_info, extent_logical,
2535 						   extent_len, &extent_physical,
2536 						   &extent_dev,
2537 						   &extent_mirror_num);
2538 
2539 			ret = btrfs_lookup_csums_range(csum_root, logical,
2540 						logical + map->stripe_len - 1,
2541 						&sctx->csum_list, 1);
2542 			if (ret)
2543 				goto out;
2544 
2545 			ret = scrub_extent(sctx, extent_logical, extent_len,
2546 					   extent_physical, extent_dev, flags,
2547 					   generation, extent_mirror_num,
2548 					   extent_logical - logical + physical);
2549 			if (ret)
2550 				goto out;
2551 
2552 			scrub_free_csums(sctx);
2553 			if (extent_logical + extent_len <
2554 			    key.objectid + bytes) {
2555 				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2556 					BTRFS_BLOCK_GROUP_RAID6)) {
2557 					/*
2558 					 * loop until we find next data stripe
2559 					 * or we have finished all stripes.
2560 					 */
2561 					do {
2562 						physical += map->stripe_len;
2563 						ret = get_raid56_logic_offset(
2564 								physical, num,
2565 								map, &logical);
2566 						logical += base;
2567 					} while (physical < physical_end && ret);
2568 				} else {
2569 					physical += map->stripe_len;
2570 					logical += increment;
2571 				}
2572 				if (logical < key.objectid + bytes) {
2573 					cond_resched();
2574 					goto again;
2575 				}
2576 
2577 				if (physical >= physical_end) {
2578 					stop_loop = 1;
2579 					break;
2580 				}
2581 			}
2582 next:
2583 			path->slots[0]++;
2584 		}
2585 		btrfs_release_path(path);
2586 skip:
2587 		logical += increment;
2588 		physical += map->stripe_len;
2589 		spin_lock(&sctx->stat_lock);
2590 		if (stop_loop)
2591 			sctx->stat.last_physical = map->stripes[num].physical +
2592 						   length;
2593 		else
2594 			sctx->stat.last_physical = physical;
2595 		spin_unlock(&sctx->stat_lock);
2596 		if (stop_loop)
2597 			break;
2598 	}
2599 out:
2600 	/* push queued extents */
2601 	scrub_submit(sctx);
2602 	mutex_lock(&sctx->wr_ctx.wr_lock);
2603 	scrub_wr_submit(sctx);
2604 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2605 
2606 	blk_finish_plug(&plug);
2607 	btrfs_free_path(path);
2608 	return ret < 0 ? ret : 0;
2609 }
2610 
2611 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2612 					  struct btrfs_device *scrub_dev,
2613 					  u64 chunk_tree, u64 chunk_objectid,
2614 					  u64 chunk_offset, u64 length,
2615 					  u64 dev_offset, int is_dev_replace)
2616 {
2617 	struct btrfs_mapping_tree *map_tree =
2618 		&sctx->dev_root->fs_info->mapping_tree;
2619 	struct map_lookup *map;
2620 	struct extent_map *em;
2621 	int i;
2622 	int ret = 0;
2623 
2624 	read_lock(&map_tree->map_tree.lock);
2625 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2626 	read_unlock(&map_tree->map_tree.lock);
2627 
2628 	if (!em)
2629 		return -EINVAL;
2630 
2631 	map = (struct map_lookup *)em->bdev;
2632 	if (em->start != chunk_offset)
2633 		goto out;
2634 
2635 	if (em->len < length)
2636 		goto out;
2637 
2638 	for (i = 0; i < map->num_stripes; ++i) {
2639 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2640 		    map->stripes[i].physical == dev_offset) {
2641 			ret = scrub_stripe(sctx, map, scrub_dev, i,
2642 					   chunk_offset, length,
2643 					   is_dev_replace);
2644 			if (ret)
2645 				goto out;
2646 		}
2647 	}
2648 out:
2649 	free_extent_map(em);
2650 
2651 	return ret;
2652 }
2653 
2654 static noinline_for_stack
2655 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2656 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2657 			   int is_dev_replace)
2658 {
2659 	struct btrfs_dev_extent *dev_extent = NULL;
2660 	struct btrfs_path *path;
2661 	struct btrfs_root *root = sctx->dev_root;
2662 	struct btrfs_fs_info *fs_info = root->fs_info;
2663 	u64 length;
2664 	u64 chunk_tree;
2665 	u64 chunk_objectid;
2666 	u64 chunk_offset;
2667 	int ret;
2668 	int slot;
2669 	struct extent_buffer *l;
2670 	struct btrfs_key key;
2671 	struct btrfs_key found_key;
2672 	struct btrfs_block_group_cache *cache;
2673 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2674 
2675 	path = btrfs_alloc_path();
2676 	if (!path)
2677 		return -ENOMEM;
2678 
2679 	path->reada = 2;
2680 	path->search_commit_root = 1;
2681 	path->skip_locking = 1;
2682 
2683 	key.objectid = scrub_dev->devid;
2684 	key.offset = 0ull;
2685 	key.type = BTRFS_DEV_EXTENT_KEY;
2686 
2687 	while (1) {
2688 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 		if (ret < 0)
2690 			break;
2691 		if (ret > 0) {
2692 			if (path->slots[0] >=
2693 			    btrfs_header_nritems(path->nodes[0])) {
2694 				ret = btrfs_next_leaf(root, path);
2695 				if (ret)
2696 					break;
2697 			}
2698 		}
2699 
2700 		l = path->nodes[0];
2701 		slot = path->slots[0];
2702 
2703 		btrfs_item_key_to_cpu(l, &found_key, slot);
2704 
2705 		if (found_key.objectid != scrub_dev->devid)
2706 			break;
2707 
2708 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2709 			break;
2710 
2711 		if (found_key.offset >= end)
2712 			break;
2713 
2714 		if (found_key.offset < key.offset)
2715 			break;
2716 
2717 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2718 		length = btrfs_dev_extent_length(l, dev_extent);
2719 
2720 		if (found_key.offset + length <= start)
2721 			goto skip;
2722 
2723 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2724 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2725 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2726 
2727 		/*
2728 		 * get a reference on the corresponding block group to prevent
2729 		 * the chunk from going away while we scrub it
2730 		 */
2731 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2732 
2733 		/* some chunks are removed but not committed to disk yet,
2734 		 * continue scrubbing */
2735 		if (!cache)
2736 			goto skip;
2737 
2738 		dev_replace->cursor_right = found_key.offset + length;
2739 		dev_replace->cursor_left = found_key.offset;
2740 		dev_replace->item_needs_writeback = 1;
2741 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2742 				  chunk_offset, length, found_key.offset,
2743 				  is_dev_replace);
2744 
2745 		/*
2746 		 * flush, submit all pending read and write bios, afterwards
2747 		 * wait for them.
2748 		 * Note that in the dev replace case, a read request causes
2749 		 * write requests that are submitted in the read completion
2750 		 * worker. Therefore in the current situation, it is required
2751 		 * that all write requests are flushed, so that all read and
2752 		 * write requests are really completed when bios_in_flight
2753 		 * changes to 0.
2754 		 */
2755 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2756 		scrub_submit(sctx);
2757 		mutex_lock(&sctx->wr_ctx.wr_lock);
2758 		scrub_wr_submit(sctx);
2759 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2760 
2761 		wait_event(sctx->list_wait,
2762 			   atomic_read(&sctx->bios_in_flight) == 0);
2763 		atomic_inc(&fs_info->scrubs_paused);
2764 		wake_up(&fs_info->scrub_pause_wait);
2765 
2766 		/*
2767 		 * must be called before we decrease @scrub_paused.
2768 		 * make sure we don't block transaction commit while
2769 		 * we are waiting pending workers finished.
2770 		 */
2771 		wait_event(sctx->list_wait,
2772 			   atomic_read(&sctx->workers_pending) == 0);
2773 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2774 
2775 		mutex_lock(&fs_info->scrub_lock);
2776 		__scrub_blocked_if_needed(fs_info);
2777 		atomic_dec(&fs_info->scrubs_paused);
2778 		mutex_unlock(&fs_info->scrub_lock);
2779 		wake_up(&fs_info->scrub_pause_wait);
2780 
2781 		btrfs_put_block_group(cache);
2782 		if (ret)
2783 			break;
2784 		if (is_dev_replace &&
2785 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2786 			ret = -EIO;
2787 			break;
2788 		}
2789 		if (sctx->stat.malloc_errors > 0) {
2790 			ret = -ENOMEM;
2791 			break;
2792 		}
2793 
2794 		dev_replace->cursor_left = dev_replace->cursor_right;
2795 		dev_replace->item_needs_writeback = 1;
2796 skip:
2797 		key.offset = found_key.offset + length;
2798 		btrfs_release_path(path);
2799 	}
2800 
2801 	btrfs_free_path(path);
2802 
2803 	/*
2804 	 * ret can still be 1 from search_slot or next_leaf,
2805 	 * that's not an error
2806 	 */
2807 	return ret < 0 ? ret : 0;
2808 }
2809 
2810 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2811 					   struct btrfs_device *scrub_dev)
2812 {
2813 	int	i;
2814 	u64	bytenr;
2815 	u64	gen;
2816 	int	ret;
2817 	struct btrfs_root *root = sctx->dev_root;
2818 
2819 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2820 		return -EIO;
2821 
2822 	/* Seed devices of a new filesystem has their own generation. */
2823 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
2824 		gen = scrub_dev->generation;
2825 	else
2826 		gen = root->fs_info->last_trans_committed;
2827 
2828 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2829 		bytenr = btrfs_sb_offset(i);
2830 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2831 		    scrub_dev->commit_total_bytes)
2832 			break;
2833 
2834 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2835 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2836 				  NULL, 1, bytenr);
2837 		if (ret)
2838 			return ret;
2839 	}
2840 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2841 
2842 	return 0;
2843 }
2844 
2845 /*
2846  * get a reference count on fs_info->scrub_workers. start worker if necessary
2847  */
2848 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2849 						int is_dev_replace)
2850 {
2851 	int ret = 0;
2852 	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2853 	int max_active = fs_info->thread_pool_size;
2854 
2855 	if (fs_info->scrub_workers_refcnt == 0) {
2856 		if (is_dev_replace)
2857 			fs_info->scrub_workers =
2858 				btrfs_alloc_workqueue("btrfs-scrub", flags,
2859 						      1, 4);
2860 		else
2861 			fs_info->scrub_workers =
2862 				btrfs_alloc_workqueue("btrfs-scrub", flags,
2863 						      max_active, 4);
2864 		if (!fs_info->scrub_workers) {
2865 			ret = -ENOMEM;
2866 			goto out;
2867 		}
2868 		fs_info->scrub_wr_completion_workers =
2869 			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2870 					      max_active, 2);
2871 		if (!fs_info->scrub_wr_completion_workers) {
2872 			ret = -ENOMEM;
2873 			goto out;
2874 		}
2875 		fs_info->scrub_nocow_workers =
2876 			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2877 		if (!fs_info->scrub_nocow_workers) {
2878 			ret = -ENOMEM;
2879 			goto out;
2880 		}
2881 	}
2882 	++fs_info->scrub_workers_refcnt;
2883 out:
2884 	return ret;
2885 }
2886 
2887 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2888 {
2889 	if (--fs_info->scrub_workers_refcnt == 0) {
2890 		btrfs_destroy_workqueue(fs_info->scrub_workers);
2891 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2892 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2893 	}
2894 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2895 }
2896 
2897 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2898 		    u64 end, struct btrfs_scrub_progress *progress,
2899 		    int readonly, int is_dev_replace)
2900 {
2901 	struct scrub_ctx *sctx;
2902 	int ret;
2903 	struct btrfs_device *dev;
2904 	struct rcu_string *name;
2905 
2906 	if (btrfs_fs_closing(fs_info))
2907 		return -EINVAL;
2908 
2909 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2910 		/*
2911 		 * in this case scrub is unable to calculate the checksum
2912 		 * the way scrub is implemented. Do not handle this
2913 		 * situation at all because it won't ever happen.
2914 		 */
2915 		btrfs_err(fs_info,
2916 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2917 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2918 		return -EINVAL;
2919 	}
2920 
2921 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2922 		/* not supported for data w/o checksums */
2923 		btrfs_err(fs_info,
2924 			   "scrub: size assumption sectorsize != PAGE_SIZE "
2925 			   "(%d != %lu) fails",
2926 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2927 		return -EINVAL;
2928 	}
2929 
2930 	if (fs_info->chunk_root->nodesize >
2931 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2932 	    fs_info->chunk_root->sectorsize >
2933 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2934 		/*
2935 		 * would exhaust the array bounds of pagev member in
2936 		 * struct scrub_block
2937 		 */
2938 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2939 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2940 		       fs_info->chunk_root->nodesize,
2941 		       SCRUB_MAX_PAGES_PER_BLOCK,
2942 		       fs_info->chunk_root->sectorsize,
2943 		       SCRUB_MAX_PAGES_PER_BLOCK);
2944 		return -EINVAL;
2945 	}
2946 
2947 
2948 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2949 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2950 	if (!dev || (dev->missing && !is_dev_replace)) {
2951 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952 		return -ENODEV;
2953 	}
2954 
2955 	if (!is_dev_replace && !readonly && !dev->writeable) {
2956 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2957 		rcu_read_lock();
2958 		name = rcu_dereference(dev->name);
2959 		btrfs_err(fs_info, "scrub: device %s is not writable",
2960 			  name->str);
2961 		rcu_read_unlock();
2962 		return -EROFS;
2963 	}
2964 
2965 	mutex_lock(&fs_info->scrub_lock);
2966 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2967 		mutex_unlock(&fs_info->scrub_lock);
2968 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2969 		return -EIO;
2970 	}
2971 
2972 	btrfs_dev_replace_lock(&fs_info->dev_replace);
2973 	if (dev->scrub_device ||
2974 	    (!is_dev_replace &&
2975 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2976 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2977 		mutex_unlock(&fs_info->scrub_lock);
2978 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2979 		return -EINPROGRESS;
2980 	}
2981 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2982 
2983 	ret = scrub_workers_get(fs_info, is_dev_replace);
2984 	if (ret) {
2985 		mutex_unlock(&fs_info->scrub_lock);
2986 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2987 		return ret;
2988 	}
2989 
2990 	sctx = scrub_setup_ctx(dev, is_dev_replace);
2991 	if (IS_ERR(sctx)) {
2992 		mutex_unlock(&fs_info->scrub_lock);
2993 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2994 		scrub_workers_put(fs_info);
2995 		return PTR_ERR(sctx);
2996 	}
2997 	sctx->readonly = readonly;
2998 	dev->scrub_device = sctx;
2999 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3000 
3001 	/*
3002 	 * checking @scrub_pause_req here, we can avoid
3003 	 * race between committing transaction and scrubbing.
3004 	 */
3005 	__scrub_blocked_if_needed(fs_info);
3006 	atomic_inc(&fs_info->scrubs_running);
3007 	mutex_unlock(&fs_info->scrub_lock);
3008 
3009 	if (!is_dev_replace) {
3010 		/*
3011 		 * by holding device list mutex, we can
3012 		 * kick off writing super in log tree sync.
3013 		 */
3014 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3015 		ret = scrub_supers(sctx, dev);
3016 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3017 	}
3018 
3019 	if (!ret)
3020 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3021 					     is_dev_replace);
3022 
3023 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3024 	atomic_dec(&fs_info->scrubs_running);
3025 	wake_up(&fs_info->scrub_pause_wait);
3026 
3027 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3028 
3029 	if (progress)
3030 		memcpy(progress, &sctx->stat, sizeof(*progress));
3031 
3032 	mutex_lock(&fs_info->scrub_lock);
3033 	dev->scrub_device = NULL;
3034 	scrub_workers_put(fs_info);
3035 	mutex_unlock(&fs_info->scrub_lock);
3036 
3037 	scrub_free_ctx(sctx);
3038 
3039 	return ret;
3040 }
3041 
3042 void btrfs_scrub_pause(struct btrfs_root *root)
3043 {
3044 	struct btrfs_fs_info *fs_info = root->fs_info;
3045 
3046 	mutex_lock(&fs_info->scrub_lock);
3047 	atomic_inc(&fs_info->scrub_pause_req);
3048 	while (atomic_read(&fs_info->scrubs_paused) !=
3049 	       atomic_read(&fs_info->scrubs_running)) {
3050 		mutex_unlock(&fs_info->scrub_lock);
3051 		wait_event(fs_info->scrub_pause_wait,
3052 			   atomic_read(&fs_info->scrubs_paused) ==
3053 			   atomic_read(&fs_info->scrubs_running));
3054 		mutex_lock(&fs_info->scrub_lock);
3055 	}
3056 	mutex_unlock(&fs_info->scrub_lock);
3057 }
3058 
3059 void btrfs_scrub_continue(struct btrfs_root *root)
3060 {
3061 	struct btrfs_fs_info *fs_info = root->fs_info;
3062 
3063 	atomic_dec(&fs_info->scrub_pause_req);
3064 	wake_up(&fs_info->scrub_pause_wait);
3065 }
3066 
3067 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3068 {
3069 	mutex_lock(&fs_info->scrub_lock);
3070 	if (!atomic_read(&fs_info->scrubs_running)) {
3071 		mutex_unlock(&fs_info->scrub_lock);
3072 		return -ENOTCONN;
3073 	}
3074 
3075 	atomic_inc(&fs_info->scrub_cancel_req);
3076 	while (atomic_read(&fs_info->scrubs_running)) {
3077 		mutex_unlock(&fs_info->scrub_lock);
3078 		wait_event(fs_info->scrub_pause_wait,
3079 			   atomic_read(&fs_info->scrubs_running) == 0);
3080 		mutex_lock(&fs_info->scrub_lock);
3081 	}
3082 	atomic_dec(&fs_info->scrub_cancel_req);
3083 	mutex_unlock(&fs_info->scrub_lock);
3084 
3085 	return 0;
3086 }
3087 
3088 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3089 			   struct btrfs_device *dev)
3090 {
3091 	struct scrub_ctx *sctx;
3092 
3093 	mutex_lock(&fs_info->scrub_lock);
3094 	sctx = dev->scrub_device;
3095 	if (!sctx) {
3096 		mutex_unlock(&fs_info->scrub_lock);
3097 		return -ENOTCONN;
3098 	}
3099 	atomic_inc(&sctx->cancel_req);
3100 	while (dev->scrub_device) {
3101 		mutex_unlock(&fs_info->scrub_lock);
3102 		wait_event(fs_info->scrub_pause_wait,
3103 			   dev->scrub_device == NULL);
3104 		mutex_lock(&fs_info->scrub_lock);
3105 	}
3106 	mutex_unlock(&fs_info->scrub_lock);
3107 
3108 	return 0;
3109 }
3110 
3111 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3112 			 struct btrfs_scrub_progress *progress)
3113 {
3114 	struct btrfs_device *dev;
3115 	struct scrub_ctx *sctx = NULL;
3116 
3117 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3118 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3119 	if (dev)
3120 		sctx = dev->scrub_device;
3121 	if (sctx)
3122 		memcpy(progress, &sctx->stat, sizeof(*progress));
3123 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3124 
3125 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3126 }
3127 
3128 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3129 			       u64 extent_logical, u64 extent_len,
3130 			       u64 *extent_physical,
3131 			       struct btrfs_device **extent_dev,
3132 			       int *extent_mirror_num)
3133 {
3134 	u64 mapped_length;
3135 	struct btrfs_bio *bbio = NULL;
3136 	int ret;
3137 
3138 	mapped_length = extent_len;
3139 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3140 			      &mapped_length, &bbio, 0);
3141 	if (ret || !bbio || mapped_length < extent_len ||
3142 	    !bbio->stripes[0].dev->bdev) {
3143 		kfree(bbio);
3144 		return;
3145 	}
3146 
3147 	*extent_physical = bbio->stripes[0].physical;
3148 	*extent_mirror_num = bbio->mirror_num;
3149 	*extent_dev = bbio->stripes[0].dev;
3150 	kfree(bbio);
3151 }
3152 
3153 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3154 			      struct scrub_wr_ctx *wr_ctx,
3155 			      struct btrfs_fs_info *fs_info,
3156 			      struct btrfs_device *dev,
3157 			      int is_dev_replace)
3158 {
3159 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3160 
3161 	mutex_init(&wr_ctx->wr_lock);
3162 	wr_ctx->wr_curr_bio = NULL;
3163 	if (!is_dev_replace)
3164 		return 0;
3165 
3166 	WARN_ON(!dev->bdev);
3167 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3168 					 bio_get_nr_vecs(dev->bdev));
3169 	wr_ctx->tgtdev = dev;
3170 	atomic_set(&wr_ctx->flush_all_writes, 0);
3171 	return 0;
3172 }
3173 
3174 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3175 {
3176 	mutex_lock(&wr_ctx->wr_lock);
3177 	kfree(wr_ctx->wr_curr_bio);
3178 	wr_ctx->wr_curr_bio = NULL;
3179 	mutex_unlock(&wr_ctx->wr_lock);
3180 }
3181 
3182 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3183 			    int mirror_num, u64 physical_for_dev_replace)
3184 {
3185 	struct scrub_copy_nocow_ctx *nocow_ctx;
3186 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3187 
3188 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3189 	if (!nocow_ctx) {
3190 		spin_lock(&sctx->stat_lock);
3191 		sctx->stat.malloc_errors++;
3192 		spin_unlock(&sctx->stat_lock);
3193 		return -ENOMEM;
3194 	}
3195 
3196 	scrub_pending_trans_workers_inc(sctx);
3197 
3198 	nocow_ctx->sctx = sctx;
3199 	nocow_ctx->logical = logical;
3200 	nocow_ctx->len = len;
3201 	nocow_ctx->mirror_num = mirror_num;
3202 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3203 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3204 			copy_nocow_pages_worker, NULL, NULL);
3205 	INIT_LIST_HEAD(&nocow_ctx->inodes);
3206 	btrfs_queue_work(fs_info->scrub_nocow_workers,
3207 			 &nocow_ctx->work);
3208 
3209 	return 0;
3210 }
3211 
3212 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3213 {
3214 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3215 	struct scrub_nocow_inode *nocow_inode;
3216 
3217 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3218 	if (!nocow_inode)
3219 		return -ENOMEM;
3220 	nocow_inode->inum = inum;
3221 	nocow_inode->offset = offset;
3222 	nocow_inode->root = root;
3223 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3224 	return 0;
3225 }
3226 
3227 #define COPY_COMPLETE 1
3228 
3229 static void copy_nocow_pages_worker(struct btrfs_work *work)
3230 {
3231 	struct scrub_copy_nocow_ctx *nocow_ctx =
3232 		container_of(work, struct scrub_copy_nocow_ctx, work);
3233 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3234 	u64 logical = nocow_ctx->logical;
3235 	u64 len = nocow_ctx->len;
3236 	int mirror_num = nocow_ctx->mirror_num;
3237 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3238 	int ret;
3239 	struct btrfs_trans_handle *trans = NULL;
3240 	struct btrfs_fs_info *fs_info;
3241 	struct btrfs_path *path;
3242 	struct btrfs_root *root;
3243 	int not_written = 0;
3244 
3245 	fs_info = sctx->dev_root->fs_info;
3246 	root = fs_info->extent_root;
3247 
3248 	path = btrfs_alloc_path();
3249 	if (!path) {
3250 		spin_lock(&sctx->stat_lock);
3251 		sctx->stat.malloc_errors++;
3252 		spin_unlock(&sctx->stat_lock);
3253 		not_written = 1;
3254 		goto out;
3255 	}
3256 
3257 	trans = btrfs_join_transaction(root);
3258 	if (IS_ERR(trans)) {
3259 		not_written = 1;
3260 		goto out;
3261 	}
3262 
3263 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3264 					  record_inode_for_nocow, nocow_ctx);
3265 	if (ret != 0 && ret != -ENOENT) {
3266 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3267 			"phys %llu, len %llu, mir %u, ret %d",
3268 			logical, physical_for_dev_replace, len, mirror_num,
3269 			ret);
3270 		not_written = 1;
3271 		goto out;
3272 	}
3273 
3274 	btrfs_end_transaction(trans, root);
3275 	trans = NULL;
3276 	while (!list_empty(&nocow_ctx->inodes)) {
3277 		struct scrub_nocow_inode *entry;
3278 		entry = list_first_entry(&nocow_ctx->inodes,
3279 					 struct scrub_nocow_inode,
3280 					 list);
3281 		list_del_init(&entry->list);
3282 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3283 						 entry->root, nocow_ctx);
3284 		kfree(entry);
3285 		if (ret == COPY_COMPLETE) {
3286 			ret = 0;
3287 			break;
3288 		} else if (ret) {
3289 			break;
3290 		}
3291 	}
3292 out:
3293 	while (!list_empty(&nocow_ctx->inodes)) {
3294 		struct scrub_nocow_inode *entry;
3295 		entry = list_first_entry(&nocow_ctx->inodes,
3296 					 struct scrub_nocow_inode,
3297 					 list);
3298 		list_del_init(&entry->list);
3299 		kfree(entry);
3300 	}
3301 	if (trans && !IS_ERR(trans))
3302 		btrfs_end_transaction(trans, root);
3303 	if (not_written)
3304 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3305 					    num_uncorrectable_read_errors);
3306 
3307 	btrfs_free_path(path);
3308 	kfree(nocow_ctx);
3309 
3310 	scrub_pending_trans_workers_dec(sctx);
3311 }
3312 
3313 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3314 				      struct scrub_copy_nocow_ctx *nocow_ctx)
3315 {
3316 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3317 	struct btrfs_key key;
3318 	struct inode *inode;
3319 	struct page *page;
3320 	struct btrfs_root *local_root;
3321 	struct btrfs_ordered_extent *ordered;
3322 	struct extent_map *em;
3323 	struct extent_state *cached_state = NULL;
3324 	struct extent_io_tree *io_tree;
3325 	u64 physical_for_dev_replace;
3326 	u64 len = nocow_ctx->len;
3327 	u64 lockstart = offset, lockend = offset + len - 1;
3328 	unsigned long index;
3329 	int srcu_index;
3330 	int ret = 0;
3331 	int err = 0;
3332 
3333 	key.objectid = root;
3334 	key.type = BTRFS_ROOT_ITEM_KEY;
3335 	key.offset = (u64)-1;
3336 
3337 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3338 
3339 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3340 	if (IS_ERR(local_root)) {
3341 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3342 		return PTR_ERR(local_root);
3343 	}
3344 
3345 	key.type = BTRFS_INODE_ITEM_KEY;
3346 	key.objectid = inum;
3347 	key.offset = 0;
3348 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3349 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3350 	if (IS_ERR(inode))
3351 		return PTR_ERR(inode);
3352 
3353 	/* Avoid truncate/dio/punch hole.. */
3354 	mutex_lock(&inode->i_mutex);
3355 	inode_dio_wait(inode);
3356 
3357 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3358 	io_tree = &BTRFS_I(inode)->io_tree;
3359 
3360 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3361 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3362 	if (ordered) {
3363 		btrfs_put_ordered_extent(ordered);
3364 		goto out_unlock;
3365 	}
3366 
3367 	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3368 	if (IS_ERR(em)) {
3369 		ret = PTR_ERR(em);
3370 		goto out_unlock;
3371 	}
3372 
3373 	/*
3374 	 * This extent does not actually cover the logical extent anymore,
3375 	 * move on to the next inode.
3376 	 */
3377 	if (em->block_start > nocow_ctx->logical ||
3378 	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3379 		free_extent_map(em);
3380 		goto out_unlock;
3381 	}
3382 	free_extent_map(em);
3383 
3384 	while (len >= PAGE_CACHE_SIZE) {
3385 		index = offset >> PAGE_CACHE_SHIFT;
3386 again:
3387 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3388 		if (!page) {
3389 			btrfs_err(fs_info, "find_or_create_page() failed");
3390 			ret = -ENOMEM;
3391 			goto out;
3392 		}
3393 
3394 		if (PageUptodate(page)) {
3395 			if (PageDirty(page))
3396 				goto next_page;
3397 		} else {
3398 			ClearPageError(page);
3399 			err = extent_read_full_page_nolock(io_tree, page,
3400 							   btrfs_get_extent,
3401 							   nocow_ctx->mirror_num);
3402 			if (err) {
3403 				ret = err;
3404 				goto next_page;
3405 			}
3406 
3407 			lock_page(page);
3408 			/*
3409 			 * If the page has been remove from the page cache,
3410 			 * the data on it is meaningless, because it may be
3411 			 * old one, the new data may be written into the new
3412 			 * page in the page cache.
3413 			 */
3414 			if (page->mapping != inode->i_mapping) {
3415 				unlock_page(page);
3416 				page_cache_release(page);
3417 				goto again;
3418 			}
3419 			if (!PageUptodate(page)) {
3420 				ret = -EIO;
3421 				goto next_page;
3422 			}
3423 		}
3424 		err = write_page_nocow(nocow_ctx->sctx,
3425 				       physical_for_dev_replace, page);
3426 		if (err)
3427 			ret = err;
3428 next_page:
3429 		unlock_page(page);
3430 		page_cache_release(page);
3431 
3432 		if (ret)
3433 			break;
3434 
3435 		offset += PAGE_CACHE_SIZE;
3436 		physical_for_dev_replace += PAGE_CACHE_SIZE;
3437 		len -= PAGE_CACHE_SIZE;
3438 	}
3439 	ret = COPY_COMPLETE;
3440 out_unlock:
3441 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3442 			     GFP_NOFS);
3443 out:
3444 	mutex_unlock(&inode->i_mutex);
3445 	iput(inode);
3446 	return ret;
3447 }
3448 
3449 static int write_page_nocow(struct scrub_ctx *sctx,
3450 			    u64 physical_for_dev_replace, struct page *page)
3451 {
3452 	struct bio *bio;
3453 	struct btrfs_device *dev;
3454 	int ret;
3455 
3456 	dev = sctx->wr_ctx.tgtdev;
3457 	if (!dev)
3458 		return -EIO;
3459 	if (!dev->bdev) {
3460 		printk_ratelimited(KERN_WARNING
3461 			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3462 		return -EIO;
3463 	}
3464 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3465 	if (!bio) {
3466 		spin_lock(&sctx->stat_lock);
3467 		sctx->stat.malloc_errors++;
3468 		spin_unlock(&sctx->stat_lock);
3469 		return -ENOMEM;
3470 	}
3471 	bio->bi_iter.bi_size = 0;
3472 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3473 	bio->bi_bdev = dev->bdev;
3474 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3475 	if (ret != PAGE_CACHE_SIZE) {
3476 leave_with_eio:
3477 		bio_put(bio);
3478 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3479 		return -EIO;
3480 	}
3481 
3482 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3483 		goto leave_with_eio;
3484 
3485 	bio_put(bio);
3486 	return 0;
3487 }
3488