xref: /openbmc/linux/fs/btrfs/scrub.c (revision 339031bafe6b281cf2dcb8364217288b9fdab555)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - track and record media errors, throw out bad devices
35  *  - add a mode to also read unallocated space
36  */
37 
38 struct scrub_block;
39 struct scrub_ctx;
40 
41 /*
42  * the following three values only influence the performance.
43  * The last one configures the number of parallel and outstanding I/O
44  * operations. The first two values configure an upper limit for the number
45  * of (dynamically allocated) pages that are added to a bio.
46  */
47 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
48 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
49 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 
51 /*
52  * the following value times PAGE_SIZE needs to be large enough to match the
53  * largest node/leaf/sector size that shall be supported.
54  * Values larger than BTRFS_STRIPE_LEN are not supported.
55  */
56 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
57 
58 struct scrub_recover {
59 	refcount_t		refs;
60 	struct btrfs_bio	*bbio;
61 	u64			map_length;
62 };
63 
64 struct scrub_page {
65 	struct scrub_block	*sblock;
66 	struct page		*page;
67 	struct btrfs_device	*dev;
68 	struct list_head	list;
69 	u64			flags;  /* extent flags */
70 	u64			generation;
71 	u64			logical;
72 	u64			physical;
73 	u64			physical_for_dev_replace;
74 	atomic_t		refs;
75 	u8			mirror_num;
76 	int			have_csum:1;
77 	int			io_error:1;
78 	u8			csum[BTRFS_CSUM_SIZE];
79 
80 	struct scrub_recover	*recover;
81 };
82 
83 struct scrub_bio {
84 	int			index;
85 	struct scrub_ctx	*sctx;
86 	struct btrfs_device	*dev;
87 	struct bio		*bio;
88 	blk_status_t		status;
89 	u64			logical;
90 	u64			physical;
91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
93 #else
94 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
95 #endif
96 	int			page_count;
97 	int			next_free;
98 	struct btrfs_work	work;
99 };
100 
101 struct scrub_block {
102 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 	int			page_count;
104 	atomic_t		outstanding_pages;
105 	refcount_t		refs; /* free mem on transition to zero */
106 	struct scrub_ctx	*sctx;
107 	struct scrub_parity	*sparity;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 
114 		/* The following is for the data used to check parity */
115 		/* It is for the data with checksum */
116 		unsigned int	data_corrected:1;
117 	};
118 	struct btrfs_work	work;
119 };
120 
121 /* Used for the chunks with parity stripe such RAID5/6 */
122 struct scrub_parity {
123 	struct scrub_ctx	*sctx;
124 
125 	struct btrfs_device	*scrub_dev;
126 
127 	u64			logic_start;
128 
129 	u64			logic_end;
130 
131 	int			nsectors;
132 
133 	u32			stripe_len;
134 
135 	refcount_t		refs;
136 
137 	struct list_head	spages;
138 
139 	/* Work of parity check and repair */
140 	struct btrfs_work	work;
141 
142 	/* Mark the parity blocks which have data */
143 	unsigned long		*dbitmap;
144 
145 	/*
146 	 * Mark the parity blocks which have data, but errors happen when
147 	 * read data or check data
148 	 */
149 	unsigned long		*ebitmap;
150 
151 	unsigned long		bitmap[];
152 };
153 
154 struct scrub_ctx {
155 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156 	struct btrfs_fs_info	*fs_info;
157 	int			first_free;
158 	int			curr;
159 	atomic_t		bios_in_flight;
160 	atomic_t		workers_pending;
161 	spinlock_t		list_lock;
162 	wait_queue_head_t	list_wait;
163 	struct list_head	csum_list;
164 	atomic_t		cancel_req;
165 	int			readonly;
166 	int			pages_per_rd_bio;
167 
168 	/* State of IO submission throttling affecting the associated device */
169 	ktime_t			throttle_deadline;
170 	u64			throttle_sent;
171 
172 	int			is_dev_replace;
173 	u64			write_pointer;
174 
175 	struct scrub_bio        *wr_curr_bio;
176 	struct mutex            wr_lock;
177 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
178 	struct btrfs_device     *wr_tgtdev;
179 	bool                    flush_all_writes;
180 
181 	/*
182 	 * statistics
183 	 */
184 	struct btrfs_scrub_progress stat;
185 	spinlock_t		stat_lock;
186 
187 	/*
188 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
189 	 * decrement bios_in_flight and workers_pending and then do a wakeup
190 	 * on the list_wait wait queue. We must ensure the main scrub task
191 	 * doesn't free the scrub context before or while the workers are
192 	 * doing the wakeup() call.
193 	 */
194 	refcount_t              refs;
195 };
196 
197 struct scrub_warning {
198 	struct btrfs_path	*path;
199 	u64			extent_item_size;
200 	const char		*errstr;
201 	u64			physical;
202 	u64			logical;
203 	struct btrfs_device	*dev;
204 };
205 
206 struct full_stripe_lock {
207 	struct rb_node node;
208 	u64 logical;
209 	u64 refs;
210 	struct mutex mutex;
211 };
212 
213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214 				     struct scrub_block *sblocks_for_recheck);
215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 				struct scrub_block *sblock,
217 				int retry_failed_mirror);
218 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220 					     struct scrub_block *sblock_good);
221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
222 					    struct scrub_block *sblock_good,
223 					    int page_num, int force_write);
224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
226 					   int page_num);
227 static int scrub_checksum_data(struct scrub_block *sblock);
228 static int scrub_checksum_tree_block(struct scrub_block *sblock);
229 static int scrub_checksum_super(struct scrub_block *sblock);
230 static void scrub_block_put(struct scrub_block *sblock);
231 static void scrub_page_get(struct scrub_page *spage);
232 static void scrub_page_put(struct scrub_page *spage);
233 static void scrub_parity_get(struct scrub_parity *sparity);
234 static void scrub_parity_put(struct scrub_parity *sparity);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
236 		       u64 physical, struct btrfs_device *dev, u64 flags,
237 		       u64 gen, int mirror_num, u8 *csum,
238 		       u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 			       u64 extent_logical, u32 extent_len,
244 			       u64 *extent_physical,
245 			       struct btrfs_device **extent_dev,
246 			       int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 				    struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void scrub_put_ctx(struct scrub_ctx *sctx);
253 
254 static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
255 {
256 	return spage->recover &&
257 	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
258 }
259 
260 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
261 {
262 	refcount_inc(&sctx->refs);
263 	atomic_inc(&sctx->bios_in_flight);
264 }
265 
266 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
267 {
268 	atomic_dec(&sctx->bios_in_flight);
269 	wake_up(&sctx->list_wait);
270 	scrub_put_ctx(sctx);
271 }
272 
273 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
274 {
275 	while (atomic_read(&fs_info->scrub_pause_req)) {
276 		mutex_unlock(&fs_info->scrub_lock);
277 		wait_event(fs_info->scrub_pause_wait,
278 		   atomic_read(&fs_info->scrub_pause_req) == 0);
279 		mutex_lock(&fs_info->scrub_lock);
280 	}
281 }
282 
283 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
284 {
285 	atomic_inc(&fs_info->scrubs_paused);
286 	wake_up(&fs_info->scrub_pause_wait);
287 }
288 
289 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
290 {
291 	mutex_lock(&fs_info->scrub_lock);
292 	__scrub_blocked_if_needed(fs_info);
293 	atomic_dec(&fs_info->scrubs_paused);
294 	mutex_unlock(&fs_info->scrub_lock);
295 
296 	wake_up(&fs_info->scrub_pause_wait);
297 }
298 
299 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
300 {
301 	scrub_pause_on(fs_info);
302 	scrub_pause_off(fs_info);
303 }
304 
305 /*
306  * Insert new full stripe lock into full stripe locks tree
307  *
308  * Return pointer to existing or newly inserted full_stripe_lock structure if
309  * everything works well.
310  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
311  *
312  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
313  * function
314  */
315 static struct full_stripe_lock *insert_full_stripe_lock(
316 		struct btrfs_full_stripe_locks_tree *locks_root,
317 		u64 fstripe_logical)
318 {
319 	struct rb_node **p;
320 	struct rb_node *parent = NULL;
321 	struct full_stripe_lock *entry;
322 	struct full_stripe_lock *ret;
323 
324 	lockdep_assert_held(&locks_root->lock);
325 
326 	p = &locks_root->root.rb_node;
327 	while (*p) {
328 		parent = *p;
329 		entry = rb_entry(parent, struct full_stripe_lock, node);
330 		if (fstripe_logical < entry->logical) {
331 			p = &(*p)->rb_left;
332 		} else if (fstripe_logical > entry->logical) {
333 			p = &(*p)->rb_right;
334 		} else {
335 			entry->refs++;
336 			return entry;
337 		}
338 	}
339 
340 	/*
341 	 * Insert new lock.
342 	 */
343 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
344 	if (!ret)
345 		return ERR_PTR(-ENOMEM);
346 	ret->logical = fstripe_logical;
347 	ret->refs = 1;
348 	mutex_init(&ret->mutex);
349 
350 	rb_link_node(&ret->node, parent, p);
351 	rb_insert_color(&ret->node, &locks_root->root);
352 	return ret;
353 }
354 
355 /*
356  * Search for a full stripe lock of a block group
357  *
358  * Return pointer to existing full stripe lock if found
359  * Return NULL if not found
360  */
361 static struct full_stripe_lock *search_full_stripe_lock(
362 		struct btrfs_full_stripe_locks_tree *locks_root,
363 		u64 fstripe_logical)
364 {
365 	struct rb_node *node;
366 	struct full_stripe_lock *entry;
367 
368 	lockdep_assert_held(&locks_root->lock);
369 
370 	node = locks_root->root.rb_node;
371 	while (node) {
372 		entry = rb_entry(node, struct full_stripe_lock, node);
373 		if (fstripe_logical < entry->logical)
374 			node = node->rb_left;
375 		else if (fstripe_logical > entry->logical)
376 			node = node->rb_right;
377 		else
378 			return entry;
379 	}
380 	return NULL;
381 }
382 
383 /*
384  * Helper to get full stripe logical from a normal bytenr.
385  *
386  * Caller must ensure @cache is a RAID56 block group.
387  */
388 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
389 {
390 	u64 ret;
391 
392 	/*
393 	 * Due to chunk item size limit, full stripe length should not be
394 	 * larger than U32_MAX. Just a sanity check here.
395 	 */
396 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
397 
398 	/*
399 	 * round_down() can only handle power of 2, while RAID56 full
400 	 * stripe length can be 64KiB * n, so we need to manually round down.
401 	 */
402 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
403 			cache->full_stripe_len + cache->start;
404 	return ret;
405 }
406 
407 /*
408  * Lock a full stripe to avoid concurrency of recovery and read
409  *
410  * It's only used for profiles with parities (RAID5/6), for other profiles it
411  * does nothing.
412  *
413  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
414  * So caller must call unlock_full_stripe() at the same context.
415  *
416  * Return <0 if encounters error.
417  */
418 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
419 			    bool *locked_ret)
420 {
421 	struct btrfs_block_group *bg_cache;
422 	struct btrfs_full_stripe_locks_tree *locks_root;
423 	struct full_stripe_lock *existing;
424 	u64 fstripe_start;
425 	int ret = 0;
426 
427 	*locked_ret = false;
428 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
429 	if (!bg_cache) {
430 		ASSERT(0);
431 		return -ENOENT;
432 	}
433 
434 	/* Profiles not based on parity don't need full stripe lock */
435 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
436 		goto out;
437 	locks_root = &bg_cache->full_stripe_locks_root;
438 
439 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
440 
441 	/* Now insert the full stripe lock */
442 	mutex_lock(&locks_root->lock);
443 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
444 	mutex_unlock(&locks_root->lock);
445 	if (IS_ERR(existing)) {
446 		ret = PTR_ERR(existing);
447 		goto out;
448 	}
449 	mutex_lock(&existing->mutex);
450 	*locked_ret = true;
451 out:
452 	btrfs_put_block_group(bg_cache);
453 	return ret;
454 }
455 
456 /*
457  * Unlock a full stripe.
458  *
459  * NOTE: Caller must ensure it's the same context calling corresponding
460  * lock_full_stripe().
461  *
462  * Return 0 if we unlock full stripe without problem.
463  * Return <0 for error
464  */
465 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
466 			      bool locked)
467 {
468 	struct btrfs_block_group *bg_cache;
469 	struct btrfs_full_stripe_locks_tree *locks_root;
470 	struct full_stripe_lock *fstripe_lock;
471 	u64 fstripe_start;
472 	bool freeit = false;
473 	int ret = 0;
474 
475 	/* If we didn't acquire full stripe lock, no need to continue */
476 	if (!locked)
477 		return 0;
478 
479 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
480 	if (!bg_cache) {
481 		ASSERT(0);
482 		return -ENOENT;
483 	}
484 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
485 		goto out;
486 
487 	locks_root = &bg_cache->full_stripe_locks_root;
488 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
489 
490 	mutex_lock(&locks_root->lock);
491 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
492 	/* Unpaired unlock_full_stripe() detected */
493 	if (!fstripe_lock) {
494 		WARN_ON(1);
495 		ret = -ENOENT;
496 		mutex_unlock(&locks_root->lock);
497 		goto out;
498 	}
499 
500 	if (fstripe_lock->refs == 0) {
501 		WARN_ON(1);
502 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
503 			fstripe_lock->logical);
504 	} else {
505 		fstripe_lock->refs--;
506 	}
507 
508 	if (fstripe_lock->refs == 0) {
509 		rb_erase(&fstripe_lock->node, &locks_root->root);
510 		freeit = true;
511 	}
512 	mutex_unlock(&locks_root->lock);
513 
514 	mutex_unlock(&fstripe_lock->mutex);
515 	if (freeit)
516 		kfree(fstripe_lock);
517 out:
518 	btrfs_put_block_group(bg_cache);
519 	return ret;
520 }
521 
522 static void scrub_free_csums(struct scrub_ctx *sctx)
523 {
524 	while (!list_empty(&sctx->csum_list)) {
525 		struct btrfs_ordered_sum *sum;
526 		sum = list_first_entry(&sctx->csum_list,
527 				       struct btrfs_ordered_sum, list);
528 		list_del(&sum->list);
529 		kfree(sum);
530 	}
531 }
532 
533 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
534 {
535 	int i;
536 
537 	if (!sctx)
538 		return;
539 
540 	/* this can happen when scrub is cancelled */
541 	if (sctx->curr != -1) {
542 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
543 
544 		for (i = 0; i < sbio->page_count; i++) {
545 			WARN_ON(!sbio->pagev[i]->page);
546 			scrub_block_put(sbio->pagev[i]->sblock);
547 		}
548 		bio_put(sbio->bio);
549 	}
550 
551 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
552 		struct scrub_bio *sbio = sctx->bios[i];
553 
554 		if (!sbio)
555 			break;
556 		kfree(sbio);
557 	}
558 
559 	kfree(sctx->wr_curr_bio);
560 	scrub_free_csums(sctx);
561 	kfree(sctx);
562 }
563 
564 static void scrub_put_ctx(struct scrub_ctx *sctx)
565 {
566 	if (refcount_dec_and_test(&sctx->refs))
567 		scrub_free_ctx(sctx);
568 }
569 
570 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
571 		struct btrfs_fs_info *fs_info, int is_dev_replace)
572 {
573 	struct scrub_ctx *sctx;
574 	int		i;
575 
576 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
577 	if (!sctx)
578 		goto nomem;
579 	refcount_set(&sctx->refs, 1);
580 	sctx->is_dev_replace = is_dev_replace;
581 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
582 	sctx->curr = -1;
583 	sctx->fs_info = fs_info;
584 	INIT_LIST_HEAD(&sctx->csum_list);
585 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
586 		struct scrub_bio *sbio;
587 
588 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
589 		if (!sbio)
590 			goto nomem;
591 		sctx->bios[i] = sbio;
592 
593 		sbio->index = i;
594 		sbio->sctx = sctx;
595 		sbio->page_count = 0;
596 		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
597 				NULL);
598 
599 		if (i != SCRUB_BIOS_PER_SCTX - 1)
600 			sctx->bios[i]->next_free = i + 1;
601 		else
602 			sctx->bios[i]->next_free = -1;
603 	}
604 	sctx->first_free = 0;
605 	atomic_set(&sctx->bios_in_flight, 0);
606 	atomic_set(&sctx->workers_pending, 0);
607 	atomic_set(&sctx->cancel_req, 0);
608 
609 	spin_lock_init(&sctx->list_lock);
610 	spin_lock_init(&sctx->stat_lock);
611 	init_waitqueue_head(&sctx->list_wait);
612 	sctx->throttle_deadline = 0;
613 
614 	WARN_ON(sctx->wr_curr_bio != NULL);
615 	mutex_init(&sctx->wr_lock);
616 	sctx->wr_curr_bio = NULL;
617 	if (is_dev_replace) {
618 		WARN_ON(!fs_info->dev_replace.tgtdev);
619 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
620 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
621 		sctx->flush_all_writes = false;
622 	}
623 
624 	return sctx;
625 
626 nomem:
627 	scrub_free_ctx(sctx);
628 	return ERR_PTR(-ENOMEM);
629 }
630 
631 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
632 				     void *warn_ctx)
633 {
634 	u32 nlink;
635 	int ret;
636 	int i;
637 	unsigned nofs_flag;
638 	struct extent_buffer *eb;
639 	struct btrfs_inode_item *inode_item;
640 	struct scrub_warning *swarn = warn_ctx;
641 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
642 	struct inode_fs_paths *ipath = NULL;
643 	struct btrfs_root *local_root;
644 	struct btrfs_key key;
645 
646 	local_root = btrfs_get_fs_root(fs_info, root, true);
647 	if (IS_ERR(local_root)) {
648 		ret = PTR_ERR(local_root);
649 		goto err;
650 	}
651 
652 	/*
653 	 * this makes the path point to (inum INODE_ITEM ioff)
654 	 */
655 	key.objectid = inum;
656 	key.type = BTRFS_INODE_ITEM_KEY;
657 	key.offset = 0;
658 
659 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
660 	if (ret) {
661 		btrfs_put_root(local_root);
662 		btrfs_release_path(swarn->path);
663 		goto err;
664 	}
665 
666 	eb = swarn->path->nodes[0];
667 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
668 					struct btrfs_inode_item);
669 	nlink = btrfs_inode_nlink(eb, inode_item);
670 	btrfs_release_path(swarn->path);
671 
672 	/*
673 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
674 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
675 	 * not seem to be strictly necessary.
676 	 */
677 	nofs_flag = memalloc_nofs_save();
678 	ipath = init_ipath(4096, local_root, swarn->path);
679 	memalloc_nofs_restore(nofs_flag);
680 	if (IS_ERR(ipath)) {
681 		btrfs_put_root(local_root);
682 		ret = PTR_ERR(ipath);
683 		ipath = NULL;
684 		goto err;
685 	}
686 	ret = paths_from_inode(inum, ipath);
687 
688 	if (ret < 0)
689 		goto err;
690 
691 	/*
692 	 * we deliberately ignore the bit ipath might have been too small to
693 	 * hold all of the paths here
694 	 */
695 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
696 		btrfs_warn_in_rcu(fs_info,
697 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
698 				  swarn->errstr, swarn->logical,
699 				  rcu_str_deref(swarn->dev->name),
700 				  swarn->physical,
701 				  root, inum, offset,
702 				  fs_info->sectorsize, nlink,
703 				  (char *)(unsigned long)ipath->fspath->val[i]);
704 
705 	btrfs_put_root(local_root);
706 	free_ipath(ipath);
707 	return 0;
708 
709 err:
710 	btrfs_warn_in_rcu(fs_info,
711 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
712 			  swarn->errstr, swarn->logical,
713 			  rcu_str_deref(swarn->dev->name),
714 			  swarn->physical,
715 			  root, inum, offset, ret);
716 
717 	free_ipath(ipath);
718 	return 0;
719 }
720 
721 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
722 {
723 	struct btrfs_device *dev;
724 	struct btrfs_fs_info *fs_info;
725 	struct btrfs_path *path;
726 	struct btrfs_key found_key;
727 	struct extent_buffer *eb;
728 	struct btrfs_extent_item *ei;
729 	struct scrub_warning swarn;
730 	unsigned long ptr = 0;
731 	u64 extent_item_pos;
732 	u64 flags = 0;
733 	u64 ref_root;
734 	u32 item_size;
735 	u8 ref_level = 0;
736 	int ret;
737 
738 	WARN_ON(sblock->page_count < 1);
739 	dev = sblock->pagev[0]->dev;
740 	fs_info = sblock->sctx->fs_info;
741 
742 	path = btrfs_alloc_path();
743 	if (!path)
744 		return;
745 
746 	swarn.physical = sblock->pagev[0]->physical;
747 	swarn.logical = sblock->pagev[0]->logical;
748 	swarn.errstr = errstr;
749 	swarn.dev = NULL;
750 
751 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
752 				  &flags);
753 	if (ret < 0)
754 		goto out;
755 
756 	extent_item_pos = swarn.logical - found_key.objectid;
757 	swarn.extent_item_size = found_key.offset;
758 
759 	eb = path->nodes[0];
760 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
761 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
762 
763 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
764 		do {
765 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
766 						      item_size, &ref_root,
767 						      &ref_level);
768 			btrfs_warn_in_rcu(fs_info,
769 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
770 				errstr, swarn.logical,
771 				rcu_str_deref(dev->name),
772 				swarn.physical,
773 				ref_level ? "node" : "leaf",
774 				ret < 0 ? -1 : ref_level,
775 				ret < 0 ? -1 : ref_root);
776 		} while (ret != 1);
777 		btrfs_release_path(path);
778 	} else {
779 		btrfs_release_path(path);
780 		swarn.path = path;
781 		swarn.dev = dev;
782 		iterate_extent_inodes(fs_info, found_key.objectid,
783 					extent_item_pos, 1,
784 					scrub_print_warning_inode, &swarn, false);
785 	}
786 
787 out:
788 	btrfs_free_path(path);
789 }
790 
791 static inline void scrub_get_recover(struct scrub_recover *recover)
792 {
793 	refcount_inc(&recover->refs);
794 }
795 
796 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
797 				     struct scrub_recover *recover)
798 {
799 	if (refcount_dec_and_test(&recover->refs)) {
800 		btrfs_bio_counter_dec(fs_info);
801 		btrfs_put_bbio(recover->bbio);
802 		kfree(recover);
803 	}
804 }
805 
806 /*
807  * scrub_handle_errored_block gets called when either verification of the
808  * pages failed or the bio failed to read, e.g. with EIO. In the latter
809  * case, this function handles all pages in the bio, even though only one
810  * may be bad.
811  * The goal of this function is to repair the errored block by using the
812  * contents of one of the mirrors.
813  */
814 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
815 {
816 	struct scrub_ctx *sctx = sblock_to_check->sctx;
817 	struct btrfs_device *dev;
818 	struct btrfs_fs_info *fs_info;
819 	u64 logical;
820 	unsigned int failed_mirror_index;
821 	unsigned int is_metadata;
822 	unsigned int have_csum;
823 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
824 	struct scrub_block *sblock_bad;
825 	int ret;
826 	int mirror_index;
827 	int page_num;
828 	int success;
829 	bool full_stripe_locked;
830 	unsigned int nofs_flag;
831 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
832 				      DEFAULT_RATELIMIT_BURST);
833 
834 	BUG_ON(sblock_to_check->page_count < 1);
835 	fs_info = sctx->fs_info;
836 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
837 		/*
838 		 * if we find an error in a super block, we just report it.
839 		 * They will get written with the next transaction commit
840 		 * anyway
841 		 */
842 		spin_lock(&sctx->stat_lock);
843 		++sctx->stat.super_errors;
844 		spin_unlock(&sctx->stat_lock);
845 		return 0;
846 	}
847 	logical = sblock_to_check->pagev[0]->logical;
848 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
849 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
850 	is_metadata = !(sblock_to_check->pagev[0]->flags &
851 			BTRFS_EXTENT_FLAG_DATA);
852 	have_csum = sblock_to_check->pagev[0]->have_csum;
853 	dev = sblock_to_check->pagev[0]->dev;
854 
855 	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
856 		return btrfs_repair_one_zone(fs_info, logical);
857 
858 	/*
859 	 * We must use GFP_NOFS because the scrub task might be waiting for a
860 	 * worker task executing this function and in turn a transaction commit
861 	 * might be waiting the scrub task to pause (which needs to wait for all
862 	 * the worker tasks to complete before pausing).
863 	 * We do allocations in the workers through insert_full_stripe_lock()
864 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
865 	 * this function.
866 	 */
867 	nofs_flag = memalloc_nofs_save();
868 	/*
869 	 * For RAID5/6, race can happen for a different device scrub thread.
870 	 * For data corruption, Parity and Data threads will both try
871 	 * to recovery the data.
872 	 * Race can lead to doubly added csum error, or even unrecoverable
873 	 * error.
874 	 */
875 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
876 	if (ret < 0) {
877 		memalloc_nofs_restore(nofs_flag);
878 		spin_lock(&sctx->stat_lock);
879 		if (ret == -ENOMEM)
880 			sctx->stat.malloc_errors++;
881 		sctx->stat.read_errors++;
882 		sctx->stat.uncorrectable_errors++;
883 		spin_unlock(&sctx->stat_lock);
884 		return ret;
885 	}
886 
887 	/*
888 	 * read all mirrors one after the other. This includes to
889 	 * re-read the extent or metadata block that failed (that was
890 	 * the cause that this fixup code is called) another time,
891 	 * sector by sector this time in order to know which sectors
892 	 * caused I/O errors and which ones are good (for all mirrors).
893 	 * It is the goal to handle the situation when more than one
894 	 * mirror contains I/O errors, but the errors do not
895 	 * overlap, i.e. the data can be repaired by selecting the
896 	 * sectors from those mirrors without I/O error on the
897 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
898 	 * would be that mirror #1 has an I/O error on the first sector,
899 	 * the second sector is good, and mirror #2 has an I/O error on
900 	 * the second sector, but the first sector is good.
901 	 * Then the first sector of the first mirror can be repaired by
902 	 * taking the first sector of the second mirror, and the
903 	 * second sector of the second mirror can be repaired by
904 	 * copying the contents of the 2nd sector of the 1st mirror.
905 	 * One more note: if the sectors of one mirror contain I/O
906 	 * errors, the checksum cannot be verified. In order to get
907 	 * the best data for repairing, the first attempt is to find
908 	 * a mirror without I/O errors and with a validated checksum.
909 	 * Only if this is not possible, the sectors are picked from
910 	 * mirrors with I/O errors without considering the checksum.
911 	 * If the latter is the case, at the end, the checksum of the
912 	 * repaired area is verified in order to correctly maintain
913 	 * the statistics.
914 	 */
915 
916 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
917 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
918 	if (!sblocks_for_recheck) {
919 		spin_lock(&sctx->stat_lock);
920 		sctx->stat.malloc_errors++;
921 		sctx->stat.read_errors++;
922 		sctx->stat.uncorrectable_errors++;
923 		spin_unlock(&sctx->stat_lock);
924 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
925 		goto out;
926 	}
927 
928 	/* setup the context, map the logical blocks and alloc the pages */
929 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
930 	if (ret) {
931 		spin_lock(&sctx->stat_lock);
932 		sctx->stat.read_errors++;
933 		sctx->stat.uncorrectable_errors++;
934 		spin_unlock(&sctx->stat_lock);
935 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
936 		goto out;
937 	}
938 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
939 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
940 
941 	/* build and submit the bios for the failed mirror, check checksums */
942 	scrub_recheck_block(fs_info, sblock_bad, 1);
943 
944 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
945 	    sblock_bad->no_io_error_seen) {
946 		/*
947 		 * the error disappeared after reading page by page, or
948 		 * the area was part of a huge bio and other parts of the
949 		 * bio caused I/O errors, or the block layer merged several
950 		 * read requests into one and the error is caused by a
951 		 * different bio (usually one of the two latter cases is
952 		 * the cause)
953 		 */
954 		spin_lock(&sctx->stat_lock);
955 		sctx->stat.unverified_errors++;
956 		sblock_to_check->data_corrected = 1;
957 		spin_unlock(&sctx->stat_lock);
958 
959 		if (sctx->is_dev_replace)
960 			scrub_write_block_to_dev_replace(sblock_bad);
961 		goto out;
962 	}
963 
964 	if (!sblock_bad->no_io_error_seen) {
965 		spin_lock(&sctx->stat_lock);
966 		sctx->stat.read_errors++;
967 		spin_unlock(&sctx->stat_lock);
968 		if (__ratelimit(&rs))
969 			scrub_print_warning("i/o error", sblock_to_check);
970 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
971 	} else if (sblock_bad->checksum_error) {
972 		spin_lock(&sctx->stat_lock);
973 		sctx->stat.csum_errors++;
974 		spin_unlock(&sctx->stat_lock);
975 		if (__ratelimit(&rs))
976 			scrub_print_warning("checksum error", sblock_to_check);
977 		btrfs_dev_stat_inc_and_print(dev,
978 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
979 	} else if (sblock_bad->header_error) {
980 		spin_lock(&sctx->stat_lock);
981 		sctx->stat.verify_errors++;
982 		spin_unlock(&sctx->stat_lock);
983 		if (__ratelimit(&rs))
984 			scrub_print_warning("checksum/header error",
985 					    sblock_to_check);
986 		if (sblock_bad->generation_error)
987 			btrfs_dev_stat_inc_and_print(dev,
988 				BTRFS_DEV_STAT_GENERATION_ERRS);
989 		else
990 			btrfs_dev_stat_inc_and_print(dev,
991 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
992 	}
993 
994 	if (sctx->readonly) {
995 		ASSERT(!sctx->is_dev_replace);
996 		goto out;
997 	}
998 
999 	/*
1000 	 * now build and submit the bios for the other mirrors, check
1001 	 * checksums.
1002 	 * First try to pick the mirror which is completely without I/O
1003 	 * errors and also does not have a checksum error.
1004 	 * If one is found, and if a checksum is present, the full block
1005 	 * that is known to contain an error is rewritten. Afterwards
1006 	 * the block is known to be corrected.
1007 	 * If a mirror is found which is completely correct, and no
1008 	 * checksum is present, only those pages are rewritten that had
1009 	 * an I/O error in the block to be repaired, since it cannot be
1010 	 * determined, which copy of the other pages is better (and it
1011 	 * could happen otherwise that a correct page would be
1012 	 * overwritten by a bad one).
1013 	 */
1014 	for (mirror_index = 0; ;mirror_index++) {
1015 		struct scrub_block *sblock_other;
1016 
1017 		if (mirror_index == failed_mirror_index)
1018 			continue;
1019 
1020 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1021 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1022 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1023 				break;
1024 			if (!sblocks_for_recheck[mirror_index].page_count)
1025 				break;
1026 
1027 			sblock_other = sblocks_for_recheck + mirror_index;
1028 		} else {
1029 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1030 			int max_allowed = r->bbio->num_stripes -
1031 						r->bbio->num_tgtdevs;
1032 
1033 			if (mirror_index >= max_allowed)
1034 				break;
1035 			if (!sblocks_for_recheck[1].page_count)
1036 				break;
1037 
1038 			ASSERT(failed_mirror_index == 0);
1039 			sblock_other = sblocks_for_recheck + 1;
1040 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1041 		}
1042 
1043 		/* build and submit the bios, check checksums */
1044 		scrub_recheck_block(fs_info, sblock_other, 0);
1045 
1046 		if (!sblock_other->header_error &&
1047 		    !sblock_other->checksum_error &&
1048 		    sblock_other->no_io_error_seen) {
1049 			if (sctx->is_dev_replace) {
1050 				scrub_write_block_to_dev_replace(sblock_other);
1051 				goto corrected_error;
1052 			} else {
1053 				ret = scrub_repair_block_from_good_copy(
1054 						sblock_bad, sblock_other);
1055 				if (!ret)
1056 					goto corrected_error;
1057 			}
1058 		}
1059 	}
1060 
1061 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1062 		goto did_not_correct_error;
1063 
1064 	/*
1065 	 * In case of I/O errors in the area that is supposed to be
1066 	 * repaired, continue by picking good copies of those sectors.
1067 	 * Select the good sectors from mirrors to rewrite bad sectors from
1068 	 * the area to fix. Afterwards verify the checksum of the block
1069 	 * that is supposed to be repaired. This verification step is
1070 	 * only done for the purpose of statistic counting and for the
1071 	 * final scrub report, whether errors remain.
1072 	 * A perfect algorithm could make use of the checksum and try
1073 	 * all possible combinations of sectors from the different mirrors
1074 	 * until the checksum verification succeeds. For example, when
1075 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1076 	 * of mirror #2 is readable but the final checksum test fails,
1077 	 * then the 2nd sector of mirror #3 could be tried, whether now
1078 	 * the final checksum succeeds. But this would be a rare
1079 	 * exception and is therefore not implemented. At least it is
1080 	 * avoided that the good copy is overwritten.
1081 	 * A more useful improvement would be to pick the sectors
1082 	 * without I/O error based on sector sizes (512 bytes on legacy
1083 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1084 	 * mirror could be repaired by taking 512 byte of a different
1085 	 * mirror, even if other 512 byte sectors in the same sectorsize
1086 	 * area are unreadable.
1087 	 */
1088 	success = 1;
1089 	for (page_num = 0; page_num < sblock_bad->page_count;
1090 	     page_num++) {
1091 		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1092 		struct scrub_block *sblock_other = NULL;
1093 
1094 		/* skip no-io-error page in scrub */
1095 		if (!spage_bad->io_error && !sctx->is_dev_replace)
1096 			continue;
1097 
1098 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1099 			/*
1100 			 * In case of dev replace, if raid56 rebuild process
1101 			 * didn't work out correct data, then copy the content
1102 			 * in sblock_bad to make sure target device is identical
1103 			 * to source device, instead of writing garbage data in
1104 			 * sblock_for_recheck array to target device.
1105 			 */
1106 			sblock_other = NULL;
1107 		} else if (spage_bad->io_error) {
1108 			/* try to find no-io-error page in mirrors */
1109 			for (mirror_index = 0;
1110 			     mirror_index < BTRFS_MAX_MIRRORS &&
1111 			     sblocks_for_recheck[mirror_index].page_count > 0;
1112 			     mirror_index++) {
1113 				if (!sblocks_for_recheck[mirror_index].
1114 				    pagev[page_num]->io_error) {
1115 					sblock_other = sblocks_for_recheck +
1116 						       mirror_index;
1117 					break;
1118 				}
1119 			}
1120 			if (!sblock_other)
1121 				success = 0;
1122 		}
1123 
1124 		if (sctx->is_dev_replace) {
1125 			/*
1126 			 * did not find a mirror to fetch the page
1127 			 * from. scrub_write_page_to_dev_replace()
1128 			 * handles this case (page->io_error), by
1129 			 * filling the block with zeros before
1130 			 * submitting the write request
1131 			 */
1132 			if (!sblock_other)
1133 				sblock_other = sblock_bad;
1134 
1135 			if (scrub_write_page_to_dev_replace(sblock_other,
1136 							    page_num) != 0) {
1137 				atomic64_inc(
1138 					&fs_info->dev_replace.num_write_errors);
1139 				success = 0;
1140 			}
1141 		} else if (sblock_other) {
1142 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1143 							       sblock_other,
1144 							       page_num, 0);
1145 			if (0 == ret)
1146 				spage_bad->io_error = 0;
1147 			else
1148 				success = 0;
1149 		}
1150 	}
1151 
1152 	if (success && !sctx->is_dev_replace) {
1153 		if (is_metadata || have_csum) {
1154 			/*
1155 			 * need to verify the checksum now that all
1156 			 * sectors on disk are repaired (the write
1157 			 * request for data to be repaired is on its way).
1158 			 * Just be lazy and use scrub_recheck_block()
1159 			 * which re-reads the data before the checksum
1160 			 * is verified, but most likely the data comes out
1161 			 * of the page cache.
1162 			 */
1163 			scrub_recheck_block(fs_info, sblock_bad, 1);
1164 			if (!sblock_bad->header_error &&
1165 			    !sblock_bad->checksum_error &&
1166 			    sblock_bad->no_io_error_seen)
1167 				goto corrected_error;
1168 			else
1169 				goto did_not_correct_error;
1170 		} else {
1171 corrected_error:
1172 			spin_lock(&sctx->stat_lock);
1173 			sctx->stat.corrected_errors++;
1174 			sblock_to_check->data_corrected = 1;
1175 			spin_unlock(&sctx->stat_lock);
1176 			btrfs_err_rl_in_rcu(fs_info,
1177 				"fixed up error at logical %llu on dev %s",
1178 				logical, rcu_str_deref(dev->name));
1179 		}
1180 	} else {
1181 did_not_correct_error:
1182 		spin_lock(&sctx->stat_lock);
1183 		sctx->stat.uncorrectable_errors++;
1184 		spin_unlock(&sctx->stat_lock);
1185 		btrfs_err_rl_in_rcu(fs_info,
1186 			"unable to fixup (regular) error at logical %llu on dev %s",
1187 			logical, rcu_str_deref(dev->name));
1188 	}
1189 
1190 out:
1191 	if (sblocks_for_recheck) {
1192 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1193 		     mirror_index++) {
1194 			struct scrub_block *sblock = sblocks_for_recheck +
1195 						     mirror_index;
1196 			struct scrub_recover *recover;
1197 			int page_index;
1198 
1199 			for (page_index = 0; page_index < sblock->page_count;
1200 			     page_index++) {
1201 				sblock->pagev[page_index]->sblock = NULL;
1202 				recover = sblock->pagev[page_index]->recover;
1203 				if (recover) {
1204 					scrub_put_recover(fs_info, recover);
1205 					sblock->pagev[page_index]->recover =
1206 									NULL;
1207 				}
1208 				scrub_page_put(sblock->pagev[page_index]);
1209 			}
1210 		}
1211 		kfree(sblocks_for_recheck);
1212 	}
1213 
1214 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1215 	memalloc_nofs_restore(nofs_flag);
1216 	if (ret < 0)
1217 		return ret;
1218 	return 0;
1219 }
1220 
1221 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1222 {
1223 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1224 		return 2;
1225 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1226 		return 3;
1227 	else
1228 		return (int)bbio->num_stripes;
1229 }
1230 
1231 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1232 						 u64 *raid_map,
1233 						 u64 mapped_length,
1234 						 int nstripes, int mirror,
1235 						 int *stripe_index,
1236 						 u64 *stripe_offset)
1237 {
1238 	int i;
1239 
1240 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1241 		/* RAID5/6 */
1242 		for (i = 0; i < nstripes; i++) {
1243 			if (raid_map[i] == RAID6_Q_STRIPE ||
1244 			    raid_map[i] == RAID5_P_STRIPE)
1245 				continue;
1246 
1247 			if (logical >= raid_map[i] &&
1248 			    logical < raid_map[i] + mapped_length)
1249 				break;
1250 		}
1251 
1252 		*stripe_index = i;
1253 		*stripe_offset = logical - raid_map[i];
1254 	} else {
1255 		/* The other RAID type */
1256 		*stripe_index = mirror;
1257 		*stripe_offset = 0;
1258 	}
1259 }
1260 
1261 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1262 				     struct scrub_block *sblocks_for_recheck)
1263 {
1264 	struct scrub_ctx *sctx = original_sblock->sctx;
1265 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1266 	u64 length = original_sblock->page_count * fs_info->sectorsize;
1267 	u64 logical = original_sblock->pagev[0]->logical;
1268 	u64 generation = original_sblock->pagev[0]->generation;
1269 	u64 flags = original_sblock->pagev[0]->flags;
1270 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1271 	struct scrub_recover *recover;
1272 	struct btrfs_bio *bbio;
1273 	u64 sublen;
1274 	u64 mapped_length;
1275 	u64 stripe_offset;
1276 	int stripe_index;
1277 	int page_index = 0;
1278 	int mirror_index;
1279 	int nmirrors;
1280 	int ret;
1281 
1282 	/*
1283 	 * note: the two members refs and outstanding_pages
1284 	 * are not used (and not set) in the blocks that are used for
1285 	 * the recheck procedure
1286 	 */
1287 
1288 	while (length > 0) {
1289 		sublen = min_t(u64, length, fs_info->sectorsize);
1290 		mapped_length = sublen;
1291 		bbio = NULL;
1292 
1293 		/*
1294 		 * With a length of sectorsize, each returned stripe represents
1295 		 * one mirror
1296 		 */
1297 		btrfs_bio_counter_inc_blocked(fs_info);
1298 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1299 				logical, &mapped_length, &bbio);
1300 		if (ret || !bbio || mapped_length < sublen) {
1301 			btrfs_put_bbio(bbio);
1302 			btrfs_bio_counter_dec(fs_info);
1303 			return -EIO;
1304 		}
1305 
1306 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1307 		if (!recover) {
1308 			btrfs_put_bbio(bbio);
1309 			btrfs_bio_counter_dec(fs_info);
1310 			return -ENOMEM;
1311 		}
1312 
1313 		refcount_set(&recover->refs, 1);
1314 		recover->bbio = bbio;
1315 		recover->map_length = mapped_length;
1316 
1317 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1318 
1319 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1320 
1321 		for (mirror_index = 0; mirror_index < nmirrors;
1322 		     mirror_index++) {
1323 			struct scrub_block *sblock;
1324 			struct scrub_page *spage;
1325 
1326 			sblock = sblocks_for_recheck + mirror_index;
1327 			sblock->sctx = sctx;
1328 
1329 			spage = kzalloc(sizeof(*spage), GFP_NOFS);
1330 			if (!spage) {
1331 leave_nomem:
1332 				spin_lock(&sctx->stat_lock);
1333 				sctx->stat.malloc_errors++;
1334 				spin_unlock(&sctx->stat_lock);
1335 				scrub_put_recover(fs_info, recover);
1336 				return -ENOMEM;
1337 			}
1338 			scrub_page_get(spage);
1339 			sblock->pagev[page_index] = spage;
1340 			spage->sblock = sblock;
1341 			spage->flags = flags;
1342 			spage->generation = generation;
1343 			spage->logical = logical;
1344 			spage->have_csum = have_csum;
1345 			if (have_csum)
1346 				memcpy(spage->csum,
1347 				       original_sblock->pagev[0]->csum,
1348 				       sctx->fs_info->csum_size);
1349 
1350 			scrub_stripe_index_and_offset(logical,
1351 						      bbio->map_type,
1352 						      bbio->raid_map,
1353 						      mapped_length,
1354 						      bbio->num_stripes -
1355 						      bbio->num_tgtdevs,
1356 						      mirror_index,
1357 						      &stripe_index,
1358 						      &stripe_offset);
1359 			spage->physical = bbio->stripes[stripe_index].physical +
1360 					 stripe_offset;
1361 			spage->dev = bbio->stripes[stripe_index].dev;
1362 
1363 			BUG_ON(page_index >= original_sblock->page_count);
1364 			spage->physical_for_dev_replace =
1365 				original_sblock->pagev[page_index]->
1366 				physical_for_dev_replace;
1367 			/* for missing devices, dev->bdev is NULL */
1368 			spage->mirror_num = mirror_index + 1;
1369 			sblock->page_count++;
1370 			spage->page = alloc_page(GFP_NOFS);
1371 			if (!spage->page)
1372 				goto leave_nomem;
1373 
1374 			scrub_get_recover(recover);
1375 			spage->recover = recover;
1376 		}
1377 		scrub_put_recover(fs_info, recover);
1378 		length -= sublen;
1379 		logical += sublen;
1380 		page_index++;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static void scrub_bio_wait_endio(struct bio *bio)
1387 {
1388 	complete(bio->bi_private);
1389 }
1390 
1391 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1392 					struct bio *bio,
1393 					struct scrub_page *spage)
1394 {
1395 	DECLARE_COMPLETION_ONSTACK(done);
1396 	int ret;
1397 	int mirror_num;
1398 
1399 	bio->bi_iter.bi_sector = spage->logical >> 9;
1400 	bio->bi_private = &done;
1401 	bio->bi_end_io = scrub_bio_wait_endio;
1402 
1403 	mirror_num = spage->sblock->pagev[0]->mirror_num;
1404 	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
1405 				    spage->recover->map_length,
1406 				    mirror_num, 0);
1407 	if (ret)
1408 		return ret;
1409 
1410 	wait_for_completion_io(&done);
1411 	return blk_status_to_errno(bio->bi_status);
1412 }
1413 
1414 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1415 					  struct scrub_block *sblock)
1416 {
1417 	struct scrub_page *first_page = sblock->pagev[0];
1418 	struct bio *bio;
1419 	int page_num;
1420 
1421 	/* All pages in sblock belong to the same stripe on the same device. */
1422 	ASSERT(first_page->dev);
1423 	if (!first_page->dev->bdev)
1424 		goto out;
1425 
1426 	bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
1427 	bio_set_dev(bio, first_page->dev->bdev);
1428 
1429 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1430 		struct scrub_page *spage = sblock->pagev[page_num];
1431 
1432 		WARN_ON(!spage->page);
1433 		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1434 	}
1435 
1436 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1437 		bio_put(bio);
1438 		goto out;
1439 	}
1440 
1441 	bio_put(bio);
1442 
1443 	scrub_recheck_block_checksum(sblock);
1444 
1445 	return;
1446 out:
1447 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1448 		sblock->pagev[page_num]->io_error = 1;
1449 
1450 	sblock->no_io_error_seen = 0;
1451 }
1452 
1453 /*
1454  * this function will check the on disk data for checksum errors, header
1455  * errors and read I/O errors. If any I/O errors happen, the exact pages
1456  * which are errored are marked as being bad. The goal is to enable scrub
1457  * to take those pages that are not errored from all the mirrors so that
1458  * the pages that are errored in the just handled mirror can be repaired.
1459  */
1460 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1461 				struct scrub_block *sblock,
1462 				int retry_failed_mirror)
1463 {
1464 	int page_num;
1465 
1466 	sblock->no_io_error_seen = 1;
1467 
1468 	/* short cut for raid56 */
1469 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1470 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1471 
1472 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1473 		struct bio *bio;
1474 		struct scrub_page *spage = sblock->pagev[page_num];
1475 
1476 		if (spage->dev->bdev == NULL) {
1477 			spage->io_error = 1;
1478 			sblock->no_io_error_seen = 0;
1479 			continue;
1480 		}
1481 
1482 		WARN_ON(!spage->page);
1483 		bio = btrfs_io_bio_alloc(1);
1484 		bio_set_dev(bio, spage->dev->bdev);
1485 
1486 		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1487 		bio->bi_iter.bi_sector = spage->physical >> 9;
1488 		bio->bi_opf = REQ_OP_READ;
1489 
1490 		if (btrfsic_submit_bio_wait(bio)) {
1491 			spage->io_error = 1;
1492 			sblock->no_io_error_seen = 0;
1493 		}
1494 
1495 		bio_put(bio);
1496 	}
1497 
1498 	if (sblock->no_io_error_seen)
1499 		scrub_recheck_block_checksum(sblock);
1500 }
1501 
1502 static inline int scrub_check_fsid(u8 fsid[],
1503 				   struct scrub_page *spage)
1504 {
1505 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1506 	int ret;
1507 
1508 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1509 	return !ret;
1510 }
1511 
1512 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1513 {
1514 	sblock->header_error = 0;
1515 	sblock->checksum_error = 0;
1516 	sblock->generation_error = 0;
1517 
1518 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1519 		scrub_checksum_data(sblock);
1520 	else
1521 		scrub_checksum_tree_block(sblock);
1522 }
1523 
1524 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1525 					     struct scrub_block *sblock_good)
1526 {
1527 	int page_num;
1528 	int ret = 0;
1529 
1530 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1531 		int ret_sub;
1532 
1533 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1534 							   sblock_good,
1535 							   page_num, 1);
1536 		if (ret_sub)
1537 			ret = ret_sub;
1538 	}
1539 
1540 	return ret;
1541 }
1542 
1543 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1544 					    struct scrub_block *sblock_good,
1545 					    int page_num, int force_write)
1546 {
1547 	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1548 	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1549 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1550 	const u32 sectorsize = fs_info->sectorsize;
1551 
1552 	BUG_ON(spage_bad->page == NULL);
1553 	BUG_ON(spage_good->page == NULL);
1554 	if (force_write || sblock_bad->header_error ||
1555 	    sblock_bad->checksum_error || spage_bad->io_error) {
1556 		struct bio *bio;
1557 		int ret;
1558 
1559 		if (!spage_bad->dev->bdev) {
1560 			btrfs_warn_rl(fs_info,
1561 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562 			return -EIO;
1563 		}
1564 
1565 		bio = btrfs_io_bio_alloc(1);
1566 		bio_set_dev(bio, spage_bad->dev->bdev);
1567 		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1568 		bio->bi_opf = REQ_OP_WRITE;
1569 
1570 		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1571 		if (ret != sectorsize) {
1572 			bio_put(bio);
1573 			return -EIO;
1574 		}
1575 
1576 		if (btrfsic_submit_bio_wait(bio)) {
1577 			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1578 				BTRFS_DEV_STAT_WRITE_ERRS);
1579 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1580 			bio_put(bio);
1581 			return -EIO;
1582 		}
1583 		bio_put(bio);
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1590 {
1591 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1592 	int page_num;
1593 
1594 	/*
1595 	 * This block is used for the check of the parity on the source device,
1596 	 * so the data needn't be written into the destination device.
1597 	 */
1598 	if (sblock->sparity)
1599 		return;
1600 
1601 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1602 		int ret;
1603 
1604 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1605 		if (ret)
1606 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1607 	}
1608 }
1609 
1610 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1611 					   int page_num)
1612 {
1613 	struct scrub_page *spage = sblock->pagev[page_num];
1614 
1615 	BUG_ON(spage->page == NULL);
1616 	if (spage->io_error)
1617 		clear_page(page_address(spage->page));
1618 
1619 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1620 }
1621 
1622 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1623 {
1624 	int ret = 0;
1625 	u64 length;
1626 
1627 	if (!btrfs_is_zoned(sctx->fs_info))
1628 		return 0;
1629 
1630 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1631 		return 0;
1632 
1633 	if (sctx->write_pointer < physical) {
1634 		length = physical - sctx->write_pointer;
1635 
1636 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1637 						sctx->write_pointer, length);
1638 		if (!ret)
1639 			sctx->write_pointer = physical;
1640 	}
1641 	return ret;
1642 }
1643 
1644 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1645 				    struct scrub_page *spage)
1646 {
1647 	struct scrub_bio *sbio;
1648 	int ret;
1649 	const u32 sectorsize = sctx->fs_info->sectorsize;
1650 
1651 	mutex_lock(&sctx->wr_lock);
1652 again:
1653 	if (!sctx->wr_curr_bio) {
1654 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1655 					      GFP_KERNEL);
1656 		if (!sctx->wr_curr_bio) {
1657 			mutex_unlock(&sctx->wr_lock);
1658 			return -ENOMEM;
1659 		}
1660 		sctx->wr_curr_bio->sctx = sctx;
1661 		sctx->wr_curr_bio->page_count = 0;
1662 	}
1663 	sbio = sctx->wr_curr_bio;
1664 	if (sbio->page_count == 0) {
1665 		struct bio *bio;
1666 
1667 		ret = fill_writer_pointer_gap(sctx,
1668 					      spage->physical_for_dev_replace);
1669 		if (ret) {
1670 			mutex_unlock(&sctx->wr_lock);
1671 			return ret;
1672 		}
1673 
1674 		sbio->physical = spage->physical_for_dev_replace;
1675 		sbio->logical = spage->logical;
1676 		sbio->dev = sctx->wr_tgtdev;
1677 		bio = sbio->bio;
1678 		if (!bio) {
1679 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1680 			sbio->bio = bio;
1681 		}
1682 
1683 		bio->bi_private = sbio;
1684 		bio->bi_end_io = scrub_wr_bio_end_io;
1685 		bio_set_dev(bio, sbio->dev->bdev);
1686 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 		bio->bi_opf = REQ_OP_WRITE;
1688 		sbio->status = 0;
1689 	} else if (sbio->physical + sbio->page_count * sectorsize !=
1690 		   spage->physical_for_dev_replace ||
1691 		   sbio->logical + sbio->page_count * sectorsize !=
1692 		   spage->logical) {
1693 		scrub_wr_submit(sctx);
1694 		goto again;
1695 	}
1696 
1697 	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1698 	if (ret != sectorsize) {
1699 		if (sbio->page_count < 1) {
1700 			bio_put(sbio->bio);
1701 			sbio->bio = NULL;
1702 			mutex_unlock(&sctx->wr_lock);
1703 			return -EIO;
1704 		}
1705 		scrub_wr_submit(sctx);
1706 		goto again;
1707 	}
1708 
1709 	sbio->pagev[sbio->page_count] = spage;
1710 	scrub_page_get(spage);
1711 	sbio->page_count++;
1712 	if (sbio->page_count == sctx->pages_per_wr_bio)
1713 		scrub_wr_submit(sctx);
1714 	mutex_unlock(&sctx->wr_lock);
1715 
1716 	return 0;
1717 }
1718 
1719 static void scrub_wr_submit(struct scrub_ctx *sctx)
1720 {
1721 	struct scrub_bio *sbio;
1722 
1723 	if (!sctx->wr_curr_bio)
1724 		return;
1725 
1726 	sbio = sctx->wr_curr_bio;
1727 	sctx->wr_curr_bio = NULL;
1728 	WARN_ON(!sbio->bio->bi_bdev);
1729 	scrub_pending_bio_inc(sctx);
1730 	/* process all writes in a single worker thread. Then the block layer
1731 	 * orders the requests before sending them to the driver which
1732 	 * doubled the write performance on spinning disks when measured
1733 	 * with Linux 3.5 */
1734 	btrfsic_submit_bio(sbio->bio);
1735 
1736 	if (btrfs_is_zoned(sctx->fs_info))
1737 		sctx->write_pointer = sbio->physical + sbio->page_count *
1738 			sctx->fs_info->sectorsize;
1739 }
1740 
1741 static void scrub_wr_bio_end_io(struct bio *bio)
1742 {
1743 	struct scrub_bio *sbio = bio->bi_private;
1744 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1745 
1746 	sbio->status = bio->bi_status;
1747 	sbio->bio = bio;
1748 
1749 	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1750 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1751 }
1752 
1753 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1754 {
1755 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1756 	struct scrub_ctx *sctx = sbio->sctx;
1757 	int i;
1758 
1759 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1760 	if (sbio->status) {
1761 		struct btrfs_dev_replace *dev_replace =
1762 			&sbio->sctx->fs_info->dev_replace;
1763 
1764 		for (i = 0; i < sbio->page_count; i++) {
1765 			struct scrub_page *spage = sbio->pagev[i];
1766 
1767 			spage->io_error = 1;
1768 			atomic64_inc(&dev_replace->num_write_errors);
1769 		}
1770 	}
1771 
1772 	for (i = 0; i < sbio->page_count; i++)
1773 		scrub_page_put(sbio->pagev[i]);
1774 
1775 	bio_put(sbio->bio);
1776 	kfree(sbio);
1777 	scrub_pending_bio_dec(sctx);
1778 }
1779 
1780 static int scrub_checksum(struct scrub_block *sblock)
1781 {
1782 	u64 flags;
1783 	int ret;
1784 
1785 	/*
1786 	 * No need to initialize these stats currently,
1787 	 * because this function only use return value
1788 	 * instead of these stats value.
1789 	 *
1790 	 * Todo:
1791 	 * always use stats
1792 	 */
1793 	sblock->header_error = 0;
1794 	sblock->generation_error = 0;
1795 	sblock->checksum_error = 0;
1796 
1797 	WARN_ON(sblock->page_count < 1);
1798 	flags = sblock->pagev[0]->flags;
1799 	ret = 0;
1800 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1801 		ret = scrub_checksum_data(sblock);
1802 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1803 		ret = scrub_checksum_tree_block(sblock);
1804 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1805 		(void)scrub_checksum_super(sblock);
1806 	else
1807 		WARN_ON(1);
1808 	if (ret)
1809 		scrub_handle_errored_block(sblock);
1810 
1811 	return ret;
1812 }
1813 
1814 static int scrub_checksum_data(struct scrub_block *sblock)
1815 {
1816 	struct scrub_ctx *sctx = sblock->sctx;
1817 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1818 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1819 	u8 csum[BTRFS_CSUM_SIZE];
1820 	struct scrub_page *spage;
1821 	char *kaddr;
1822 
1823 	BUG_ON(sblock->page_count < 1);
1824 	spage = sblock->pagev[0];
1825 	if (!spage->have_csum)
1826 		return 0;
1827 
1828 	kaddr = page_address(spage->page);
1829 
1830 	shash->tfm = fs_info->csum_shash;
1831 	crypto_shash_init(shash);
1832 
1833 	/*
1834 	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1835 	 * only contains one sector of data.
1836 	 */
1837 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1838 
1839 	if (memcmp(csum, spage->csum, fs_info->csum_size))
1840 		sblock->checksum_error = 1;
1841 	return sblock->checksum_error;
1842 }
1843 
1844 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1845 {
1846 	struct scrub_ctx *sctx = sblock->sctx;
1847 	struct btrfs_header *h;
1848 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1849 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1850 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1851 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1852 	/*
1853 	 * This is done in sectorsize steps even for metadata as there's a
1854 	 * constraint for nodesize to be aligned to sectorsize. This will need
1855 	 * to change so we don't misuse data and metadata units like that.
1856 	 */
1857 	const u32 sectorsize = sctx->fs_info->sectorsize;
1858 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1859 	int i;
1860 	struct scrub_page *spage;
1861 	char *kaddr;
1862 
1863 	BUG_ON(sblock->page_count < 1);
1864 
1865 	/* Each member in pagev is just one block, not a full page */
1866 	ASSERT(sblock->page_count == num_sectors);
1867 
1868 	spage = sblock->pagev[0];
1869 	kaddr = page_address(spage->page);
1870 	h = (struct btrfs_header *)kaddr;
1871 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1872 
1873 	/*
1874 	 * we don't use the getter functions here, as we
1875 	 * a) don't have an extent buffer and
1876 	 * b) the page is already kmapped
1877 	 */
1878 	if (spage->logical != btrfs_stack_header_bytenr(h))
1879 		sblock->header_error = 1;
1880 
1881 	if (spage->generation != btrfs_stack_header_generation(h)) {
1882 		sblock->header_error = 1;
1883 		sblock->generation_error = 1;
1884 	}
1885 
1886 	if (!scrub_check_fsid(h->fsid, spage))
1887 		sblock->header_error = 1;
1888 
1889 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1890 		   BTRFS_UUID_SIZE))
1891 		sblock->header_error = 1;
1892 
1893 	shash->tfm = fs_info->csum_shash;
1894 	crypto_shash_init(shash);
1895 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1896 			    sectorsize - BTRFS_CSUM_SIZE);
1897 
1898 	for (i = 1; i < num_sectors; i++) {
1899 		kaddr = page_address(sblock->pagev[i]->page);
1900 		crypto_shash_update(shash, kaddr, sectorsize);
1901 	}
1902 
1903 	crypto_shash_final(shash, calculated_csum);
1904 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1905 		sblock->checksum_error = 1;
1906 
1907 	return sblock->header_error || sblock->checksum_error;
1908 }
1909 
1910 static int scrub_checksum_super(struct scrub_block *sblock)
1911 {
1912 	struct btrfs_super_block *s;
1913 	struct scrub_ctx *sctx = sblock->sctx;
1914 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1915 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1916 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1917 	struct scrub_page *spage;
1918 	char *kaddr;
1919 	int fail_gen = 0;
1920 	int fail_cor = 0;
1921 
1922 	BUG_ON(sblock->page_count < 1);
1923 	spage = sblock->pagev[0];
1924 	kaddr = page_address(spage->page);
1925 	s = (struct btrfs_super_block *)kaddr;
1926 
1927 	if (spage->logical != btrfs_super_bytenr(s))
1928 		++fail_cor;
1929 
1930 	if (spage->generation != btrfs_super_generation(s))
1931 		++fail_gen;
1932 
1933 	if (!scrub_check_fsid(s->fsid, spage))
1934 		++fail_cor;
1935 
1936 	shash->tfm = fs_info->csum_shash;
1937 	crypto_shash_init(shash);
1938 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1939 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1940 
1941 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1942 		++fail_cor;
1943 
1944 	if (fail_cor + fail_gen) {
1945 		/*
1946 		 * if we find an error in a super block, we just report it.
1947 		 * They will get written with the next transaction commit
1948 		 * anyway
1949 		 */
1950 		spin_lock(&sctx->stat_lock);
1951 		++sctx->stat.super_errors;
1952 		spin_unlock(&sctx->stat_lock);
1953 		if (fail_cor)
1954 			btrfs_dev_stat_inc_and_print(spage->dev,
1955 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1956 		else
1957 			btrfs_dev_stat_inc_and_print(spage->dev,
1958 				BTRFS_DEV_STAT_GENERATION_ERRS);
1959 	}
1960 
1961 	return fail_cor + fail_gen;
1962 }
1963 
1964 static void scrub_block_get(struct scrub_block *sblock)
1965 {
1966 	refcount_inc(&sblock->refs);
1967 }
1968 
1969 static void scrub_block_put(struct scrub_block *sblock)
1970 {
1971 	if (refcount_dec_and_test(&sblock->refs)) {
1972 		int i;
1973 
1974 		if (sblock->sparity)
1975 			scrub_parity_put(sblock->sparity);
1976 
1977 		for (i = 0; i < sblock->page_count; i++)
1978 			scrub_page_put(sblock->pagev[i]);
1979 		kfree(sblock);
1980 	}
1981 }
1982 
1983 static void scrub_page_get(struct scrub_page *spage)
1984 {
1985 	atomic_inc(&spage->refs);
1986 }
1987 
1988 static void scrub_page_put(struct scrub_page *spage)
1989 {
1990 	if (atomic_dec_and_test(&spage->refs)) {
1991 		if (spage->page)
1992 			__free_page(spage->page);
1993 		kfree(spage);
1994 	}
1995 }
1996 
1997 /*
1998  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1999  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2000  */
2001 static void scrub_throttle(struct scrub_ctx *sctx)
2002 {
2003 	const int time_slice = 1000;
2004 	struct scrub_bio *sbio;
2005 	struct btrfs_device *device;
2006 	s64 delta;
2007 	ktime_t now;
2008 	u32 div;
2009 	u64 bwlimit;
2010 
2011 	sbio = sctx->bios[sctx->curr];
2012 	device = sbio->dev;
2013 	bwlimit = READ_ONCE(device->scrub_speed_max);
2014 	if (bwlimit == 0)
2015 		return;
2016 
2017 	/*
2018 	 * Slice is divided into intervals when the IO is submitted, adjust by
2019 	 * bwlimit and maximum of 64 intervals.
2020 	 */
2021 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2022 	div = min_t(u32, 64, div);
2023 
2024 	/* Start new epoch, set deadline */
2025 	now = ktime_get();
2026 	if (sctx->throttle_deadline == 0) {
2027 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2028 		sctx->throttle_sent = 0;
2029 	}
2030 
2031 	/* Still in the time to send? */
2032 	if (ktime_before(now, sctx->throttle_deadline)) {
2033 		/* If current bio is within the limit, send it */
2034 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2035 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2036 			return;
2037 
2038 		/* We're over the limit, sleep until the rest of the slice */
2039 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2040 	} else {
2041 		/* New request after deadline, start new epoch */
2042 		delta = 0;
2043 	}
2044 
2045 	if (delta) {
2046 		long timeout;
2047 
2048 		timeout = div_u64(delta * HZ, 1000);
2049 		schedule_timeout_interruptible(timeout);
2050 	}
2051 
2052 	/* Next call will start the deadline period */
2053 	sctx->throttle_deadline = 0;
2054 }
2055 
2056 static void scrub_submit(struct scrub_ctx *sctx)
2057 {
2058 	struct scrub_bio *sbio;
2059 
2060 	if (sctx->curr == -1)
2061 		return;
2062 
2063 	scrub_throttle(sctx);
2064 
2065 	sbio = sctx->bios[sctx->curr];
2066 	sctx->curr = -1;
2067 	scrub_pending_bio_inc(sctx);
2068 	btrfsic_submit_bio(sbio->bio);
2069 }
2070 
2071 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2072 				    struct scrub_page *spage)
2073 {
2074 	struct scrub_block *sblock = spage->sblock;
2075 	struct scrub_bio *sbio;
2076 	const u32 sectorsize = sctx->fs_info->sectorsize;
2077 	int ret;
2078 
2079 again:
2080 	/*
2081 	 * grab a fresh bio or wait for one to become available
2082 	 */
2083 	while (sctx->curr == -1) {
2084 		spin_lock(&sctx->list_lock);
2085 		sctx->curr = sctx->first_free;
2086 		if (sctx->curr != -1) {
2087 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2088 			sctx->bios[sctx->curr]->next_free = -1;
2089 			sctx->bios[sctx->curr]->page_count = 0;
2090 			spin_unlock(&sctx->list_lock);
2091 		} else {
2092 			spin_unlock(&sctx->list_lock);
2093 			wait_event(sctx->list_wait, sctx->first_free != -1);
2094 		}
2095 	}
2096 	sbio = sctx->bios[sctx->curr];
2097 	if (sbio->page_count == 0) {
2098 		struct bio *bio;
2099 
2100 		sbio->physical = spage->physical;
2101 		sbio->logical = spage->logical;
2102 		sbio->dev = spage->dev;
2103 		bio = sbio->bio;
2104 		if (!bio) {
2105 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2106 			sbio->bio = bio;
2107 		}
2108 
2109 		bio->bi_private = sbio;
2110 		bio->bi_end_io = scrub_bio_end_io;
2111 		bio_set_dev(bio, sbio->dev->bdev);
2112 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2113 		bio->bi_opf = REQ_OP_READ;
2114 		sbio->status = 0;
2115 	} else if (sbio->physical + sbio->page_count * sectorsize !=
2116 		   spage->physical ||
2117 		   sbio->logical + sbio->page_count * sectorsize !=
2118 		   spage->logical ||
2119 		   sbio->dev != spage->dev) {
2120 		scrub_submit(sctx);
2121 		goto again;
2122 	}
2123 
2124 	sbio->pagev[sbio->page_count] = spage;
2125 	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2126 	if (ret != sectorsize) {
2127 		if (sbio->page_count < 1) {
2128 			bio_put(sbio->bio);
2129 			sbio->bio = NULL;
2130 			return -EIO;
2131 		}
2132 		scrub_submit(sctx);
2133 		goto again;
2134 	}
2135 
2136 	scrub_block_get(sblock); /* one for the page added to the bio */
2137 	atomic_inc(&sblock->outstanding_pages);
2138 	sbio->page_count++;
2139 	if (sbio->page_count == sctx->pages_per_rd_bio)
2140 		scrub_submit(sctx);
2141 
2142 	return 0;
2143 }
2144 
2145 static void scrub_missing_raid56_end_io(struct bio *bio)
2146 {
2147 	struct scrub_block *sblock = bio->bi_private;
2148 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2149 
2150 	if (bio->bi_status)
2151 		sblock->no_io_error_seen = 0;
2152 
2153 	bio_put(bio);
2154 
2155 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2156 }
2157 
2158 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2159 {
2160 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2161 	struct scrub_ctx *sctx = sblock->sctx;
2162 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2163 	u64 logical;
2164 	struct btrfs_device *dev;
2165 
2166 	logical = sblock->pagev[0]->logical;
2167 	dev = sblock->pagev[0]->dev;
2168 
2169 	if (sblock->no_io_error_seen)
2170 		scrub_recheck_block_checksum(sblock);
2171 
2172 	if (!sblock->no_io_error_seen) {
2173 		spin_lock(&sctx->stat_lock);
2174 		sctx->stat.read_errors++;
2175 		spin_unlock(&sctx->stat_lock);
2176 		btrfs_err_rl_in_rcu(fs_info,
2177 			"IO error rebuilding logical %llu for dev %s",
2178 			logical, rcu_str_deref(dev->name));
2179 	} else if (sblock->header_error || sblock->checksum_error) {
2180 		spin_lock(&sctx->stat_lock);
2181 		sctx->stat.uncorrectable_errors++;
2182 		spin_unlock(&sctx->stat_lock);
2183 		btrfs_err_rl_in_rcu(fs_info,
2184 			"failed to rebuild valid logical %llu for dev %s",
2185 			logical, rcu_str_deref(dev->name));
2186 	} else {
2187 		scrub_write_block_to_dev_replace(sblock);
2188 	}
2189 
2190 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2191 		mutex_lock(&sctx->wr_lock);
2192 		scrub_wr_submit(sctx);
2193 		mutex_unlock(&sctx->wr_lock);
2194 	}
2195 
2196 	scrub_block_put(sblock);
2197 	scrub_pending_bio_dec(sctx);
2198 }
2199 
2200 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2201 {
2202 	struct scrub_ctx *sctx = sblock->sctx;
2203 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2204 	u64 length = sblock->page_count * PAGE_SIZE;
2205 	u64 logical = sblock->pagev[0]->logical;
2206 	struct btrfs_bio *bbio = NULL;
2207 	struct bio *bio;
2208 	struct btrfs_raid_bio *rbio;
2209 	int ret;
2210 	int i;
2211 
2212 	btrfs_bio_counter_inc_blocked(fs_info);
2213 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2214 			&length, &bbio);
2215 	if (ret || !bbio || !bbio->raid_map)
2216 		goto bbio_out;
2217 
2218 	if (WARN_ON(!sctx->is_dev_replace ||
2219 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2220 		/*
2221 		 * We shouldn't be scrubbing a missing device. Even for dev
2222 		 * replace, we should only get here for RAID 5/6. We either
2223 		 * managed to mount something with no mirrors remaining or
2224 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2225 		 */
2226 		goto bbio_out;
2227 	}
2228 
2229 	bio = btrfs_io_bio_alloc(0);
2230 	bio->bi_iter.bi_sector = logical >> 9;
2231 	bio->bi_private = sblock;
2232 	bio->bi_end_io = scrub_missing_raid56_end_io;
2233 
2234 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2235 	if (!rbio)
2236 		goto rbio_out;
2237 
2238 	for (i = 0; i < sblock->page_count; i++) {
2239 		struct scrub_page *spage = sblock->pagev[i];
2240 
2241 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2242 	}
2243 
2244 	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2245 	scrub_block_get(sblock);
2246 	scrub_pending_bio_inc(sctx);
2247 	raid56_submit_missing_rbio(rbio);
2248 	return;
2249 
2250 rbio_out:
2251 	bio_put(bio);
2252 bbio_out:
2253 	btrfs_bio_counter_dec(fs_info);
2254 	btrfs_put_bbio(bbio);
2255 	spin_lock(&sctx->stat_lock);
2256 	sctx->stat.malloc_errors++;
2257 	spin_unlock(&sctx->stat_lock);
2258 }
2259 
2260 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2261 		       u64 physical, struct btrfs_device *dev, u64 flags,
2262 		       u64 gen, int mirror_num, u8 *csum,
2263 		       u64 physical_for_dev_replace)
2264 {
2265 	struct scrub_block *sblock;
2266 	const u32 sectorsize = sctx->fs_info->sectorsize;
2267 	int index;
2268 
2269 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2270 	if (!sblock) {
2271 		spin_lock(&sctx->stat_lock);
2272 		sctx->stat.malloc_errors++;
2273 		spin_unlock(&sctx->stat_lock);
2274 		return -ENOMEM;
2275 	}
2276 
2277 	/* one ref inside this function, plus one for each page added to
2278 	 * a bio later on */
2279 	refcount_set(&sblock->refs, 1);
2280 	sblock->sctx = sctx;
2281 	sblock->no_io_error_seen = 1;
2282 
2283 	for (index = 0; len > 0; index++) {
2284 		struct scrub_page *spage;
2285 		/*
2286 		 * Here we will allocate one page for one sector to scrub.
2287 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2288 		 * more memory for PAGE_SIZE > sectorsize case.
2289 		 */
2290 		u32 l = min(sectorsize, len);
2291 
2292 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2293 		if (!spage) {
2294 leave_nomem:
2295 			spin_lock(&sctx->stat_lock);
2296 			sctx->stat.malloc_errors++;
2297 			spin_unlock(&sctx->stat_lock);
2298 			scrub_block_put(sblock);
2299 			return -ENOMEM;
2300 		}
2301 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2302 		scrub_page_get(spage);
2303 		sblock->pagev[index] = spage;
2304 		spage->sblock = sblock;
2305 		spage->dev = dev;
2306 		spage->flags = flags;
2307 		spage->generation = gen;
2308 		spage->logical = logical;
2309 		spage->physical = physical;
2310 		spage->physical_for_dev_replace = physical_for_dev_replace;
2311 		spage->mirror_num = mirror_num;
2312 		if (csum) {
2313 			spage->have_csum = 1;
2314 			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2315 		} else {
2316 			spage->have_csum = 0;
2317 		}
2318 		sblock->page_count++;
2319 		spage->page = alloc_page(GFP_KERNEL);
2320 		if (!spage->page)
2321 			goto leave_nomem;
2322 		len -= l;
2323 		logical += l;
2324 		physical += l;
2325 		physical_for_dev_replace += l;
2326 	}
2327 
2328 	WARN_ON(sblock->page_count == 0);
2329 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2330 		/*
2331 		 * This case should only be hit for RAID 5/6 device replace. See
2332 		 * the comment in scrub_missing_raid56_pages() for details.
2333 		 */
2334 		scrub_missing_raid56_pages(sblock);
2335 	} else {
2336 		for (index = 0; index < sblock->page_count; index++) {
2337 			struct scrub_page *spage = sblock->pagev[index];
2338 			int ret;
2339 
2340 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2341 			if (ret) {
2342 				scrub_block_put(sblock);
2343 				return ret;
2344 			}
2345 		}
2346 
2347 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2348 			scrub_submit(sctx);
2349 	}
2350 
2351 	/* last one frees, either here or in bio completion for last page */
2352 	scrub_block_put(sblock);
2353 	return 0;
2354 }
2355 
2356 static void scrub_bio_end_io(struct bio *bio)
2357 {
2358 	struct scrub_bio *sbio = bio->bi_private;
2359 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2360 
2361 	sbio->status = bio->bi_status;
2362 	sbio->bio = bio;
2363 
2364 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2365 }
2366 
2367 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2368 {
2369 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2370 	struct scrub_ctx *sctx = sbio->sctx;
2371 	int i;
2372 
2373 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2374 	if (sbio->status) {
2375 		for (i = 0; i < sbio->page_count; i++) {
2376 			struct scrub_page *spage = sbio->pagev[i];
2377 
2378 			spage->io_error = 1;
2379 			spage->sblock->no_io_error_seen = 0;
2380 		}
2381 	}
2382 
2383 	/* now complete the scrub_block items that have all pages completed */
2384 	for (i = 0; i < sbio->page_count; i++) {
2385 		struct scrub_page *spage = sbio->pagev[i];
2386 		struct scrub_block *sblock = spage->sblock;
2387 
2388 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2389 			scrub_block_complete(sblock);
2390 		scrub_block_put(sblock);
2391 	}
2392 
2393 	bio_put(sbio->bio);
2394 	sbio->bio = NULL;
2395 	spin_lock(&sctx->list_lock);
2396 	sbio->next_free = sctx->first_free;
2397 	sctx->first_free = sbio->index;
2398 	spin_unlock(&sctx->list_lock);
2399 
2400 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2401 		mutex_lock(&sctx->wr_lock);
2402 		scrub_wr_submit(sctx);
2403 		mutex_unlock(&sctx->wr_lock);
2404 	}
2405 
2406 	scrub_pending_bio_dec(sctx);
2407 }
2408 
2409 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2410 				       unsigned long *bitmap,
2411 				       u64 start, u32 len)
2412 {
2413 	u64 offset;
2414 	u32 nsectors;
2415 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2416 
2417 	if (len >= sparity->stripe_len) {
2418 		bitmap_set(bitmap, 0, sparity->nsectors);
2419 		return;
2420 	}
2421 
2422 	start -= sparity->logic_start;
2423 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2424 	offset = offset >> sectorsize_bits;
2425 	nsectors = len >> sectorsize_bits;
2426 
2427 	if (offset + nsectors <= sparity->nsectors) {
2428 		bitmap_set(bitmap, offset, nsectors);
2429 		return;
2430 	}
2431 
2432 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2433 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2434 }
2435 
2436 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2437 						   u64 start, u32 len)
2438 {
2439 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2440 }
2441 
2442 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2443 						  u64 start, u32 len)
2444 {
2445 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2446 }
2447 
2448 static void scrub_block_complete(struct scrub_block *sblock)
2449 {
2450 	int corrupted = 0;
2451 
2452 	if (!sblock->no_io_error_seen) {
2453 		corrupted = 1;
2454 		scrub_handle_errored_block(sblock);
2455 	} else {
2456 		/*
2457 		 * if has checksum error, write via repair mechanism in
2458 		 * dev replace case, otherwise write here in dev replace
2459 		 * case.
2460 		 */
2461 		corrupted = scrub_checksum(sblock);
2462 		if (!corrupted && sblock->sctx->is_dev_replace)
2463 			scrub_write_block_to_dev_replace(sblock);
2464 	}
2465 
2466 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2467 		u64 start = sblock->pagev[0]->logical;
2468 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2469 			  sblock->sctx->fs_info->sectorsize;
2470 
2471 		ASSERT(end - start <= U32_MAX);
2472 		scrub_parity_mark_sectors_error(sblock->sparity,
2473 						start, end - start);
2474 	}
2475 }
2476 
2477 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2478 {
2479 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2480 	list_del(&sum->list);
2481 	kfree(sum);
2482 }
2483 
2484 /*
2485  * Find the desired csum for range [logical, logical + sectorsize), and store
2486  * the csum into @csum.
2487  *
2488  * The search source is sctx->csum_list, which is a pre-populated list
2489  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2490  * that is before @logical.
2491  *
2492  * Return 0 if there is no csum for the range.
2493  * Return 1 if there is csum for the range and copied to @csum.
2494  */
2495 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2496 {
2497 	bool found = false;
2498 
2499 	while (!list_empty(&sctx->csum_list)) {
2500 		struct btrfs_ordered_sum *sum = NULL;
2501 		unsigned long index;
2502 		unsigned long num_sectors;
2503 
2504 		sum = list_first_entry(&sctx->csum_list,
2505 				       struct btrfs_ordered_sum, list);
2506 		/* The current csum range is beyond our range, no csum found */
2507 		if (sum->bytenr > logical)
2508 			break;
2509 
2510 		/*
2511 		 * The current sum is before our bytenr, since scrub is always
2512 		 * done in bytenr order, the csum will never be used anymore,
2513 		 * clean it up so that later calls won't bother with the range,
2514 		 * and continue search the next range.
2515 		 */
2516 		if (sum->bytenr + sum->len <= logical) {
2517 			drop_csum_range(sctx, sum);
2518 			continue;
2519 		}
2520 
2521 		/* Now the csum range covers our bytenr, copy the csum */
2522 		found = true;
2523 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2524 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2525 
2526 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2527 		       sctx->fs_info->csum_size);
2528 
2529 		/* Cleanup the range if we're at the end of the csum range */
2530 		if (index == num_sectors - 1)
2531 			drop_csum_range(sctx, sum);
2532 		break;
2533 	}
2534 	if (!found)
2535 		return 0;
2536 	return 1;
2537 }
2538 
2539 /* scrub extent tries to collect up to 64 kB for each bio */
2540 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2541 			u64 logical, u32 len,
2542 			u64 physical, struct btrfs_device *dev, u64 flags,
2543 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2544 {
2545 	int ret;
2546 	u8 csum[BTRFS_CSUM_SIZE];
2547 	u32 blocksize;
2548 
2549 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2550 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2551 			blocksize = map->stripe_len;
2552 		else
2553 			blocksize = sctx->fs_info->sectorsize;
2554 		spin_lock(&sctx->stat_lock);
2555 		sctx->stat.data_extents_scrubbed++;
2556 		sctx->stat.data_bytes_scrubbed += len;
2557 		spin_unlock(&sctx->stat_lock);
2558 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2559 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2560 			blocksize = map->stripe_len;
2561 		else
2562 			blocksize = sctx->fs_info->nodesize;
2563 		spin_lock(&sctx->stat_lock);
2564 		sctx->stat.tree_extents_scrubbed++;
2565 		sctx->stat.tree_bytes_scrubbed += len;
2566 		spin_unlock(&sctx->stat_lock);
2567 	} else {
2568 		blocksize = sctx->fs_info->sectorsize;
2569 		WARN_ON(1);
2570 	}
2571 
2572 	while (len) {
2573 		u32 l = min(len, blocksize);
2574 		int have_csum = 0;
2575 
2576 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2577 			/* push csums to sbio */
2578 			have_csum = scrub_find_csum(sctx, logical, csum);
2579 			if (have_csum == 0)
2580 				++sctx->stat.no_csum;
2581 		}
2582 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2583 				  mirror_num, have_csum ? csum : NULL,
2584 				  physical_for_dev_replace);
2585 		if (ret)
2586 			return ret;
2587 		len -= l;
2588 		logical += l;
2589 		physical += l;
2590 		physical_for_dev_replace += l;
2591 	}
2592 	return 0;
2593 }
2594 
2595 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2596 				  u64 logical, u32 len,
2597 				  u64 physical, struct btrfs_device *dev,
2598 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2599 {
2600 	struct scrub_ctx *sctx = sparity->sctx;
2601 	struct scrub_block *sblock;
2602 	const u32 sectorsize = sctx->fs_info->sectorsize;
2603 	int index;
2604 
2605 	ASSERT(IS_ALIGNED(len, sectorsize));
2606 
2607 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2608 	if (!sblock) {
2609 		spin_lock(&sctx->stat_lock);
2610 		sctx->stat.malloc_errors++;
2611 		spin_unlock(&sctx->stat_lock);
2612 		return -ENOMEM;
2613 	}
2614 
2615 	/* one ref inside this function, plus one for each page added to
2616 	 * a bio later on */
2617 	refcount_set(&sblock->refs, 1);
2618 	sblock->sctx = sctx;
2619 	sblock->no_io_error_seen = 1;
2620 	sblock->sparity = sparity;
2621 	scrub_parity_get(sparity);
2622 
2623 	for (index = 0; len > 0; index++) {
2624 		struct scrub_page *spage;
2625 
2626 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2627 		if (!spage) {
2628 leave_nomem:
2629 			spin_lock(&sctx->stat_lock);
2630 			sctx->stat.malloc_errors++;
2631 			spin_unlock(&sctx->stat_lock);
2632 			scrub_block_put(sblock);
2633 			return -ENOMEM;
2634 		}
2635 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2636 		/* For scrub block */
2637 		scrub_page_get(spage);
2638 		sblock->pagev[index] = spage;
2639 		/* For scrub parity */
2640 		scrub_page_get(spage);
2641 		list_add_tail(&spage->list, &sparity->spages);
2642 		spage->sblock = sblock;
2643 		spage->dev = dev;
2644 		spage->flags = flags;
2645 		spage->generation = gen;
2646 		spage->logical = logical;
2647 		spage->physical = physical;
2648 		spage->mirror_num = mirror_num;
2649 		if (csum) {
2650 			spage->have_csum = 1;
2651 			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2652 		} else {
2653 			spage->have_csum = 0;
2654 		}
2655 		sblock->page_count++;
2656 		spage->page = alloc_page(GFP_KERNEL);
2657 		if (!spage->page)
2658 			goto leave_nomem;
2659 
2660 
2661 		/* Iterate over the stripe range in sectorsize steps */
2662 		len -= sectorsize;
2663 		logical += sectorsize;
2664 		physical += sectorsize;
2665 	}
2666 
2667 	WARN_ON(sblock->page_count == 0);
2668 	for (index = 0; index < sblock->page_count; index++) {
2669 		struct scrub_page *spage = sblock->pagev[index];
2670 		int ret;
2671 
2672 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2673 		if (ret) {
2674 			scrub_block_put(sblock);
2675 			return ret;
2676 		}
2677 	}
2678 
2679 	/* last one frees, either here or in bio completion for last page */
2680 	scrub_block_put(sblock);
2681 	return 0;
2682 }
2683 
2684 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2685 				   u64 logical, u32 len,
2686 				   u64 physical, struct btrfs_device *dev,
2687 				   u64 flags, u64 gen, int mirror_num)
2688 {
2689 	struct scrub_ctx *sctx = sparity->sctx;
2690 	int ret;
2691 	u8 csum[BTRFS_CSUM_SIZE];
2692 	u32 blocksize;
2693 
2694 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2695 		scrub_parity_mark_sectors_error(sparity, logical, len);
2696 		return 0;
2697 	}
2698 
2699 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2700 		blocksize = sparity->stripe_len;
2701 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702 		blocksize = sparity->stripe_len;
2703 	} else {
2704 		blocksize = sctx->fs_info->sectorsize;
2705 		WARN_ON(1);
2706 	}
2707 
2708 	while (len) {
2709 		u32 l = min(len, blocksize);
2710 		int have_csum = 0;
2711 
2712 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2713 			/* push csums to sbio */
2714 			have_csum = scrub_find_csum(sctx, logical, csum);
2715 			if (have_csum == 0)
2716 				goto skip;
2717 		}
2718 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2719 					     flags, gen, mirror_num,
2720 					     have_csum ? csum : NULL);
2721 		if (ret)
2722 			return ret;
2723 skip:
2724 		len -= l;
2725 		logical += l;
2726 		physical += l;
2727 	}
2728 	return 0;
2729 }
2730 
2731 /*
2732  * Given a physical address, this will calculate it's
2733  * logical offset. if this is a parity stripe, it will return
2734  * the most left data stripe's logical offset.
2735  *
2736  * return 0 if it is a data stripe, 1 means parity stripe.
2737  */
2738 static int get_raid56_logic_offset(u64 physical, int num,
2739 				   struct map_lookup *map, u64 *offset,
2740 				   u64 *stripe_start)
2741 {
2742 	int i;
2743 	int j = 0;
2744 	u64 stripe_nr;
2745 	u64 last_offset;
2746 	u32 stripe_index;
2747 	u32 rot;
2748 	const int data_stripes = nr_data_stripes(map);
2749 
2750 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2751 	if (stripe_start)
2752 		*stripe_start = last_offset;
2753 
2754 	*offset = last_offset;
2755 	for (i = 0; i < data_stripes; i++) {
2756 		*offset = last_offset + i * map->stripe_len;
2757 
2758 		stripe_nr = div64_u64(*offset, map->stripe_len);
2759 		stripe_nr = div_u64(stripe_nr, data_stripes);
2760 
2761 		/* Work out the disk rotation on this stripe-set */
2762 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2763 		/* calculate which stripe this data locates */
2764 		rot += i;
2765 		stripe_index = rot % map->num_stripes;
2766 		if (stripe_index == num)
2767 			return 0;
2768 		if (stripe_index < num)
2769 			j++;
2770 	}
2771 	*offset = last_offset + j * map->stripe_len;
2772 	return 1;
2773 }
2774 
2775 static void scrub_free_parity(struct scrub_parity *sparity)
2776 {
2777 	struct scrub_ctx *sctx = sparity->sctx;
2778 	struct scrub_page *curr, *next;
2779 	int nbits;
2780 
2781 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2782 	if (nbits) {
2783 		spin_lock(&sctx->stat_lock);
2784 		sctx->stat.read_errors += nbits;
2785 		sctx->stat.uncorrectable_errors += nbits;
2786 		spin_unlock(&sctx->stat_lock);
2787 	}
2788 
2789 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2790 		list_del_init(&curr->list);
2791 		scrub_page_put(curr);
2792 	}
2793 
2794 	kfree(sparity);
2795 }
2796 
2797 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2798 {
2799 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2800 						    work);
2801 	struct scrub_ctx *sctx = sparity->sctx;
2802 
2803 	scrub_free_parity(sparity);
2804 	scrub_pending_bio_dec(sctx);
2805 }
2806 
2807 static void scrub_parity_bio_endio(struct bio *bio)
2808 {
2809 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2810 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2811 
2812 	if (bio->bi_status)
2813 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2814 			  sparity->nsectors);
2815 
2816 	bio_put(bio);
2817 
2818 	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2819 			NULL);
2820 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2821 }
2822 
2823 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2824 {
2825 	struct scrub_ctx *sctx = sparity->sctx;
2826 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2827 	struct bio *bio;
2828 	struct btrfs_raid_bio *rbio;
2829 	struct btrfs_bio *bbio = NULL;
2830 	u64 length;
2831 	int ret;
2832 
2833 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2834 			   sparity->nsectors))
2835 		goto out;
2836 
2837 	length = sparity->logic_end - sparity->logic_start;
2838 
2839 	btrfs_bio_counter_inc_blocked(fs_info);
2840 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2841 			       &length, &bbio);
2842 	if (ret || !bbio || !bbio->raid_map)
2843 		goto bbio_out;
2844 
2845 	bio = btrfs_io_bio_alloc(0);
2846 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2847 	bio->bi_private = sparity;
2848 	bio->bi_end_io = scrub_parity_bio_endio;
2849 
2850 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2851 					      length, sparity->scrub_dev,
2852 					      sparity->dbitmap,
2853 					      sparity->nsectors);
2854 	if (!rbio)
2855 		goto rbio_out;
2856 
2857 	scrub_pending_bio_inc(sctx);
2858 	raid56_parity_submit_scrub_rbio(rbio);
2859 	return;
2860 
2861 rbio_out:
2862 	bio_put(bio);
2863 bbio_out:
2864 	btrfs_bio_counter_dec(fs_info);
2865 	btrfs_put_bbio(bbio);
2866 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2867 		  sparity->nsectors);
2868 	spin_lock(&sctx->stat_lock);
2869 	sctx->stat.malloc_errors++;
2870 	spin_unlock(&sctx->stat_lock);
2871 out:
2872 	scrub_free_parity(sparity);
2873 }
2874 
2875 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2876 {
2877 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2878 }
2879 
2880 static void scrub_parity_get(struct scrub_parity *sparity)
2881 {
2882 	refcount_inc(&sparity->refs);
2883 }
2884 
2885 static void scrub_parity_put(struct scrub_parity *sparity)
2886 {
2887 	if (!refcount_dec_and_test(&sparity->refs))
2888 		return;
2889 
2890 	scrub_parity_check_and_repair(sparity);
2891 }
2892 
2893 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2894 						  struct map_lookup *map,
2895 						  struct btrfs_device *sdev,
2896 						  struct btrfs_path *path,
2897 						  u64 logic_start,
2898 						  u64 logic_end)
2899 {
2900 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2901 	struct btrfs_root *root = fs_info->extent_root;
2902 	struct btrfs_root *csum_root = fs_info->csum_root;
2903 	struct btrfs_extent_item *extent;
2904 	struct btrfs_bio *bbio = NULL;
2905 	u64 flags;
2906 	int ret;
2907 	int slot;
2908 	struct extent_buffer *l;
2909 	struct btrfs_key key;
2910 	u64 generation;
2911 	u64 extent_logical;
2912 	u64 extent_physical;
2913 	/* Check the comment in scrub_stripe() for why u32 is enough here */
2914 	u32 extent_len;
2915 	u64 mapped_length;
2916 	struct btrfs_device *extent_dev;
2917 	struct scrub_parity *sparity;
2918 	int nsectors;
2919 	int bitmap_len;
2920 	int extent_mirror_num;
2921 	int stop_loop = 0;
2922 
2923 	ASSERT(map->stripe_len <= U32_MAX);
2924 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2925 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2926 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2927 			  GFP_NOFS);
2928 	if (!sparity) {
2929 		spin_lock(&sctx->stat_lock);
2930 		sctx->stat.malloc_errors++;
2931 		spin_unlock(&sctx->stat_lock);
2932 		return -ENOMEM;
2933 	}
2934 
2935 	ASSERT(map->stripe_len <= U32_MAX);
2936 	sparity->stripe_len = map->stripe_len;
2937 	sparity->nsectors = nsectors;
2938 	sparity->sctx = sctx;
2939 	sparity->scrub_dev = sdev;
2940 	sparity->logic_start = logic_start;
2941 	sparity->logic_end = logic_end;
2942 	refcount_set(&sparity->refs, 1);
2943 	INIT_LIST_HEAD(&sparity->spages);
2944 	sparity->dbitmap = sparity->bitmap;
2945 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2946 
2947 	ret = 0;
2948 	while (logic_start < logic_end) {
2949 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2950 			key.type = BTRFS_METADATA_ITEM_KEY;
2951 		else
2952 			key.type = BTRFS_EXTENT_ITEM_KEY;
2953 		key.objectid = logic_start;
2954 		key.offset = (u64)-1;
2955 
2956 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2957 		if (ret < 0)
2958 			goto out;
2959 
2960 		if (ret > 0) {
2961 			ret = btrfs_previous_extent_item(root, path, 0);
2962 			if (ret < 0)
2963 				goto out;
2964 			if (ret > 0) {
2965 				btrfs_release_path(path);
2966 				ret = btrfs_search_slot(NULL, root, &key,
2967 							path, 0, 0);
2968 				if (ret < 0)
2969 					goto out;
2970 			}
2971 		}
2972 
2973 		stop_loop = 0;
2974 		while (1) {
2975 			u64 bytes;
2976 
2977 			l = path->nodes[0];
2978 			slot = path->slots[0];
2979 			if (slot >= btrfs_header_nritems(l)) {
2980 				ret = btrfs_next_leaf(root, path);
2981 				if (ret == 0)
2982 					continue;
2983 				if (ret < 0)
2984 					goto out;
2985 
2986 				stop_loop = 1;
2987 				break;
2988 			}
2989 			btrfs_item_key_to_cpu(l, &key, slot);
2990 
2991 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2992 			    key.type != BTRFS_METADATA_ITEM_KEY)
2993 				goto next;
2994 
2995 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2996 				bytes = fs_info->nodesize;
2997 			else
2998 				bytes = key.offset;
2999 
3000 			if (key.objectid + bytes <= logic_start)
3001 				goto next;
3002 
3003 			if (key.objectid >= logic_end) {
3004 				stop_loop = 1;
3005 				break;
3006 			}
3007 
3008 			while (key.objectid >= logic_start + map->stripe_len)
3009 				logic_start += map->stripe_len;
3010 
3011 			extent = btrfs_item_ptr(l, slot,
3012 						struct btrfs_extent_item);
3013 			flags = btrfs_extent_flags(l, extent);
3014 			generation = btrfs_extent_generation(l, extent);
3015 
3016 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3017 			    (key.objectid < logic_start ||
3018 			     key.objectid + bytes >
3019 			     logic_start + map->stripe_len)) {
3020 				btrfs_err(fs_info,
3021 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3022 					  key.objectid, logic_start);
3023 				spin_lock(&sctx->stat_lock);
3024 				sctx->stat.uncorrectable_errors++;
3025 				spin_unlock(&sctx->stat_lock);
3026 				goto next;
3027 			}
3028 again:
3029 			extent_logical = key.objectid;
3030 			ASSERT(bytes <= U32_MAX);
3031 			extent_len = bytes;
3032 
3033 			if (extent_logical < logic_start) {
3034 				extent_len -= logic_start - extent_logical;
3035 				extent_logical = logic_start;
3036 			}
3037 
3038 			if (extent_logical + extent_len >
3039 			    logic_start + map->stripe_len)
3040 				extent_len = logic_start + map->stripe_len -
3041 					     extent_logical;
3042 
3043 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3044 						       extent_len);
3045 
3046 			mapped_length = extent_len;
3047 			bbio = NULL;
3048 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3049 					extent_logical, &mapped_length, &bbio,
3050 					0);
3051 			if (!ret) {
3052 				if (!bbio || mapped_length < extent_len)
3053 					ret = -EIO;
3054 			}
3055 			if (ret) {
3056 				btrfs_put_bbio(bbio);
3057 				goto out;
3058 			}
3059 			extent_physical = bbio->stripes[0].physical;
3060 			extent_mirror_num = bbio->mirror_num;
3061 			extent_dev = bbio->stripes[0].dev;
3062 			btrfs_put_bbio(bbio);
3063 
3064 			ret = btrfs_lookup_csums_range(csum_root,
3065 						extent_logical,
3066 						extent_logical + extent_len - 1,
3067 						&sctx->csum_list, 1);
3068 			if (ret)
3069 				goto out;
3070 
3071 			ret = scrub_extent_for_parity(sparity, extent_logical,
3072 						      extent_len,
3073 						      extent_physical,
3074 						      extent_dev, flags,
3075 						      generation,
3076 						      extent_mirror_num);
3077 
3078 			scrub_free_csums(sctx);
3079 
3080 			if (ret)
3081 				goto out;
3082 
3083 			if (extent_logical + extent_len <
3084 			    key.objectid + bytes) {
3085 				logic_start += map->stripe_len;
3086 
3087 				if (logic_start >= logic_end) {
3088 					stop_loop = 1;
3089 					break;
3090 				}
3091 
3092 				if (logic_start < key.objectid + bytes) {
3093 					cond_resched();
3094 					goto again;
3095 				}
3096 			}
3097 next:
3098 			path->slots[0]++;
3099 		}
3100 
3101 		btrfs_release_path(path);
3102 
3103 		if (stop_loop)
3104 			break;
3105 
3106 		logic_start += map->stripe_len;
3107 	}
3108 out:
3109 	if (ret < 0) {
3110 		ASSERT(logic_end - logic_start <= U32_MAX);
3111 		scrub_parity_mark_sectors_error(sparity, logic_start,
3112 						logic_end - logic_start);
3113 	}
3114 	scrub_parity_put(sparity);
3115 	scrub_submit(sctx);
3116 	mutex_lock(&sctx->wr_lock);
3117 	scrub_wr_submit(sctx);
3118 	mutex_unlock(&sctx->wr_lock);
3119 
3120 	btrfs_release_path(path);
3121 	return ret < 0 ? ret : 0;
3122 }
3123 
3124 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3125 {
3126 	if (!btrfs_is_zoned(sctx->fs_info))
3127 		return;
3128 
3129 	sctx->flush_all_writes = true;
3130 	scrub_submit(sctx);
3131 	mutex_lock(&sctx->wr_lock);
3132 	scrub_wr_submit(sctx);
3133 	mutex_unlock(&sctx->wr_lock);
3134 
3135 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3136 }
3137 
3138 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3139 					u64 physical, u64 physical_end)
3140 {
3141 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3142 	int ret = 0;
3143 
3144 	if (!btrfs_is_zoned(fs_info))
3145 		return 0;
3146 
3147 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3148 
3149 	mutex_lock(&sctx->wr_lock);
3150 	if (sctx->write_pointer < physical_end) {
3151 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3152 						    physical,
3153 						    sctx->write_pointer);
3154 		if (ret)
3155 			btrfs_err(fs_info,
3156 				  "zoned: failed to recover write pointer");
3157 	}
3158 	mutex_unlock(&sctx->wr_lock);
3159 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3160 
3161 	return ret;
3162 }
3163 
3164 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3165 					   struct map_lookup *map,
3166 					   struct btrfs_device *scrub_dev,
3167 					   int num, u64 base, u64 length,
3168 					   struct btrfs_block_group *cache)
3169 {
3170 	struct btrfs_path *path, *ppath;
3171 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3172 	struct btrfs_root *root = fs_info->extent_root;
3173 	struct btrfs_root *csum_root = fs_info->csum_root;
3174 	struct btrfs_extent_item *extent;
3175 	struct blk_plug plug;
3176 	u64 flags;
3177 	int ret;
3178 	int slot;
3179 	u64 nstripes;
3180 	struct extent_buffer *l;
3181 	u64 physical;
3182 	u64 logical;
3183 	u64 logic_end;
3184 	u64 physical_end;
3185 	u64 generation;
3186 	int mirror_num;
3187 	struct reada_control *reada1;
3188 	struct reada_control *reada2;
3189 	struct btrfs_key key;
3190 	struct btrfs_key key_end;
3191 	u64 increment = map->stripe_len;
3192 	u64 offset;
3193 	u64 extent_logical;
3194 	u64 extent_physical;
3195 	/*
3196 	 * Unlike chunk length, extent length should never go beyond
3197 	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3198 	 */
3199 	u32 extent_len;
3200 	u64 stripe_logical;
3201 	u64 stripe_end;
3202 	struct btrfs_device *extent_dev;
3203 	int extent_mirror_num;
3204 	int stop_loop = 0;
3205 
3206 	physical = map->stripes[num].physical;
3207 	offset = 0;
3208 	nstripes = div64_u64(length, map->stripe_len);
3209 	mirror_num = 1;
3210 	increment = map->stripe_len;
3211 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3212 		offset = map->stripe_len * num;
3213 		increment = map->stripe_len * map->num_stripes;
3214 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3215 		int factor = map->num_stripes / map->sub_stripes;
3216 		offset = map->stripe_len * (num / map->sub_stripes);
3217 		increment = map->stripe_len * factor;
3218 		mirror_num = num % map->sub_stripes + 1;
3219 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3220 		mirror_num = num % map->num_stripes + 1;
3221 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3222 		mirror_num = num % map->num_stripes + 1;
3223 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3224 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3225 		increment = map->stripe_len * nr_data_stripes(map);
3226 	}
3227 
3228 	path = btrfs_alloc_path();
3229 	if (!path)
3230 		return -ENOMEM;
3231 
3232 	ppath = btrfs_alloc_path();
3233 	if (!ppath) {
3234 		btrfs_free_path(path);
3235 		return -ENOMEM;
3236 	}
3237 
3238 	/*
3239 	 * work on commit root. The related disk blocks are static as
3240 	 * long as COW is applied. This means, it is save to rewrite
3241 	 * them to repair disk errors without any race conditions
3242 	 */
3243 	path->search_commit_root = 1;
3244 	path->skip_locking = 1;
3245 
3246 	ppath->search_commit_root = 1;
3247 	ppath->skip_locking = 1;
3248 	/*
3249 	 * trigger the readahead for extent tree csum tree and wait for
3250 	 * completion. During readahead, the scrub is officially paused
3251 	 * to not hold off transaction commits
3252 	 */
3253 	logical = base + offset;
3254 	physical_end = physical + nstripes * map->stripe_len;
3255 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3256 		get_raid56_logic_offset(physical_end, num,
3257 					map, &logic_end, NULL);
3258 		logic_end += base;
3259 	} else {
3260 		logic_end = logical + increment * nstripes;
3261 	}
3262 	wait_event(sctx->list_wait,
3263 		   atomic_read(&sctx->bios_in_flight) == 0);
3264 	scrub_blocked_if_needed(fs_info);
3265 
3266 	/* FIXME it might be better to start readahead at commit root */
3267 	key.objectid = logical;
3268 	key.type = BTRFS_EXTENT_ITEM_KEY;
3269 	key.offset = (u64)0;
3270 	key_end.objectid = logic_end;
3271 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3272 	key_end.offset = (u64)-1;
3273 	reada1 = btrfs_reada_add(root, &key, &key_end);
3274 
3275 	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3276 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3277 		key.type = BTRFS_EXTENT_CSUM_KEY;
3278 		key.offset = logical;
3279 		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3280 		key_end.type = BTRFS_EXTENT_CSUM_KEY;
3281 		key_end.offset = logic_end;
3282 		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3283 	} else {
3284 		reada2 = NULL;
3285 	}
3286 
3287 	if (!IS_ERR(reada1))
3288 		btrfs_reada_wait(reada1);
3289 	if (!IS_ERR_OR_NULL(reada2))
3290 		btrfs_reada_wait(reada2);
3291 
3292 
3293 	/*
3294 	 * collect all data csums for the stripe to avoid seeking during
3295 	 * the scrub. This might currently (crc32) end up to be about 1MB
3296 	 */
3297 	blk_start_plug(&plug);
3298 
3299 	if (sctx->is_dev_replace &&
3300 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3301 		mutex_lock(&sctx->wr_lock);
3302 		sctx->write_pointer = physical;
3303 		mutex_unlock(&sctx->wr_lock);
3304 		sctx->flush_all_writes = true;
3305 	}
3306 
3307 	/*
3308 	 * now find all extents for each stripe and scrub them
3309 	 */
3310 	ret = 0;
3311 	while (physical < physical_end) {
3312 		/*
3313 		 * canceled?
3314 		 */
3315 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3316 		    atomic_read(&sctx->cancel_req)) {
3317 			ret = -ECANCELED;
3318 			goto out;
3319 		}
3320 		/*
3321 		 * check to see if we have to pause
3322 		 */
3323 		if (atomic_read(&fs_info->scrub_pause_req)) {
3324 			/* push queued extents */
3325 			sctx->flush_all_writes = true;
3326 			scrub_submit(sctx);
3327 			mutex_lock(&sctx->wr_lock);
3328 			scrub_wr_submit(sctx);
3329 			mutex_unlock(&sctx->wr_lock);
3330 			wait_event(sctx->list_wait,
3331 				   atomic_read(&sctx->bios_in_flight) == 0);
3332 			sctx->flush_all_writes = false;
3333 			scrub_blocked_if_needed(fs_info);
3334 		}
3335 
3336 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3337 			ret = get_raid56_logic_offset(physical, num, map,
3338 						      &logical,
3339 						      &stripe_logical);
3340 			logical += base;
3341 			if (ret) {
3342 				/* it is parity strip */
3343 				stripe_logical += base;
3344 				stripe_end = stripe_logical + increment;
3345 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3346 							  ppath, stripe_logical,
3347 							  stripe_end);
3348 				if (ret)
3349 					goto out;
3350 				goto skip;
3351 			}
3352 		}
3353 
3354 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3355 			key.type = BTRFS_METADATA_ITEM_KEY;
3356 		else
3357 			key.type = BTRFS_EXTENT_ITEM_KEY;
3358 		key.objectid = logical;
3359 		key.offset = (u64)-1;
3360 
3361 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3362 		if (ret < 0)
3363 			goto out;
3364 
3365 		if (ret > 0) {
3366 			ret = btrfs_previous_extent_item(root, path, 0);
3367 			if (ret < 0)
3368 				goto out;
3369 			if (ret > 0) {
3370 				/* there's no smaller item, so stick with the
3371 				 * larger one */
3372 				btrfs_release_path(path);
3373 				ret = btrfs_search_slot(NULL, root, &key,
3374 							path, 0, 0);
3375 				if (ret < 0)
3376 					goto out;
3377 			}
3378 		}
3379 
3380 		stop_loop = 0;
3381 		while (1) {
3382 			u64 bytes;
3383 
3384 			l = path->nodes[0];
3385 			slot = path->slots[0];
3386 			if (slot >= btrfs_header_nritems(l)) {
3387 				ret = btrfs_next_leaf(root, path);
3388 				if (ret == 0)
3389 					continue;
3390 				if (ret < 0)
3391 					goto out;
3392 
3393 				stop_loop = 1;
3394 				break;
3395 			}
3396 			btrfs_item_key_to_cpu(l, &key, slot);
3397 
3398 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3399 			    key.type != BTRFS_METADATA_ITEM_KEY)
3400 				goto next;
3401 
3402 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3403 				bytes = fs_info->nodesize;
3404 			else
3405 				bytes = key.offset;
3406 
3407 			if (key.objectid + bytes <= logical)
3408 				goto next;
3409 
3410 			if (key.objectid >= logical + map->stripe_len) {
3411 				/* out of this device extent */
3412 				if (key.objectid >= logic_end)
3413 					stop_loop = 1;
3414 				break;
3415 			}
3416 
3417 			/*
3418 			 * If our block group was removed in the meanwhile, just
3419 			 * stop scrubbing since there is no point in continuing.
3420 			 * Continuing would prevent reusing its device extents
3421 			 * for new block groups for a long time.
3422 			 */
3423 			spin_lock(&cache->lock);
3424 			if (cache->removed) {
3425 				spin_unlock(&cache->lock);
3426 				ret = 0;
3427 				goto out;
3428 			}
3429 			spin_unlock(&cache->lock);
3430 
3431 			extent = btrfs_item_ptr(l, slot,
3432 						struct btrfs_extent_item);
3433 			flags = btrfs_extent_flags(l, extent);
3434 			generation = btrfs_extent_generation(l, extent);
3435 
3436 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3437 			    (key.objectid < logical ||
3438 			     key.objectid + bytes >
3439 			     logical + map->stripe_len)) {
3440 				btrfs_err(fs_info,
3441 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3442 				       key.objectid, logical);
3443 				spin_lock(&sctx->stat_lock);
3444 				sctx->stat.uncorrectable_errors++;
3445 				spin_unlock(&sctx->stat_lock);
3446 				goto next;
3447 			}
3448 
3449 again:
3450 			extent_logical = key.objectid;
3451 			ASSERT(bytes <= U32_MAX);
3452 			extent_len = bytes;
3453 
3454 			/*
3455 			 * trim extent to this stripe
3456 			 */
3457 			if (extent_logical < logical) {
3458 				extent_len -= logical - extent_logical;
3459 				extent_logical = logical;
3460 			}
3461 			if (extent_logical + extent_len >
3462 			    logical + map->stripe_len) {
3463 				extent_len = logical + map->stripe_len -
3464 					     extent_logical;
3465 			}
3466 
3467 			extent_physical = extent_logical - logical + physical;
3468 			extent_dev = scrub_dev;
3469 			extent_mirror_num = mirror_num;
3470 			if (sctx->is_dev_replace)
3471 				scrub_remap_extent(fs_info, extent_logical,
3472 						   extent_len, &extent_physical,
3473 						   &extent_dev,
3474 						   &extent_mirror_num);
3475 
3476 			if (flags & BTRFS_EXTENT_FLAG_DATA) {
3477 				ret = btrfs_lookup_csums_range(csum_root,
3478 						extent_logical,
3479 						extent_logical + extent_len - 1,
3480 						&sctx->csum_list, 1);
3481 				if (ret)
3482 					goto out;
3483 			}
3484 
3485 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3486 					   extent_physical, extent_dev, flags,
3487 					   generation, extent_mirror_num,
3488 					   extent_logical - logical + physical);
3489 
3490 			scrub_free_csums(sctx);
3491 
3492 			if (ret)
3493 				goto out;
3494 
3495 			if (sctx->is_dev_replace)
3496 				sync_replace_for_zoned(sctx);
3497 
3498 			if (extent_logical + extent_len <
3499 			    key.objectid + bytes) {
3500 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3501 					/*
3502 					 * loop until we find next data stripe
3503 					 * or we have finished all stripes.
3504 					 */
3505 loop:
3506 					physical += map->stripe_len;
3507 					ret = get_raid56_logic_offset(physical,
3508 							num, map, &logical,
3509 							&stripe_logical);
3510 					logical += base;
3511 
3512 					if (ret && physical < physical_end) {
3513 						stripe_logical += base;
3514 						stripe_end = stripe_logical +
3515 								increment;
3516 						ret = scrub_raid56_parity(sctx,
3517 							map, scrub_dev, ppath,
3518 							stripe_logical,
3519 							stripe_end);
3520 						if (ret)
3521 							goto out;
3522 						goto loop;
3523 					}
3524 				} else {
3525 					physical += map->stripe_len;
3526 					logical += increment;
3527 				}
3528 				if (logical < key.objectid + bytes) {
3529 					cond_resched();
3530 					goto again;
3531 				}
3532 
3533 				if (physical >= physical_end) {
3534 					stop_loop = 1;
3535 					break;
3536 				}
3537 			}
3538 next:
3539 			path->slots[0]++;
3540 		}
3541 		btrfs_release_path(path);
3542 skip:
3543 		logical += increment;
3544 		physical += map->stripe_len;
3545 		spin_lock(&sctx->stat_lock);
3546 		if (stop_loop)
3547 			sctx->stat.last_physical = map->stripes[num].physical +
3548 						   length;
3549 		else
3550 			sctx->stat.last_physical = physical;
3551 		spin_unlock(&sctx->stat_lock);
3552 		if (stop_loop)
3553 			break;
3554 	}
3555 out:
3556 	/* push queued extents */
3557 	scrub_submit(sctx);
3558 	mutex_lock(&sctx->wr_lock);
3559 	scrub_wr_submit(sctx);
3560 	mutex_unlock(&sctx->wr_lock);
3561 
3562 	blk_finish_plug(&plug);
3563 	btrfs_free_path(path);
3564 	btrfs_free_path(ppath);
3565 
3566 	if (sctx->is_dev_replace && ret >= 0) {
3567 		int ret2;
3568 
3569 		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
3570 						    map->stripes[num].physical,
3571 						    physical_end);
3572 		if (ret2)
3573 			ret = ret2;
3574 	}
3575 
3576 	return ret < 0 ? ret : 0;
3577 }
3578 
3579 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3580 					  struct btrfs_device *scrub_dev,
3581 					  u64 chunk_offset, u64 length,
3582 					  u64 dev_offset,
3583 					  struct btrfs_block_group *cache)
3584 {
3585 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3586 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3587 	struct map_lookup *map;
3588 	struct extent_map *em;
3589 	int i;
3590 	int ret = 0;
3591 
3592 	read_lock(&map_tree->lock);
3593 	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3594 	read_unlock(&map_tree->lock);
3595 
3596 	if (!em) {
3597 		/*
3598 		 * Might have been an unused block group deleted by the cleaner
3599 		 * kthread or relocation.
3600 		 */
3601 		spin_lock(&cache->lock);
3602 		if (!cache->removed)
3603 			ret = -EINVAL;
3604 		spin_unlock(&cache->lock);
3605 
3606 		return ret;
3607 	}
3608 
3609 	map = em->map_lookup;
3610 	if (em->start != chunk_offset)
3611 		goto out;
3612 
3613 	if (em->len < length)
3614 		goto out;
3615 
3616 	for (i = 0; i < map->num_stripes; ++i) {
3617 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3618 		    map->stripes[i].physical == dev_offset) {
3619 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3620 					   chunk_offset, length, cache);
3621 			if (ret)
3622 				goto out;
3623 		}
3624 	}
3625 out:
3626 	free_extent_map(em);
3627 
3628 	return ret;
3629 }
3630 
3631 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3632 					  struct btrfs_block_group *cache)
3633 {
3634 	struct btrfs_fs_info *fs_info = cache->fs_info;
3635 	struct btrfs_trans_handle *trans;
3636 
3637 	if (!btrfs_is_zoned(fs_info))
3638 		return 0;
3639 
3640 	btrfs_wait_block_group_reservations(cache);
3641 	btrfs_wait_nocow_writers(cache);
3642 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3643 
3644 	trans = btrfs_join_transaction(root);
3645 	if (IS_ERR(trans))
3646 		return PTR_ERR(trans);
3647 	return btrfs_commit_transaction(trans);
3648 }
3649 
3650 static noinline_for_stack
3651 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3652 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3653 {
3654 	struct btrfs_dev_extent *dev_extent = NULL;
3655 	struct btrfs_path *path;
3656 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3657 	struct btrfs_root *root = fs_info->dev_root;
3658 	u64 length;
3659 	u64 chunk_offset;
3660 	int ret = 0;
3661 	int ro_set;
3662 	int slot;
3663 	struct extent_buffer *l;
3664 	struct btrfs_key key;
3665 	struct btrfs_key found_key;
3666 	struct btrfs_block_group *cache;
3667 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3668 
3669 	path = btrfs_alloc_path();
3670 	if (!path)
3671 		return -ENOMEM;
3672 
3673 	path->reada = READA_FORWARD;
3674 	path->search_commit_root = 1;
3675 	path->skip_locking = 1;
3676 
3677 	key.objectid = scrub_dev->devid;
3678 	key.offset = 0ull;
3679 	key.type = BTRFS_DEV_EXTENT_KEY;
3680 
3681 	while (1) {
3682 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3683 		if (ret < 0)
3684 			break;
3685 		if (ret > 0) {
3686 			if (path->slots[0] >=
3687 			    btrfs_header_nritems(path->nodes[0])) {
3688 				ret = btrfs_next_leaf(root, path);
3689 				if (ret < 0)
3690 					break;
3691 				if (ret > 0) {
3692 					ret = 0;
3693 					break;
3694 				}
3695 			} else {
3696 				ret = 0;
3697 			}
3698 		}
3699 
3700 		l = path->nodes[0];
3701 		slot = path->slots[0];
3702 
3703 		btrfs_item_key_to_cpu(l, &found_key, slot);
3704 
3705 		if (found_key.objectid != scrub_dev->devid)
3706 			break;
3707 
3708 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3709 			break;
3710 
3711 		if (found_key.offset >= end)
3712 			break;
3713 
3714 		if (found_key.offset < key.offset)
3715 			break;
3716 
3717 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3718 		length = btrfs_dev_extent_length(l, dev_extent);
3719 
3720 		if (found_key.offset + length <= start)
3721 			goto skip;
3722 
3723 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3724 
3725 		/*
3726 		 * get a reference on the corresponding block group to prevent
3727 		 * the chunk from going away while we scrub it
3728 		 */
3729 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3730 
3731 		/* some chunks are removed but not committed to disk yet,
3732 		 * continue scrubbing */
3733 		if (!cache)
3734 			goto skip;
3735 
3736 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3737 			spin_lock(&cache->lock);
3738 			if (!cache->to_copy) {
3739 				spin_unlock(&cache->lock);
3740 				btrfs_put_block_group(cache);
3741 				goto skip;
3742 			}
3743 			spin_unlock(&cache->lock);
3744 		}
3745 
3746 		/*
3747 		 * Make sure that while we are scrubbing the corresponding block
3748 		 * group doesn't get its logical address and its device extents
3749 		 * reused for another block group, which can possibly be of a
3750 		 * different type and different profile. We do this to prevent
3751 		 * false error detections and crashes due to bogus attempts to
3752 		 * repair extents.
3753 		 */
3754 		spin_lock(&cache->lock);
3755 		if (cache->removed) {
3756 			spin_unlock(&cache->lock);
3757 			btrfs_put_block_group(cache);
3758 			goto skip;
3759 		}
3760 		btrfs_freeze_block_group(cache);
3761 		spin_unlock(&cache->lock);
3762 
3763 		/*
3764 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3765 		 * to avoid deadlock caused by:
3766 		 * btrfs_inc_block_group_ro()
3767 		 * -> btrfs_wait_for_commit()
3768 		 * -> btrfs_commit_transaction()
3769 		 * -> btrfs_scrub_pause()
3770 		 */
3771 		scrub_pause_on(fs_info);
3772 
3773 		/*
3774 		 * Don't do chunk preallocation for scrub.
3775 		 *
3776 		 * This is especially important for SYSTEM bgs, or we can hit
3777 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3778 		 * 1. The only SYSTEM bg is marked RO.
3779 		 *    Since SYSTEM bg is small, that's pretty common.
3780 		 * 2. New SYSTEM bg will be allocated
3781 		 *    Due to regular version will allocate new chunk.
3782 		 * 3. New SYSTEM bg is empty and will get cleaned up
3783 		 *    Before cleanup really happens, it's marked RO again.
3784 		 * 4. Empty SYSTEM bg get scrubbed
3785 		 *    We go back to 2.
3786 		 *
3787 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3788 		 * thread can't be triggered fast enough, and use up all space
3789 		 * of btrfs_super_block::sys_chunk_array
3790 		 *
3791 		 * While for dev replace, we need to try our best to mark block
3792 		 * group RO, to prevent race between:
3793 		 * - Write duplication
3794 		 *   Contains latest data
3795 		 * - Scrub copy
3796 		 *   Contains data from commit tree
3797 		 *
3798 		 * If target block group is not marked RO, nocow writes can
3799 		 * be overwritten by scrub copy, causing data corruption.
3800 		 * So for dev-replace, it's not allowed to continue if a block
3801 		 * group is not RO.
3802 		 */
3803 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3804 		if (!ret && sctx->is_dev_replace) {
3805 			ret = finish_extent_writes_for_zoned(root, cache);
3806 			if (ret) {
3807 				btrfs_dec_block_group_ro(cache);
3808 				scrub_pause_off(fs_info);
3809 				btrfs_put_block_group(cache);
3810 				break;
3811 			}
3812 		}
3813 
3814 		if (ret == 0) {
3815 			ro_set = 1;
3816 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3817 			/*
3818 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3819 			 * failed in creating new chunk for metadata.
3820 			 * It is not a problem for scrub, because
3821 			 * metadata are always cowed, and our scrub paused
3822 			 * commit_transactions.
3823 			 */
3824 			ro_set = 0;
3825 		} else if (ret == -ETXTBSY) {
3826 			btrfs_warn(fs_info,
3827 		   "skipping scrub of block group %llu due to active swapfile",
3828 				   cache->start);
3829 			scrub_pause_off(fs_info);
3830 			ret = 0;
3831 			goto skip_unfreeze;
3832 		} else {
3833 			btrfs_warn(fs_info,
3834 				   "failed setting block group ro: %d", ret);
3835 			btrfs_unfreeze_block_group(cache);
3836 			btrfs_put_block_group(cache);
3837 			scrub_pause_off(fs_info);
3838 			break;
3839 		}
3840 
3841 		/*
3842 		 * Now the target block is marked RO, wait for nocow writes to
3843 		 * finish before dev-replace.
3844 		 * COW is fine, as COW never overwrites extents in commit tree.
3845 		 */
3846 		if (sctx->is_dev_replace) {
3847 			btrfs_wait_nocow_writers(cache);
3848 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3849 					cache->length);
3850 		}
3851 
3852 		scrub_pause_off(fs_info);
3853 		down_write(&dev_replace->rwsem);
3854 		dev_replace->cursor_right = found_key.offset + length;
3855 		dev_replace->cursor_left = found_key.offset;
3856 		dev_replace->item_needs_writeback = 1;
3857 		up_write(&dev_replace->rwsem);
3858 
3859 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3860 				  found_key.offset, cache);
3861 
3862 		/*
3863 		 * flush, submit all pending read and write bios, afterwards
3864 		 * wait for them.
3865 		 * Note that in the dev replace case, a read request causes
3866 		 * write requests that are submitted in the read completion
3867 		 * worker. Therefore in the current situation, it is required
3868 		 * that all write requests are flushed, so that all read and
3869 		 * write requests are really completed when bios_in_flight
3870 		 * changes to 0.
3871 		 */
3872 		sctx->flush_all_writes = true;
3873 		scrub_submit(sctx);
3874 		mutex_lock(&sctx->wr_lock);
3875 		scrub_wr_submit(sctx);
3876 		mutex_unlock(&sctx->wr_lock);
3877 
3878 		wait_event(sctx->list_wait,
3879 			   atomic_read(&sctx->bios_in_flight) == 0);
3880 
3881 		scrub_pause_on(fs_info);
3882 
3883 		/*
3884 		 * must be called before we decrease @scrub_paused.
3885 		 * make sure we don't block transaction commit while
3886 		 * we are waiting pending workers finished.
3887 		 */
3888 		wait_event(sctx->list_wait,
3889 			   atomic_read(&sctx->workers_pending) == 0);
3890 		sctx->flush_all_writes = false;
3891 
3892 		scrub_pause_off(fs_info);
3893 
3894 		if (sctx->is_dev_replace &&
3895 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3896 						      cache, found_key.offset))
3897 			ro_set = 0;
3898 
3899 		down_write(&dev_replace->rwsem);
3900 		dev_replace->cursor_left = dev_replace->cursor_right;
3901 		dev_replace->item_needs_writeback = 1;
3902 		up_write(&dev_replace->rwsem);
3903 
3904 		if (ro_set)
3905 			btrfs_dec_block_group_ro(cache);
3906 
3907 		/*
3908 		 * We might have prevented the cleaner kthread from deleting
3909 		 * this block group if it was already unused because we raced
3910 		 * and set it to RO mode first. So add it back to the unused
3911 		 * list, otherwise it might not ever be deleted unless a manual
3912 		 * balance is triggered or it becomes used and unused again.
3913 		 */
3914 		spin_lock(&cache->lock);
3915 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3916 		    cache->used == 0) {
3917 			spin_unlock(&cache->lock);
3918 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3919 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3920 							 cache);
3921 			else
3922 				btrfs_mark_bg_unused(cache);
3923 		} else {
3924 			spin_unlock(&cache->lock);
3925 		}
3926 skip_unfreeze:
3927 		btrfs_unfreeze_block_group(cache);
3928 		btrfs_put_block_group(cache);
3929 		if (ret)
3930 			break;
3931 		if (sctx->is_dev_replace &&
3932 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3933 			ret = -EIO;
3934 			break;
3935 		}
3936 		if (sctx->stat.malloc_errors > 0) {
3937 			ret = -ENOMEM;
3938 			break;
3939 		}
3940 skip:
3941 		key.offset = found_key.offset + length;
3942 		btrfs_release_path(path);
3943 	}
3944 
3945 	btrfs_free_path(path);
3946 
3947 	return ret;
3948 }
3949 
3950 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3951 					   struct btrfs_device *scrub_dev)
3952 {
3953 	int	i;
3954 	u64	bytenr;
3955 	u64	gen;
3956 	int	ret;
3957 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3958 
3959 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3960 		return -EROFS;
3961 
3962 	/* Seed devices of a new filesystem has their own generation. */
3963 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3964 		gen = scrub_dev->generation;
3965 	else
3966 		gen = fs_info->last_trans_committed;
3967 
3968 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3969 		bytenr = btrfs_sb_offset(i);
3970 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3971 		    scrub_dev->commit_total_bytes)
3972 			break;
3973 		if (!btrfs_check_super_location(scrub_dev, bytenr))
3974 			continue;
3975 
3976 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3977 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3978 				  NULL, bytenr);
3979 		if (ret)
3980 			return ret;
3981 	}
3982 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3983 
3984 	return 0;
3985 }
3986 
3987 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3988 {
3989 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3990 					&fs_info->scrub_lock)) {
3991 		struct btrfs_workqueue *scrub_workers = NULL;
3992 		struct btrfs_workqueue *scrub_wr_comp = NULL;
3993 		struct btrfs_workqueue *scrub_parity = NULL;
3994 
3995 		scrub_workers = fs_info->scrub_workers;
3996 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3997 		scrub_parity = fs_info->scrub_parity_workers;
3998 
3999 		fs_info->scrub_workers = NULL;
4000 		fs_info->scrub_wr_completion_workers = NULL;
4001 		fs_info->scrub_parity_workers = NULL;
4002 		mutex_unlock(&fs_info->scrub_lock);
4003 
4004 		btrfs_destroy_workqueue(scrub_workers);
4005 		btrfs_destroy_workqueue(scrub_wr_comp);
4006 		btrfs_destroy_workqueue(scrub_parity);
4007 	}
4008 }
4009 
4010 /*
4011  * get a reference count on fs_info->scrub_workers. start worker if necessary
4012  */
4013 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4014 						int is_dev_replace)
4015 {
4016 	struct btrfs_workqueue *scrub_workers = NULL;
4017 	struct btrfs_workqueue *scrub_wr_comp = NULL;
4018 	struct btrfs_workqueue *scrub_parity = NULL;
4019 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4020 	int max_active = fs_info->thread_pool_size;
4021 	int ret = -ENOMEM;
4022 
4023 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4024 		return 0;
4025 
4026 	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
4027 					      is_dev_replace ? 1 : max_active, 4);
4028 	if (!scrub_workers)
4029 		goto fail_scrub_workers;
4030 
4031 	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4032 					      max_active, 2);
4033 	if (!scrub_wr_comp)
4034 		goto fail_scrub_wr_completion_workers;
4035 
4036 	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4037 					     max_active, 2);
4038 	if (!scrub_parity)
4039 		goto fail_scrub_parity_workers;
4040 
4041 	mutex_lock(&fs_info->scrub_lock);
4042 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4043 		ASSERT(fs_info->scrub_workers == NULL &&
4044 		       fs_info->scrub_wr_completion_workers == NULL &&
4045 		       fs_info->scrub_parity_workers == NULL);
4046 		fs_info->scrub_workers = scrub_workers;
4047 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4048 		fs_info->scrub_parity_workers = scrub_parity;
4049 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4050 		mutex_unlock(&fs_info->scrub_lock);
4051 		return 0;
4052 	}
4053 	/* Other thread raced in and created the workers for us */
4054 	refcount_inc(&fs_info->scrub_workers_refcnt);
4055 	mutex_unlock(&fs_info->scrub_lock);
4056 
4057 	ret = 0;
4058 	btrfs_destroy_workqueue(scrub_parity);
4059 fail_scrub_parity_workers:
4060 	btrfs_destroy_workqueue(scrub_wr_comp);
4061 fail_scrub_wr_completion_workers:
4062 	btrfs_destroy_workqueue(scrub_workers);
4063 fail_scrub_workers:
4064 	return ret;
4065 }
4066 
4067 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4068 		    u64 end, struct btrfs_scrub_progress *progress,
4069 		    int readonly, int is_dev_replace)
4070 {
4071 	struct scrub_ctx *sctx;
4072 	int ret;
4073 	struct btrfs_device *dev;
4074 	unsigned int nofs_flag;
4075 
4076 	if (btrfs_fs_closing(fs_info))
4077 		return -EAGAIN;
4078 
4079 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4080 		/*
4081 		 * in this case scrub is unable to calculate the checksum
4082 		 * the way scrub is implemented. Do not handle this
4083 		 * situation at all because it won't ever happen.
4084 		 */
4085 		btrfs_err(fs_info,
4086 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4087 		       fs_info->nodesize,
4088 		       BTRFS_STRIPE_LEN);
4089 		return -EINVAL;
4090 	}
4091 
4092 	if (fs_info->nodesize >
4093 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4094 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4095 		/*
4096 		 * would exhaust the array bounds of pagev member in
4097 		 * struct scrub_block
4098 		 */
4099 		btrfs_err(fs_info,
4100 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4101 		       fs_info->nodesize,
4102 		       SCRUB_MAX_PAGES_PER_BLOCK,
4103 		       fs_info->sectorsize,
4104 		       SCRUB_MAX_PAGES_PER_BLOCK);
4105 		return -EINVAL;
4106 	}
4107 
4108 	/* Allocate outside of device_list_mutex */
4109 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4110 	if (IS_ERR(sctx))
4111 		return PTR_ERR(sctx);
4112 
4113 	ret = scrub_workers_get(fs_info, is_dev_replace);
4114 	if (ret)
4115 		goto out_free_ctx;
4116 
4117 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4118 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4119 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4120 		     !is_dev_replace)) {
4121 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 		ret = -ENODEV;
4123 		goto out;
4124 	}
4125 
4126 	if (!is_dev_replace && !readonly &&
4127 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4128 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4129 		btrfs_err_in_rcu(fs_info,
4130 			"scrub on devid %llu: filesystem on %s is not writable",
4131 				 devid, rcu_str_deref(dev->name));
4132 		ret = -EROFS;
4133 		goto out;
4134 	}
4135 
4136 	mutex_lock(&fs_info->scrub_lock);
4137 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4138 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4139 		mutex_unlock(&fs_info->scrub_lock);
4140 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141 		ret = -EIO;
4142 		goto out;
4143 	}
4144 
4145 	down_read(&fs_info->dev_replace.rwsem);
4146 	if (dev->scrub_ctx ||
4147 	    (!is_dev_replace &&
4148 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4149 		up_read(&fs_info->dev_replace.rwsem);
4150 		mutex_unlock(&fs_info->scrub_lock);
4151 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152 		ret = -EINPROGRESS;
4153 		goto out;
4154 	}
4155 	up_read(&fs_info->dev_replace.rwsem);
4156 
4157 	sctx->readonly = readonly;
4158 	dev->scrub_ctx = sctx;
4159 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160 
4161 	/*
4162 	 * checking @scrub_pause_req here, we can avoid
4163 	 * race between committing transaction and scrubbing.
4164 	 */
4165 	__scrub_blocked_if_needed(fs_info);
4166 	atomic_inc(&fs_info->scrubs_running);
4167 	mutex_unlock(&fs_info->scrub_lock);
4168 
4169 	/*
4170 	 * In order to avoid deadlock with reclaim when there is a transaction
4171 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4172 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4173 	 * invoked by our callees. The pausing request is done when the
4174 	 * transaction commit starts, and it blocks the transaction until scrub
4175 	 * is paused (done at specific points at scrub_stripe() or right above
4176 	 * before incrementing fs_info->scrubs_running).
4177 	 */
4178 	nofs_flag = memalloc_nofs_save();
4179 	if (!is_dev_replace) {
4180 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4181 		/*
4182 		 * by holding device list mutex, we can
4183 		 * kick off writing super in log tree sync.
4184 		 */
4185 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186 		ret = scrub_supers(sctx, dev);
4187 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188 	}
4189 
4190 	if (!ret)
4191 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4192 	memalloc_nofs_restore(nofs_flag);
4193 
4194 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4195 	atomic_dec(&fs_info->scrubs_running);
4196 	wake_up(&fs_info->scrub_pause_wait);
4197 
4198 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199 
4200 	if (progress)
4201 		memcpy(progress, &sctx->stat, sizeof(*progress));
4202 
4203 	if (!is_dev_replace)
4204 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4205 			ret ? "not finished" : "finished", devid, ret);
4206 
4207 	mutex_lock(&fs_info->scrub_lock);
4208 	dev->scrub_ctx = NULL;
4209 	mutex_unlock(&fs_info->scrub_lock);
4210 
4211 	scrub_workers_put(fs_info);
4212 	scrub_put_ctx(sctx);
4213 
4214 	return ret;
4215 out:
4216 	scrub_workers_put(fs_info);
4217 out_free_ctx:
4218 	scrub_free_ctx(sctx);
4219 
4220 	return ret;
4221 }
4222 
4223 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4224 {
4225 	mutex_lock(&fs_info->scrub_lock);
4226 	atomic_inc(&fs_info->scrub_pause_req);
4227 	while (atomic_read(&fs_info->scrubs_paused) !=
4228 	       atomic_read(&fs_info->scrubs_running)) {
4229 		mutex_unlock(&fs_info->scrub_lock);
4230 		wait_event(fs_info->scrub_pause_wait,
4231 			   atomic_read(&fs_info->scrubs_paused) ==
4232 			   atomic_read(&fs_info->scrubs_running));
4233 		mutex_lock(&fs_info->scrub_lock);
4234 	}
4235 	mutex_unlock(&fs_info->scrub_lock);
4236 }
4237 
4238 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4239 {
4240 	atomic_dec(&fs_info->scrub_pause_req);
4241 	wake_up(&fs_info->scrub_pause_wait);
4242 }
4243 
4244 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4245 {
4246 	mutex_lock(&fs_info->scrub_lock);
4247 	if (!atomic_read(&fs_info->scrubs_running)) {
4248 		mutex_unlock(&fs_info->scrub_lock);
4249 		return -ENOTCONN;
4250 	}
4251 
4252 	atomic_inc(&fs_info->scrub_cancel_req);
4253 	while (atomic_read(&fs_info->scrubs_running)) {
4254 		mutex_unlock(&fs_info->scrub_lock);
4255 		wait_event(fs_info->scrub_pause_wait,
4256 			   atomic_read(&fs_info->scrubs_running) == 0);
4257 		mutex_lock(&fs_info->scrub_lock);
4258 	}
4259 	atomic_dec(&fs_info->scrub_cancel_req);
4260 	mutex_unlock(&fs_info->scrub_lock);
4261 
4262 	return 0;
4263 }
4264 
4265 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4266 {
4267 	struct btrfs_fs_info *fs_info = dev->fs_info;
4268 	struct scrub_ctx *sctx;
4269 
4270 	mutex_lock(&fs_info->scrub_lock);
4271 	sctx = dev->scrub_ctx;
4272 	if (!sctx) {
4273 		mutex_unlock(&fs_info->scrub_lock);
4274 		return -ENOTCONN;
4275 	}
4276 	atomic_inc(&sctx->cancel_req);
4277 	while (dev->scrub_ctx) {
4278 		mutex_unlock(&fs_info->scrub_lock);
4279 		wait_event(fs_info->scrub_pause_wait,
4280 			   dev->scrub_ctx == NULL);
4281 		mutex_lock(&fs_info->scrub_lock);
4282 	}
4283 	mutex_unlock(&fs_info->scrub_lock);
4284 
4285 	return 0;
4286 }
4287 
4288 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4289 			 struct btrfs_scrub_progress *progress)
4290 {
4291 	struct btrfs_device *dev;
4292 	struct scrub_ctx *sctx = NULL;
4293 
4294 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4295 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4296 	if (dev)
4297 		sctx = dev->scrub_ctx;
4298 	if (sctx)
4299 		memcpy(progress, &sctx->stat, sizeof(*progress));
4300 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4301 
4302 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4303 }
4304 
4305 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4306 			       u64 extent_logical, u32 extent_len,
4307 			       u64 *extent_physical,
4308 			       struct btrfs_device **extent_dev,
4309 			       int *extent_mirror_num)
4310 {
4311 	u64 mapped_length;
4312 	struct btrfs_bio *bbio = NULL;
4313 	int ret;
4314 
4315 	mapped_length = extent_len;
4316 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4317 			      &mapped_length, &bbio, 0);
4318 	if (ret || !bbio || mapped_length < extent_len ||
4319 	    !bbio->stripes[0].dev->bdev) {
4320 		btrfs_put_bbio(bbio);
4321 		return;
4322 	}
4323 
4324 	*extent_physical = bbio->stripes[0].physical;
4325 	*extent_mirror_num = bbio->mirror_num;
4326 	*extent_dev = bbio->stripes[0].dev;
4327 	btrfs_put_bbio(bbio);
4328 }
4329