1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "check-integrity.h" 29 #include "rcu-string.h" 30 31 /* 32 * This is only the first step towards a full-features scrub. It reads all 33 * extent and super block and verifies the checksums. In case a bad checksum 34 * is found or the extent cannot be read, good data will be written back if 35 * any can be found. 36 * 37 * Future enhancements: 38 * - In case an unrepairable extent is encountered, track which files are 39 * affected and report them 40 * - track and record media errors, throw out bad devices 41 * - add a mode to also read unallocated space 42 */ 43 44 struct scrub_block; 45 struct scrub_dev; 46 47 #define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */ 48 #define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */ 49 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 50 51 struct scrub_page { 52 struct scrub_block *sblock; 53 struct page *page; 54 struct btrfs_device *dev; 55 u64 flags; /* extent flags */ 56 u64 generation; 57 u64 logical; 58 u64 physical; 59 struct { 60 unsigned int mirror_num:8; 61 unsigned int have_csum:1; 62 unsigned int io_error:1; 63 }; 64 u8 csum[BTRFS_CSUM_SIZE]; 65 }; 66 67 struct scrub_bio { 68 int index; 69 struct scrub_dev *sdev; 70 struct bio *bio; 71 int err; 72 u64 logical; 73 u64 physical; 74 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO]; 75 int page_count; 76 int next_free; 77 struct btrfs_work work; 78 }; 79 80 struct scrub_block { 81 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 82 int page_count; 83 atomic_t outstanding_pages; 84 atomic_t ref_count; /* free mem on transition to zero */ 85 struct scrub_dev *sdev; 86 struct { 87 unsigned int header_error:1; 88 unsigned int checksum_error:1; 89 unsigned int no_io_error_seen:1; 90 unsigned int generation_error:1; /* also sets header_error */ 91 }; 92 }; 93 94 struct scrub_dev { 95 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV]; 96 struct btrfs_device *dev; 97 int first_free; 98 int curr; 99 atomic_t in_flight; 100 atomic_t fixup_cnt; 101 spinlock_t list_lock; 102 wait_queue_head_t list_wait; 103 u16 csum_size; 104 struct list_head csum_list; 105 atomic_t cancel_req; 106 int readonly; 107 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */ 108 u32 sectorsize; 109 u32 nodesize; 110 u32 leafsize; 111 /* 112 * statistics 113 */ 114 struct btrfs_scrub_progress stat; 115 spinlock_t stat_lock; 116 }; 117 118 struct scrub_fixup_nodatasum { 119 struct scrub_dev *sdev; 120 u64 logical; 121 struct btrfs_root *root; 122 struct btrfs_work work; 123 int mirror_num; 124 }; 125 126 struct scrub_warning { 127 struct btrfs_path *path; 128 u64 extent_item_size; 129 char *scratch_buf; 130 char *msg_buf; 131 const char *errstr; 132 sector_t sector; 133 u64 logical; 134 struct btrfs_device *dev; 135 int msg_bufsize; 136 int scratch_bufsize; 137 }; 138 139 140 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 141 static int scrub_setup_recheck_block(struct scrub_dev *sdev, 142 struct btrfs_mapping_tree *map_tree, 143 u64 length, u64 logical, 144 struct scrub_block *sblock); 145 static int scrub_recheck_block(struct btrfs_fs_info *fs_info, 146 struct scrub_block *sblock, int is_metadata, 147 int have_csum, u8 *csum, u64 generation, 148 u16 csum_size); 149 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 150 struct scrub_block *sblock, 151 int is_metadata, int have_csum, 152 const u8 *csum, u64 generation, 153 u16 csum_size); 154 static void scrub_complete_bio_end_io(struct bio *bio, int err); 155 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 156 struct scrub_block *sblock_good, 157 int force_write); 158 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 159 struct scrub_block *sblock_good, 160 int page_num, int force_write); 161 static int scrub_checksum_data(struct scrub_block *sblock); 162 static int scrub_checksum_tree_block(struct scrub_block *sblock); 163 static int scrub_checksum_super(struct scrub_block *sblock); 164 static void scrub_block_get(struct scrub_block *sblock); 165 static void scrub_block_put(struct scrub_block *sblock); 166 static int scrub_add_page_to_bio(struct scrub_dev *sdev, 167 struct scrub_page *spage); 168 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, 169 u64 physical, u64 flags, u64 gen, int mirror_num, 170 u8 *csum, int force); 171 static void scrub_bio_end_io(struct bio *bio, int err); 172 static void scrub_bio_end_io_worker(struct btrfs_work *work); 173 static void scrub_block_complete(struct scrub_block *sblock); 174 175 176 static void scrub_free_csums(struct scrub_dev *sdev) 177 { 178 while (!list_empty(&sdev->csum_list)) { 179 struct btrfs_ordered_sum *sum; 180 sum = list_first_entry(&sdev->csum_list, 181 struct btrfs_ordered_sum, list); 182 list_del(&sum->list); 183 kfree(sum); 184 } 185 } 186 187 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev) 188 { 189 int i; 190 191 if (!sdev) 192 return; 193 194 /* this can happen when scrub is cancelled */ 195 if (sdev->curr != -1) { 196 struct scrub_bio *sbio = sdev->bios[sdev->curr]; 197 198 for (i = 0; i < sbio->page_count; i++) { 199 BUG_ON(!sbio->pagev[i]); 200 BUG_ON(!sbio->pagev[i]->page); 201 scrub_block_put(sbio->pagev[i]->sblock); 202 } 203 bio_put(sbio->bio); 204 } 205 206 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { 207 struct scrub_bio *sbio = sdev->bios[i]; 208 209 if (!sbio) 210 break; 211 kfree(sbio); 212 } 213 214 scrub_free_csums(sdev); 215 kfree(sdev); 216 } 217 218 static noinline_for_stack 219 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev) 220 { 221 struct scrub_dev *sdev; 222 int i; 223 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 224 int pages_per_bio; 225 226 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO, 227 bio_get_nr_vecs(dev->bdev)); 228 sdev = kzalloc(sizeof(*sdev), GFP_NOFS); 229 if (!sdev) 230 goto nomem; 231 sdev->dev = dev; 232 sdev->pages_per_bio = pages_per_bio; 233 sdev->curr = -1; 234 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { 235 struct scrub_bio *sbio; 236 237 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 238 if (!sbio) 239 goto nomem; 240 sdev->bios[i] = sbio; 241 242 sbio->index = i; 243 sbio->sdev = sdev; 244 sbio->page_count = 0; 245 sbio->work.func = scrub_bio_end_io_worker; 246 247 if (i != SCRUB_BIOS_PER_DEV-1) 248 sdev->bios[i]->next_free = i + 1; 249 else 250 sdev->bios[i]->next_free = -1; 251 } 252 sdev->first_free = 0; 253 sdev->nodesize = dev->dev_root->nodesize; 254 sdev->leafsize = dev->dev_root->leafsize; 255 sdev->sectorsize = dev->dev_root->sectorsize; 256 atomic_set(&sdev->in_flight, 0); 257 atomic_set(&sdev->fixup_cnt, 0); 258 atomic_set(&sdev->cancel_req, 0); 259 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy); 260 INIT_LIST_HEAD(&sdev->csum_list); 261 262 spin_lock_init(&sdev->list_lock); 263 spin_lock_init(&sdev->stat_lock); 264 init_waitqueue_head(&sdev->list_wait); 265 return sdev; 266 267 nomem: 268 scrub_free_dev(sdev); 269 return ERR_PTR(-ENOMEM); 270 } 271 272 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx) 273 { 274 u64 isize; 275 u32 nlink; 276 int ret; 277 int i; 278 struct extent_buffer *eb; 279 struct btrfs_inode_item *inode_item; 280 struct scrub_warning *swarn = ctx; 281 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 282 struct inode_fs_paths *ipath = NULL; 283 struct btrfs_root *local_root; 284 struct btrfs_key root_key; 285 286 root_key.objectid = root; 287 root_key.type = BTRFS_ROOT_ITEM_KEY; 288 root_key.offset = (u64)-1; 289 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 290 if (IS_ERR(local_root)) { 291 ret = PTR_ERR(local_root); 292 goto err; 293 } 294 295 ret = inode_item_info(inum, 0, local_root, swarn->path); 296 if (ret) { 297 btrfs_release_path(swarn->path); 298 goto err; 299 } 300 301 eb = swarn->path->nodes[0]; 302 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 303 struct btrfs_inode_item); 304 isize = btrfs_inode_size(eb, inode_item); 305 nlink = btrfs_inode_nlink(eb, inode_item); 306 btrfs_release_path(swarn->path); 307 308 ipath = init_ipath(4096, local_root, swarn->path); 309 if (IS_ERR(ipath)) { 310 ret = PTR_ERR(ipath); 311 ipath = NULL; 312 goto err; 313 } 314 ret = paths_from_inode(inum, ipath); 315 316 if (ret < 0) 317 goto err; 318 319 /* 320 * we deliberately ignore the bit ipath might have been too small to 321 * hold all of the paths here 322 */ 323 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 324 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 325 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 326 "length %llu, links %u (path: %s)\n", swarn->errstr, 327 swarn->logical, rcu_str_deref(swarn->dev->name), 328 (unsigned long long)swarn->sector, root, inum, offset, 329 min(isize - offset, (u64)PAGE_SIZE), nlink, 330 (char *)(unsigned long)ipath->fspath->val[i]); 331 332 free_ipath(ipath); 333 return 0; 334 335 err: 336 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 337 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 338 "resolving failed with ret=%d\n", swarn->errstr, 339 swarn->logical, rcu_str_deref(swarn->dev->name), 340 (unsigned long long)swarn->sector, root, inum, offset, ret); 341 342 free_ipath(ipath); 343 return 0; 344 } 345 346 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 347 { 348 struct btrfs_device *dev = sblock->sdev->dev; 349 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 350 struct btrfs_path *path; 351 struct btrfs_key found_key; 352 struct extent_buffer *eb; 353 struct btrfs_extent_item *ei; 354 struct scrub_warning swarn; 355 u32 item_size; 356 int ret; 357 u64 ref_root; 358 u8 ref_level; 359 unsigned long ptr = 0; 360 const int bufsize = 4096; 361 u64 extent_item_pos; 362 363 path = btrfs_alloc_path(); 364 365 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); 366 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); 367 BUG_ON(sblock->page_count < 1); 368 swarn.sector = (sblock->pagev[0].physical) >> 9; 369 swarn.logical = sblock->pagev[0].logical; 370 swarn.errstr = errstr; 371 swarn.dev = dev; 372 swarn.msg_bufsize = bufsize; 373 swarn.scratch_bufsize = bufsize; 374 375 if (!path || !swarn.scratch_buf || !swarn.msg_buf) 376 goto out; 377 378 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key); 379 if (ret < 0) 380 goto out; 381 382 extent_item_pos = swarn.logical - found_key.objectid; 383 swarn.extent_item_size = found_key.offset; 384 385 eb = path->nodes[0]; 386 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 387 item_size = btrfs_item_size_nr(eb, path->slots[0]); 388 btrfs_release_path(path); 389 390 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 391 do { 392 ret = tree_backref_for_extent(&ptr, eb, ei, item_size, 393 &ref_root, &ref_level); 394 printk_in_rcu(KERN_WARNING 395 "btrfs: %s at logical %llu on dev %s, " 396 "sector %llu: metadata %s (level %d) in tree " 397 "%llu\n", errstr, swarn.logical, 398 rcu_str_deref(dev->name), 399 (unsigned long long)swarn.sector, 400 ref_level ? "node" : "leaf", 401 ret < 0 ? -1 : ref_level, 402 ret < 0 ? -1 : ref_root); 403 } while (ret != 1); 404 } else { 405 swarn.path = path; 406 iterate_extent_inodes(fs_info, found_key.objectid, 407 extent_item_pos, 1, 408 scrub_print_warning_inode, &swarn); 409 } 410 411 out: 412 btrfs_free_path(path); 413 kfree(swarn.scratch_buf); 414 kfree(swarn.msg_buf); 415 } 416 417 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx) 418 { 419 struct page *page = NULL; 420 unsigned long index; 421 struct scrub_fixup_nodatasum *fixup = ctx; 422 int ret; 423 int corrected = 0; 424 struct btrfs_key key; 425 struct inode *inode = NULL; 426 u64 end = offset + PAGE_SIZE - 1; 427 struct btrfs_root *local_root; 428 429 key.objectid = root; 430 key.type = BTRFS_ROOT_ITEM_KEY; 431 key.offset = (u64)-1; 432 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key); 433 if (IS_ERR(local_root)) 434 return PTR_ERR(local_root); 435 436 key.type = BTRFS_INODE_ITEM_KEY; 437 key.objectid = inum; 438 key.offset = 0; 439 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL); 440 if (IS_ERR(inode)) 441 return PTR_ERR(inode); 442 443 index = offset >> PAGE_CACHE_SHIFT; 444 445 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 446 if (!page) { 447 ret = -ENOMEM; 448 goto out; 449 } 450 451 if (PageUptodate(page)) { 452 struct btrfs_mapping_tree *map_tree; 453 if (PageDirty(page)) { 454 /* 455 * we need to write the data to the defect sector. the 456 * data that was in that sector is not in memory, 457 * because the page was modified. we must not write the 458 * modified page to that sector. 459 * 460 * TODO: what could be done here: wait for the delalloc 461 * runner to write out that page (might involve 462 * COW) and see whether the sector is still 463 * referenced afterwards. 464 * 465 * For the meantime, we'll treat this error 466 * incorrectable, although there is a chance that a 467 * later scrub will find the bad sector again and that 468 * there's no dirty page in memory, then. 469 */ 470 ret = -EIO; 471 goto out; 472 } 473 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; 474 ret = repair_io_failure(map_tree, offset, PAGE_SIZE, 475 fixup->logical, page, 476 fixup->mirror_num); 477 unlock_page(page); 478 corrected = !ret; 479 } else { 480 /* 481 * we need to get good data first. the general readpage path 482 * will call repair_io_failure for us, we just have to make 483 * sure we read the bad mirror. 484 */ 485 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 486 EXTENT_DAMAGED, GFP_NOFS); 487 if (ret) { 488 /* set_extent_bits should give proper error */ 489 WARN_ON(ret > 0); 490 if (ret > 0) 491 ret = -EFAULT; 492 goto out; 493 } 494 495 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 496 btrfs_get_extent, 497 fixup->mirror_num); 498 wait_on_page_locked(page); 499 500 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 501 end, EXTENT_DAMAGED, 0, NULL); 502 if (!corrected) 503 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 504 EXTENT_DAMAGED, GFP_NOFS); 505 } 506 507 out: 508 if (page) 509 put_page(page); 510 if (inode) 511 iput(inode); 512 513 if (ret < 0) 514 return ret; 515 516 if (ret == 0 && corrected) { 517 /* 518 * we only need to call readpage for one of the inodes belonging 519 * to this extent. so make iterate_extent_inodes stop 520 */ 521 return 1; 522 } 523 524 return -EIO; 525 } 526 527 static void scrub_fixup_nodatasum(struct btrfs_work *work) 528 { 529 int ret; 530 struct scrub_fixup_nodatasum *fixup; 531 struct scrub_dev *sdev; 532 struct btrfs_trans_handle *trans = NULL; 533 struct btrfs_fs_info *fs_info; 534 struct btrfs_path *path; 535 int uncorrectable = 0; 536 537 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 538 sdev = fixup->sdev; 539 fs_info = fixup->root->fs_info; 540 541 path = btrfs_alloc_path(); 542 if (!path) { 543 spin_lock(&sdev->stat_lock); 544 ++sdev->stat.malloc_errors; 545 spin_unlock(&sdev->stat_lock); 546 uncorrectable = 1; 547 goto out; 548 } 549 550 trans = btrfs_join_transaction(fixup->root); 551 if (IS_ERR(trans)) { 552 uncorrectable = 1; 553 goto out; 554 } 555 556 /* 557 * the idea is to trigger a regular read through the standard path. we 558 * read a page from the (failed) logical address by specifying the 559 * corresponding copynum of the failed sector. thus, that readpage is 560 * expected to fail. 561 * that is the point where on-the-fly error correction will kick in 562 * (once it's finished) and rewrite the failed sector if a good copy 563 * can be found. 564 */ 565 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 566 path, scrub_fixup_readpage, 567 fixup); 568 if (ret < 0) { 569 uncorrectable = 1; 570 goto out; 571 } 572 WARN_ON(ret != 1); 573 574 spin_lock(&sdev->stat_lock); 575 ++sdev->stat.corrected_errors; 576 spin_unlock(&sdev->stat_lock); 577 578 out: 579 if (trans && !IS_ERR(trans)) 580 btrfs_end_transaction(trans, fixup->root); 581 if (uncorrectable) { 582 spin_lock(&sdev->stat_lock); 583 ++sdev->stat.uncorrectable_errors; 584 spin_unlock(&sdev->stat_lock); 585 586 printk_ratelimited_in_rcu(KERN_ERR 587 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", 588 (unsigned long long)fixup->logical, 589 rcu_str_deref(sdev->dev->name)); 590 } 591 592 btrfs_free_path(path); 593 kfree(fixup); 594 595 /* see caller why we're pretending to be paused in the scrub counters */ 596 mutex_lock(&fs_info->scrub_lock); 597 atomic_dec(&fs_info->scrubs_running); 598 atomic_dec(&fs_info->scrubs_paused); 599 mutex_unlock(&fs_info->scrub_lock); 600 atomic_dec(&sdev->fixup_cnt); 601 wake_up(&fs_info->scrub_pause_wait); 602 wake_up(&sdev->list_wait); 603 } 604 605 /* 606 * scrub_handle_errored_block gets called when either verification of the 607 * pages failed or the bio failed to read, e.g. with EIO. In the latter 608 * case, this function handles all pages in the bio, even though only one 609 * may be bad. 610 * The goal of this function is to repair the errored block by using the 611 * contents of one of the mirrors. 612 */ 613 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 614 { 615 struct scrub_dev *sdev = sblock_to_check->sdev; 616 struct btrfs_fs_info *fs_info; 617 u64 length; 618 u64 logical; 619 u64 generation; 620 unsigned int failed_mirror_index; 621 unsigned int is_metadata; 622 unsigned int have_csum; 623 u8 *csum; 624 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 625 struct scrub_block *sblock_bad; 626 int ret; 627 int mirror_index; 628 int page_num; 629 int success; 630 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 631 DEFAULT_RATELIMIT_BURST); 632 633 BUG_ON(sblock_to_check->page_count < 1); 634 fs_info = sdev->dev->dev_root->fs_info; 635 length = sblock_to_check->page_count * PAGE_SIZE; 636 logical = sblock_to_check->pagev[0].logical; 637 generation = sblock_to_check->pagev[0].generation; 638 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1); 639 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1; 640 is_metadata = !(sblock_to_check->pagev[0].flags & 641 BTRFS_EXTENT_FLAG_DATA); 642 have_csum = sblock_to_check->pagev[0].have_csum; 643 csum = sblock_to_check->pagev[0].csum; 644 645 /* 646 * read all mirrors one after the other. This includes to 647 * re-read the extent or metadata block that failed (that was 648 * the cause that this fixup code is called) another time, 649 * page by page this time in order to know which pages 650 * caused I/O errors and which ones are good (for all mirrors). 651 * It is the goal to handle the situation when more than one 652 * mirror contains I/O errors, but the errors do not 653 * overlap, i.e. the data can be repaired by selecting the 654 * pages from those mirrors without I/O error on the 655 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 656 * would be that mirror #1 has an I/O error on the first page, 657 * the second page is good, and mirror #2 has an I/O error on 658 * the second page, but the first page is good. 659 * Then the first page of the first mirror can be repaired by 660 * taking the first page of the second mirror, and the 661 * second page of the second mirror can be repaired by 662 * copying the contents of the 2nd page of the 1st mirror. 663 * One more note: if the pages of one mirror contain I/O 664 * errors, the checksum cannot be verified. In order to get 665 * the best data for repairing, the first attempt is to find 666 * a mirror without I/O errors and with a validated checksum. 667 * Only if this is not possible, the pages are picked from 668 * mirrors with I/O errors without considering the checksum. 669 * If the latter is the case, at the end, the checksum of the 670 * repaired area is verified in order to correctly maintain 671 * the statistics. 672 */ 673 674 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * 675 sizeof(*sblocks_for_recheck), 676 GFP_NOFS); 677 if (!sblocks_for_recheck) { 678 spin_lock(&sdev->stat_lock); 679 sdev->stat.malloc_errors++; 680 sdev->stat.read_errors++; 681 sdev->stat.uncorrectable_errors++; 682 spin_unlock(&sdev->stat_lock); 683 btrfs_dev_stat_inc_and_print(sdev->dev, 684 BTRFS_DEV_STAT_READ_ERRS); 685 goto out; 686 } 687 688 /* setup the context, map the logical blocks and alloc the pages */ 689 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length, 690 logical, sblocks_for_recheck); 691 if (ret) { 692 spin_lock(&sdev->stat_lock); 693 sdev->stat.read_errors++; 694 sdev->stat.uncorrectable_errors++; 695 spin_unlock(&sdev->stat_lock); 696 btrfs_dev_stat_inc_and_print(sdev->dev, 697 BTRFS_DEV_STAT_READ_ERRS); 698 goto out; 699 } 700 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 701 sblock_bad = sblocks_for_recheck + failed_mirror_index; 702 703 /* build and submit the bios for the failed mirror, check checksums */ 704 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 705 csum, generation, sdev->csum_size); 706 if (ret) { 707 spin_lock(&sdev->stat_lock); 708 sdev->stat.read_errors++; 709 sdev->stat.uncorrectable_errors++; 710 spin_unlock(&sdev->stat_lock); 711 btrfs_dev_stat_inc_and_print(sdev->dev, 712 BTRFS_DEV_STAT_READ_ERRS); 713 goto out; 714 } 715 716 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 717 sblock_bad->no_io_error_seen) { 718 /* 719 * the error disappeared after reading page by page, or 720 * the area was part of a huge bio and other parts of the 721 * bio caused I/O errors, or the block layer merged several 722 * read requests into one and the error is caused by a 723 * different bio (usually one of the two latter cases is 724 * the cause) 725 */ 726 spin_lock(&sdev->stat_lock); 727 sdev->stat.unverified_errors++; 728 spin_unlock(&sdev->stat_lock); 729 730 goto out; 731 } 732 733 if (!sblock_bad->no_io_error_seen) { 734 spin_lock(&sdev->stat_lock); 735 sdev->stat.read_errors++; 736 spin_unlock(&sdev->stat_lock); 737 if (__ratelimit(&_rs)) 738 scrub_print_warning("i/o error", sblock_to_check); 739 btrfs_dev_stat_inc_and_print(sdev->dev, 740 BTRFS_DEV_STAT_READ_ERRS); 741 } else if (sblock_bad->checksum_error) { 742 spin_lock(&sdev->stat_lock); 743 sdev->stat.csum_errors++; 744 spin_unlock(&sdev->stat_lock); 745 if (__ratelimit(&_rs)) 746 scrub_print_warning("checksum error", sblock_to_check); 747 btrfs_dev_stat_inc_and_print(sdev->dev, 748 BTRFS_DEV_STAT_CORRUPTION_ERRS); 749 } else if (sblock_bad->header_error) { 750 spin_lock(&sdev->stat_lock); 751 sdev->stat.verify_errors++; 752 spin_unlock(&sdev->stat_lock); 753 if (__ratelimit(&_rs)) 754 scrub_print_warning("checksum/header error", 755 sblock_to_check); 756 if (sblock_bad->generation_error) 757 btrfs_dev_stat_inc_and_print(sdev->dev, 758 BTRFS_DEV_STAT_GENERATION_ERRS); 759 else 760 btrfs_dev_stat_inc_and_print(sdev->dev, 761 BTRFS_DEV_STAT_CORRUPTION_ERRS); 762 } 763 764 if (sdev->readonly) 765 goto did_not_correct_error; 766 767 if (!is_metadata && !have_csum) { 768 struct scrub_fixup_nodatasum *fixup_nodatasum; 769 770 /* 771 * !is_metadata and !have_csum, this means that the data 772 * might not be COW'ed, that it might be modified 773 * concurrently. The general strategy to work on the 774 * commit root does not help in the case when COW is not 775 * used. 776 */ 777 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 778 if (!fixup_nodatasum) 779 goto did_not_correct_error; 780 fixup_nodatasum->sdev = sdev; 781 fixup_nodatasum->logical = logical; 782 fixup_nodatasum->root = fs_info->extent_root; 783 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 784 /* 785 * increment scrubs_running to prevent cancel requests from 786 * completing as long as a fixup worker is running. we must also 787 * increment scrubs_paused to prevent deadlocking on pause 788 * requests used for transactions commits (as the worker uses a 789 * transaction context). it is safe to regard the fixup worker 790 * as paused for all matters practical. effectively, we only 791 * avoid cancellation requests from completing. 792 */ 793 mutex_lock(&fs_info->scrub_lock); 794 atomic_inc(&fs_info->scrubs_running); 795 atomic_inc(&fs_info->scrubs_paused); 796 mutex_unlock(&fs_info->scrub_lock); 797 atomic_inc(&sdev->fixup_cnt); 798 fixup_nodatasum->work.func = scrub_fixup_nodatasum; 799 btrfs_queue_worker(&fs_info->scrub_workers, 800 &fixup_nodatasum->work); 801 goto out; 802 } 803 804 /* 805 * now build and submit the bios for the other mirrors, check 806 * checksums 807 */ 808 for (mirror_index = 0; 809 mirror_index < BTRFS_MAX_MIRRORS && 810 sblocks_for_recheck[mirror_index].page_count > 0; 811 mirror_index++) { 812 if (mirror_index == failed_mirror_index) 813 continue; 814 815 /* build and submit the bios, check checksums */ 816 ret = scrub_recheck_block(fs_info, 817 sblocks_for_recheck + mirror_index, 818 is_metadata, have_csum, csum, 819 generation, sdev->csum_size); 820 if (ret) 821 goto did_not_correct_error; 822 } 823 824 /* 825 * first try to pick the mirror which is completely without I/O 826 * errors and also does not have a checksum error. 827 * If one is found, and if a checksum is present, the full block 828 * that is known to contain an error is rewritten. Afterwards 829 * the block is known to be corrected. 830 * If a mirror is found which is completely correct, and no 831 * checksum is present, only those pages are rewritten that had 832 * an I/O error in the block to be repaired, since it cannot be 833 * determined, which copy of the other pages is better (and it 834 * could happen otherwise that a correct page would be 835 * overwritten by a bad one). 836 */ 837 for (mirror_index = 0; 838 mirror_index < BTRFS_MAX_MIRRORS && 839 sblocks_for_recheck[mirror_index].page_count > 0; 840 mirror_index++) { 841 struct scrub_block *sblock_other = sblocks_for_recheck + 842 mirror_index; 843 844 if (!sblock_other->header_error && 845 !sblock_other->checksum_error && 846 sblock_other->no_io_error_seen) { 847 int force_write = is_metadata || have_csum; 848 849 ret = scrub_repair_block_from_good_copy(sblock_bad, 850 sblock_other, 851 force_write); 852 if (0 == ret) 853 goto corrected_error; 854 } 855 } 856 857 /* 858 * in case of I/O errors in the area that is supposed to be 859 * repaired, continue by picking good copies of those pages. 860 * Select the good pages from mirrors to rewrite bad pages from 861 * the area to fix. Afterwards verify the checksum of the block 862 * that is supposed to be repaired. This verification step is 863 * only done for the purpose of statistic counting and for the 864 * final scrub report, whether errors remain. 865 * A perfect algorithm could make use of the checksum and try 866 * all possible combinations of pages from the different mirrors 867 * until the checksum verification succeeds. For example, when 868 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 869 * of mirror #2 is readable but the final checksum test fails, 870 * then the 2nd page of mirror #3 could be tried, whether now 871 * the final checksum succeedes. But this would be a rare 872 * exception and is therefore not implemented. At least it is 873 * avoided that the good copy is overwritten. 874 * A more useful improvement would be to pick the sectors 875 * without I/O error based on sector sizes (512 bytes on legacy 876 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 877 * mirror could be repaired by taking 512 byte of a different 878 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 879 * area are unreadable. 880 */ 881 882 /* can only fix I/O errors from here on */ 883 if (sblock_bad->no_io_error_seen) 884 goto did_not_correct_error; 885 886 success = 1; 887 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 888 struct scrub_page *page_bad = sblock_bad->pagev + page_num; 889 890 if (!page_bad->io_error) 891 continue; 892 893 for (mirror_index = 0; 894 mirror_index < BTRFS_MAX_MIRRORS && 895 sblocks_for_recheck[mirror_index].page_count > 0; 896 mirror_index++) { 897 struct scrub_block *sblock_other = sblocks_for_recheck + 898 mirror_index; 899 struct scrub_page *page_other = sblock_other->pagev + 900 page_num; 901 902 if (!page_other->io_error) { 903 ret = scrub_repair_page_from_good_copy( 904 sblock_bad, sblock_other, page_num, 0); 905 if (0 == ret) { 906 page_bad->io_error = 0; 907 break; /* succeeded for this page */ 908 } 909 } 910 } 911 912 if (page_bad->io_error) { 913 /* did not find a mirror to copy the page from */ 914 success = 0; 915 } 916 } 917 918 if (success) { 919 if (is_metadata || have_csum) { 920 /* 921 * need to verify the checksum now that all 922 * sectors on disk are repaired (the write 923 * request for data to be repaired is on its way). 924 * Just be lazy and use scrub_recheck_block() 925 * which re-reads the data before the checksum 926 * is verified, but most likely the data comes out 927 * of the page cache. 928 */ 929 ret = scrub_recheck_block(fs_info, sblock_bad, 930 is_metadata, have_csum, csum, 931 generation, sdev->csum_size); 932 if (!ret && !sblock_bad->header_error && 933 !sblock_bad->checksum_error && 934 sblock_bad->no_io_error_seen) 935 goto corrected_error; 936 else 937 goto did_not_correct_error; 938 } else { 939 corrected_error: 940 spin_lock(&sdev->stat_lock); 941 sdev->stat.corrected_errors++; 942 spin_unlock(&sdev->stat_lock); 943 printk_ratelimited_in_rcu(KERN_ERR 944 "btrfs: fixed up error at logical %llu on dev %s\n", 945 (unsigned long long)logical, 946 rcu_str_deref(sdev->dev->name)); 947 } 948 } else { 949 did_not_correct_error: 950 spin_lock(&sdev->stat_lock); 951 sdev->stat.uncorrectable_errors++; 952 spin_unlock(&sdev->stat_lock); 953 printk_ratelimited_in_rcu(KERN_ERR 954 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", 955 (unsigned long long)logical, 956 rcu_str_deref(sdev->dev->name)); 957 } 958 959 out: 960 if (sblocks_for_recheck) { 961 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 962 mirror_index++) { 963 struct scrub_block *sblock = sblocks_for_recheck + 964 mirror_index; 965 int page_index; 966 967 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO; 968 page_index++) 969 if (sblock->pagev[page_index].page) 970 __free_page( 971 sblock->pagev[page_index].page); 972 } 973 kfree(sblocks_for_recheck); 974 } 975 976 return 0; 977 } 978 979 static int scrub_setup_recheck_block(struct scrub_dev *sdev, 980 struct btrfs_mapping_tree *map_tree, 981 u64 length, u64 logical, 982 struct scrub_block *sblocks_for_recheck) 983 { 984 int page_index; 985 int mirror_index; 986 int ret; 987 988 /* 989 * note: the three members sdev, ref_count and outstanding_pages 990 * are not used (and not set) in the blocks that are used for 991 * the recheck procedure 992 */ 993 994 page_index = 0; 995 while (length > 0) { 996 u64 sublen = min_t(u64, length, PAGE_SIZE); 997 u64 mapped_length = sublen; 998 struct btrfs_bio *bbio = NULL; 999 1000 /* 1001 * with a length of PAGE_SIZE, each returned stripe 1002 * represents one mirror 1003 */ 1004 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length, 1005 &bbio, 0); 1006 if (ret || !bbio || mapped_length < sublen) { 1007 kfree(bbio); 1008 return -EIO; 1009 } 1010 1011 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO); 1012 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; 1013 mirror_index++) { 1014 struct scrub_block *sblock; 1015 struct scrub_page *page; 1016 1017 if (mirror_index >= BTRFS_MAX_MIRRORS) 1018 continue; 1019 1020 sblock = sblocks_for_recheck + mirror_index; 1021 page = sblock->pagev + page_index; 1022 page->logical = logical; 1023 page->physical = bbio->stripes[mirror_index].physical; 1024 /* for missing devices, dev->bdev is NULL */ 1025 page->dev = bbio->stripes[mirror_index].dev; 1026 page->mirror_num = mirror_index + 1; 1027 page->page = alloc_page(GFP_NOFS); 1028 if (!page->page) { 1029 spin_lock(&sdev->stat_lock); 1030 sdev->stat.malloc_errors++; 1031 spin_unlock(&sdev->stat_lock); 1032 return -ENOMEM; 1033 } 1034 sblock->page_count++; 1035 } 1036 kfree(bbio); 1037 length -= sublen; 1038 logical += sublen; 1039 page_index++; 1040 } 1041 1042 return 0; 1043 } 1044 1045 /* 1046 * this function will check the on disk data for checksum errors, header 1047 * errors and read I/O errors. If any I/O errors happen, the exact pages 1048 * which are errored are marked as being bad. The goal is to enable scrub 1049 * to take those pages that are not errored from all the mirrors so that 1050 * the pages that are errored in the just handled mirror can be repaired. 1051 */ 1052 static int scrub_recheck_block(struct btrfs_fs_info *fs_info, 1053 struct scrub_block *sblock, int is_metadata, 1054 int have_csum, u8 *csum, u64 generation, 1055 u16 csum_size) 1056 { 1057 int page_num; 1058 1059 sblock->no_io_error_seen = 1; 1060 sblock->header_error = 0; 1061 sblock->checksum_error = 0; 1062 1063 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1064 struct bio *bio; 1065 int ret; 1066 struct scrub_page *page = sblock->pagev + page_num; 1067 DECLARE_COMPLETION_ONSTACK(complete); 1068 1069 if (page->dev->bdev == NULL) { 1070 page->io_error = 1; 1071 sblock->no_io_error_seen = 0; 1072 continue; 1073 } 1074 1075 BUG_ON(!page->page); 1076 bio = bio_alloc(GFP_NOFS, 1); 1077 if (!bio) 1078 return -EIO; 1079 bio->bi_bdev = page->dev->bdev; 1080 bio->bi_sector = page->physical >> 9; 1081 bio->bi_end_io = scrub_complete_bio_end_io; 1082 bio->bi_private = &complete; 1083 1084 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0); 1085 if (PAGE_SIZE != ret) { 1086 bio_put(bio); 1087 return -EIO; 1088 } 1089 btrfsic_submit_bio(READ, bio); 1090 1091 /* this will also unplug the queue */ 1092 wait_for_completion(&complete); 1093 1094 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags); 1095 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1096 sblock->no_io_error_seen = 0; 1097 bio_put(bio); 1098 } 1099 1100 if (sblock->no_io_error_seen) 1101 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1102 have_csum, csum, generation, 1103 csum_size); 1104 1105 return 0; 1106 } 1107 1108 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1109 struct scrub_block *sblock, 1110 int is_metadata, int have_csum, 1111 const u8 *csum, u64 generation, 1112 u16 csum_size) 1113 { 1114 int page_num; 1115 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1116 u32 crc = ~(u32)0; 1117 struct btrfs_root *root = fs_info->extent_root; 1118 void *mapped_buffer; 1119 1120 BUG_ON(!sblock->pagev[0].page); 1121 if (is_metadata) { 1122 struct btrfs_header *h; 1123 1124 mapped_buffer = kmap_atomic(sblock->pagev[0].page); 1125 h = (struct btrfs_header *)mapped_buffer; 1126 1127 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) || 1128 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || 1129 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1130 BTRFS_UUID_SIZE)) { 1131 sblock->header_error = 1; 1132 } else if (generation != le64_to_cpu(h->generation)) { 1133 sblock->header_error = 1; 1134 sblock->generation_error = 1; 1135 } 1136 csum = h->csum; 1137 } else { 1138 if (!have_csum) 1139 return; 1140 1141 mapped_buffer = kmap_atomic(sblock->pagev[0].page); 1142 } 1143 1144 for (page_num = 0;;) { 1145 if (page_num == 0 && is_metadata) 1146 crc = btrfs_csum_data(root, 1147 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1148 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1149 else 1150 crc = btrfs_csum_data(root, mapped_buffer, crc, 1151 PAGE_SIZE); 1152 1153 kunmap_atomic(mapped_buffer); 1154 page_num++; 1155 if (page_num >= sblock->page_count) 1156 break; 1157 BUG_ON(!sblock->pagev[page_num].page); 1158 1159 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page); 1160 } 1161 1162 btrfs_csum_final(crc, calculated_csum); 1163 if (memcmp(calculated_csum, csum, csum_size)) 1164 sblock->checksum_error = 1; 1165 } 1166 1167 static void scrub_complete_bio_end_io(struct bio *bio, int err) 1168 { 1169 complete((struct completion *)bio->bi_private); 1170 } 1171 1172 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1173 struct scrub_block *sblock_good, 1174 int force_write) 1175 { 1176 int page_num; 1177 int ret = 0; 1178 1179 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1180 int ret_sub; 1181 1182 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1183 sblock_good, 1184 page_num, 1185 force_write); 1186 if (ret_sub) 1187 ret = ret_sub; 1188 } 1189 1190 return ret; 1191 } 1192 1193 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1194 struct scrub_block *sblock_good, 1195 int page_num, int force_write) 1196 { 1197 struct scrub_page *page_bad = sblock_bad->pagev + page_num; 1198 struct scrub_page *page_good = sblock_good->pagev + page_num; 1199 1200 BUG_ON(sblock_bad->pagev[page_num].page == NULL); 1201 BUG_ON(sblock_good->pagev[page_num].page == NULL); 1202 if (force_write || sblock_bad->header_error || 1203 sblock_bad->checksum_error || page_bad->io_error) { 1204 struct bio *bio; 1205 int ret; 1206 DECLARE_COMPLETION_ONSTACK(complete); 1207 1208 bio = bio_alloc(GFP_NOFS, 1); 1209 if (!bio) 1210 return -EIO; 1211 bio->bi_bdev = page_bad->dev->bdev; 1212 bio->bi_sector = page_bad->physical >> 9; 1213 bio->bi_end_io = scrub_complete_bio_end_io; 1214 bio->bi_private = &complete; 1215 1216 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1217 if (PAGE_SIZE != ret) { 1218 bio_put(bio); 1219 return -EIO; 1220 } 1221 btrfsic_submit_bio(WRITE, bio); 1222 1223 /* this will also unplug the queue */ 1224 wait_for_completion(&complete); 1225 if (!bio_flagged(bio, BIO_UPTODATE)) { 1226 btrfs_dev_stat_inc_and_print(page_bad->dev, 1227 BTRFS_DEV_STAT_WRITE_ERRS); 1228 bio_put(bio); 1229 return -EIO; 1230 } 1231 bio_put(bio); 1232 } 1233 1234 return 0; 1235 } 1236 1237 static void scrub_checksum(struct scrub_block *sblock) 1238 { 1239 u64 flags; 1240 int ret; 1241 1242 BUG_ON(sblock->page_count < 1); 1243 flags = sblock->pagev[0].flags; 1244 ret = 0; 1245 if (flags & BTRFS_EXTENT_FLAG_DATA) 1246 ret = scrub_checksum_data(sblock); 1247 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1248 ret = scrub_checksum_tree_block(sblock); 1249 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1250 (void)scrub_checksum_super(sblock); 1251 else 1252 WARN_ON(1); 1253 if (ret) 1254 scrub_handle_errored_block(sblock); 1255 } 1256 1257 static int scrub_checksum_data(struct scrub_block *sblock) 1258 { 1259 struct scrub_dev *sdev = sblock->sdev; 1260 u8 csum[BTRFS_CSUM_SIZE]; 1261 u8 *on_disk_csum; 1262 struct page *page; 1263 void *buffer; 1264 u32 crc = ~(u32)0; 1265 int fail = 0; 1266 struct btrfs_root *root = sdev->dev->dev_root; 1267 u64 len; 1268 int index; 1269 1270 BUG_ON(sblock->page_count < 1); 1271 if (!sblock->pagev[0].have_csum) 1272 return 0; 1273 1274 on_disk_csum = sblock->pagev[0].csum; 1275 page = sblock->pagev[0].page; 1276 buffer = kmap_atomic(page); 1277 1278 len = sdev->sectorsize; 1279 index = 0; 1280 for (;;) { 1281 u64 l = min_t(u64, len, PAGE_SIZE); 1282 1283 crc = btrfs_csum_data(root, buffer, crc, l); 1284 kunmap_atomic(buffer); 1285 len -= l; 1286 if (len == 0) 1287 break; 1288 index++; 1289 BUG_ON(index >= sblock->page_count); 1290 BUG_ON(!sblock->pagev[index].page); 1291 page = sblock->pagev[index].page; 1292 buffer = kmap_atomic(page); 1293 } 1294 1295 btrfs_csum_final(crc, csum); 1296 if (memcmp(csum, on_disk_csum, sdev->csum_size)) 1297 fail = 1; 1298 1299 return fail; 1300 } 1301 1302 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1303 { 1304 struct scrub_dev *sdev = sblock->sdev; 1305 struct btrfs_header *h; 1306 struct btrfs_root *root = sdev->dev->dev_root; 1307 struct btrfs_fs_info *fs_info = root->fs_info; 1308 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1309 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1310 struct page *page; 1311 void *mapped_buffer; 1312 u64 mapped_size; 1313 void *p; 1314 u32 crc = ~(u32)0; 1315 int fail = 0; 1316 int crc_fail = 0; 1317 u64 len; 1318 int index; 1319 1320 BUG_ON(sblock->page_count < 1); 1321 page = sblock->pagev[0].page; 1322 mapped_buffer = kmap_atomic(page); 1323 h = (struct btrfs_header *)mapped_buffer; 1324 memcpy(on_disk_csum, h->csum, sdev->csum_size); 1325 1326 /* 1327 * we don't use the getter functions here, as we 1328 * a) don't have an extent buffer and 1329 * b) the page is already kmapped 1330 */ 1331 1332 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr)) 1333 ++fail; 1334 1335 if (sblock->pagev[0].generation != le64_to_cpu(h->generation)) 1336 ++fail; 1337 1338 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1339 ++fail; 1340 1341 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1342 BTRFS_UUID_SIZE)) 1343 ++fail; 1344 1345 BUG_ON(sdev->nodesize != sdev->leafsize); 1346 len = sdev->nodesize - BTRFS_CSUM_SIZE; 1347 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1348 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1349 index = 0; 1350 for (;;) { 1351 u64 l = min_t(u64, len, mapped_size); 1352 1353 crc = btrfs_csum_data(root, p, crc, l); 1354 kunmap_atomic(mapped_buffer); 1355 len -= l; 1356 if (len == 0) 1357 break; 1358 index++; 1359 BUG_ON(index >= sblock->page_count); 1360 BUG_ON(!sblock->pagev[index].page); 1361 page = sblock->pagev[index].page; 1362 mapped_buffer = kmap_atomic(page); 1363 mapped_size = PAGE_SIZE; 1364 p = mapped_buffer; 1365 } 1366 1367 btrfs_csum_final(crc, calculated_csum); 1368 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) 1369 ++crc_fail; 1370 1371 return fail || crc_fail; 1372 } 1373 1374 static int scrub_checksum_super(struct scrub_block *sblock) 1375 { 1376 struct btrfs_super_block *s; 1377 struct scrub_dev *sdev = sblock->sdev; 1378 struct btrfs_root *root = sdev->dev->dev_root; 1379 struct btrfs_fs_info *fs_info = root->fs_info; 1380 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1381 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1382 struct page *page; 1383 void *mapped_buffer; 1384 u64 mapped_size; 1385 void *p; 1386 u32 crc = ~(u32)0; 1387 int fail_gen = 0; 1388 int fail_cor = 0; 1389 u64 len; 1390 int index; 1391 1392 BUG_ON(sblock->page_count < 1); 1393 page = sblock->pagev[0].page; 1394 mapped_buffer = kmap_atomic(page); 1395 s = (struct btrfs_super_block *)mapped_buffer; 1396 memcpy(on_disk_csum, s->csum, sdev->csum_size); 1397 1398 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr)) 1399 ++fail_cor; 1400 1401 if (sblock->pagev[0].generation != le64_to_cpu(s->generation)) 1402 ++fail_gen; 1403 1404 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1405 ++fail_cor; 1406 1407 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1408 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1409 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1410 index = 0; 1411 for (;;) { 1412 u64 l = min_t(u64, len, mapped_size); 1413 1414 crc = btrfs_csum_data(root, p, crc, l); 1415 kunmap_atomic(mapped_buffer); 1416 len -= l; 1417 if (len == 0) 1418 break; 1419 index++; 1420 BUG_ON(index >= sblock->page_count); 1421 BUG_ON(!sblock->pagev[index].page); 1422 page = sblock->pagev[index].page; 1423 mapped_buffer = kmap_atomic(page); 1424 mapped_size = PAGE_SIZE; 1425 p = mapped_buffer; 1426 } 1427 1428 btrfs_csum_final(crc, calculated_csum); 1429 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) 1430 ++fail_cor; 1431 1432 if (fail_cor + fail_gen) { 1433 /* 1434 * if we find an error in a super block, we just report it. 1435 * They will get written with the next transaction commit 1436 * anyway 1437 */ 1438 spin_lock(&sdev->stat_lock); 1439 ++sdev->stat.super_errors; 1440 spin_unlock(&sdev->stat_lock); 1441 if (fail_cor) 1442 btrfs_dev_stat_inc_and_print(sdev->dev, 1443 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1444 else 1445 btrfs_dev_stat_inc_and_print(sdev->dev, 1446 BTRFS_DEV_STAT_GENERATION_ERRS); 1447 } 1448 1449 return fail_cor + fail_gen; 1450 } 1451 1452 static void scrub_block_get(struct scrub_block *sblock) 1453 { 1454 atomic_inc(&sblock->ref_count); 1455 } 1456 1457 static void scrub_block_put(struct scrub_block *sblock) 1458 { 1459 if (atomic_dec_and_test(&sblock->ref_count)) { 1460 int i; 1461 1462 for (i = 0; i < sblock->page_count; i++) 1463 if (sblock->pagev[i].page) 1464 __free_page(sblock->pagev[i].page); 1465 kfree(sblock); 1466 } 1467 } 1468 1469 static void scrub_submit(struct scrub_dev *sdev) 1470 { 1471 struct scrub_bio *sbio; 1472 1473 if (sdev->curr == -1) 1474 return; 1475 1476 sbio = sdev->bios[sdev->curr]; 1477 sdev->curr = -1; 1478 atomic_inc(&sdev->in_flight); 1479 1480 btrfsic_submit_bio(READ, sbio->bio); 1481 } 1482 1483 static int scrub_add_page_to_bio(struct scrub_dev *sdev, 1484 struct scrub_page *spage) 1485 { 1486 struct scrub_block *sblock = spage->sblock; 1487 struct scrub_bio *sbio; 1488 int ret; 1489 1490 again: 1491 /* 1492 * grab a fresh bio or wait for one to become available 1493 */ 1494 while (sdev->curr == -1) { 1495 spin_lock(&sdev->list_lock); 1496 sdev->curr = sdev->first_free; 1497 if (sdev->curr != -1) { 1498 sdev->first_free = sdev->bios[sdev->curr]->next_free; 1499 sdev->bios[sdev->curr]->next_free = -1; 1500 sdev->bios[sdev->curr]->page_count = 0; 1501 spin_unlock(&sdev->list_lock); 1502 } else { 1503 spin_unlock(&sdev->list_lock); 1504 wait_event(sdev->list_wait, sdev->first_free != -1); 1505 } 1506 } 1507 sbio = sdev->bios[sdev->curr]; 1508 if (sbio->page_count == 0) { 1509 struct bio *bio; 1510 1511 sbio->physical = spage->physical; 1512 sbio->logical = spage->logical; 1513 bio = sbio->bio; 1514 if (!bio) { 1515 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio); 1516 if (!bio) 1517 return -ENOMEM; 1518 sbio->bio = bio; 1519 } 1520 1521 bio->bi_private = sbio; 1522 bio->bi_end_io = scrub_bio_end_io; 1523 bio->bi_bdev = sdev->dev->bdev; 1524 bio->bi_sector = spage->physical >> 9; 1525 sbio->err = 0; 1526 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1527 spage->physical || 1528 sbio->logical + sbio->page_count * PAGE_SIZE != 1529 spage->logical) { 1530 scrub_submit(sdev); 1531 goto again; 1532 } 1533 1534 sbio->pagev[sbio->page_count] = spage; 1535 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1536 if (ret != PAGE_SIZE) { 1537 if (sbio->page_count < 1) { 1538 bio_put(sbio->bio); 1539 sbio->bio = NULL; 1540 return -EIO; 1541 } 1542 scrub_submit(sdev); 1543 goto again; 1544 } 1545 1546 scrub_block_get(sblock); /* one for the added page */ 1547 atomic_inc(&sblock->outstanding_pages); 1548 sbio->page_count++; 1549 if (sbio->page_count == sdev->pages_per_bio) 1550 scrub_submit(sdev); 1551 1552 return 0; 1553 } 1554 1555 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, 1556 u64 physical, u64 flags, u64 gen, int mirror_num, 1557 u8 *csum, int force) 1558 { 1559 struct scrub_block *sblock; 1560 int index; 1561 1562 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 1563 if (!sblock) { 1564 spin_lock(&sdev->stat_lock); 1565 sdev->stat.malloc_errors++; 1566 spin_unlock(&sdev->stat_lock); 1567 return -ENOMEM; 1568 } 1569 1570 /* one ref inside this function, plus one for each page later on */ 1571 atomic_set(&sblock->ref_count, 1); 1572 sblock->sdev = sdev; 1573 sblock->no_io_error_seen = 1; 1574 1575 for (index = 0; len > 0; index++) { 1576 struct scrub_page *spage = sblock->pagev + index; 1577 u64 l = min_t(u64, len, PAGE_SIZE); 1578 1579 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 1580 spage->page = alloc_page(GFP_NOFS); 1581 if (!spage->page) { 1582 spin_lock(&sdev->stat_lock); 1583 sdev->stat.malloc_errors++; 1584 spin_unlock(&sdev->stat_lock); 1585 while (index > 0) { 1586 index--; 1587 __free_page(sblock->pagev[index].page); 1588 } 1589 kfree(sblock); 1590 return -ENOMEM; 1591 } 1592 spage->sblock = sblock; 1593 spage->dev = sdev->dev; 1594 spage->flags = flags; 1595 spage->generation = gen; 1596 spage->logical = logical; 1597 spage->physical = physical; 1598 spage->mirror_num = mirror_num; 1599 if (csum) { 1600 spage->have_csum = 1; 1601 memcpy(spage->csum, csum, sdev->csum_size); 1602 } else { 1603 spage->have_csum = 0; 1604 } 1605 sblock->page_count++; 1606 len -= l; 1607 logical += l; 1608 physical += l; 1609 } 1610 1611 BUG_ON(sblock->page_count == 0); 1612 for (index = 0; index < sblock->page_count; index++) { 1613 struct scrub_page *spage = sblock->pagev + index; 1614 int ret; 1615 1616 ret = scrub_add_page_to_bio(sdev, spage); 1617 if (ret) { 1618 scrub_block_put(sblock); 1619 return ret; 1620 } 1621 } 1622 1623 if (force) 1624 scrub_submit(sdev); 1625 1626 /* last one frees, either here or in bio completion for last page */ 1627 scrub_block_put(sblock); 1628 return 0; 1629 } 1630 1631 static void scrub_bio_end_io(struct bio *bio, int err) 1632 { 1633 struct scrub_bio *sbio = bio->bi_private; 1634 struct scrub_dev *sdev = sbio->sdev; 1635 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; 1636 1637 sbio->err = err; 1638 sbio->bio = bio; 1639 1640 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); 1641 } 1642 1643 static void scrub_bio_end_io_worker(struct btrfs_work *work) 1644 { 1645 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1646 struct scrub_dev *sdev = sbio->sdev; 1647 int i; 1648 1649 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO); 1650 if (sbio->err) { 1651 for (i = 0; i < sbio->page_count; i++) { 1652 struct scrub_page *spage = sbio->pagev[i]; 1653 1654 spage->io_error = 1; 1655 spage->sblock->no_io_error_seen = 0; 1656 } 1657 } 1658 1659 /* now complete the scrub_block items that have all pages completed */ 1660 for (i = 0; i < sbio->page_count; i++) { 1661 struct scrub_page *spage = sbio->pagev[i]; 1662 struct scrub_block *sblock = spage->sblock; 1663 1664 if (atomic_dec_and_test(&sblock->outstanding_pages)) 1665 scrub_block_complete(sblock); 1666 scrub_block_put(sblock); 1667 } 1668 1669 if (sbio->err) { 1670 /* what is this good for??? */ 1671 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1672 sbio->bio->bi_flags |= 1 << BIO_UPTODATE; 1673 sbio->bio->bi_phys_segments = 0; 1674 sbio->bio->bi_idx = 0; 1675 1676 for (i = 0; i < sbio->page_count; i++) { 1677 struct bio_vec *bi; 1678 bi = &sbio->bio->bi_io_vec[i]; 1679 bi->bv_offset = 0; 1680 bi->bv_len = PAGE_SIZE; 1681 } 1682 } 1683 1684 bio_put(sbio->bio); 1685 sbio->bio = NULL; 1686 spin_lock(&sdev->list_lock); 1687 sbio->next_free = sdev->first_free; 1688 sdev->first_free = sbio->index; 1689 spin_unlock(&sdev->list_lock); 1690 atomic_dec(&sdev->in_flight); 1691 wake_up(&sdev->list_wait); 1692 } 1693 1694 static void scrub_block_complete(struct scrub_block *sblock) 1695 { 1696 if (!sblock->no_io_error_seen) 1697 scrub_handle_errored_block(sblock); 1698 else 1699 scrub_checksum(sblock); 1700 } 1701 1702 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len, 1703 u8 *csum) 1704 { 1705 struct btrfs_ordered_sum *sum = NULL; 1706 int ret = 0; 1707 unsigned long i; 1708 unsigned long num_sectors; 1709 1710 while (!list_empty(&sdev->csum_list)) { 1711 sum = list_first_entry(&sdev->csum_list, 1712 struct btrfs_ordered_sum, list); 1713 if (sum->bytenr > logical) 1714 return 0; 1715 if (sum->bytenr + sum->len > logical) 1716 break; 1717 1718 ++sdev->stat.csum_discards; 1719 list_del(&sum->list); 1720 kfree(sum); 1721 sum = NULL; 1722 } 1723 if (!sum) 1724 return 0; 1725 1726 num_sectors = sum->len / sdev->sectorsize; 1727 for (i = 0; i < num_sectors; ++i) { 1728 if (sum->sums[i].bytenr == logical) { 1729 memcpy(csum, &sum->sums[i].sum, sdev->csum_size); 1730 ret = 1; 1731 break; 1732 } 1733 } 1734 if (ret && i == num_sectors - 1) { 1735 list_del(&sum->list); 1736 kfree(sum); 1737 } 1738 return ret; 1739 } 1740 1741 /* scrub extent tries to collect up to 64 kB for each bio */ 1742 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len, 1743 u64 physical, u64 flags, u64 gen, int mirror_num) 1744 { 1745 int ret; 1746 u8 csum[BTRFS_CSUM_SIZE]; 1747 u32 blocksize; 1748 1749 if (flags & BTRFS_EXTENT_FLAG_DATA) { 1750 blocksize = sdev->sectorsize; 1751 spin_lock(&sdev->stat_lock); 1752 sdev->stat.data_extents_scrubbed++; 1753 sdev->stat.data_bytes_scrubbed += len; 1754 spin_unlock(&sdev->stat_lock); 1755 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1756 BUG_ON(sdev->nodesize != sdev->leafsize); 1757 blocksize = sdev->nodesize; 1758 spin_lock(&sdev->stat_lock); 1759 sdev->stat.tree_extents_scrubbed++; 1760 sdev->stat.tree_bytes_scrubbed += len; 1761 spin_unlock(&sdev->stat_lock); 1762 } else { 1763 blocksize = sdev->sectorsize; 1764 BUG_ON(1); 1765 } 1766 1767 while (len) { 1768 u64 l = min_t(u64, len, blocksize); 1769 int have_csum = 0; 1770 1771 if (flags & BTRFS_EXTENT_FLAG_DATA) { 1772 /* push csums to sbio */ 1773 have_csum = scrub_find_csum(sdev, logical, l, csum); 1774 if (have_csum == 0) 1775 ++sdev->stat.no_csum; 1776 } 1777 ret = scrub_pages(sdev, logical, l, physical, flags, gen, 1778 mirror_num, have_csum ? csum : NULL, 0); 1779 if (ret) 1780 return ret; 1781 len -= l; 1782 logical += l; 1783 physical += l; 1784 } 1785 return 0; 1786 } 1787 1788 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev, 1789 struct map_lookup *map, int num, u64 base, u64 length) 1790 { 1791 struct btrfs_path *path; 1792 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; 1793 struct btrfs_root *root = fs_info->extent_root; 1794 struct btrfs_root *csum_root = fs_info->csum_root; 1795 struct btrfs_extent_item *extent; 1796 struct blk_plug plug; 1797 u64 flags; 1798 int ret; 1799 int slot; 1800 int i; 1801 u64 nstripes; 1802 struct extent_buffer *l; 1803 struct btrfs_key key; 1804 u64 physical; 1805 u64 logical; 1806 u64 generation; 1807 int mirror_num; 1808 struct reada_control *reada1; 1809 struct reada_control *reada2; 1810 struct btrfs_key key_start; 1811 struct btrfs_key key_end; 1812 1813 u64 increment = map->stripe_len; 1814 u64 offset; 1815 1816 nstripes = length; 1817 offset = 0; 1818 do_div(nstripes, map->stripe_len); 1819 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1820 offset = map->stripe_len * num; 1821 increment = map->stripe_len * map->num_stripes; 1822 mirror_num = 1; 1823 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1824 int factor = map->num_stripes / map->sub_stripes; 1825 offset = map->stripe_len * (num / map->sub_stripes); 1826 increment = map->stripe_len * factor; 1827 mirror_num = num % map->sub_stripes + 1; 1828 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 1829 increment = map->stripe_len; 1830 mirror_num = num % map->num_stripes + 1; 1831 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 1832 increment = map->stripe_len; 1833 mirror_num = num % map->num_stripes + 1; 1834 } else { 1835 increment = map->stripe_len; 1836 mirror_num = 1; 1837 } 1838 1839 path = btrfs_alloc_path(); 1840 if (!path) 1841 return -ENOMEM; 1842 1843 /* 1844 * work on commit root. The related disk blocks are static as 1845 * long as COW is applied. This means, it is save to rewrite 1846 * them to repair disk errors without any race conditions 1847 */ 1848 path->search_commit_root = 1; 1849 path->skip_locking = 1; 1850 1851 /* 1852 * trigger the readahead for extent tree csum tree and wait for 1853 * completion. During readahead, the scrub is officially paused 1854 * to not hold off transaction commits 1855 */ 1856 logical = base + offset; 1857 1858 wait_event(sdev->list_wait, 1859 atomic_read(&sdev->in_flight) == 0); 1860 atomic_inc(&fs_info->scrubs_paused); 1861 wake_up(&fs_info->scrub_pause_wait); 1862 1863 /* FIXME it might be better to start readahead at commit root */ 1864 key_start.objectid = logical; 1865 key_start.type = BTRFS_EXTENT_ITEM_KEY; 1866 key_start.offset = (u64)0; 1867 key_end.objectid = base + offset + nstripes * increment; 1868 key_end.type = BTRFS_EXTENT_ITEM_KEY; 1869 key_end.offset = (u64)0; 1870 reada1 = btrfs_reada_add(root, &key_start, &key_end); 1871 1872 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1873 key_start.type = BTRFS_EXTENT_CSUM_KEY; 1874 key_start.offset = logical; 1875 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1876 key_end.type = BTRFS_EXTENT_CSUM_KEY; 1877 key_end.offset = base + offset + nstripes * increment; 1878 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 1879 1880 if (!IS_ERR(reada1)) 1881 btrfs_reada_wait(reada1); 1882 if (!IS_ERR(reada2)) 1883 btrfs_reada_wait(reada2); 1884 1885 mutex_lock(&fs_info->scrub_lock); 1886 while (atomic_read(&fs_info->scrub_pause_req)) { 1887 mutex_unlock(&fs_info->scrub_lock); 1888 wait_event(fs_info->scrub_pause_wait, 1889 atomic_read(&fs_info->scrub_pause_req) == 0); 1890 mutex_lock(&fs_info->scrub_lock); 1891 } 1892 atomic_dec(&fs_info->scrubs_paused); 1893 mutex_unlock(&fs_info->scrub_lock); 1894 wake_up(&fs_info->scrub_pause_wait); 1895 1896 /* 1897 * collect all data csums for the stripe to avoid seeking during 1898 * the scrub. This might currently (crc32) end up to be about 1MB 1899 */ 1900 blk_start_plug(&plug); 1901 1902 /* 1903 * now find all extents for each stripe and scrub them 1904 */ 1905 logical = base + offset; 1906 physical = map->stripes[num].physical; 1907 ret = 0; 1908 for (i = 0; i < nstripes; ++i) { 1909 /* 1910 * canceled? 1911 */ 1912 if (atomic_read(&fs_info->scrub_cancel_req) || 1913 atomic_read(&sdev->cancel_req)) { 1914 ret = -ECANCELED; 1915 goto out; 1916 } 1917 /* 1918 * check to see if we have to pause 1919 */ 1920 if (atomic_read(&fs_info->scrub_pause_req)) { 1921 /* push queued extents */ 1922 scrub_submit(sdev); 1923 wait_event(sdev->list_wait, 1924 atomic_read(&sdev->in_flight) == 0); 1925 atomic_inc(&fs_info->scrubs_paused); 1926 wake_up(&fs_info->scrub_pause_wait); 1927 mutex_lock(&fs_info->scrub_lock); 1928 while (atomic_read(&fs_info->scrub_pause_req)) { 1929 mutex_unlock(&fs_info->scrub_lock); 1930 wait_event(fs_info->scrub_pause_wait, 1931 atomic_read(&fs_info->scrub_pause_req) == 0); 1932 mutex_lock(&fs_info->scrub_lock); 1933 } 1934 atomic_dec(&fs_info->scrubs_paused); 1935 mutex_unlock(&fs_info->scrub_lock); 1936 wake_up(&fs_info->scrub_pause_wait); 1937 } 1938 1939 ret = btrfs_lookup_csums_range(csum_root, logical, 1940 logical + map->stripe_len - 1, 1941 &sdev->csum_list, 1); 1942 if (ret) 1943 goto out; 1944 1945 key.objectid = logical; 1946 key.type = BTRFS_EXTENT_ITEM_KEY; 1947 key.offset = (u64)0; 1948 1949 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1950 if (ret < 0) 1951 goto out; 1952 if (ret > 0) { 1953 ret = btrfs_previous_item(root, path, 0, 1954 BTRFS_EXTENT_ITEM_KEY); 1955 if (ret < 0) 1956 goto out; 1957 if (ret > 0) { 1958 /* there's no smaller item, so stick with the 1959 * larger one */ 1960 btrfs_release_path(path); 1961 ret = btrfs_search_slot(NULL, root, &key, 1962 path, 0, 0); 1963 if (ret < 0) 1964 goto out; 1965 } 1966 } 1967 1968 while (1) { 1969 l = path->nodes[0]; 1970 slot = path->slots[0]; 1971 if (slot >= btrfs_header_nritems(l)) { 1972 ret = btrfs_next_leaf(root, path); 1973 if (ret == 0) 1974 continue; 1975 if (ret < 0) 1976 goto out; 1977 1978 break; 1979 } 1980 btrfs_item_key_to_cpu(l, &key, slot); 1981 1982 if (key.objectid + key.offset <= logical) 1983 goto next; 1984 1985 if (key.objectid >= logical + map->stripe_len) 1986 break; 1987 1988 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) 1989 goto next; 1990 1991 extent = btrfs_item_ptr(l, slot, 1992 struct btrfs_extent_item); 1993 flags = btrfs_extent_flags(l, extent); 1994 generation = btrfs_extent_generation(l, extent); 1995 1996 if (key.objectid < logical && 1997 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 1998 printk(KERN_ERR 1999 "btrfs scrub: tree block %llu spanning " 2000 "stripes, ignored. logical=%llu\n", 2001 (unsigned long long)key.objectid, 2002 (unsigned long long)logical); 2003 goto next; 2004 } 2005 2006 /* 2007 * trim extent to this stripe 2008 */ 2009 if (key.objectid < logical) { 2010 key.offset -= logical - key.objectid; 2011 key.objectid = logical; 2012 } 2013 if (key.objectid + key.offset > 2014 logical + map->stripe_len) { 2015 key.offset = logical + map->stripe_len - 2016 key.objectid; 2017 } 2018 2019 ret = scrub_extent(sdev, key.objectid, key.offset, 2020 key.objectid - logical + physical, 2021 flags, generation, mirror_num); 2022 if (ret) 2023 goto out; 2024 2025 next: 2026 path->slots[0]++; 2027 } 2028 btrfs_release_path(path); 2029 logical += increment; 2030 physical += map->stripe_len; 2031 spin_lock(&sdev->stat_lock); 2032 sdev->stat.last_physical = physical; 2033 spin_unlock(&sdev->stat_lock); 2034 } 2035 /* push queued extents */ 2036 scrub_submit(sdev); 2037 2038 out: 2039 blk_finish_plug(&plug); 2040 btrfs_free_path(path); 2041 return ret < 0 ? ret : 0; 2042 } 2043 2044 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev, 2045 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length, 2046 u64 dev_offset) 2047 { 2048 struct btrfs_mapping_tree *map_tree = 2049 &sdev->dev->dev_root->fs_info->mapping_tree; 2050 struct map_lookup *map; 2051 struct extent_map *em; 2052 int i; 2053 int ret = -EINVAL; 2054 2055 read_lock(&map_tree->map_tree.lock); 2056 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 2057 read_unlock(&map_tree->map_tree.lock); 2058 2059 if (!em) 2060 return -EINVAL; 2061 2062 map = (struct map_lookup *)em->bdev; 2063 if (em->start != chunk_offset) 2064 goto out; 2065 2066 if (em->len < length) 2067 goto out; 2068 2069 for (i = 0; i < map->num_stripes; ++i) { 2070 if (map->stripes[i].dev == sdev->dev && 2071 map->stripes[i].physical == dev_offset) { 2072 ret = scrub_stripe(sdev, map, i, chunk_offset, length); 2073 if (ret) 2074 goto out; 2075 } 2076 } 2077 out: 2078 free_extent_map(em); 2079 2080 return ret; 2081 } 2082 2083 static noinline_for_stack 2084 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end) 2085 { 2086 struct btrfs_dev_extent *dev_extent = NULL; 2087 struct btrfs_path *path; 2088 struct btrfs_root *root = sdev->dev->dev_root; 2089 struct btrfs_fs_info *fs_info = root->fs_info; 2090 u64 length; 2091 u64 chunk_tree; 2092 u64 chunk_objectid; 2093 u64 chunk_offset; 2094 int ret; 2095 int slot; 2096 struct extent_buffer *l; 2097 struct btrfs_key key; 2098 struct btrfs_key found_key; 2099 struct btrfs_block_group_cache *cache; 2100 2101 path = btrfs_alloc_path(); 2102 if (!path) 2103 return -ENOMEM; 2104 2105 path->reada = 2; 2106 path->search_commit_root = 1; 2107 path->skip_locking = 1; 2108 2109 key.objectid = sdev->dev->devid; 2110 key.offset = 0ull; 2111 key.type = BTRFS_DEV_EXTENT_KEY; 2112 2113 2114 while (1) { 2115 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2116 if (ret < 0) 2117 break; 2118 if (ret > 0) { 2119 if (path->slots[0] >= 2120 btrfs_header_nritems(path->nodes[0])) { 2121 ret = btrfs_next_leaf(root, path); 2122 if (ret) 2123 break; 2124 } 2125 } 2126 2127 l = path->nodes[0]; 2128 slot = path->slots[0]; 2129 2130 btrfs_item_key_to_cpu(l, &found_key, slot); 2131 2132 if (found_key.objectid != sdev->dev->devid) 2133 break; 2134 2135 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) 2136 break; 2137 2138 if (found_key.offset >= end) 2139 break; 2140 2141 if (found_key.offset < key.offset) 2142 break; 2143 2144 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2145 length = btrfs_dev_extent_length(l, dev_extent); 2146 2147 if (found_key.offset + length <= start) { 2148 key.offset = found_key.offset + length; 2149 btrfs_release_path(path); 2150 continue; 2151 } 2152 2153 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 2154 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 2155 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2156 2157 /* 2158 * get a reference on the corresponding block group to prevent 2159 * the chunk from going away while we scrub it 2160 */ 2161 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2162 if (!cache) { 2163 ret = -ENOENT; 2164 break; 2165 } 2166 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid, 2167 chunk_offset, length, found_key.offset); 2168 btrfs_put_block_group(cache); 2169 if (ret) 2170 break; 2171 2172 key.offset = found_key.offset + length; 2173 btrfs_release_path(path); 2174 } 2175 2176 btrfs_free_path(path); 2177 2178 /* 2179 * ret can still be 1 from search_slot or next_leaf, 2180 * that's not an error 2181 */ 2182 return ret < 0 ? ret : 0; 2183 } 2184 2185 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev) 2186 { 2187 int i; 2188 u64 bytenr; 2189 u64 gen; 2190 int ret; 2191 struct btrfs_device *device = sdev->dev; 2192 struct btrfs_root *root = device->dev_root; 2193 2194 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 2195 return -EIO; 2196 2197 gen = root->fs_info->last_trans_committed; 2198 2199 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2200 bytenr = btrfs_sb_offset(i); 2201 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes) 2202 break; 2203 2204 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 2205 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1); 2206 if (ret) 2207 return ret; 2208 } 2209 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); 2210 2211 return 0; 2212 } 2213 2214 /* 2215 * get a reference count on fs_info->scrub_workers. start worker if necessary 2216 */ 2217 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root) 2218 { 2219 struct btrfs_fs_info *fs_info = root->fs_info; 2220 int ret = 0; 2221 2222 mutex_lock(&fs_info->scrub_lock); 2223 if (fs_info->scrub_workers_refcnt == 0) { 2224 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 2225 fs_info->thread_pool_size, &fs_info->generic_worker); 2226 fs_info->scrub_workers.idle_thresh = 4; 2227 ret = btrfs_start_workers(&fs_info->scrub_workers); 2228 if (ret) 2229 goto out; 2230 } 2231 ++fs_info->scrub_workers_refcnt; 2232 out: 2233 mutex_unlock(&fs_info->scrub_lock); 2234 2235 return ret; 2236 } 2237 2238 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root) 2239 { 2240 struct btrfs_fs_info *fs_info = root->fs_info; 2241 2242 mutex_lock(&fs_info->scrub_lock); 2243 if (--fs_info->scrub_workers_refcnt == 0) 2244 btrfs_stop_workers(&fs_info->scrub_workers); 2245 WARN_ON(fs_info->scrub_workers_refcnt < 0); 2246 mutex_unlock(&fs_info->scrub_lock); 2247 } 2248 2249 2250 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end, 2251 struct btrfs_scrub_progress *progress, int readonly) 2252 { 2253 struct scrub_dev *sdev; 2254 struct btrfs_fs_info *fs_info = root->fs_info; 2255 int ret; 2256 struct btrfs_device *dev; 2257 2258 if (btrfs_fs_closing(root->fs_info)) 2259 return -EINVAL; 2260 2261 /* 2262 * check some assumptions 2263 */ 2264 if (root->nodesize != root->leafsize) { 2265 printk(KERN_ERR 2266 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", 2267 root->nodesize, root->leafsize); 2268 return -EINVAL; 2269 } 2270 2271 if (root->nodesize > BTRFS_STRIPE_LEN) { 2272 /* 2273 * in this case scrub is unable to calculate the checksum 2274 * the way scrub is implemented. Do not handle this 2275 * situation at all because it won't ever happen. 2276 */ 2277 printk(KERN_ERR 2278 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", 2279 root->nodesize, BTRFS_STRIPE_LEN); 2280 return -EINVAL; 2281 } 2282 2283 if (root->sectorsize != PAGE_SIZE) { 2284 /* not supported for data w/o checksums */ 2285 printk(KERN_ERR 2286 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n", 2287 root->sectorsize, (unsigned long long)PAGE_SIZE); 2288 return -EINVAL; 2289 } 2290 2291 ret = scrub_workers_get(root); 2292 if (ret) 2293 return ret; 2294 2295 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2296 dev = btrfs_find_device(root, devid, NULL, NULL); 2297 if (!dev || dev->missing) { 2298 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2299 scrub_workers_put(root); 2300 return -ENODEV; 2301 } 2302 mutex_lock(&fs_info->scrub_lock); 2303 2304 if (!dev->in_fs_metadata) { 2305 mutex_unlock(&fs_info->scrub_lock); 2306 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2307 scrub_workers_put(root); 2308 return -ENODEV; 2309 } 2310 2311 if (dev->scrub_device) { 2312 mutex_unlock(&fs_info->scrub_lock); 2313 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2314 scrub_workers_put(root); 2315 return -EINPROGRESS; 2316 } 2317 sdev = scrub_setup_dev(dev); 2318 if (IS_ERR(sdev)) { 2319 mutex_unlock(&fs_info->scrub_lock); 2320 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2321 scrub_workers_put(root); 2322 return PTR_ERR(sdev); 2323 } 2324 sdev->readonly = readonly; 2325 dev->scrub_device = sdev; 2326 2327 atomic_inc(&fs_info->scrubs_running); 2328 mutex_unlock(&fs_info->scrub_lock); 2329 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2330 2331 down_read(&fs_info->scrub_super_lock); 2332 ret = scrub_supers(sdev); 2333 up_read(&fs_info->scrub_super_lock); 2334 2335 if (!ret) 2336 ret = scrub_enumerate_chunks(sdev, start, end); 2337 2338 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); 2339 atomic_dec(&fs_info->scrubs_running); 2340 wake_up(&fs_info->scrub_pause_wait); 2341 2342 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0); 2343 2344 if (progress) 2345 memcpy(progress, &sdev->stat, sizeof(*progress)); 2346 2347 mutex_lock(&fs_info->scrub_lock); 2348 dev->scrub_device = NULL; 2349 mutex_unlock(&fs_info->scrub_lock); 2350 2351 scrub_free_dev(sdev); 2352 scrub_workers_put(root); 2353 2354 return ret; 2355 } 2356 2357 void btrfs_scrub_pause(struct btrfs_root *root) 2358 { 2359 struct btrfs_fs_info *fs_info = root->fs_info; 2360 2361 mutex_lock(&fs_info->scrub_lock); 2362 atomic_inc(&fs_info->scrub_pause_req); 2363 while (atomic_read(&fs_info->scrubs_paused) != 2364 atomic_read(&fs_info->scrubs_running)) { 2365 mutex_unlock(&fs_info->scrub_lock); 2366 wait_event(fs_info->scrub_pause_wait, 2367 atomic_read(&fs_info->scrubs_paused) == 2368 atomic_read(&fs_info->scrubs_running)); 2369 mutex_lock(&fs_info->scrub_lock); 2370 } 2371 mutex_unlock(&fs_info->scrub_lock); 2372 } 2373 2374 void btrfs_scrub_continue(struct btrfs_root *root) 2375 { 2376 struct btrfs_fs_info *fs_info = root->fs_info; 2377 2378 atomic_dec(&fs_info->scrub_pause_req); 2379 wake_up(&fs_info->scrub_pause_wait); 2380 } 2381 2382 void btrfs_scrub_pause_super(struct btrfs_root *root) 2383 { 2384 down_write(&root->fs_info->scrub_super_lock); 2385 } 2386 2387 void btrfs_scrub_continue_super(struct btrfs_root *root) 2388 { 2389 up_write(&root->fs_info->scrub_super_lock); 2390 } 2391 2392 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 2393 { 2394 2395 mutex_lock(&fs_info->scrub_lock); 2396 if (!atomic_read(&fs_info->scrubs_running)) { 2397 mutex_unlock(&fs_info->scrub_lock); 2398 return -ENOTCONN; 2399 } 2400 2401 atomic_inc(&fs_info->scrub_cancel_req); 2402 while (atomic_read(&fs_info->scrubs_running)) { 2403 mutex_unlock(&fs_info->scrub_lock); 2404 wait_event(fs_info->scrub_pause_wait, 2405 atomic_read(&fs_info->scrubs_running) == 0); 2406 mutex_lock(&fs_info->scrub_lock); 2407 } 2408 atomic_dec(&fs_info->scrub_cancel_req); 2409 mutex_unlock(&fs_info->scrub_lock); 2410 2411 return 0; 2412 } 2413 2414 int btrfs_scrub_cancel(struct btrfs_root *root) 2415 { 2416 return __btrfs_scrub_cancel(root->fs_info); 2417 } 2418 2419 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev) 2420 { 2421 struct btrfs_fs_info *fs_info = root->fs_info; 2422 struct scrub_dev *sdev; 2423 2424 mutex_lock(&fs_info->scrub_lock); 2425 sdev = dev->scrub_device; 2426 if (!sdev) { 2427 mutex_unlock(&fs_info->scrub_lock); 2428 return -ENOTCONN; 2429 } 2430 atomic_inc(&sdev->cancel_req); 2431 while (dev->scrub_device) { 2432 mutex_unlock(&fs_info->scrub_lock); 2433 wait_event(fs_info->scrub_pause_wait, 2434 dev->scrub_device == NULL); 2435 mutex_lock(&fs_info->scrub_lock); 2436 } 2437 mutex_unlock(&fs_info->scrub_lock); 2438 2439 return 0; 2440 } 2441 2442 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid) 2443 { 2444 struct btrfs_fs_info *fs_info = root->fs_info; 2445 struct btrfs_device *dev; 2446 int ret; 2447 2448 /* 2449 * we have to hold the device_list_mutex here so the device 2450 * does not go away in cancel_dev. FIXME: find a better solution 2451 */ 2452 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2453 dev = btrfs_find_device(root, devid, NULL, NULL); 2454 if (!dev) { 2455 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2456 return -ENODEV; 2457 } 2458 ret = btrfs_scrub_cancel_dev(root, dev); 2459 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2460 2461 return ret; 2462 } 2463 2464 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 2465 struct btrfs_scrub_progress *progress) 2466 { 2467 struct btrfs_device *dev; 2468 struct scrub_dev *sdev = NULL; 2469 2470 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2471 dev = btrfs_find_device(root, devid, NULL, NULL); 2472 if (dev) 2473 sdev = dev->scrub_device; 2474 if (sdev) 2475 memcpy(progress, &sdev->stat, sizeof(*progress)); 2476 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2477 2478 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV; 2479 } 2480