1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_recover { 67 atomic_t refs; 68 struct btrfs_bio *bbio; 69 u64 map_length; 70 }; 71 72 struct scrub_page { 73 struct scrub_block *sblock; 74 struct page *page; 75 struct btrfs_device *dev; 76 struct list_head list; 77 u64 flags; /* extent flags */ 78 u64 generation; 79 u64 logical; 80 u64 physical; 81 u64 physical_for_dev_replace; 82 atomic_t refs; 83 struct { 84 unsigned int mirror_num:8; 85 unsigned int have_csum:1; 86 unsigned int io_error:1; 87 }; 88 u8 csum[BTRFS_CSUM_SIZE]; 89 90 struct scrub_recover *recover; 91 }; 92 93 struct scrub_bio { 94 int index; 95 struct scrub_ctx *sctx; 96 struct btrfs_device *dev; 97 struct bio *bio; 98 int err; 99 u64 logical; 100 u64 physical; 101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 103 #else 104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 105 #endif 106 int page_count; 107 int next_free; 108 struct btrfs_work work; 109 }; 110 111 struct scrub_block { 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 113 int page_count; 114 atomic_t outstanding_pages; 115 atomic_t refs; /* free mem on transition to zero */ 116 struct scrub_ctx *sctx; 117 struct scrub_parity *sparity; 118 struct { 119 unsigned int header_error:1; 120 unsigned int checksum_error:1; 121 unsigned int no_io_error_seen:1; 122 unsigned int generation_error:1; /* also sets header_error */ 123 124 /* The following is for the data used to check parity */ 125 /* It is for the data with checksum */ 126 unsigned int data_corrected:1; 127 }; 128 struct btrfs_work work; 129 }; 130 131 /* Used for the chunks with parity stripe such RAID5/6 */ 132 struct scrub_parity { 133 struct scrub_ctx *sctx; 134 135 struct btrfs_device *scrub_dev; 136 137 u64 logic_start; 138 139 u64 logic_end; 140 141 int nsectors; 142 143 int stripe_len; 144 145 atomic_t refs; 146 147 struct list_head spages; 148 149 /* Work of parity check and repair */ 150 struct btrfs_work work; 151 152 /* Mark the parity blocks which have data */ 153 unsigned long *dbitmap; 154 155 /* 156 * Mark the parity blocks which have data, but errors happen when 157 * read data or check data 158 */ 159 unsigned long *ebitmap; 160 161 unsigned long bitmap[0]; 162 }; 163 164 struct scrub_wr_ctx { 165 struct scrub_bio *wr_curr_bio; 166 struct btrfs_device *tgtdev; 167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 168 atomic_t flush_all_writes; 169 struct mutex wr_lock; 170 }; 171 172 struct scrub_ctx { 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 174 struct btrfs_root *dev_root; 175 int first_free; 176 int curr; 177 atomic_t bios_in_flight; 178 atomic_t workers_pending; 179 spinlock_t list_lock; 180 wait_queue_head_t list_wait; 181 u16 csum_size; 182 struct list_head csum_list; 183 atomic_t cancel_req; 184 int readonly; 185 int pages_per_rd_bio; 186 u32 sectorsize; 187 u32 nodesize; 188 189 int is_dev_replace; 190 struct scrub_wr_ctx wr_ctx; 191 192 /* 193 * statistics 194 */ 195 struct btrfs_scrub_progress stat; 196 spinlock_t stat_lock; 197 198 /* 199 * Use a ref counter to avoid use-after-free issues. Scrub workers 200 * decrement bios_in_flight and workers_pending and then do a wakeup 201 * on the list_wait wait queue. We must ensure the main scrub task 202 * doesn't free the scrub context before or while the workers are 203 * doing the wakeup() call. 204 */ 205 atomic_t refs; 206 }; 207 208 struct scrub_fixup_nodatasum { 209 struct scrub_ctx *sctx; 210 struct btrfs_device *dev; 211 u64 logical; 212 struct btrfs_root *root; 213 struct btrfs_work work; 214 int mirror_num; 215 }; 216 217 struct scrub_nocow_inode { 218 u64 inum; 219 u64 offset; 220 u64 root; 221 struct list_head list; 222 }; 223 224 struct scrub_copy_nocow_ctx { 225 struct scrub_ctx *sctx; 226 u64 logical; 227 u64 len; 228 int mirror_num; 229 u64 physical_for_dev_replace; 230 struct list_head inodes; 231 struct btrfs_work work; 232 }; 233 234 struct scrub_warning { 235 struct btrfs_path *path; 236 u64 extent_item_size; 237 const char *errstr; 238 sector_t sector; 239 u64 logical; 240 struct btrfs_device *dev; 241 }; 242 243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 249 struct scrub_block *sblocks_for_recheck); 250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 251 struct scrub_block *sblock, 252 int retry_failed_mirror); 253 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 255 struct scrub_block *sblock_good); 256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 257 struct scrub_block *sblock_good, 258 int page_num, int force_write); 259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 261 int page_num); 262 static int scrub_checksum_data(struct scrub_block *sblock); 263 static int scrub_checksum_tree_block(struct scrub_block *sblock); 264 static int scrub_checksum_super(struct scrub_block *sblock); 265 static void scrub_block_get(struct scrub_block *sblock); 266 static void scrub_block_put(struct scrub_block *sblock); 267 static void scrub_page_get(struct scrub_page *spage); 268 static void scrub_page_put(struct scrub_page *spage); 269 static void scrub_parity_get(struct scrub_parity *sparity); 270 static void scrub_parity_put(struct scrub_parity *sparity); 271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 272 struct scrub_page *spage); 273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 274 u64 physical, struct btrfs_device *dev, u64 flags, 275 u64 gen, int mirror_num, u8 *csum, int force, 276 u64 physical_for_dev_replace); 277 static void scrub_bio_end_io(struct bio *bio); 278 static void scrub_bio_end_io_worker(struct btrfs_work *work); 279 static void scrub_block_complete(struct scrub_block *sblock); 280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 281 u64 extent_logical, u64 extent_len, 282 u64 *extent_physical, 283 struct btrfs_device **extent_dev, 284 int *extent_mirror_num); 285 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 286 struct scrub_wr_ctx *wr_ctx, 287 struct btrfs_fs_info *fs_info, 288 struct btrfs_device *dev, 289 int is_dev_replace); 290 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 291 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 292 struct scrub_page *spage); 293 static void scrub_wr_submit(struct scrub_ctx *sctx); 294 static void scrub_wr_bio_end_io(struct bio *bio); 295 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 296 static int write_page_nocow(struct scrub_ctx *sctx, 297 u64 physical_for_dev_replace, struct page *page); 298 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 299 struct scrub_copy_nocow_ctx *ctx); 300 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 301 int mirror_num, u64 physical_for_dev_replace); 302 static void copy_nocow_pages_worker(struct btrfs_work *work); 303 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 305 static void scrub_put_ctx(struct scrub_ctx *sctx); 306 307 308 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 309 { 310 atomic_inc(&sctx->refs); 311 atomic_inc(&sctx->bios_in_flight); 312 } 313 314 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 315 { 316 atomic_dec(&sctx->bios_in_flight); 317 wake_up(&sctx->list_wait); 318 scrub_put_ctx(sctx); 319 } 320 321 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 322 { 323 while (atomic_read(&fs_info->scrub_pause_req)) { 324 mutex_unlock(&fs_info->scrub_lock); 325 wait_event(fs_info->scrub_pause_wait, 326 atomic_read(&fs_info->scrub_pause_req) == 0); 327 mutex_lock(&fs_info->scrub_lock); 328 } 329 } 330 331 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 332 { 333 atomic_inc(&fs_info->scrubs_paused); 334 wake_up(&fs_info->scrub_pause_wait); 335 } 336 337 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 338 { 339 mutex_lock(&fs_info->scrub_lock); 340 __scrub_blocked_if_needed(fs_info); 341 atomic_dec(&fs_info->scrubs_paused); 342 mutex_unlock(&fs_info->scrub_lock); 343 344 wake_up(&fs_info->scrub_pause_wait); 345 } 346 347 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 348 { 349 scrub_pause_on(fs_info); 350 scrub_pause_off(fs_info); 351 } 352 353 /* 354 * used for workers that require transaction commits (i.e., for the 355 * NOCOW case) 356 */ 357 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 358 { 359 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 360 361 atomic_inc(&sctx->refs); 362 /* 363 * increment scrubs_running to prevent cancel requests from 364 * completing as long as a worker is running. we must also 365 * increment scrubs_paused to prevent deadlocking on pause 366 * requests used for transactions commits (as the worker uses a 367 * transaction context). it is safe to regard the worker 368 * as paused for all matters practical. effectively, we only 369 * avoid cancellation requests from completing. 370 */ 371 mutex_lock(&fs_info->scrub_lock); 372 atomic_inc(&fs_info->scrubs_running); 373 atomic_inc(&fs_info->scrubs_paused); 374 mutex_unlock(&fs_info->scrub_lock); 375 376 /* 377 * check if @scrubs_running=@scrubs_paused condition 378 * inside wait_event() is not an atomic operation. 379 * which means we may inc/dec @scrub_running/paused 380 * at any time. Let's wake up @scrub_pause_wait as 381 * much as we can to let commit transaction blocked less. 382 */ 383 wake_up(&fs_info->scrub_pause_wait); 384 385 atomic_inc(&sctx->workers_pending); 386 } 387 388 /* used for workers that require transaction commits */ 389 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 390 { 391 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 392 393 /* 394 * see scrub_pending_trans_workers_inc() why we're pretending 395 * to be paused in the scrub counters 396 */ 397 mutex_lock(&fs_info->scrub_lock); 398 atomic_dec(&fs_info->scrubs_running); 399 atomic_dec(&fs_info->scrubs_paused); 400 mutex_unlock(&fs_info->scrub_lock); 401 atomic_dec(&sctx->workers_pending); 402 wake_up(&fs_info->scrub_pause_wait); 403 wake_up(&sctx->list_wait); 404 scrub_put_ctx(sctx); 405 } 406 407 static void scrub_free_csums(struct scrub_ctx *sctx) 408 { 409 while (!list_empty(&sctx->csum_list)) { 410 struct btrfs_ordered_sum *sum; 411 sum = list_first_entry(&sctx->csum_list, 412 struct btrfs_ordered_sum, list); 413 list_del(&sum->list); 414 kfree(sum); 415 } 416 } 417 418 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 419 { 420 int i; 421 422 if (!sctx) 423 return; 424 425 scrub_free_wr_ctx(&sctx->wr_ctx); 426 427 /* this can happen when scrub is cancelled */ 428 if (sctx->curr != -1) { 429 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 430 431 for (i = 0; i < sbio->page_count; i++) { 432 WARN_ON(!sbio->pagev[i]->page); 433 scrub_block_put(sbio->pagev[i]->sblock); 434 } 435 bio_put(sbio->bio); 436 } 437 438 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 439 struct scrub_bio *sbio = sctx->bios[i]; 440 441 if (!sbio) 442 break; 443 kfree(sbio); 444 } 445 446 scrub_free_csums(sctx); 447 kfree(sctx); 448 } 449 450 static void scrub_put_ctx(struct scrub_ctx *sctx) 451 { 452 if (atomic_dec_and_test(&sctx->refs)) 453 scrub_free_ctx(sctx); 454 } 455 456 static noinline_for_stack 457 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 458 { 459 struct scrub_ctx *sctx; 460 int i; 461 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 462 int ret; 463 464 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 465 if (!sctx) 466 goto nomem; 467 atomic_set(&sctx->refs, 1); 468 sctx->is_dev_replace = is_dev_replace; 469 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 470 sctx->curr = -1; 471 sctx->dev_root = dev->dev_root; 472 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 473 struct scrub_bio *sbio; 474 475 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 476 if (!sbio) 477 goto nomem; 478 sctx->bios[i] = sbio; 479 480 sbio->index = i; 481 sbio->sctx = sctx; 482 sbio->page_count = 0; 483 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 484 scrub_bio_end_io_worker, NULL, NULL); 485 486 if (i != SCRUB_BIOS_PER_SCTX - 1) 487 sctx->bios[i]->next_free = i + 1; 488 else 489 sctx->bios[i]->next_free = -1; 490 } 491 sctx->first_free = 0; 492 sctx->nodesize = dev->dev_root->nodesize; 493 sctx->sectorsize = dev->dev_root->sectorsize; 494 atomic_set(&sctx->bios_in_flight, 0); 495 atomic_set(&sctx->workers_pending, 0); 496 atomic_set(&sctx->cancel_req, 0); 497 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 498 INIT_LIST_HEAD(&sctx->csum_list); 499 500 spin_lock_init(&sctx->list_lock); 501 spin_lock_init(&sctx->stat_lock); 502 init_waitqueue_head(&sctx->list_wait); 503 504 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 505 fs_info->dev_replace.tgtdev, is_dev_replace); 506 if (ret) { 507 scrub_free_ctx(sctx); 508 return ERR_PTR(ret); 509 } 510 return sctx; 511 512 nomem: 513 scrub_free_ctx(sctx); 514 return ERR_PTR(-ENOMEM); 515 } 516 517 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 518 void *warn_ctx) 519 { 520 u64 isize; 521 u32 nlink; 522 int ret; 523 int i; 524 struct extent_buffer *eb; 525 struct btrfs_inode_item *inode_item; 526 struct scrub_warning *swarn = warn_ctx; 527 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 528 struct inode_fs_paths *ipath = NULL; 529 struct btrfs_root *local_root; 530 struct btrfs_key root_key; 531 struct btrfs_key key; 532 533 root_key.objectid = root; 534 root_key.type = BTRFS_ROOT_ITEM_KEY; 535 root_key.offset = (u64)-1; 536 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 537 if (IS_ERR(local_root)) { 538 ret = PTR_ERR(local_root); 539 goto err; 540 } 541 542 /* 543 * this makes the path point to (inum INODE_ITEM ioff) 544 */ 545 key.objectid = inum; 546 key.type = BTRFS_INODE_ITEM_KEY; 547 key.offset = 0; 548 549 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 550 if (ret) { 551 btrfs_release_path(swarn->path); 552 goto err; 553 } 554 555 eb = swarn->path->nodes[0]; 556 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 557 struct btrfs_inode_item); 558 isize = btrfs_inode_size(eb, inode_item); 559 nlink = btrfs_inode_nlink(eb, inode_item); 560 btrfs_release_path(swarn->path); 561 562 ipath = init_ipath(4096, local_root, swarn->path); 563 if (IS_ERR(ipath)) { 564 ret = PTR_ERR(ipath); 565 ipath = NULL; 566 goto err; 567 } 568 ret = paths_from_inode(inum, ipath); 569 570 if (ret < 0) 571 goto err; 572 573 /* 574 * we deliberately ignore the bit ipath might have been too small to 575 * hold all of the paths here 576 */ 577 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 578 btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev " 579 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 580 "length %llu, links %u (path: %s)", swarn->errstr, 581 swarn->logical, rcu_str_deref(swarn->dev->name), 582 (unsigned long long)swarn->sector, root, inum, offset, 583 min(isize - offset, (u64)PAGE_SIZE), nlink, 584 (char *)(unsigned long)ipath->fspath->val[i]); 585 586 free_ipath(ipath); 587 return 0; 588 589 err: 590 btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev " 591 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 592 "resolving failed with ret=%d", swarn->errstr, 593 swarn->logical, rcu_str_deref(swarn->dev->name), 594 (unsigned long long)swarn->sector, root, inum, offset, ret); 595 596 free_ipath(ipath); 597 return 0; 598 } 599 600 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 601 { 602 struct btrfs_device *dev; 603 struct btrfs_fs_info *fs_info; 604 struct btrfs_path *path; 605 struct btrfs_key found_key; 606 struct extent_buffer *eb; 607 struct btrfs_extent_item *ei; 608 struct scrub_warning swarn; 609 unsigned long ptr = 0; 610 u64 extent_item_pos; 611 u64 flags = 0; 612 u64 ref_root; 613 u32 item_size; 614 u8 ref_level = 0; 615 int ret; 616 617 WARN_ON(sblock->page_count < 1); 618 dev = sblock->pagev[0]->dev; 619 fs_info = sblock->sctx->dev_root->fs_info; 620 621 path = btrfs_alloc_path(); 622 if (!path) 623 return; 624 625 swarn.sector = (sblock->pagev[0]->physical) >> 9; 626 swarn.logical = sblock->pagev[0]->logical; 627 swarn.errstr = errstr; 628 swarn.dev = NULL; 629 630 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 631 &flags); 632 if (ret < 0) 633 goto out; 634 635 extent_item_pos = swarn.logical - found_key.objectid; 636 swarn.extent_item_size = found_key.offset; 637 638 eb = path->nodes[0]; 639 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 640 item_size = btrfs_item_size_nr(eb, path->slots[0]); 641 642 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 643 do { 644 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 645 item_size, &ref_root, 646 &ref_level); 647 btrfs_warn_in_rcu(fs_info, 648 "%s at logical %llu on dev %s, " 649 "sector %llu: metadata %s (level %d) in tree " 650 "%llu", errstr, swarn.logical, 651 rcu_str_deref(dev->name), 652 (unsigned long long)swarn.sector, 653 ref_level ? "node" : "leaf", 654 ret < 0 ? -1 : ref_level, 655 ret < 0 ? -1 : ref_root); 656 } while (ret != 1); 657 btrfs_release_path(path); 658 } else { 659 btrfs_release_path(path); 660 swarn.path = path; 661 swarn.dev = dev; 662 iterate_extent_inodes(fs_info, found_key.objectid, 663 extent_item_pos, 1, 664 scrub_print_warning_inode, &swarn); 665 } 666 667 out: 668 btrfs_free_path(path); 669 } 670 671 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 672 { 673 struct page *page = NULL; 674 unsigned long index; 675 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 676 int ret; 677 int corrected = 0; 678 struct btrfs_key key; 679 struct inode *inode = NULL; 680 struct btrfs_fs_info *fs_info; 681 u64 end = offset + PAGE_SIZE - 1; 682 struct btrfs_root *local_root; 683 int srcu_index; 684 685 key.objectid = root; 686 key.type = BTRFS_ROOT_ITEM_KEY; 687 key.offset = (u64)-1; 688 689 fs_info = fixup->root->fs_info; 690 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 691 692 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 693 if (IS_ERR(local_root)) { 694 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 695 return PTR_ERR(local_root); 696 } 697 698 key.type = BTRFS_INODE_ITEM_KEY; 699 key.objectid = inum; 700 key.offset = 0; 701 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 702 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 703 if (IS_ERR(inode)) 704 return PTR_ERR(inode); 705 706 index = offset >> PAGE_SHIFT; 707 708 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 709 if (!page) { 710 ret = -ENOMEM; 711 goto out; 712 } 713 714 if (PageUptodate(page)) { 715 if (PageDirty(page)) { 716 /* 717 * we need to write the data to the defect sector. the 718 * data that was in that sector is not in memory, 719 * because the page was modified. we must not write the 720 * modified page to that sector. 721 * 722 * TODO: what could be done here: wait for the delalloc 723 * runner to write out that page (might involve 724 * COW) and see whether the sector is still 725 * referenced afterwards. 726 * 727 * For the meantime, we'll treat this error 728 * incorrectable, although there is a chance that a 729 * later scrub will find the bad sector again and that 730 * there's no dirty page in memory, then. 731 */ 732 ret = -EIO; 733 goto out; 734 } 735 ret = repair_io_failure(inode, offset, PAGE_SIZE, 736 fixup->logical, page, 737 offset - page_offset(page), 738 fixup->mirror_num); 739 unlock_page(page); 740 corrected = !ret; 741 } else { 742 /* 743 * we need to get good data first. the general readpage path 744 * will call repair_io_failure for us, we just have to make 745 * sure we read the bad mirror. 746 */ 747 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 748 EXTENT_DAMAGED); 749 if (ret) { 750 /* set_extent_bits should give proper error */ 751 WARN_ON(ret > 0); 752 if (ret > 0) 753 ret = -EFAULT; 754 goto out; 755 } 756 757 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 758 btrfs_get_extent, 759 fixup->mirror_num); 760 wait_on_page_locked(page); 761 762 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 763 end, EXTENT_DAMAGED, 0, NULL); 764 if (!corrected) 765 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 766 EXTENT_DAMAGED); 767 } 768 769 out: 770 if (page) 771 put_page(page); 772 773 iput(inode); 774 775 if (ret < 0) 776 return ret; 777 778 if (ret == 0 && corrected) { 779 /* 780 * we only need to call readpage for one of the inodes belonging 781 * to this extent. so make iterate_extent_inodes stop 782 */ 783 return 1; 784 } 785 786 return -EIO; 787 } 788 789 static void scrub_fixup_nodatasum(struct btrfs_work *work) 790 { 791 int ret; 792 struct scrub_fixup_nodatasum *fixup; 793 struct scrub_ctx *sctx; 794 struct btrfs_trans_handle *trans = NULL; 795 struct btrfs_path *path; 796 int uncorrectable = 0; 797 798 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 799 sctx = fixup->sctx; 800 801 path = btrfs_alloc_path(); 802 if (!path) { 803 spin_lock(&sctx->stat_lock); 804 ++sctx->stat.malloc_errors; 805 spin_unlock(&sctx->stat_lock); 806 uncorrectable = 1; 807 goto out; 808 } 809 810 trans = btrfs_join_transaction(fixup->root); 811 if (IS_ERR(trans)) { 812 uncorrectable = 1; 813 goto out; 814 } 815 816 /* 817 * the idea is to trigger a regular read through the standard path. we 818 * read a page from the (failed) logical address by specifying the 819 * corresponding copynum of the failed sector. thus, that readpage is 820 * expected to fail. 821 * that is the point where on-the-fly error correction will kick in 822 * (once it's finished) and rewrite the failed sector if a good copy 823 * can be found. 824 */ 825 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 826 path, scrub_fixup_readpage, 827 fixup); 828 if (ret < 0) { 829 uncorrectable = 1; 830 goto out; 831 } 832 WARN_ON(ret != 1); 833 834 spin_lock(&sctx->stat_lock); 835 ++sctx->stat.corrected_errors; 836 spin_unlock(&sctx->stat_lock); 837 838 out: 839 if (trans && !IS_ERR(trans)) 840 btrfs_end_transaction(trans, fixup->root); 841 if (uncorrectable) { 842 spin_lock(&sctx->stat_lock); 843 ++sctx->stat.uncorrectable_errors; 844 spin_unlock(&sctx->stat_lock); 845 btrfs_dev_replace_stats_inc( 846 &sctx->dev_root->fs_info->dev_replace. 847 num_uncorrectable_read_errors); 848 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info, 849 "unable to fixup (nodatasum) error at logical %llu on dev %s", 850 fixup->logical, rcu_str_deref(fixup->dev->name)); 851 } 852 853 btrfs_free_path(path); 854 kfree(fixup); 855 856 scrub_pending_trans_workers_dec(sctx); 857 } 858 859 static inline void scrub_get_recover(struct scrub_recover *recover) 860 { 861 atomic_inc(&recover->refs); 862 } 863 864 static inline void scrub_put_recover(struct scrub_recover *recover) 865 { 866 if (atomic_dec_and_test(&recover->refs)) { 867 btrfs_put_bbio(recover->bbio); 868 kfree(recover); 869 } 870 } 871 872 /* 873 * scrub_handle_errored_block gets called when either verification of the 874 * pages failed or the bio failed to read, e.g. with EIO. In the latter 875 * case, this function handles all pages in the bio, even though only one 876 * may be bad. 877 * The goal of this function is to repair the errored block by using the 878 * contents of one of the mirrors. 879 */ 880 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 881 { 882 struct scrub_ctx *sctx = sblock_to_check->sctx; 883 struct btrfs_device *dev; 884 struct btrfs_fs_info *fs_info; 885 u64 length; 886 u64 logical; 887 unsigned int failed_mirror_index; 888 unsigned int is_metadata; 889 unsigned int have_csum; 890 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 891 struct scrub_block *sblock_bad; 892 int ret; 893 int mirror_index; 894 int page_num; 895 int success; 896 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 897 DEFAULT_RATELIMIT_BURST); 898 899 BUG_ON(sblock_to_check->page_count < 1); 900 fs_info = sctx->dev_root->fs_info; 901 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 902 /* 903 * if we find an error in a super block, we just report it. 904 * They will get written with the next transaction commit 905 * anyway 906 */ 907 spin_lock(&sctx->stat_lock); 908 ++sctx->stat.super_errors; 909 spin_unlock(&sctx->stat_lock); 910 return 0; 911 } 912 length = sblock_to_check->page_count * PAGE_SIZE; 913 logical = sblock_to_check->pagev[0]->logical; 914 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 915 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 916 is_metadata = !(sblock_to_check->pagev[0]->flags & 917 BTRFS_EXTENT_FLAG_DATA); 918 have_csum = sblock_to_check->pagev[0]->have_csum; 919 dev = sblock_to_check->pagev[0]->dev; 920 921 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 922 sblocks_for_recheck = NULL; 923 goto nodatasum_case; 924 } 925 926 /* 927 * read all mirrors one after the other. This includes to 928 * re-read the extent or metadata block that failed (that was 929 * the cause that this fixup code is called) another time, 930 * page by page this time in order to know which pages 931 * caused I/O errors and which ones are good (for all mirrors). 932 * It is the goal to handle the situation when more than one 933 * mirror contains I/O errors, but the errors do not 934 * overlap, i.e. the data can be repaired by selecting the 935 * pages from those mirrors without I/O error on the 936 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 937 * would be that mirror #1 has an I/O error on the first page, 938 * the second page is good, and mirror #2 has an I/O error on 939 * the second page, but the first page is good. 940 * Then the first page of the first mirror can be repaired by 941 * taking the first page of the second mirror, and the 942 * second page of the second mirror can be repaired by 943 * copying the contents of the 2nd page of the 1st mirror. 944 * One more note: if the pages of one mirror contain I/O 945 * errors, the checksum cannot be verified. In order to get 946 * the best data for repairing, the first attempt is to find 947 * a mirror without I/O errors and with a validated checksum. 948 * Only if this is not possible, the pages are picked from 949 * mirrors with I/O errors without considering the checksum. 950 * If the latter is the case, at the end, the checksum of the 951 * repaired area is verified in order to correctly maintain 952 * the statistics. 953 */ 954 955 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 956 sizeof(*sblocks_for_recheck), GFP_NOFS); 957 if (!sblocks_for_recheck) { 958 spin_lock(&sctx->stat_lock); 959 sctx->stat.malloc_errors++; 960 sctx->stat.read_errors++; 961 sctx->stat.uncorrectable_errors++; 962 spin_unlock(&sctx->stat_lock); 963 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 964 goto out; 965 } 966 967 /* setup the context, map the logical blocks and alloc the pages */ 968 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 969 if (ret) { 970 spin_lock(&sctx->stat_lock); 971 sctx->stat.read_errors++; 972 sctx->stat.uncorrectable_errors++; 973 spin_unlock(&sctx->stat_lock); 974 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 975 goto out; 976 } 977 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 978 sblock_bad = sblocks_for_recheck + failed_mirror_index; 979 980 /* build and submit the bios for the failed mirror, check checksums */ 981 scrub_recheck_block(fs_info, sblock_bad, 1); 982 983 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 984 sblock_bad->no_io_error_seen) { 985 /* 986 * the error disappeared after reading page by page, or 987 * the area was part of a huge bio and other parts of the 988 * bio caused I/O errors, or the block layer merged several 989 * read requests into one and the error is caused by a 990 * different bio (usually one of the two latter cases is 991 * the cause) 992 */ 993 spin_lock(&sctx->stat_lock); 994 sctx->stat.unverified_errors++; 995 sblock_to_check->data_corrected = 1; 996 spin_unlock(&sctx->stat_lock); 997 998 if (sctx->is_dev_replace) 999 scrub_write_block_to_dev_replace(sblock_bad); 1000 goto out; 1001 } 1002 1003 if (!sblock_bad->no_io_error_seen) { 1004 spin_lock(&sctx->stat_lock); 1005 sctx->stat.read_errors++; 1006 spin_unlock(&sctx->stat_lock); 1007 if (__ratelimit(&_rs)) 1008 scrub_print_warning("i/o error", sblock_to_check); 1009 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1010 } else if (sblock_bad->checksum_error) { 1011 spin_lock(&sctx->stat_lock); 1012 sctx->stat.csum_errors++; 1013 spin_unlock(&sctx->stat_lock); 1014 if (__ratelimit(&_rs)) 1015 scrub_print_warning("checksum error", sblock_to_check); 1016 btrfs_dev_stat_inc_and_print(dev, 1017 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1018 } else if (sblock_bad->header_error) { 1019 spin_lock(&sctx->stat_lock); 1020 sctx->stat.verify_errors++; 1021 spin_unlock(&sctx->stat_lock); 1022 if (__ratelimit(&_rs)) 1023 scrub_print_warning("checksum/header error", 1024 sblock_to_check); 1025 if (sblock_bad->generation_error) 1026 btrfs_dev_stat_inc_and_print(dev, 1027 BTRFS_DEV_STAT_GENERATION_ERRS); 1028 else 1029 btrfs_dev_stat_inc_and_print(dev, 1030 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1031 } 1032 1033 if (sctx->readonly) { 1034 ASSERT(!sctx->is_dev_replace); 1035 goto out; 1036 } 1037 1038 if (!is_metadata && !have_csum) { 1039 struct scrub_fixup_nodatasum *fixup_nodatasum; 1040 1041 WARN_ON(sctx->is_dev_replace); 1042 1043 nodatasum_case: 1044 1045 /* 1046 * !is_metadata and !have_csum, this means that the data 1047 * might not be COWed, that it might be modified 1048 * concurrently. The general strategy to work on the 1049 * commit root does not help in the case when COW is not 1050 * used. 1051 */ 1052 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1053 if (!fixup_nodatasum) 1054 goto did_not_correct_error; 1055 fixup_nodatasum->sctx = sctx; 1056 fixup_nodatasum->dev = dev; 1057 fixup_nodatasum->logical = logical; 1058 fixup_nodatasum->root = fs_info->extent_root; 1059 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1060 scrub_pending_trans_workers_inc(sctx); 1061 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1062 scrub_fixup_nodatasum, NULL, NULL); 1063 btrfs_queue_work(fs_info->scrub_workers, 1064 &fixup_nodatasum->work); 1065 goto out; 1066 } 1067 1068 /* 1069 * now build and submit the bios for the other mirrors, check 1070 * checksums. 1071 * First try to pick the mirror which is completely without I/O 1072 * errors and also does not have a checksum error. 1073 * If one is found, and if a checksum is present, the full block 1074 * that is known to contain an error is rewritten. Afterwards 1075 * the block is known to be corrected. 1076 * If a mirror is found which is completely correct, and no 1077 * checksum is present, only those pages are rewritten that had 1078 * an I/O error in the block to be repaired, since it cannot be 1079 * determined, which copy of the other pages is better (and it 1080 * could happen otherwise that a correct page would be 1081 * overwritten by a bad one). 1082 */ 1083 for (mirror_index = 0; 1084 mirror_index < BTRFS_MAX_MIRRORS && 1085 sblocks_for_recheck[mirror_index].page_count > 0; 1086 mirror_index++) { 1087 struct scrub_block *sblock_other; 1088 1089 if (mirror_index == failed_mirror_index) 1090 continue; 1091 sblock_other = sblocks_for_recheck + mirror_index; 1092 1093 /* build and submit the bios, check checksums */ 1094 scrub_recheck_block(fs_info, sblock_other, 0); 1095 1096 if (!sblock_other->header_error && 1097 !sblock_other->checksum_error && 1098 sblock_other->no_io_error_seen) { 1099 if (sctx->is_dev_replace) { 1100 scrub_write_block_to_dev_replace(sblock_other); 1101 goto corrected_error; 1102 } else { 1103 ret = scrub_repair_block_from_good_copy( 1104 sblock_bad, sblock_other); 1105 if (!ret) 1106 goto corrected_error; 1107 } 1108 } 1109 } 1110 1111 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1112 goto did_not_correct_error; 1113 1114 /* 1115 * In case of I/O errors in the area that is supposed to be 1116 * repaired, continue by picking good copies of those pages. 1117 * Select the good pages from mirrors to rewrite bad pages from 1118 * the area to fix. Afterwards verify the checksum of the block 1119 * that is supposed to be repaired. This verification step is 1120 * only done for the purpose of statistic counting and for the 1121 * final scrub report, whether errors remain. 1122 * A perfect algorithm could make use of the checksum and try 1123 * all possible combinations of pages from the different mirrors 1124 * until the checksum verification succeeds. For example, when 1125 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1126 * of mirror #2 is readable but the final checksum test fails, 1127 * then the 2nd page of mirror #3 could be tried, whether now 1128 * the final checksum succeeds. But this would be a rare 1129 * exception and is therefore not implemented. At least it is 1130 * avoided that the good copy is overwritten. 1131 * A more useful improvement would be to pick the sectors 1132 * without I/O error based on sector sizes (512 bytes on legacy 1133 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1134 * mirror could be repaired by taking 512 byte of a different 1135 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1136 * area are unreadable. 1137 */ 1138 success = 1; 1139 for (page_num = 0; page_num < sblock_bad->page_count; 1140 page_num++) { 1141 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1142 struct scrub_block *sblock_other = NULL; 1143 1144 /* skip no-io-error page in scrub */ 1145 if (!page_bad->io_error && !sctx->is_dev_replace) 1146 continue; 1147 1148 /* try to find no-io-error page in mirrors */ 1149 if (page_bad->io_error) { 1150 for (mirror_index = 0; 1151 mirror_index < BTRFS_MAX_MIRRORS && 1152 sblocks_for_recheck[mirror_index].page_count > 0; 1153 mirror_index++) { 1154 if (!sblocks_for_recheck[mirror_index]. 1155 pagev[page_num]->io_error) { 1156 sblock_other = sblocks_for_recheck + 1157 mirror_index; 1158 break; 1159 } 1160 } 1161 if (!sblock_other) 1162 success = 0; 1163 } 1164 1165 if (sctx->is_dev_replace) { 1166 /* 1167 * did not find a mirror to fetch the page 1168 * from. scrub_write_page_to_dev_replace() 1169 * handles this case (page->io_error), by 1170 * filling the block with zeros before 1171 * submitting the write request 1172 */ 1173 if (!sblock_other) 1174 sblock_other = sblock_bad; 1175 1176 if (scrub_write_page_to_dev_replace(sblock_other, 1177 page_num) != 0) { 1178 btrfs_dev_replace_stats_inc( 1179 &sctx->dev_root-> 1180 fs_info->dev_replace. 1181 num_write_errors); 1182 success = 0; 1183 } 1184 } else if (sblock_other) { 1185 ret = scrub_repair_page_from_good_copy(sblock_bad, 1186 sblock_other, 1187 page_num, 0); 1188 if (0 == ret) 1189 page_bad->io_error = 0; 1190 else 1191 success = 0; 1192 } 1193 } 1194 1195 if (success && !sctx->is_dev_replace) { 1196 if (is_metadata || have_csum) { 1197 /* 1198 * need to verify the checksum now that all 1199 * sectors on disk are repaired (the write 1200 * request for data to be repaired is on its way). 1201 * Just be lazy and use scrub_recheck_block() 1202 * which re-reads the data before the checksum 1203 * is verified, but most likely the data comes out 1204 * of the page cache. 1205 */ 1206 scrub_recheck_block(fs_info, sblock_bad, 1); 1207 if (!sblock_bad->header_error && 1208 !sblock_bad->checksum_error && 1209 sblock_bad->no_io_error_seen) 1210 goto corrected_error; 1211 else 1212 goto did_not_correct_error; 1213 } else { 1214 corrected_error: 1215 spin_lock(&sctx->stat_lock); 1216 sctx->stat.corrected_errors++; 1217 sblock_to_check->data_corrected = 1; 1218 spin_unlock(&sctx->stat_lock); 1219 btrfs_err_rl_in_rcu(fs_info, 1220 "fixed up error at logical %llu on dev %s", 1221 logical, rcu_str_deref(dev->name)); 1222 } 1223 } else { 1224 did_not_correct_error: 1225 spin_lock(&sctx->stat_lock); 1226 sctx->stat.uncorrectable_errors++; 1227 spin_unlock(&sctx->stat_lock); 1228 btrfs_err_rl_in_rcu(fs_info, 1229 "unable to fixup (regular) error at logical %llu on dev %s", 1230 logical, rcu_str_deref(dev->name)); 1231 } 1232 1233 out: 1234 if (sblocks_for_recheck) { 1235 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1236 mirror_index++) { 1237 struct scrub_block *sblock = sblocks_for_recheck + 1238 mirror_index; 1239 struct scrub_recover *recover; 1240 int page_index; 1241 1242 for (page_index = 0; page_index < sblock->page_count; 1243 page_index++) { 1244 sblock->pagev[page_index]->sblock = NULL; 1245 recover = sblock->pagev[page_index]->recover; 1246 if (recover) { 1247 scrub_put_recover(recover); 1248 sblock->pagev[page_index]->recover = 1249 NULL; 1250 } 1251 scrub_page_put(sblock->pagev[page_index]); 1252 } 1253 } 1254 kfree(sblocks_for_recheck); 1255 } 1256 1257 return 0; 1258 } 1259 1260 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1261 { 1262 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1263 return 2; 1264 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1265 return 3; 1266 else 1267 return (int)bbio->num_stripes; 1268 } 1269 1270 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1271 u64 *raid_map, 1272 u64 mapped_length, 1273 int nstripes, int mirror, 1274 int *stripe_index, 1275 u64 *stripe_offset) 1276 { 1277 int i; 1278 1279 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1280 /* RAID5/6 */ 1281 for (i = 0; i < nstripes; i++) { 1282 if (raid_map[i] == RAID6_Q_STRIPE || 1283 raid_map[i] == RAID5_P_STRIPE) 1284 continue; 1285 1286 if (logical >= raid_map[i] && 1287 logical < raid_map[i] + mapped_length) 1288 break; 1289 } 1290 1291 *stripe_index = i; 1292 *stripe_offset = logical - raid_map[i]; 1293 } else { 1294 /* The other RAID type */ 1295 *stripe_index = mirror; 1296 *stripe_offset = 0; 1297 } 1298 } 1299 1300 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1301 struct scrub_block *sblocks_for_recheck) 1302 { 1303 struct scrub_ctx *sctx = original_sblock->sctx; 1304 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 1305 u64 length = original_sblock->page_count * PAGE_SIZE; 1306 u64 logical = original_sblock->pagev[0]->logical; 1307 u64 generation = original_sblock->pagev[0]->generation; 1308 u64 flags = original_sblock->pagev[0]->flags; 1309 u64 have_csum = original_sblock->pagev[0]->have_csum; 1310 struct scrub_recover *recover; 1311 struct btrfs_bio *bbio; 1312 u64 sublen; 1313 u64 mapped_length; 1314 u64 stripe_offset; 1315 int stripe_index; 1316 int page_index = 0; 1317 int mirror_index; 1318 int nmirrors; 1319 int ret; 1320 1321 /* 1322 * note: the two members refs and outstanding_pages 1323 * are not used (and not set) in the blocks that are used for 1324 * the recheck procedure 1325 */ 1326 1327 while (length > 0) { 1328 sublen = min_t(u64, length, PAGE_SIZE); 1329 mapped_length = sublen; 1330 bbio = NULL; 1331 1332 /* 1333 * with a length of PAGE_SIZE, each returned stripe 1334 * represents one mirror 1335 */ 1336 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, 1337 &mapped_length, &bbio, 0, 1); 1338 if (ret || !bbio || mapped_length < sublen) { 1339 btrfs_put_bbio(bbio); 1340 return -EIO; 1341 } 1342 1343 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1344 if (!recover) { 1345 btrfs_put_bbio(bbio); 1346 return -ENOMEM; 1347 } 1348 1349 atomic_set(&recover->refs, 1); 1350 recover->bbio = bbio; 1351 recover->map_length = mapped_length; 1352 1353 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1354 1355 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1356 1357 for (mirror_index = 0; mirror_index < nmirrors; 1358 mirror_index++) { 1359 struct scrub_block *sblock; 1360 struct scrub_page *page; 1361 1362 sblock = sblocks_for_recheck + mirror_index; 1363 sblock->sctx = sctx; 1364 1365 page = kzalloc(sizeof(*page), GFP_NOFS); 1366 if (!page) { 1367 leave_nomem: 1368 spin_lock(&sctx->stat_lock); 1369 sctx->stat.malloc_errors++; 1370 spin_unlock(&sctx->stat_lock); 1371 scrub_put_recover(recover); 1372 return -ENOMEM; 1373 } 1374 scrub_page_get(page); 1375 sblock->pagev[page_index] = page; 1376 page->sblock = sblock; 1377 page->flags = flags; 1378 page->generation = generation; 1379 page->logical = logical; 1380 page->have_csum = have_csum; 1381 if (have_csum) 1382 memcpy(page->csum, 1383 original_sblock->pagev[0]->csum, 1384 sctx->csum_size); 1385 1386 scrub_stripe_index_and_offset(logical, 1387 bbio->map_type, 1388 bbio->raid_map, 1389 mapped_length, 1390 bbio->num_stripes - 1391 bbio->num_tgtdevs, 1392 mirror_index, 1393 &stripe_index, 1394 &stripe_offset); 1395 page->physical = bbio->stripes[stripe_index].physical + 1396 stripe_offset; 1397 page->dev = bbio->stripes[stripe_index].dev; 1398 1399 BUG_ON(page_index >= original_sblock->page_count); 1400 page->physical_for_dev_replace = 1401 original_sblock->pagev[page_index]-> 1402 physical_for_dev_replace; 1403 /* for missing devices, dev->bdev is NULL */ 1404 page->mirror_num = mirror_index + 1; 1405 sblock->page_count++; 1406 page->page = alloc_page(GFP_NOFS); 1407 if (!page->page) 1408 goto leave_nomem; 1409 1410 scrub_get_recover(recover); 1411 page->recover = recover; 1412 } 1413 scrub_put_recover(recover); 1414 length -= sublen; 1415 logical += sublen; 1416 page_index++; 1417 } 1418 1419 return 0; 1420 } 1421 1422 struct scrub_bio_ret { 1423 struct completion event; 1424 int error; 1425 }; 1426 1427 static void scrub_bio_wait_endio(struct bio *bio) 1428 { 1429 struct scrub_bio_ret *ret = bio->bi_private; 1430 1431 ret->error = bio->bi_error; 1432 complete(&ret->event); 1433 } 1434 1435 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1436 { 1437 return page->recover && 1438 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1439 } 1440 1441 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1442 struct bio *bio, 1443 struct scrub_page *page) 1444 { 1445 struct scrub_bio_ret done; 1446 int ret; 1447 1448 init_completion(&done.event); 1449 done.error = 0; 1450 bio->bi_iter.bi_sector = page->logical >> 9; 1451 bio->bi_private = &done; 1452 bio->bi_end_io = scrub_bio_wait_endio; 1453 1454 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio, 1455 page->recover->map_length, 1456 page->mirror_num, 0); 1457 if (ret) 1458 return ret; 1459 1460 wait_for_completion(&done.event); 1461 if (done.error) 1462 return -EIO; 1463 1464 return 0; 1465 } 1466 1467 /* 1468 * this function will check the on disk data for checksum errors, header 1469 * errors and read I/O errors. If any I/O errors happen, the exact pages 1470 * which are errored are marked as being bad. The goal is to enable scrub 1471 * to take those pages that are not errored from all the mirrors so that 1472 * the pages that are errored in the just handled mirror can be repaired. 1473 */ 1474 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1475 struct scrub_block *sblock, 1476 int retry_failed_mirror) 1477 { 1478 int page_num; 1479 1480 sblock->no_io_error_seen = 1; 1481 1482 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1483 struct bio *bio; 1484 struct scrub_page *page = sblock->pagev[page_num]; 1485 1486 if (page->dev->bdev == NULL) { 1487 page->io_error = 1; 1488 sblock->no_io_error_seen = 0; 1489 continue; 1490 } 1491 1492 WARN_ON(!page->page); 1493 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1494 if (!bio) { 1495 page->io_error = 1; 1496 sblock->no_io_error_seen = 0; 1497 continue; 1498 } 1499 bio->bi_bdev = page->dev->bdev; 1500 1501 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1502 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1503 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) 1504 sblock->no_io_error_seen = 0; 1505 } else { 1506 bio->bi_iter.bi_sector = page->physical >> 9; 1507 1508 if (btrfsic_submit_bio_wait(READ, bio)) 1509 sblock->no_io_error_seen = 0; 1510 } 1511 1512 bio_put(bio); 1513 } 1514 1515 if (sblock->no_io_error_seen) 1516 scrub_recheck_block_checksum(sblock); 1517 } 1518 1519 static inline int scrub_check_fsid(u8 fsid[], 1520 struct scrub_page *spage) 1521 { 1522 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1523 int ret; 1524 1525 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1526 return !ret; 1527 } 1528 1529 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1530 { 1531 sblock->header_error = 0; 1532 sblock->checksum_error = 0; 1533 sblock->generation_error = 0; 1534 1535 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1536 scrub_checksum_data(sblock); 1537 else 1538 scrub_checksum_tree_block(sblock); 1539 } 1540 1541 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1542 struct scrub_block *sblock_good) 1543 { 1544 int page_num; 1545 int ret = 0; 1546 1547 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1548 int ret_sub; 1549 1550 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1551 sblock_good, 1552 page_num, 1); 1553 if (ret_sub) 1554 ret = ret_sub; 1555 } 1556 1557 return ret; 1558 } 1559 1560 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1561 struct scrub_block *sblock_good, 1562 int page_num, int force_write) 1563 { 1564 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1565 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1566 1567 BUG_ON(page_bad->page == NULL); 1568 BUG_ON(page_good->page == NULL); 1569 if (force_write || sblock_bad->header_error || 1570 sblock_bad->checksum_error || page_bad->io_error) { 1571 struct bio *bio; 1572 int ret; 1573 1574 if (!page_bad->dev->bdev) { 1575 btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info, 1576 "scrub_repair_page_from_good_copy(bdev == NULL) " 1577 "is unexpected"); 1578 return -EIO; 1579 } 1580 1581 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1582 if (!bio) 1583 return -EIO; 1584 bio->bi_bdev = page_bad->dev->bdev; 1585 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1586 1587 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1588 if (PAGE_SIZE != ret) { 1589 bio_put(bio); 1590 return -EIO; 1591 } 1592 1593 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1594 btrfs_dev_stat_inc_and_print(page_bad->dev, 1595 BTRFS_DEV_STAT_WRITE_ERRS); 1596 btrfs_dev_replace_stats_inc( 1597 &sblock_bad->sctx->dev_root->fs_info-> 1598 dev_replace.num_write_errors); 1599 bio_put(bio); 1600 return -EIO; 1601 } 1602 bio_put(bio); 1603 } 1604 1605 return 0; 1606 } 1607 1608 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1609 { 1610 int page_num; 1611 1612 /* 1613 * This block is used for the check of the parity on the source device, 1614 * so the data needn't be written into the destination device. 1615 */ 1616 if (sblock->sparity) 1617 return; 1618 1619 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1620 int ret; 1621 1622 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1623 if (ret) 1624 btrfs_dev_replace_stats_inc( 1625 &sblock->sctx->dev_root->fs_info->dev_replace. 1626 num_write_errors); 1627 } 1628 } 1629 1630 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1631 int page_num) 1632 { 1633 struct scrub_page *spage = sblock->pagev[page_num]; 1634 1635 BUG_ON(spage->page == NULL); 1636 if (spage->io_error) { 1637 void *mapped_buffer = kmap_atomic(spage->page); 1638 1639 memset(mapped_buffer, 0, PAGE_SIZE); 1640 flush_dcache_page(spage->page); 1641 kunmap_atomic(mapped_buffer); 1642 } 1643 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1644 } 1645 1646 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1647 struct scrub_page *spage) 1648 { 1649 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1650 struct scrub_bio *sbio; 1651 int ret; 1652 1653 mutex_lock(&wr_ctx->wr_lock); 1654 again: 1655 if (!wr_ctx->wr_curr_bio) { 1656 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1657 GFP_KERNEL); 1658 if (!wr_ctx->wr_curr_bio) { 1659 mutex_unlock(&wr_ctx->wr_lock); 1660 return -ENOMEM; 1661 } 1662 wr_ctx->wr_curr_bio->sctx = sctx; 1663 wr_ctx->wr_curr_bio->page_count = 0; 1664 } 1665 sbio = wr_ctx->wr_curr_bio; 1666 if (sbio->page_count == 0) { 1667 struct bio *bio; 1668 1669 sbio->physical = spage->physical_for_dev_replace; 1670 sbio->logical = spage->logical; 1671 sbio->dev = wr_ctx->tgtdev; 1672 bio = sbio->bio; 1673 if (!bio) { 1674 bio = btrfs_io_bio_alloc(GFP_KERNEL, 1675 wr_ctx->pages_per_wr_bio); 1676 if (!bio) { 1677 mutex_unlock(&wr_ctx->wr_lock); 1678 return -ENOMEM; 1679 } 1680 sbio->bio = bio; 1681 } 1682 1683 bio->bi_private = sbio; 1684 bio->bi_end_io = scrub_wr_bio_end_io; 1685 bio->bi_bdev = sbio->dev->bdev; 1686 bio->bi_iter.bi_sector = sbio->physical >> 9; 1687 sbio->err = 0; 1688 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1689 spage->physical_for_dev_replace || 1690 sbio->logical + sbio->page_count * PAGE_SIZE != 1691 spage->logical) { 1692 scrub_wr_submit(sctx); 1693 goto again; 1694 } 1695 1696 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1697 if (ret != PAGE_SIZE) { 1698 if (sbio->page_count < 1) { 1699 bio_put(sbio->bio); 1700 sbio->bio = NULL; 1701 mutex_unlock(&wr_ctx->wr_lock); 1702 return -EIO; 1703 } 1704 scrub_wr_submit(sctx); 1705 goto again; 1706 } 1707 1708 sbio->pagev[sbio->page_count] = spage; 1709 scrub_page_get(spage); 1710 sbio->page_count++; 1711 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1712 scrub_wr_submit(sctx); 1713 mutex_unlock(&wr_ctx->wr_lock); 1714 1715 return 0; 1716 } 1717 1718 static void scrub_wr_submit(struct scrub_ctx *sctx) 1719 { 1720 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1721 struct scrub_bio *sbio; 1722 1723 if (!wr_ctx->wr_curr_bio) 1724 return; 1725 1726 sbio = wr_ctx->wr_curr_bio; 1727 wr_ctx->wr_curr_bio = NULL; 1728 WARN_ON(!sbio->bio->bi_bdev); 1729 scrub_pending_bio_inc(sctx); 1730 /* process all writes in a single worker thread. Then the block layer 1731 * orders the requests before sending them to the driver which 1732 * doubled the write performance on spinning disks when measured 1733 * with Linux 3.5 */ 1734 btrfsic_submit_bio(WRITE, sbio->bio); 1735 } 1736 1737 static void scrub_wr_bio_end_io(struct bio *bio) 1738 { 1739 struct scrub_bio *sbio = bio->bi_private; 1740 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1741 1742 sbio->err = bio->bi_error; 1743 sbio->bio = bio; 1744 1745 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1746 scrub_wr_bio_end_io_worker, NULL, NULL); 1747 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1748 } 1749 1750 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1751 { 1752 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1753 struct scrub_ctx *sctx = sbio->sctx; 1754 int i; 1755 1756 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1757 if (sbio->err) { 1758 struct btrfs_dev_replace *dev_replace = 1759 &sbio->sctx->dev_root->fs_info->dev_replace; 1760 1761 for (i = 0; i < sbio->page_count; i++) { 1762 struct scrub_page *spage = sbio->pagev[i]; 1763 1764 spage->io_error = 1; 1765 btrfs_dev_replace_stats_inc(&dev_replace-> 1766 num_write_errors); 1767 } 1768 } 1769 1770 for (i = 0; i < sbio->page_count; i++) 1771 scrub_page_put(sbio->pagev[i]); 1772 1773 bio_put(sbio->bio); 1774 kfree(sbio); 1775 scrub_pending_bio_dec(sctx); 1776 } 1777 1778 static int scrub_checksum(struct scrub_block *sblock) 1779 { 1780 u64 flags; 1781 int ret; 1782 1783 /* 1784 * No need to initialize these stats currently, 1785 * because this function only use return value 1786 * instead of these stats value. 1787 * 1788 * Todo: 1789 * always use stats 1790 */ 1791 sblock->header_error = 0; 1792 sblock->generation_error = 0; 1793 sblock->checksum_error = 0; 1794 1795 WARN_ON(sblock->page_count < 1); 1796 flags = sblock->pagev[0]->flags; 1797 ret = 0; 1798 if (flags & BTRFS_EXTENT_FLAG_DATA) 1799 ret = scrub_checksum_data(sblock); 1800 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1801 ret = scrub_checksum_tree_block(sblock); 1802 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1803 (void)scrub_checksum_super(sblock); 1804 else 1805 WARN_ON(1); 1806 if (ret) 1807 scrub_handle_errored_block(sblock); 1808 1809 return ret; 1810 } 1811 1812 static int scrub_checksum_data(struct scrub_block *sblock) 1813 { 1814 struct scrub_ctx *sctx = sblock->sctx; 1815 u8 csum[BTRFS_CSUM_SIZE]; 1816 u8 *on_disk_csum; 1817 struct page *page; 1818 void *buffer; 1819 u32 crc = ~(u32)0; 1820 u64 len; 1821 int index; 1822 1823 BUG_ON(sblock->page_count < 1); 1824 if (!sblock->pagev[0]->have_csum) 1825 return 0; 1826 1827 on_disk_csum = sblock->pagev[0]->csum; 1828 page = sblock->pagev[0]->page; 1829 buffer = kmap_atomic(page); 1830 1831 len = sctx->sectorsize; 1832 index = 0; 1833 for (;;) { 1834 u64 l = min_t(u64, len, PAGE_SIZE); 1835 1836 crc = btrfs_csum_data(buffer, crc, l); 1837 kunmap_atomic(buffer); 1838 len -= l; 1839 if (len == 0) 1840 break; 1841 index++; 1842 BUG_ON(index >= sblock->page_count); 1843 BUG_ON(!sblock->pagev[index]->page); 1844 page = sblock->pagev[index]->page; 1845 buffer = kmap_atomic(page); 1846 } 1847 1848 btrfs_csum_final(crc, csum); 1849 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1850 sblock->checksum_error = 1; 1851 1852 return sblock->checksum_error; 1853 } 1854 1855 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1856 { 1857 struct scrub_ctx *sctx = sblock->sctx; 1858 struct btrfs_header *h; 1859 struct btrfs_root *root = sctx->dev_root; 1860 struct btrfs_fs_info *fs_info = root->fs_info; 1861 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1862 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1863 struct page *page; 1864 void *mapped_buffer; 1865 u64 mapped_size; 1866 void *p; 1867 u32 crc = ~(u32)0; 1868 u64 len; 1869 int index; 1870 1871 BUG_ON(sblock->page_count < 1); 1872 page = sblock->pagev[0]->page; 1873 mapped_buffer = kmap_atomic(page); 1874 h = (struct btrfs_header *)mapped_buffer; 1875 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1876 1877 /* 1878 * we don't use the getter functions here, as we 1879 * a) don't have an extent buffer and 1880 * b) the page is already kmapped 1881 */ 1882 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1883 sblock->header_error = 1; 1884 1885 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 1886 sblock->header_error = 1; 1887 sblock->generation_error = 1; 1888 } 1889 1890 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1891 sblock->header_error = 1; 1892 1893 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1894 BTRFS_UUID_SIZE)) 1895 sblock->header_error = 1; 1896 1897 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1898 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1899 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1900 index = 0; 1901 for (;;) { 1902 u64 l = min_t(u64, len, mapped_size); 1903 1904 crc = btrfs_csum_data(p, crc, l); 1905 kunmap_atomic(mapped_buffer); 1906 len -= l; 1907 if (len == 0) 1908 break; 1909 index++; 1910 BUG_ON(index >= sblock->page_count); 1911 BUG_ON(!sblock->pagev[index]->page); 1912 page = sblock->pagev[index]->page; 1913 mapped_buffer = kmap_atomic(page); 1914 mapped_size = PAGE_SIZE; 1915 p = mapped_buffer; 1916 } 1917 1918 btrfs_csum_final(crc, calculated_csum); 1919 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1920 sblock->checksum_error = 1; 1921 1922 return sblock->header_error || sblock->checksum_error; 1923 } 1924 1925 static int scrub_checksum_super(struct scrub_block *sblock) 1926 { 1927 struct btrfs_super_block *s; 1928 struct scrub_ctx *sctx = sblock->sctx; 1929 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1930 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1931 struct page *page; 1932 void *mapped_buffer; 1933 u64 mapped_size; 1934 void *p; 1935 u32 crc = ~(u32)0; 1936 int fail_gen = 0; 1937 int fail_cor = 0; 1938 u64 len; 1939 int index; 1940 1941 BUG_ON(sblock->page_count < 1); 1942 page = sblock->pagev[0]->page; 1943 mapped_buffer = kmap_atomic(page); 1944 s = (struct btrfs_super_block *)mapped_buffer; 1945 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1946 1947 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1948 ++fail_cor; 1949 1950 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1951 ++fail_gen; 1952 1953 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1954 ++fail_cor; 1955 1956 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1957 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1958 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1959 index = 0; 1960 for (;;) { 1961 u64 l = min_t(u64, len, mapped_size); 1962 1963 crc = btrfs_csum_data(p, crc, l); 1964 kunmap_atomic(mapped_buffer); 1965 len -= l; 1966 if (len == 0) 1967 break; 1968 index++; 1969 BUG_ON(index >= sblock->page_count); 1970 BUG_ON(!sblock->pagev[index]->page); 1971 page = sblock->pagev[index]->page; 1972 mapped_buffer = kmap_atomic(page); 1973 mapped_size = PAGE_SIZE; 1974 p = mapped_buffer; 1975 } 1976 1977 btrfs_csum_final(crc, calculated_csum); 1978 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1979 ++fail_cor; 1980 1981 if (fail_cor + fail_gen) { 1982 /* 1983 * if we find an error in a super block, we just report it. 1984 * They will get written with the next transaction commit 1985 * anyway 1986 */ 1987 spin_lock(&sctx->stat_lock); 1988 ++sctx->stat.super_errors; 1989 spin_unlock(&sctx->stat_lock); 1990 if (fail_cor) 1991 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1992 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1993 else 1994 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1995 BTRFS_DEV_STAT_GENERATION_ERRS); 1996 } 1997 1998 return fail_cor + fail_gen; 1999 } 2000 2001 static void scrub_block_get(struct scrub_block *sblock) 2002 { 2003 atomic_inc(&sblock->refs); 2004 } 2005 2006 static void scrub_block_put(struct scrub_block *sblock) 2007 { 2008 if (atomic_dec_and_test(&sblock->refs)) { 2009 int i; 2010 2011 if (sblock->sparity) 2012 scrub_parity_put(sblock->sparity); 2013 2014 for (i = 0; i < sblock->page_count; i++) 2015 scrub_page_put(sblock->pagev[i]); 2016 kfree(sblock); 2017 } 2018 } 2019 2020 static void scrub_page_get(struct scrub_page *spage) 2021 { 2022 atomic_inc(&spage->refs); 2023 } 2024 2025 static void scrub_page_put(struct scrub_page *spage) 2026 { 2027 if (atomic_dec_and_test(&spage->refs)) { 2028 if (spage->page) 2029 __free_page(spage->page); 2030 kfree(spage); 2031 } 2032 } 2033 2034 static void scrub_submit(struct scrub_ctx *sctx) 2035 { 2036 struct scrub_bio *sbio; 2037 2038 if (sctx->curr == -1) 2039 return; 2040 2041 sbio = sctx->bios[sctx->curr]; 2042 sctx->curr = -1; 2043 scrub_pending_bio_inc(sctx); 2044 btrfsic_submit_bio(READ, sbio->bio); 2045 } 2046 2047 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2048 struct scrub_page *spage) 2049 { 2050 struct scrub_block *sblock = spage->sblock; 2051 struct scrub_bio *sbio; 2052 int ret; 2053 2054 again: 2055 /* 2056 * grab a fresh bio or wait for one to become available 2057 */ 2058 while (sctx->curr == -1) { 2059 spin_lock(&sctx->list_lock); 2060 sctx->curr = sctx->first_free; 2061 if (sctx->curr != -1) { 2062 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2063 sctx->bios[sctx->curr]->next_free = -1; 2064 sctx->bios[sctx->curr]->page_count = 0; 2065 spin_unlock(&sctx->list_lock); 2066 } else { 2067 spin_unlock(&sctx->list_lock); 2068 wait_event(sctx->list_wait, sctx->first_free != -1); 2069 } 2070 } 2071 sbio = sctx->bios[sctx->curr]; 2072 if (sbio->page_count == 0) { 2073 struct bio *bio; 2074 2075 sbio->physical = spage->physical; 2076 sbio->logical = spage->logical; 2077 sbio->dev = spage->dev; 2078 bio = sbio->bio; 2079 if (!bio) { 2080 bio = btrfs_io_bio_alloc(GFP_KERNEL, 2081 sctx->pages_per_rd_bio); 2082 if (!bio) 2083 return -ENOMEM; 2084 sbio->bio = bio; 2085 } 2086 2087 bio->bi_private = sbio; 2088 bio->bi_end_io = scrub_bio_end_io; 2089 bio->bi_bdev = sbio->dev->bdev; 2090 bio->bi_iter.bi_sector = sbio->physical >> 9; 2091 sbio->err = 0; 2092 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2093 spage->physical || 2094 sbio->logical + sbio->page_count * PAGE_SIZE != 2095 spage->logical || 2096 sbio->dev != spage->dev) { 2097 scrub_submit(sctx); 2098 goto again; 2099 } 2100 2101 sbio->pagev[sbio->page_count] = spage; 2102 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2103 if (ret != PAGE_SIZE) { 2104 if (sbio->page_count < 1) { 2105 bio_put(sbio->bio); 2106 sbio->bio = NULL; 2107 return -EIO; 2108 } 2109 scrub_submit(sctx); 2110 goto again; 2111 } 2112 2113 scrub_block_get(sblock); /* one for the page added to the bio */ 2114 atomic_inc(&sblock->outstanding_pages); 2115 sbio->page_count++; 2116 if (sbio->page_count == sctx->pages_per_rd_bio) 2117 scrub_submit(sctx); 2118 2119 return 0; 2120 } 2121 2122 static void scrub_missing_raid56_end_io(struct bio *bio) 2123 { 2124 struct scrub_block *sblock = bio->bi_private; 2125 struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info; 2126 2127 if (bio->bi_error) 2128 sblock->no_io_error_seen = 0; 2129 2130 bio_put(bio); 2131 2132 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2133 } 2134 2135 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2136 { 2137 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2138 struct scrub_ctx *sctx = sblock->sctx; 2139 u64 logical; 2140 struct btrfs_device *dev; 2141 2142 logical = sblock->pagev[0]->logical; 2143 dev = sblock->pagev[0]->dev; 2144 2145 if (sblock->no_io_error_seen) 2146 scrub_recheck_block_checksum(sblock); 2147 2148 if (!sblock->no_io_error_seen) { 2149 spin_lock(&sctx->stat_lock); 2150 sctx->stat.read_errors++; 2151 spin_unlock(&sctx->stat_lock); 2152 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info, 2153 "IO error rebuilding logical %llu for dev %s", 2154 logical, rcu_str_deref(dev->name)); 2155 } else if (sblock->header_error || sblock->checksum_error) { 2156 spin_lock(&sctx->stat_lock); 2157 sctx->stat.uncorrectable_errors++; 2158 spin_unlock(&sctx->stat_lock); 2159 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info, 2160 "failed to rebuild valid logical %llu for dev %s", 2161 logical, rcu_str_deref(dev->name)); 2162 } else { 2163 scrub_write_block_to_dev_replace(sblock); 2164 } 2165 2166 scrub_block_put(sblock); 2167 2168 if (sctx->is_dev_replace && 2169 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2170 mutex_lock(&sctx->wr_ctx.wr_lock); 2171 scrub_wr_submit(sctx); 2172 mutex_unlock(&sctx->wr_ctx.wr_lock); 2173 } 2174 2175 scrub_pending_bio_dec(sctx); 2176 } 2177 2178 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2179 { 2180 struct scrub_ctx *sctx = sblock->sctx; 2181 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2182 u64 length = sblock->page_count * PAGE_SIZE; 2183 u64 logical = sblock->pagev[0]->logical; 2184 struct btrfs_bio *bbio = NULL; 2185 struct bio *bio; 2186 struct btrfs_raid_bio *rbio; 2187 int ret; 2188 int i; 2189 2190 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length, 2191 &bbio, 0, 1); 2192 if (ret || !bbio || !bbio->raid_map) 2193 goto bbio_out; 2194 2195 if (WARN_ON(!sctx->is_dev_replace || 2196 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2197 /* 2198 * We shouldn't be scrubbing a missing device. Even for dev 2199 * replace, we should only get here for RAID 5/6. We either 2200 * managed to mount something with no mirrors remaining or 2201 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2202 */ 2203 goto bbio_out; 2204 } 2205 2206 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2207 if (!bio) 2208 goto bbio_out; 2209 2210 bio->bi_iter.bi_sector = logical >> 9; 2211 bio->bi_private = sblock; 2212 bio->bi_end_io = scrub_missing_raid56_end_io; 2213 2214 rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length); 2215 if (!rbio) 2216 goto rbio_out; 2217 2218 for (i = 0; i < sblock->page_count; i++) { 2219 struct scrub_page *spage = sblock->pagev[i]; 2220 2221 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2222 } 2223 2224 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2225 scrub_missing_raid56_worker, NULL, NULL); 2226 scrub_block_get(sblock); 2227 scrub_pending_bio_inc(sctx); 2228 raid56_submit_missing_rbio(rbio); 2229 return; 2230 2231 rbio_out: 2232 bio_put(bio); 2233 bbio_out: 2234 btrfs_put_bbio(bbio); 2235 spin_lock(&sctx->stat_lock); 2236 sctx->stat.malloc_errors++; 2237 spin_unlock(&sctx->stat_lock); 2238 } 2239 2240 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2241 u64 physical, struct btrfs_device *dev, u64 flags, 2242 u64 gen, int mirror_num, u8 *csum, int force, 2243 u64 physical_for_dev_replace) 2244 { 2245 struct scrub_block *sblock; 2246 int index; 2247 2248 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2249 if (!sblock) { 2250 spin_lock(&sctx->stat_lock); 2251 sctx->stat.malloc_errors++; 2252 spin_unlock(&sctx->stat_lock); 2253 return -ENOMEM; 2254 } 2255 2256 /* one ref inside this function, plus one for each page added to 2257 * a bio later on */ 2258 atomic_set(&sblock->refs, 1); 2259 sblock->sctx = sctx; 2260 sblock->no_io_error_seen = 1; 2261 2262 for (index = 0; len > 0; index++) { 2263 struct scrub_page *spage; 2264 u64 l = min_t(u64, len, PAGE_SIZE); 2265 2266 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2267 if (!spage) { 2268 leave_nomem: 2269 spin_lock(&sctx->stat_lock); 2270 sctx->stat.malloc_errors++; 2271 spin_unlock(&sctx->stat_lock); 2272 scrub_block_put(sblock); 2273 return -ENOMEM; 2274 } 2275 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2276 scrub_page_get(spage); 2277 sblock->pagev[index] = spage; 2278 spage->sblock = sblock; 2279 spage->dev = dev; 2280 spage->flags = flags; 2281 spage->generation = gen; 2282 spage->logical = logical; 2283 spage->physical = physical; 2284 spage->physical_for_dev_replace = physical_for_dev_replace; 2285 spage->mirror_num = mirror_num; 2286 if (csum) { 2287 spage->have_csum = 1; 2288 memcpy(spage->csum, csum, sctx->csum_size); 2289 } else { 2290 spage->have_csum = 0; 2291 } 2292 sblock->page_count++; 2293 spage->page = alloc_page(GFP_KERNEL); 2294 if (!spage->page) 2295 goto leave_nomem; 2296 len -= l; 2297 logical += l; 2298 physical += l; 2299 physical_for_dev_replace += l; 2300 } 2301 2302 WARN_ON(sblock->page_count == 0); 2303 if (dev->missing) { 2304 /* 2305 * This case should only be hit for RAID 5/6 device replace. See 2306 * the comment in scrub_missing_raid56_pages() for details. 2307 */ 2308 scrub_missing_raid56_pages(sblock); 2309 } else { 2310 for (index = 0; index < sblock->page_count; index++) { 2311 struct scrub_page *spage = sblock->pagev[index]; 2312 int ret; 2313 2314 ret = scrub_add_page_to_rd_bio(sctx, spage); 2315 if (ret) { 2316 scrub_block_put(sblock); 2317 return ret; 2318 } 2319 } 2320 2321 if (force) 2322 scrub_submit(sctx); 2323 } 2324 2325 /* last one frees, either here or in bio completion for last page */ 2326 scrub_block_put(sblock); 2327 return 0; 2328 } 2329 2330 static void scrub_bio_end_io(struct bio *bio) 2331 { 2332 struct scrub_bio *sbio = bio->bi_private; 2333 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2334 2335 sbio->err = bio->bi_error; 2336 sbio->bio = bio; 2337 2338 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2339 } 2340 2341 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2342 { 2343 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2344 struct scrub_ctx *sctx = sbio->sctx; 2345 int i; 2346 2347 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2348 if (sbio->err) { 2349 for (i = 0; i < sbio->page_count; i++) { 2350 struct scrub_page *spage = sbio->pagev[i]; 2351 2352 spage->io_error = 1; 2353 spage->sblock->no_io_error_seen = 0; 2354 } 2355 } 2356 2357 /* now complete the scrub_block items that have all pages completed */ 2358 for (i = 0; i < sbio->page_count; i++) { 2359 struct scrub_page *spage = sbio->pagev[i]; 2360 struct scrub_block *sblock = spage->sblock; 2361 2362 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2363 scrub_block_complete(sblock); 2364 scrub_block_put(sblock); 2365 } 2366 2367 bio_put(sbio->bio); 2368 sbio->bio = NULL; 2369 spin_lock(&sctx->list_lock); 2370 sbio->next_free = sctx->first_free; 2371 sctx->first_free = sbio->index; 2372 spin_unlock(&sctx->list_lock); 2373 2374 if (sctx->is_dev_replace && 2375 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2376 mutex_lock(&sctx->wr_ctx.wr_lock); 2377 scrub_wr_submit(sctx); 2378 mutex_unlock(&sctx->wr_ctx.wr_lock); 2379 } 2380 2381 scrub_pending_bio_dec(sctx); 2382 } 2383 2384 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2385 unsigned long *bitmap, 2386 u64 start, u64 len) 2387 { 2388 u32 offset; 2389 int nsectors; 2390 int sectorsize = sparity->sctx->dev_root->sectorsize; 2391 2392 if (len >= sparity->stripe_len) { 2393 bitmap_set(bitmap, 0, sparity->nsectors); 2394 return; 2395 } 2396 2397 start -= sparity->logic_start; 2398 start = div_u64_rem(start, sparity->stripe_len, &offset); 2399 offset /= sectorsize; 2400 nsectors = (int)len / sectorsize; 2401 2402 if (offset + nsectors <= sparity->nsectors) { 2403 bitmap_set(bitmap, offset, nsectors); 2404 return; 2405 } 2406 2407 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2408 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2409 } 2410 2411 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2412 u64 start, u64 len) 2413 { 2414 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2415 } 2416 2417 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2418 u64 start, u64 len) 2419 { 2420 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2421 } 2422 2423 static void scrub_block_complete(struct scrub_block *sblock) 2424 { 2425 int corrupted = 0; 2426 2427 if (!sblock->no_io_error_seen) { 2428 corrupted = 1; 2429 scrub_handle_errored_block(sblock); 2430 } else { 2431 /* 2432 * if has checksum error, write via repair mechanism in 2433 * dev replace case, otherwise write here in dev replace 2434 * case. 2435 */ 2436 corrupted = scrub_checksum(sblock); 2437 if (!corrupted && sblock->sctx->is_dev_replace) 2438 scrub_write_block_to_dev_replace(sblock); 2439 } 2440 2441 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2442 u64 start = sblock->pagev[0]->logical; 2443 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2444 PAGE_SIZE; 2445 2446 scrub_parity_mark_sectors_error(sblock->sparity, 2447 start, end - start); 2448 } 2449 } 2450 2451 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2452 { 2453 struct btrfs_ordered_sum *sum = NULL; 2454 unsigned long index; 2455 unsigned long num_sectors; 2456 2457 while (!list_empty(&sctx->csum_list)) { 2458 sum = list_first_entry(&sctx->csum_list, 2459 struct btrfs_ordered_sum, list); 2460 if (sum->bytenr > logical) 2461 return 0; 2462 if (sum->bytenr + sum->len > logical) 2463 break; 2464 2465 ++sctx->stat.csum_discards; 2466 list_del(&sum->list); 2467 kfree(sum); 2468 sum = NULL; 2469 } 2470 if (!sum) 2471 return 0; 2472 2473 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2474 num_sectors = sum->len / sctx->sectorsize; 2475 memcpy(csum, sum->sums + index, sctx->csum_size); 2476 if (index == num_sectors - 1) { 2477 list_del(&sum->list); 2478 kfree(sum); 2479 } 2480 return 1; 2481 } 2482 2483 /* scrub extent tries to collect up to 64 kB for each bio */ 2484 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2485 u64 physical, struct btrfs_device *dev, u64 flags, 2486 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2487 { 2488 int ret; 2489 u8 csum[BTRFS_CSUM_SIZE]; 2490 u32 blocksize; 2491 2492 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2493 blocksize = sctx->sectorsize; 2494 spin_lock(&sctx->stat_lock); 2495 sctx->stat.data_extents_scrubbed++; 2496 sctx->stat.data_bytes_scrubbed += len; 2497 spin_unlock(&sctx->stat_lock); 2498 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2499 blocksize = sctx->nodesize; 2500 spin_lock(&sctx->stat_lock); 2501 sctx->stat.tree_extents_scrubbed++; 2502 sctx->stat.tree_bytes_scrubbed += len; 2503 spin_unlock(&sctx->stat_lock); 2504 } else { 2505 blocksize = sctx->sectorsize; 2506 WARN_ON(1); 2507 } 2508 2509 while (len) { 2510 u64 l = min_t(u64, len, blocksize); 2511 int have_csum = 0; 2512 2513 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2514 /* push csums to sbio */ 2515 have_csum = scrub_find_csum(sctx, logical, csum); 2516 if (have_csum == 0) 2517 ++sctx->stat.no_csum; 2518 if (sctx->is_dev_replace && !have_csum) { 2519 ret = copy_nocow_pages(sctx, logical, l, 2520 mirror_num, 2521 physical_for_dev_replace); 2522 goto behind_scrub_pages; 2523 } 2524 } 2525 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2526 mirror_num, have_csum ? csum : NULL, 0, 2527 physical_for_dev_replace); 2528 behind_scrub_pages: 2529 if (ret) 2530 return ret; 2531 len -= l; 2532 logical += l; 2533 physical += l; 2534 physical_for_dev_replace += l; 2535 } 2536 return 0; 2537 } 2538 2539 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2540 u64 logical, u64 len, 2541 u64 physical, struct btrfs_device *dev, 2542 u64 flags, u64 gen, int mirror_num, u8 *csum) 2543 { 2544 struct scrub_ctx *sctx = sparity->sctx; 2545 struct scrub_block *sblock; 2546 int index; 2547 2548 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2549 if (!sblock) { 2550 spin_lock(&sctx->stat_lock); 2551 sctx->stat.malloc_errors++; 2552 spin_unlock(&sctx->stat_lock); 2553 return -ENOMEM; 2554 } 2555 2556 /* one ref inside this function, plus one for each page added to 2557 * a bio later on */ 2558 atomic_set(&sblock->refs, 1); 2559 sblock->sctx = sctx; 2560 sblock->no_io_error_seen = 1; 2561 sblock->sparity = sparity; 2562 scrub_parity_get(sparity); 2563 2564 for (index = 0; len > 0; index++) { 2565 struct scrub_page *spage; 2566 u64 l = min_t(u64, len, PAGE_SIZE); 2567 2568 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2569 if (!spage) { 2570 leave_nomem: 2571 spin_lock(&sctx->stat_lock); 2572 sctx->stat.malloc_errors++; 2573 spin_unlock(&sctx->stat_lock); 2574 scrub_block_put(sblock); 2575 return -ENOMEM; 2576 } 2577 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2578 /* For scrub block */ 2579 scrub_page_get(spage); 2580 sblock->pagev[index] = spage; 2581 /* For scrub parity */ 2582 scrub_page_get(spage); 2583 list_add_tail(&spage->list, &sparity->spages); 2584 spage->sblock = sblock; 2585 spage->dev = dev; 2586 spage->flags = flags; 2587 spage->generation = gen; 2588 spage->logical = logical; 2589 spage->physical = physical; 2590 spage->mirror_num = mirror_num; 2591 if (csum) { 2592 spage->have_csum = 1; 2593 memcpy(spage->csum, csum, sctx->csum_size); 2594 } else { 2595 spage->have_csum = 0; 2596 } 2597 sblock->page_count++; 2598 spage->page = alloc_page(GFP_KERNEL); 2599 if (!spage->page) 2600 goto leave_nomem; 2601 len -= l; 2602 logical += l; 2603 physical += l; 2604 } 2605 2606 WARN_ON(sblock->page_count == 0); 2607 for (index = 0; index < sblock->page_count; index++) { 2608 struct scrub_page *spage = sblock->pagev[index]; 2609 int ret; 2610 2611 ret = scrub_add_page_to_rd_bio(sctx, spage); 2612 if (ret) { 2613 scrub_block_put(sblock); 2614 return ret; 2615 } 2616 } 2617 2618 /* last one frees, either here or in bio completion for last page */ 2619 scrub_block_put(sblock); 2620 return 0; 2621 } 2622 2623 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2624 u64 logical, u64 len, 2625 u64 physical, struct btrfs_device *dev, 2626 u64 flags, u64 gen, int mirror_num) 2627 { 2628 struct scrub_ctx *sctx = sparity->sctx; 2629 int ret; 2630 u8 csum[BTRFS_CSUM_SIZE]; 2631 u32 blocksize; 2632 2633 if (dev->missing) { 2634 scrub_parity_mark_sectors_error(sparity, logical, len); 2635 return 0; 2636 } 2637 2638 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2639 blocksize = sctx->sectorsize; 2640 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2641 blocksize = sctx->nodesize; 2642 } else { 2643 blocksize = sctx->sectorsize; 2644 WARN_ON(1); 2645 } 2646 2647 while (len) { 2648 u64 l = min_t(u64, len, blocksize); 2649 int have_csum = 0; 2650 2651 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2652 /* push csums to sbio */ 2653 have_csum = scrub_find_csum(sctx, logical, csum); 2654 if (have_csum == 0) 2655 goto skip; 2656 } 2657 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2658 flags, gen, mirror_num, 2659 have_csum ? csum : NULL); 2660 if (ret) 2661 return ret; 2662 skip: 2663 len -= l; 2664 logical += l; 2665 physical += l; 2666 } 2667 return 0; 2668 } 2669 2670 /* 2671 * Given a physical address, this will calculate it's 2672 * logical offset. if this is a parity stripe, it will return 2673 * the most left data stripe's logical offset. 2674 * 2675 * return 0 if it is a data stripe, 1 means parity stripe. 2676 */ 2677 static int get_raid56_logic_offset(u64 physical, int num, 2678 struct map_lookup *map, u64 *offset, 2679 u64 *stripe_start) 2680 { 2681 int i; 2682 int j = 0; 2683 u64 stripe_nr; 2684 u64 last_offset; 2685 u32 stripe_index; 2686 u32 rot; 2687 2688 last_offset = (physical - map->stripes[num].physical) * 2689 nr_data_stripes(map); 2690 if (stripe_start) 2691 *stripe_start = last_offset; 2692 2693 *offset = last_offset; 2694 for (i = 0; i < nr_data_stripes(map); i++) { 2695 *offset = last_offset + i * map->stripe_len; 2696 2697 stripe_nr = div_u64(*offset, map->stripe_len); 2698 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2699 2700 /* Work out the disk rotation on this stripe-set */ 2701 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2702 /* calculate which stripe this data locates */ 2703 rot += i; 2704 stripe_index = rot % map->num_stripes; 2705 if (stripe_index == num) 2706 return 0; 2707 if (stripe_index < num) 2708 j++; 2709 } 2710 *offset = last_offset + j * map->stripe_len; 2711 return 1; 2712 } 2713 2714 static void scrub_free_parity(struct scrub_parity *sparity) 2715 { 2716 struct scrub_ctx *sctx = sparity->sctx; 2717 struct scrub_page *curr, *next; 2718 int nbits; 2719 2720 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2721 if (nbits) { 2722 spin_lock(&sctx->stat_lock); 2723 sctx->stat.read_errors += nbits; 2724 sctx->stat.uncorrectable_errors += nbits; 2725 spin_unlock(&sctx->stat_lock); 2726 } 2727 2728 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2729 list_del_init(&curr->list); 2730 scrub_page_put(curr); 2731 } 2732 2733 kfree(sparity); 2734 } 2735 2736 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2737 { 2738 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2739 work); 2740 struct scrub_ctx *sctx = sparity->sctx; 2741 2742 scrub_free_parity(sparity); 2743 scrub_pending_bio_dec(sctx); 2744 } 2745 2746 static void scrub_parity_bio_endio(struct bio *bio) 2747 { 2748 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2749 2750 if (bio->bi_error) 2751 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2752 sparity->nsectors); 2753 2754 bio_put(bio); 2755 2756 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2757 scrub_parity_bio_endio_worker, NULL, NULL); 2758 btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers, 2759 &sparity->work); 2760 } 2761 2762 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2763 { 2764 struct scrub_ctx *sctx = sparity->sctx; 2765 struct bio *bio; 2766 struct btrfs_raid_bio *rbio; 2767 struct scrub_page *spage; 2768 struct btrfs_bio *bbio = NULL; 2769 u64 length; 2770 int ret; 2771 2772 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2773 sparity->nsectors)) 2774 goto out; 2775 2776 length = sparity->logic_end - sparity->logic_start; 2777 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE, 2778 sparity->logic_start, 2779 &length, &bbio, 0, 1); 2780 if (ret || !bbio || !bbio->raid_map) 2781 goto bbio_out; 2782 2783 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2784 if (!bio) 2785 goto bbio_out; 2786 2787 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2788 bio->bi_private = sparity; 2789 bio->bi_end_io = scrub_parity_bio_endio; 2790 2791 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio, 2792 length, sparity->scrub_dev, 2793 sparity->dbitmap, 2794 sparity->nsectors); 2795 if (!rbio) 2796 goto rbio_out; 2797 2798 list_for_each_entry(spage, &sparity->spages, list) 2799 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2800 2801 scrub_pending_bio_inc(sctx); 2802 raid56_parity_submit_scrub_rbio(rbio); 2803 return; 2804 2805 rbio_out: 2806 bio_put(bio); 2807 bbio_out: 2808 btrfs_put_bbio(bbio); 2809 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2810 sparity->nsectors); 2811 spin_lock(&sctx->stat_lock); 2812 sctx->stat.malloc_errors++; 2813 spin_unlock(&sctx->stat_lock); 2814 out: 2815 scrub_free_parity(sparity); 2816 } 2817 2818 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2819 { 2820 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2821 } 2822 2823 static void scrub_parity_get(struct scrub_parity *sparity) 2824 { 2825 atomic_inc(&sparity->refs); 2826 } 2827 2828 static void scrub_parity_put(struct scrub_parity *sparity) 2829 { 2830 if (!atomic_dec_and_test(&sparity->refs)) 2831 return; 2832 2833 scrub_parity_check_and_repair(sparity); 2834 } 2835 2836 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2837 struct map_lookup *map, 2838 struct btrfs_device *sdev, 2839 struct btrfs_path *path, 2840 u64 logic_start, 2841 u64 logic_end) 2842 { 2843 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2844 struct btrfs_root *root = fs_info->extent_root; 2845 struct btrfs_root *csum_root = fs_info->csum_root; 2846 struct btrfs_extent_item *extent; 2847 struct btrfs_bio *bbio = NULL; 2848 u64 flags; 2849 int ret; 2850 int slot; 2851 struct extent_buffer *l; 2852 struct btrfs_key key; 2853 u64 generation; 2854 u64 extent_logical; 2855 u64 extent_physical; 2856 u64 extent_len; 2857 u64 mapped_length; 2858 struct btrfs_device *extent_dev; 2859 struct scrub_parity *sparity; 2860 int nsectors; 2861 int bitmap_len; 2862 int extent_mirror_num; 2863 int stop_loop = 0; 2864 2865 nsectors = div_u64(map->stripe_len, root->sectorsize); 2866 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2867 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2868 GFP_NOFS); 2869 if (!sparity) { 2870 spin_lock(&sctx->stat_lock); 2871 sctx->stat.malloc_errors++; 2872 spin_unlock(&sctx->stat_lock); 2873 return -ENOMEM; 2874 } 2875 2876 sparity->stripe_len = map->stripe_len; 2877 sparity->nsectors = nsectors; 2878 sparity->sctx = sctx; 2879 sparity->scrub_dev = sdev; 2880 sparity->logic_start = logic_start; 2881 sparity->logic_end = logic_end; 2882 atomic_set(&sparity->refs, 1); 2883 INIT_LIST_HEAD(&sparity->spages); 2884 sparity->dbitmap = sparity->bitmap; 2885 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2886 2887 ret = 0; 2888 while (logic_start < logic_end) { 2889 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2890 key.type = BTRFS_METADATA_ITEM_KEY; 2891 else 2892 key.type = BTRFS_EXTENT_ITEM_KEY; 2893 key.objectid = logic_start; 2894 key.offset = (u64)-1; 2895 2896 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2897 if (ret < 0) 2898 goto out; 2899 2900 if (ret > 0) { 2901 ret = btrfs_previous_extent_item(root, path, 0); 2902 if (ret < 0) 2903 goto out; 2904 if (ret > 0) { 2905 btrfs_release_path(path); 2906 ret = btrfs_search_slot(NULL, root, &key, 2907 path, 0, 0); 2908 if (ret < 0) 2909 goto out; 2910 } 2911 } 2912 2913 stop_loop = 0; 2914 while (1) { 2915 u64 bytes; 2916 2917 l = path->nodes[0]; 2918 slot = path->slots[0]; 2919 if (slot >= btrfs_header_nritems(l)) { 2920 ret = btrfs_next_leaf(root, path); 2921 if (ret == 0) 2922 continue; 2923 if (ret < 0) 2924 goto out; 2925 2926 stop_loop = 1; 2927 break; 2928 } 2929 btrfs_item_key_to_cpu(l, &key, slot); 2930 2931 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2932 key.type != BTRFS_METADATA_ITEM_KEY) 2933 goto next; 2934 2935 if (key.type == BTRFS_METADATA_ITEM_KEY) 2936 bytes = root->nodesize; 2937 else 2938 bytes = key.offset; 2939 2940 if (key.objectid + bytes <= logic_start) 2941 goto next; 2942 2943 if (key.objectid >= logic_end) { 2944 stop_loop = 1; 2945 break; 2946 } 2947 2948 while (key.objectid >= logic_start + map->stripe_len) 2949 logic_start += map->stripe_len; 2950 2951 extent = btrfs_item_ptr(l, slot, 2952 struct btrfs_extent_item); 2953 flags = btrfs_extent_flags(l, extent); 2954 generation = btrfs_extent_generation(l, extent); 2955 2956 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2957 (key.objectid < logic_start || 2958 key.objectid + bytes > 2959 logic_start + map->stripe_len)) { 2960 btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2961 key.objectid, logic_start); 2962 spin_lock(&sctx->stat_lock); 2963 sctx->stat.uncorrectable_errors++; 2964 spin_unlock(&sctx->stat_lock); 2965 goto next; 2966 } 2967 again: 2968 extent_logical = key.objectid; 2969 extent_len = bytes; 2970 2971 if (extent_logical < logic_start) { 2972 extent_len -= logic_start - extent_logical; 2973 extent_logical = logic_start; 2974 } 2975 2976 if (extent_logical + extent_len > 2977 logic_start + map->stripe_len) 2978 extent_len = logic_start + map->stripe_len - 2979 extent_logical; 2980 2981 scrub_parity_mark_sectors_data(sparity, extent_logical, 2982 extent_len); 2983 2984 mapped_length = extent_len; 2985 bbio = NULL; 2986 ret = btrfs_map_block(fs_info, READ, extent_logical, 2987 &mapped_length, &bbio, 0); 2988 if (!ret) { 2989 if (!bbio || mapped_length < extent_len) 2990 ret = -EIO; 2991 } 2992 if (ret) { 2993 btrfs_put_bbio(bbio); 2994 goto out; 2995 } 2996 extent_physical = bbio->stripes[0].physical; 2997 extent_mirror_num = bbio->mirror_num; 2998 extent_dev = bbio->stripes[0].dev; 2999 btrfs_put_bbio(bbio); 3000 3001 ret = btrfs_lookup_csums_range(csum_root, 3002 extent_logical, 3003 extent_logical + extent_len - 1, 3004 &sctx->csum_list, 1); 3005 if (ret) 3006 goto out; 3007 3008 ret = scrub_extent_for_parity(sparity, extent_logical, 3009 extent_len, 3010 extent_physical, 3011 extent_dev, flags, 3012 generation, 3013 extent_mirror_num); 3014 3015 scrub_free_csums(sctx); 3016 3017 if (ret) 3018 goto out; 3019 3020 if (extent_logical + extent_len < 3021 key.objectid + bytes) { 3022 logic_start += map->stripe_len; 3023 3024 if (logic_start >= logic_end) { 3025 stop_loop = 1; 3026 break; 3027 } 3028 3029 if (logic_start < key.objectid + bytes) { 3030 cond_resched(); 3031 goto again; 3032 } 3033 } 3034 next: 3035 path->slots[0]++; 3036 } 3037 3038 btrfs_release_path(path); 3039 3040 if (stop_loop) 3041 break; 3042 3043 logic_start += map->stripe_len; 3044 } 3045 out: 3046 if (ret < 0) 3047 scrub_parity_mark_sectors_error(sparity, logic_start, 3048 logic_end - logic_start); 3049 scrub_parity_put(sparity); 3050 scrub_submit(sctx); 3051 mutex_lock(&sctx->wr_ctx.wr_lock); 3052 scrub_wr_submit(sctx); 3053 mutex_unlock(&sctx->wr_ctx.wr_lock); 3054 3055 btrfs_release_path(path); 3056 return ret < 0 ? ret : 0; 3057 } 3058 3059 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3060 struct map_lookup *map, 3061 struct btrfs_device *scrub_dev, 3062 int num, u64 base, u64 length, 3063 int is_dev_replace) 3064 { 3065 struct btrfs_path *path, *ppath; 3066 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3067 struct btrfs_root *root = fs_info->extent_root; 3068 struct btrfs_root *csum_root = fs_info->csum_root; 3069 struct btrfs_extent_item *extent; 3070 struct blk_plug plug; 3071 u64 flags; 3072 int ret; 3073 int slot; 3074 u64 nstripes; 3075 struct extent_buffer *l; 3076 u64 physical; 3077 u64 logical; 3078 u64 logic_end; 3079 u64 physical_end; 3080 u64 generation; 3081 int mirror_num; 3082 struct reada_control *reada1; 3083 struct reada_control *reada2; 3084 struct btrfs_key key; 3085 struct btrfs_key key_end; 3086 u64 increment = map->stripe_len; 3087 u64 offset; 3088 u64 extent_logical; 3089 u64 extent_physical; 3090 u64 extent_len; 3091 u64 stripe_logical; 3092 u64 stripe_end; 3093 struct btrfs_device *extent_dev; 3094 int extent_mirror_num; 3095 int stop_loop = 0; 3096 3097 physical = map->stripes[num].physical; 3098 offset = 0; 3099 nstripes = div_u64(length, map->stripe_len); 3100 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3101 offset = map->stripe_len * num; 3102 increment = map->stripe_len * map->num_stripes; 3103 mirror_num = 1; 3104 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3105 int factor = map->num_stripes / map->sub_stripes; 3106 offset = map->stripe_len * (num / map->sub_stripes); 3107 increment = map->stripe_len * factor; 3108 mirror_num = num % map->sub_stripes + 1; 3109 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3110 increment = map->stripe_len; 3111 mirror_num = num % map->num_stripes + 1; 3112 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3113 increment = map->stripe_len; 3114 mirror_num = num % map->num_stripes + 1; 3115 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3116 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3117 increment = map->stripe_len * nr_data_stripes(map); 3118 mirror_num = 1; 3119 } else { 3120 increment = map->stripe_len; 3121 mirror_num = 1; 3122 } 3123 3124 path = btrfs_alloc_path(); 3125 if (!path) 3126 return -ENOMEM; 3127 3128 ppath = btrfs_alloc_path(); 3129 if (!ppath) { 3130 btrfs_free_path(path); 3131 return -ENOMEM; 3132 } 3133 3134 /* 3135 * work on commit root. The related disk blocks are static as 3136 * long as COW is applied. This means, it is save to rewrite 3137 * them to repair disk errors without any race conditions 3138 */ 3139 path->search_commit_root = 1; 3140 path->skip_locking = 1; 3141 3142 ppath->search_commit_root = 1; 3143 ppath->skip_locking = 1; 3144 /* 3145 * trigger the readahead for extent tree csum tree and wait for 3146 * completion. During readahead, the scrub is officially paused 3147 * to not hold off transaction commits 3148 */ 3149 logical = base + offset; 3150 physical_end = physical + nstripes * map->stripe_len; 3151 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3152 get_raid56_logic_offset(physical_end, num, 3153 map, &logic_end, NULL); 3154 logic_end += base; 3155 } else { 3156 logic_end = logical + increment * nstripes; 3157 } 3158 wait_event(sctx->list_wait, 3159 atomic_read(&sctx->bios_in_flight) == 0); 3160 scrub_blocked_if_needed(fs_info); 3161 3162 /* FIXME it might be better to start readahead at commit root */ 3163 key.objectid = logical; 3164 key.type = BTRFS_EXTENT_ITEM_KEY; 3165 key.offset = (u64)0; 3166 key_end.objectid = logic_end; 3167 key_end.type = BTRFS_METADATA_ITEM_KEY; 3168 key_end.offset = (u64)-1; 3169 reada1 = btrfs_reada_add(root, &key, &key_end); 3170 3171 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3172 key.type = BTRFS_EXTENT_CSUM_KEY; 3173 key.offset = logical; 3174 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3175 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3176 key_end.offset = logic_end; 3177 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3178 3179 if (!IS_ERR(reada1)) 3180 btrfs_reada_wait(reada1); 3181 if (!IS_ERR(reada2)) 3182 btrfs_reada_wait(reada2); 3183 3184 3185 /* 3186 * collect all data csums for the stripe to avoid seeking during 3187 * the scrub. This might currently (crc32) end up to be about 1MB 3188 */ 3189 blk_start_plug(&plug); 3190 3191 /* 3192 * now find all extents for each stripe and scrub them 3193 */ 3194 ret = 0; 3195 while (physical < physical_end) { 3196 /* 3197 * canceled? 3198 */ 3199 if (atomic_read(&fs_info->scrub_cancel_req) || 3200 atomic_read(&sctx->cancel_req)) { 3201 ret = -ECANCELED; 3202 goto out; 3203 } 3204 /* 3205 * check to see if we have to pause 3206 */ 3207 if (atomic_read(&fs_info->scrub_pause_req)) { 3208 /* push queued extents */ 3209 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3210 scrub_submit(sctx); 3211 mutex_lock(&sctx->wr_ctx.wr_lock); 3212 scrub_wr_submit(sctx); 3213 mutex_unlock(&sctx->wr_ctx.wr_lock); 3214 wait_event(sctx->list_wait, 3215 atomic_read(&sctx->bios_in_flight) == 0); 3216 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3217 scrub_blocked_if_needed(fs_info); 3218 } 3219 3220 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3221 ret = get_raid56_logic_offset(physical, num, map, 3222 &logical, 3223 &stripe_logical); 3224 logical += base; 3225 if (ret) { 3226 /* it is parity strip */ 3227 stripe_logical += base; 3228 stripe_end = stripe_logical + increment; 3229 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3230 ppath, stripe_logical, 3231 stripe_end); 3232 if (ret) 3233 goto out; 3234 goto skip; 3235 } 3236 } 3237 3238 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3239 key.type = BTRFS_METADATA_ITEM_KEY; 3240 else 3241 key.type = BTRFS_EXTENT_ITEM_KEY; 3242 key.objectid = logical; 3243 key.offset = (u64)-1; 3244 3245 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3246 if (ret < 0) 3247 goto out; 3248 3249 if (ret > 0) { 3250 ret = btrfs_previous_extent_item(root, path, 0); 3251 if (ret < 0) 3252 goto out; 3253 if (ret > 0) { 3254 /* there's no smaller item, so stick with the 3255 * larger one */ 3256 btrfs_release_path(path); 3257 ret = btrfs_search_slot(NULL, root, &key, 3258 path, 0, 0); 3259 if (ret < 0) 3260 goto out; 3261 } 3262 } 3263 3264 stop_loop = 0; 3265 while (1) { 3266 u64 bytes; 3267 3268 l = path->nodes[0]; 3269 slot = path->slots[0]; 3270 if (slot >= btrfs_header_nritems(l)) { 3271 ret = btrfs_next_leaf(root, path); 3272 if (ret == 0) 3273 continue; 3274 if (ret < 0) 3275 goto out; 3276 3277 stop_loop = 1; 3278 break; 3279 } 3280 btrfs_item_key_to_cpu(l, &key, slot); 3281 3282 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3283 key.type != BTRFS_METADATA_ITEM_KEY) 3284 goto next; 3285 3286 if (key.type == BTRFS_METADATA_ITEM_KEY) 3287 bytes = root->nodesize; 3288 else 3289 bytes = key.offset; 3290 3291 if (key.objectid + bytes <= logical) 3292 goto next; 3293 3294 if (key.objectid >= logical + map->stripe_len) { 3295 /* out of this device extent */ 3296 if (key.objectid >= logic_end) 3297 stop_loop = 1; 3298 break; 3299 } 3300 3301 extent = btrfs_item_ptr(l, slot, 3302 struct btrfs_extent_item); 3303 flags = btrfs_extent_flags(l, extent); 3304 generation = btrfs_extent_generation(l, extent); 3305 3306 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3307 (key.objectid < logical || 3308 key.objectid + bytes > 3309 logical + map->stripe_len)) { 3310 btrfs_err(fs_info, 3311 "scrub: tree block %llu spanning " 3312 "stripes, ignored. logical=%llu", 3313 key.objectid, logical); 3314 spin_lock(&sctx->stat_lock); 3315 sctx->stat.uncorrectable_errors++; 3316 spin_unlock(&sctx->stat_lock); 3317 goto next; 3318 } 3319 3320 again: 3321 extent_logical = key.objectid; 3322 extent_len = bytes; 3323 3324 /* 3325 * trim extent to this stripe 3326 */ 3327 if (extent_logical < logical) { 3328 extent_len -= logical - extent_logical; 3329 extent_logical = logical; 3330 } 3331 if (extent_logical + extent_len > 3332 logical + map->stripe_len) { 3333 extent_len = logical + map->stripe_len - 3334 extent_logical; 3335 } 3336 3337 extent_physical = extent_logical - logical + physical; 3338 extent_dev = scrub_dev; 3339 extent_mirror_num = mirror_num; 3340 if (is_dev_replace) 3341 scrub_remap_extent(fs_info, extent_logical, 3342 extent_len, &extent_physical, 3343 &extent_dev, 3344 &extent_mirror_num); 3345 3346 ret = btrfs_lookup_csums_range(csum_root, 3347 extent_logical, 3348 extent_logical + 3349 extent_len - 1, 3350 &sctx->csum_list, 1); 3351 if (ret) 3352 goto out; 3353 3354 ret = scrub_extent(sctx, extent_logical, extent_len, 3355 extent_physical, extent_dev, flags, 3356 generation, extent_mirror_num, 3357 extent_logical - logical + physical); 3358 3359 scrub_free_csums(sctx); 3360 3361 if (ret) 3362 goto out; 3363 3364 if (extent_logical + extent_len < 3365 key.objectid + bytes) { 3366 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3367 /* 3368 * loop until we find next data stripe 3369 * or we have finished all stripes. 3370 */ 3371 loop: 3372 physical += map->stripe_len; 3373 ret = get_raid56_logic_offset(physical, 3374 num, map, &logical, 3375 &stripe_logical); 3376 logical += base; 3377 3378 if (ret && physical < physical_end) { 3379 stripe_logical += base; 3380 stripe_end = stripe_logical + 3381 increment; 3382 ret = scrub_raid56_parity(sctx, 3383 map, scrub_dev, ppath, 3384 stripe_logical, 3385 stripe_end); 3386 if (ret) 3387 goto out; 3388 goto loop; 3389 } 3390 } else { 3391 physical += map->stripe_len; 3392 logical += increment; 3393 } 3394 if (logical < key.objectid + bytes) { 3395 cond_resched(); 3396 goto again; 3397 } 3398 3399 if (physical >= physical_end) { 3400 stop_loop = 1; 3401 break; 3402 } 3403 } 3404 next: 3405 path->slots[0]++; 3406 } 3407 btrfs_release_path(path); 3408 skip: 3409 logical += increment; 3410 physical += map->stripe_len; 3411 spin_lock(&sctx->stat_lock); 3412 if (stop_loop) 3413 sctx->stat.last_physical = map->stripes[num].physical + 3414 length; 3415 else 3416 sctx->stat.last_physical = physical; 3417 spin_unlock(&sctx->stat_lock); 3418 if (stop_loop) 3419 break; 3420 } 3421 out: 3422 /* push queued extents */ 3423 scrub_submit(sctx); 3424 mutex_lock(&sctx->wr_ctx.wr_lock); 3425 scrub_wr_submit(sctx); 3426 mutex_unlock(&sctx->wr_ctx.wr_lock); 3427 3428 blk_finish_plug(&plug); 3429 btrfs_free_path(path); 3430 btrfs_free_path(ppath); 3431 return ret < 0 ? ret : 0; 3432 } 3433 3434 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3435 struct btrfs_device *scrub_dev, 3436 u64 chunk_offset, u64 length, 3437 u64 dev_offset, 3438 struct btrfs_block_group_cache *cache, 3439 int is_dev_replace) 3440 { 3441 struct btrfs_mapping_tree *map_tree = 3442 &sctx->dev_root->fs_info->mapping_tree; 3443 struct map_lookup *map; 3444 struct extent_map *em; 3445 int i; 3446 int ret = 0; 3447 3448 read_lock(&map_tree->map_tree.lock); 3449 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3450 read_unlock(&map_tree->map_tree.lock); 3451 3452 if (!em) { 3453 /* 3454 * Might have been an unused block group deleted by the cleaner 3455 * kthread or relocation. 3456 */ 3457 spin_lock(&cache->lock); 3458 if (!cache->removed) 3459 ret = -EINVAL; 3460 spin_unlock(&cache->lock); 3461 3462 return ret; 3463 } 3464 3465 map = em->map_lookup; 3466 if (em->start != chunk_offset) 3467 goto out; 3468 3469 if (em->len < length) 3470 goto out; 3471 3472 for (i = 0; i < map->num_stripes; ++i) { 3473 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3474 map->stripes[i].physical == dev_offset) { 3475 ret = scrub_stripe(sctx, map, scrub_dev, i, 3476 chunk_offset, length, 3477 is_dev_replace); 3478 if (ret) 3479 goto out; 3480 } 3481 } 3482 out: 3483 free_extent_map(em); 3484 3485 return ret; 3486 } 3487 3488 static noinline_for_stack 3489 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3490 struct btrfs_device *scrub_dev, u64 start, u64 end, 3491 int is_dev_replace) 3492 { 3493 struct btrfs_dev_extent *dev_extent = NULL; 3494 struct btrfs_path *path; 3495 struct btrfs_root *root = sctx->dev_root; 3496 struct btrfs_fs_info *fs_info = root->fs_info; 3497 u64 length; 3498 u64 chunk_offset; 3499 int ret = 0; 3500 int ro_set; 3501 int slot; 3502 struct extent_buffer *l; 3503 struct btrfs_key key; 3504 struct btrfs_key found_key; 3505 struct btrfs_block_group_cache *cache; 3506 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3507 3508 path = btrfs_alloc_path(); 3509 if (!path) 3510 return -ENOMEM; 3511 3512 path->reada = READA_FORWARD; 3513 path->search_commit_root = 1; 3514 path->skip_locking = 1; 3515 3516 key.objectid = scrub_dev->devid; 3517 key.offset = 0ull; 3518 key.type = BTRFS_DEV_EXTENT_KEY; 3519 3520 while (1) { 3521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3522 if (ret < 0) 3523 break; 3524 if (ret > 0) { 3525 if (path->slots[0] >= 3526 btrfs_header_nritems(path->nodes[0])) { 3527 ret = btrfs_next_leaf(root, path); 3528 if (ret < 0) 3529 break; 3530 if (ret > 0) { 3531 ret = 0; 3532 break; 3533 } 3534 } else { 3535 ret = 0; 3536 } 3537 } 3538 3539 l = path->nodes[0]; 3540 slot = path->slots[0]; 3541 3542 btrfs_item_key_to_cpu(l, &found_key, slot); 3543 3544 if (found_key.objectid != scrub_dev->devid) 3545 break; 3546 3547 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3548 break; 3549 3550 if (found_key.offset >= end) 3551 break; 3552 3553 if (found_key.offset < key.offset) 3554 break; 3555 3556 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3557 length = btrfs_dev_extent_length(l, dev_extent); 3558 3559 if (found_key.offset + length <= start) 3560 goto skip; 3561 3562 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3563 3564 /* 3565 * get a reference on the corresponding block group to prevent 3566 * the chunk from going away while we scrub it 3567 */ 3568 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3569 3570 /* some chunks are removed but not committed to disk yet, 3571 * continue scrubbing */ 3572 if (!cache) 3573 goto skip; 3574 3575 /* 3576 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3577 * to avoid deadlock caused by: 3578 * btrfs_inc_block_group_ro() 3579 * -> btrfs_wait_for_commit() 3580 * -> btrfs_commit_transaction() 3581 * -> btrfs_scrub_pause() 3582 */ 3583 scrub_pause_on(fs_info); 3584 ret = btrfs_inc_block_group_ro(root, cache); 3585 if (!ret && is_dev_replace) { 3586 /* 3587 * If we are doing a device replace wait for any tasks 3588 * that started dellaloc right before we set the block 3589 * group to RO mode, as they might have just allocated 3590 * an extent from it or decided they could do a nocow 3591 * write. And if any such tasks did that, wait for their 3592 * ordered extents to complete and then commit the 3593 * current transaction, so that we can later see the new 3594 * extent items in the extent tree - the ordered extents 3595 * create delayed data references (for cow writes) when 3596 * they complete, which will be run and insert the 3597 * corresponding extent items into the extent tree when 3598 * we commit the transaction they used when running 3599 * inode.c:btrfs_finish_ordered_io(). We later use 3600 * the commit root of the extent tree to find extents 3601 * to copy from the srcdev into the tgtdev, and we don't 3602 * want to miss any new extents. 3603 */ 3604 btrfs_wait_block_group_reservations(cache); 3605 btrfs_wait_nocow_writers(cache); 3606 ret = btrfs_wait_ordered_roots(fs_info, -1, 3607 cache->key.objectid, 3608 cache->key.offset); 3609 if (ret > 0) { 3610 struct btrfs_trans_handle *trans; 3611 3612 trans = btrfs_join_transaction(root); 3613 if (IS_ERR(trans)) 3614 ret = PTR_ERR(trans); 3615 else 3616 ret = btrfs_commit_transaction(trans, 3617 root); 3618 if (ret) { 3619 scrub_pause_off(fs_info); 3620 btrfs_put_block_group(cache); 3621 break; 3622 } 3623 } 3624 } 3625 scrub_pause_off(fs_info); 3626 3627 if (ret == 0) { 3628 ro_set = 1; 3629 } else if (ret == -ENOSPC) { 3630 /* 3631 * btrfs_inc_block_group_ro return -ENOSPC when it 3632 * failed in creating new chunk for metadata. 3633 * It is not a problem for scrub/replace, because 3634 * metadata are always cowed, and our scrub paused 3635 * commit_transactions. 3636 */ 3637 ro_set = 0; 3638 } else { 3639 btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n", 3640 ret); 3641 btrfs_put_block_group(cache); 3642 break; 3643 } 3644 3645 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3646 dev_replace->cursor_right = found_key.offset + length; 3647 dev_replace->cursor_left = found_key.offset; 3648 dev_replace->item_needs_writeback = 1; 3649 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3650 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3651 found_key.offset, cache, is_dev_replace); 3652 3653 /* 3654 * flush, submit all pending read and write bios, afterwards 3655 * wait for them. 3656 * Note that in the dev replace case, a read request causes 3657 * write requests that are submitted in the read completion 3658 * worker. Therefore in the current situation, it is required 3659 * that all write requests are flushed, so that all read and 3660 * write requests are really completed when bios_in_flight 3661 * changes to 0. 3662 */ 3663 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3664 scrub_submit(sctx); 3665 mutex_lock(&sctx->wr_ctx.wr_lock); 3666 scrub_wr_submit(sctx); 3667 mutex_unlock(&sctx->wr_ctx.wr_lock); 3668 3669 wait_event(sctx->list_wait, 3670 atomic_read(&sctx->bios_in_flight) == 0); 3671 3672 scrub_pause_on(fs_info); 3673 3674 /* 3675 * must be called before we decrease @scrub_paused. 3676 * make sure we don't block transaction commit while 3677 * we are waiting pending workers finished. 3678 */ 3679 wait_event(sctx->list_wait, 3680 atomic_read(&sctx->workers_pending) == 0); 3681 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3682 3683 scrub_pause_off(fs_info); 3684 3685 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3686 dev_replace->cursor_left = dev_replace->cursor_right; 3687 dev_replace->item_needs_writeback = 1; 3688 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3689 3690 if (ro_set) 3691 btrfs_dec_block_group_ro(root, cache); 3692 3693 /* 3694 * We might have prevented the cleaner kthread from deleting 3695 * this block group if it was already unused because we raced 3696 * and set it to RO mode first. So add it back to the unused 3697 * list, otherwise it might not ever be deleted unless a manual 3698 * balance is triggered or it becomes used and unused again. 3699 */ 3700 spin_lock(&cache->lock); 3701 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3702 btrfs_block_group_used(&cache->item) == 0) { 3703 spin_unlock(&cache->lock); 3704 spin_lock(&fs_info->unused_bgs_lock); 3705 if (list_empty(&cache->bg_list)) { 3706 btrfs_get_block_group(cache); 3707 list_add_tail(&cache->bg_list, 3708 &fs_info->unused_bgs); 3709 } 3710 spin_unlock(&fs_info->unused_bgs_lock); 3711 } else { 3712 spin_unlock(&cache->lock); 3713 } 3714 3715 btrfs_put_block_group(cache); 3716 if (ret) 3717 break; 3718 if (is_dev_replace && 3719 atomic64_read(&dev_replace->num_write_errors) > 0) { 3720 ret = -EIO; 3721 break; 3722 } 3723 if (sctx->stat.malloc_errors > 0) { 3724 ret = -ENOMEM; 3725 break; 3726 } 3727 skip: 3728 key.offset = found_key.offset + length; 3729 btrfs_release_path(path); 3730 } 3731 3732 btrfs_free_path(path); 3733 3734 return ret; 3735 } 3736 3737 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3738 struct btrfs_device *scrub_dev) 3739 { 3740 int i; 3741 u64 bytenr; 3742 u64 gen; 3743 int ret; 3744 struct btrfs_root *root = sctx->dev_root; 3745 3746 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 3747 return -EIO; 3748 3749 /* Seed devices of a new filesystem has their own generation. */ 3750 if (scrub_dev->fs_devices != root->fs_info->fs_devices) 3751 gen = scrub_dev->generation; 3752 else 3753 gen = root->fs_info->last_trans_committed; 3754 3755 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3756 bytenr = btrfs_sb_offset(i); 3757 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3758 scrub_dev->commit_total_bytes) 3759 break; 3760 3761 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3762 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3763 NULL, 1, bytenr); 3764 if (ret) 3765 return ret; 3766 } 3767 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3768 3769 return 0; 3770 } 3771 3772 /* 3773 * get a reference count on fs_info->scrub_workers. start worker if necessary 3774 */ 3775 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3776 int is_dev_replace) 3777 { 3778 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3779 int max_active = fs_info->thread_pool_size; 3780 3781 if (fs_info->scrub_workers_refcnt == 0) { 3782 if (is_dev_replace) 3783 fs_info->scrub_workers = 3784 btrfs_alloc_workqueue("scrub", flags, 3785 1, 4); 3786 else 3787 fs_info->scrub_workers = 3788 btrfs_alloc_workqueue("scrub", flags, 3789 max_active, 4); 3790 if (!fs_info->scrub_workers) 3791 goto fail_scrub_workers; 3792 3793 fs_info->scrub_wr_completion_workers = 3794 btrfs_alloc_workqueue("scrubwrc", flags, 3795 max_active, 2); 3796 if (!fs_info->scrub_wr_completion_workers) 3797 goto fail_scrub_wr_completion_workers; 3798 3799 fs_info->scrub_nocow_workers = 3800 btrfs_alloc_workqueue("scrubnc", flags, 1, 0); 3801 if (!fs_info->scrub_nocow_workers) 3802 goto fail_scrub_nocow_workers; 3803 fs_info->scrub_parity_workers = 3804 btrfs_alloc_workqueue("scrubparity", flags, 3805 max_active, 2); 3806 if (!fs_info->scrub_parity_workers) 3807 goto fail_scrub_parity_workers; 3808 } 3809 ++fs_info->scrub_workers_refcnt; 3810 return 0; 3811 3812 fail_scrub_parity_workers: 3813 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3814 fail_scrub_nocow_workers: 3815 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3816 fail_scrub_wr_completion_workers: 3817 btrfs_destroy_workqueue(fs_info->scrub_workers); 3818 fail_scrub_workers: 3819 return -ENOMEM; 3820 } 3821 3822 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 3823 { 3824 if (--fs_info->scrub_workers_refcnt == 0) { 3825 btrfs_destroy_workqueue(fs_info->scrub_workers); 3826 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3827 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3828 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 3829 } 3830 WARN_ON(fs_info->scrub_workers_refcnt < 0); 3831 } 3832 3833 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3834 u64 end, struct btrfs_scrub_progress *progress, 3835 int readonly, int is_dev_replace) 3836 { 3837 struct scrub_ctx *sctx; 3838 int ret; 3839 struct btrfs_device *dev; 3840 struct rcu_string *name; 3841 3842 if (btrfs_fs_closing(fs_info)) 3843 return -EINVAL; 3844 3845 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 3846 /* 3847 * in this case scrub is unable to calculate the checksum 3848 * the way scrub is implemented. Do not handle this 3849 * situation at all because it won't ever happen. 3850 */ 3851 btrfs_err(fs_info, 3852 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3853 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 3854 return -EINVAL; 3855 } 3856 3857 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 3858 /* not supported for data w/o checksums */ 3859 btrfs_err(fs_info, 3860 "scrub: size assumption sectorsize != PAGE_SIZE " 3861 "(%d != %lu) fails", 3862 fs_info->chunk_root->sectorsize, PAGE_SIZE); 3863 return -EINVAL; 3864 } 3865 3866 if (fs_info->chunk_root->nodesize > 3867 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3868 fs_info->chunk_root->sectorsize > 3869 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3870 /* 3871 * would exhaust the array bounds of pagev member in 3872 * struct scrub_block 3873 */ 3874 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize " 3875 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3876 fs_info->chunk_root->nodesize, 3877 SCRUB_MAX_PAGES_PER_BLOCK, 3878 fs_info->chunk_root->sectorsize, 3879 SCRUB_MAX_PAGES_PER_BLOCK); 3880 return -EINVAL; 3881 } 3882 3883 3884 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3885 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3886 if (!dev || (dev->missing && !is_dev_replace)) { 3887 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3888 return -ENODEV; 3889 } 3890 3891 if (!is_dev_replace && !readonly && !dev->writeable) { 3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3893 rcu_read_lock(); 3894 name = rcu_dereference(dev->name); 3895 btrfs_err(fs_info, "scrub: device %s is not writable", 3896 name->str); 3897 rcu_read_unlock(); 3898 return -EROFS; 3899 } 3900 3901 mutex_lock(&fs_info->scrub_lock); 3902 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 3903 mutex_unlock(&fs_info->scrub_lock); 3904 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3905 return -EIO; 3906 } 3907 3908 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3909 if (dev->scrub_device || 3910 (!is_dev_replace && 3911 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3912 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3913 mutex_unlock(&fs_info->scrub_lock); 3914 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3915 return -EINPROGRESS; 3916 } 3917 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3918 3919 ret = scrub_workers_get(fs_info, is_dev_replace); 3920 if (ret) { 3921 mutex_unlock(&fs_info->scrub_lock); 3922 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3923 return ret; 3924 } 3925 3926 sctx = scrub_setup_ctx(dev, is_dev_replace); 3927 if (IS_ERR(sctx)) { 3928 mutex_unlock(&fs_info->scrub_lock); 3929 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3930 scrub_workers_put(fs_info); 3931 return PTR_ERR(sctx); 3932 } 3933 sctx->readonly = readonly; 3934 dev->scrub_device = sctx; 3935 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3936 3937 /* 3938 * checking @scrub_pause_req here, we can avoid 3939 * race between committing transaction and scrubbing. 3940 */ 3941 __scrub_blocked_if_needed(fs_info); 3942 atomic_inc(&fs_info->scrubs_running); 3943 mutex_unlock(&fs_info->scrub_lock); 3944 3945 if (!is_dev_replace) { 3946 /* 3947 * by holding device list mutex, we can 3948 * kick off writing super in log tree sync. 3949 */ 3950 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3951 ret = scrub_supers(sctx, dev); 3952 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3953 } 3954 3955 if (!ret) 3956 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3957 is_dev_replace); 3958 3959 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3960 atomic_dec(&fs_info->scrubs_running); 3961 wake_up(&fs_info->scrub_pause_wait); 3962 3963 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3964 3965 if (progress) 3966 memcpy(progress, &sctx->stat, sizeof(*progress)); 3967 3968 mutex_lock(&fs_info->scrub_lock); 3969 dev->scrub_device = NULL; 3970 scrub_workers_put(fs_info); 3971 mutex_unlock(&fs_info->scrub_lock); 3972 3973 scrub_put_ctx(sctx); 3974 3975 return ret; 3976 } 3977 3978 void btrfs_scrub_pause(struct btrfs_root *root) 3979 { 3980 struct btrfs_fs_info *fs_info = root->fs_info; 3981 3982 mutex_lock(&fs_info->scrub_lock); 3983 atomic_inc(&fs_info->scrub_pause_req); 3984 while (atomic_read(&fs_info->scrubs_paused) != 3985 atomic_read(&fs_info->scrubs_running)) { 3986 mutex_unlock(&fs_info->scrub_lock); 3987 wait_event(fs_info->scrub_pause_wait, 3988 atomic_read(&fs_info->scrubs_paused) == 3989 atomic_read(&fs_info->scrubs_running)); 3990 mutex_lock(&fs_info->scrub_lock); 3991 } 3992 mutex_unlock(&fs_info->scrub_lock); 3993 } 3994 3995 void btrfs_scrub_continue(struct btrfs_root *root) 3996 { 3997 struct btrfs_fs_info *fs_info = root->fs_info; 3998 3999 atomic_dec(&fs_info->scrub_pause_req); 4000 wake_up(&fs_info->scrub_pause_wait); 4001 } 4002 4003 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4004 { 4005 mutex_lock(&fs_info->scrub_lock); 4006 if (!atomic_read(&fs_info->scrubs_running)) { 4007 mutex_unlock(&fs_info->scrub_lock); 4008 return -ENOTCONN; 4009 } 4010 4011 atomic_inc(&fs_info->scrub_cancel_req); 4012 while (atomic_read(&fs_info->scrubs_running)) { 4013 mutex_unlock(&fs_info->scrub_lock); 4014 wait_event(fs_info->scrub_pause_wait, 4015 atomic_read(&fs_info->scrubs_running) == 0); 4016 mutex_lock(&fs_info->scrub_lock); 4017 } 4018 atomic_dec(&fs_info->scrub_cancel_req); 4019 mutex_unlock(&fs_info->scrub_lock); 4020 4021 return 0; 4022 } 4023 4024 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 4025 struct btrfs_device *dev) 4026 { 4027 struct scrub_ctx *sctx; 4028 4029 mutex_lock(&fs_info->scrub_lock); 4030 sctx = dev->scrub_device; 4031 if (!sctx) { 4032 mutex_unlock(&fs_info->scrub_lock); 4033 return -ENOTCONN; 4034 } 4035 atomic_inc(&sctx->cancel_req); 4036 while (dev->scrub_device) { 4037 mutex_unlock(&fs_info->scrub_lock); 4038 wait_event(fs_info->scrub_pause_wait, 4039 dev->scrub_device == NULL); 4040 mutex_lock(&fs_info->scrub_lock); 4041 } 4042 mutex_unlock(&fs_info->scrub_lock); 4043 4044 return 0; 4045 } 4046 4047 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 4048 struct btrfs_scrub_progress *progress) 4049 { 4050 struct btrfs_device *dev; 4051 struct scrub_ctx *sctx = NULL; 4052 4053 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 4054 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 4055 if (dev) 4056 sctx = dev->scrub_device; 4057 if (sctx) 4058 memcpy(progress, &sctx->stat, sizeof(*progress)); 4059 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 4060 4061 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4062 } 4063 4064 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4065 u64 extent_logical, u64 extent_len, 4066 u64 *extent_physical, 4067 struct btrfs_device **extent_dev, 4068 int *extent_mirror_num) 4069 { 4070 u64 mapped_length; 4071 struct btrfs_bio *bbio = NULL; 4072 int ret; 4073 4074 mapped_length = extent_len; 4075 ret = btrfs_map_block(fs_info, READ, extent_logical, 4076 &mapped_length, &bbio, 0); 4077 if (ret || !bbio || mapped_length < extent_len || 4078 !bbio->stripes[0].dev->bdev) { 4079 btrfs_put_bbio(bbio); 4080 return; 4081 } 4082 4083 *extent_physical = bbio->stripes[0].physical; 4084 *extent_mirror_num = bbio->mirror_num; 4085 *extent_dev = bbio->stripes[0].dev; 4086 btrfs_put_bbio(bbio); 4087 } 4088 4089 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 4090 struct scrub_wr_ctx *wr_ctx, 4091 struct btrfs_fs_info *fs_info, 4092 struct btrfs_device *dev, 4093 int is_dev_replace) 4094 { 4095 WARN_ON(wr_ctx->wr_curr_bio != NULL); 4096 4097 mutex_init(&wr_ctx->wr_lock); 4098 wr_ctx->wr_curr_bio = NULL; 4099 if (!is_dev_replace) 4100 return 0; 4101 4102 WARN_ON(!dev->bdev); 4103 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 4104 wr_ctx->tgtdev = dev; 4105 atomic_set(&wr_ctx->flush_all_writes, 0); 4106 return 0; 4107 } 4108 4109 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 4110 { 4111 mutex_lock(&wr_ctx->wr_lock); 4112 kfree(wr_ctx->wr_curr_bio); 4113 wr_ctx->wr_curr_bio = NULL; 4114 mutex_unlock(&wr_ctx->wr_lock); 4115 } 4116 4117 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4118 int mirror_num, u64 physical_for_dev_replace) 4119 { 4120 struct scrub_copy_nocow_ctx *nocow_ctx; 4121 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 4122 4123 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4124 if (!nocow_ctx) { 4125 spin_lock(&sctx->stat_lock); 4126 sctx->stat.malloc_errors++; 4127 spin_unlock(&sctx->stat_lock); 4128 return -ENOMEM; 4129 } 4130 4131 scrub_pending_trans_workers_inc(sctx); 4132 4133 nocow_ctx->sctx = sctx; 4134 nocow_ctx->logical = logical; 4135 nocow_ctx->len = len; 4136 nocow_ctx->mirror_num = mirror_num; 4137 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4138 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4139 copy_nocow_pages_worker, NULL, NULL); 4140 INIT_LIST_HEAD(&nocow_ctx->inodes); 4141 btrfs_queue_work(fs_info->scrub_nocow_workers, 4142 &nocow_ctx->work); 4143 4144 return 0; 4145 } 4146 4147 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4148 { 4149 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4150 struct scrub_nocow_inode *nocow_inode; 4151 4152 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4153 if (!nocow_inode) 4154 return -ENOMEM; 4155 nocow_inode->inum = inum; 4156 nocow_inode->offset = offset; 4157 nocow_inode->root = root; 4158 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4159 return 0; 4160 } 4161 4162 #define COPY_COMPLETE 1 4163 4164 static void copy_nocow_pages_worker(struct btrfs_work *work) 4165 { 4166 struct scrub_copy_nocow_ctx *nocow_ctx = 4167 container_of(work, struct scrub_copy_nocow_ctx, work); 4168 struct scrub_ctx *sctx = nocow_ctx->sctx; 4169 u64 logical = nocow_ctx->logical; 4170 u64 len = nocow_ctx->len; 4171 int mirror_num = nocow_ctx->mirror_num; 4172 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4173 int ret; 4174 struct btrfs_trans_handle *trans = NULL; 4175 struct btrfs_fs_info *fs_info; 4176 struct btrfs_path *path; 4177 struct btrfs_root *root; 4178 int not_written = 0; 4179 4180 fs_info = sctx->dev_root->fs_info; 4181 root = fs_info->extent_root; 4182 4183 path = btrfs_alloc_path(); 4184 if (!path) { 4185 spin_lock(&sctx->stat_lock); 4186 sctx->stat.malloc_errors++; 4187 spin_unlock(&sctx->stat_lock); 4188 not_written = 1; 4189 goto out; 4190 } 4191 4192 trans = btrfs_join_transaction(root); 4193 if (IS_ERR(trans)) { 4194 not_written = 1; 4195 goto out; 4196 } 4197 4198 ret = iterate_inodes_from_logical(logical, fs_info, path, 4199 record_inode_for_nocow, nocow_ctx); 4200 if (ret != 0 && ret != -ENOENT) { 4201 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, " 4202 "phys %llu, len %llu, mir %u, ret %d", 4203 logical, physical_for_dev_replace, len, mirror_num, 4204 ret); 4205 not_written = 1; 4206 goto out; 4207 } 4208 4209 btrfs_end_transaction(trans, root); 4210 trans = NULL; 4211 while (!list_empty(&nocow_ctx->inodes)) { 4212 struct scrub_nocow_inode *entry; 4213 entry = list_first_entry(&nocow_ctx->inodes, 4214 struct scrub_nocow_inode, 4215 list); 4216 list_del_init(&entry->list); 4217 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4218 entry->root, nocow_ctx); 4219 kfree(entry); 4220 if (ret == COPY_COMPLETE) { 4221 ret = 0; 4222 break; 4223 } else if (ret) { 4224 break; 4225 } 4226 } 4227 out: 4228 while (!list_empty(&nocow_ctx->inodes)) { 4229 struct scrub_nocow_inode *entry; 4230 entry = list_first_entry(&nocow_ctx->inodes, 4231 struct scrub_nocow_inode, 4232 list); 4233 list_del_init(&entry->list); 4234 kfree(entry); 4235 } 4236 if (trans && !IS_ERR(trans)) 4237 btrfs_end_transaction(trans, root); 4238 if (not_written) 4239 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4240 num_uncorrectable_read_errors); 4241 4242 btrfs_free_path(path); 4243 kfree(nocow_ctx); 4244 4245 scrub_pending_trans_workers_dec(sctx); 4246 } 4247 4248 static int check_extent_to_block(struct inode *inode, u64 start, u64 len, 4249 u64 logical) 4250 { 4251 struct extent_state *cached_state = NULL; 4252 struct btrfs_ordered_extent *ordered; 4253 struct extent_io_tree *io_tree; 4254 struct extent_map *em; 4255 u64 lockstart = start, lockend = start + len - 1; 4256 int ret = 0; 4257 4258 io_tree = &BTRFS_I(inode)->io_tree; 4259 4260 lock_extent_bits(io_tree, lockstart, lockend, &cached_state); 4261 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4262 if (ordered) { 4263 btrfs_put_ordered_extent(ordered); 4264 ret = 1; 4265 goto out_unlock; 4266 } 4267 4268 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4269 if (IS_ERR(em)) { 4270 ret = PTR_ERR(em); 4271 goto out_unlock; 4272 } 4273 4274 /* 4275 * This extent does not actually cover the logical extent anymore, 4276 * move on to the next inode. 4277 */ 4278 if (em->block_start > logical || 4279 em->block_start + em->block_len < logical + len) { 4280 free_extent_map(em); 4281 ret = 1; 4282 goto out_unlock; 4283 } 4284 free_extent_map(em); 4285 4286 out_unlock: 4287 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4288 GFP_NOFS); 4289 return ret; 4290 } 4291 4292 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4293 struct scrub_copy_nocow_ctx *nocow_ctx) 4294 { 4295 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 4296 struct btrfs_key key; 4297 struct inode *inode; 4298 struct page *page; 4299 struct btrfs_root *local_root; 4300 struct extent_io_tree *io_tree; 4301 u64 physical_for_dev_replace; 4302 u64 nocow_ctx_logical; 4303 u64 len = nocow_ctx->len; 4304 unsigned long index; 4305 int srcu_index; 4306 int ret = 0; 4307 int err = 0; 4308 4309 key.objectid = root; 4310 key.type = BTRFS_ROOT_ITEM_KEY; 4311 key.offset = (u64)-1; 4312 4313 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4314 4315 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4316 if (IS_ERR(local_root)) { 4317 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4318 return PTR_ERR(local_root); 4319 } 4320 4321 key.type = BTRFS_INODE_ITEM_KEY; 4322 key.objectid = inum; 4323 key.offset = 0; 4324 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4325 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4326 if (IS_ERR(inode)) 4327 return PTR_ERR(inode); 4328 4329 /* Avoid truncate/dio/punch hole.. */ 4330 inode_lock(inode); 4331 inode_dio_wait(inode); 4332 4333 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4334 io_tree = &BTRFS_I(inode)->io_tree; 4335 nocow_ctx_logical = nocow_ctx->logical; 4336 4337 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical); 4338 if (ret) { 4339 ret = ret > 0 ? 0 : ret; 4340 goto out; 4341 } 4342 4343 while (len >= PAGE_SIZE) { 4344 index = offset >> PAGE_SHIFT; 4345 again: 4346 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4347 if (!page) { 4348 btrfs_err(fs_info, "find_or_create_page() failed"); 4349 ret = -ENOMEM; 4350 goto out; 4351 } 4352 4353 if (PageUptodate(page)) { 4354 if (PageDirty(page)) 4355 goto next_page; 4356 } else { 4357 ClearPageError(page); 4358 err = extent_read_full_page(io_tree, page, 4359 btrfs_get_extent, 4360 nocow_ctx->mirror_num); 4361 if (err) { 4362 ret = err; 4363 goto next_page; 4364 } 4365 4366 lock_page(page); 4367 /* 4368 * If the page has been remove from the page cache, 4369 * the data on it is meaningless, because it may be 4370 * old one, the new data may be written into the new 4371 * page in the page cache. 4372 */ 4373 if (page->mapping != inode->i_mapping) { 4374 unlock_page(page); 4375 put_page(page); 4376 goto again; 4377 } 4378 if (!PageUptodate(page)) { 4379 ret = -EIO; 4380 goto next_page; 4381 } 4382 } 4383 4384 ret = check_extent_to_block(inode, offset, len, 4385 nocow_ctx_logical); 4386 if (ret) { 4387 ret = ret > 0 ? 0 : ret; 4388 goto next_page; 4389 } 4390 4391 err = write_page_nocow(nocow_ctx->sctx, 4392 physical_for_dev_replace, page); 4393 if (err) 4394 ret = err; 4395 next_page: 4396 unlock_page(page); 4397 put_page(page); 4398 4399 if (ret) 4400 break; 4401 4402 offset += PAGE_SIZE; 4403 physical_for_dev_replace += PAGE_SIZE; 4404 nocow_ctx_logical += PAGE_SIZE; 4405 len -= PAGE_SIZE; 4406 } 4407 ret = COPY_COMPLETE; 4408 out: 4409 inode_unlock(inode); 4410 iput(inode); 4411 return ret; 4412 } 4413 4414 static int write_page_nocow(struct scrub_ctx *sctx, 4415 u64 physical_for_dev_replace, struct page *page) 4416 { 4417 struct bio *bio; 4418 struct btrfs_device *dev; 4419 int ret; 4420 4421 dev = sctx->wr_ctx.tgtdev; 4422 if (!dev) 4423 return -EIO; 4424 if (!dev->bdev) { 4425 btrfs_warn_rl(dev->dev_root->fs_info, 4426 "scrub write_page_nocow(bdev == NULL) is unexpected"); 4427 return -EIO; 4428 } 4429 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 4430 if (!bio) { 4431 spin_lock(&sctx->stat_lock); 4432 sctx->stat.malloc_errors++; 4433 spin_unlock(&sctx->stat_lock); 4434 return -ENOMEM; 4435 } 4436 bio->bi_iter.bi_size = 0; 4437 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4438 bio->bi_bdev = dev->bdev; 4439 ret = bio_add_page(bio, page, PAGE_SIZE, 0); 4440 if (ret != PAGE_SIZE) { 4441 leave_with_eio: 4442 bio_put(bio); 4443 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4444 return -EIO; 4445 } 4446 4447 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 4448 goto leave_with_eio; 4449 4450 bio_put(bio); 4451 return 0; 4452 } 4453