xref: /openbmc/linux/fs/btrfs/scrub.c (revision 278d3ba6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - track and record media errors, throw out bad devices
35  *  - add a mode to also read unallocated space
36  */
37 
38 struct scrub_block;
39 struct scrub_ctx;
40 
41 /*
42  * The following three values only influence the performance.
43  *
44  * The last one configures the number of parallel and outstanding I/O
45  * operations. The first one configures an upper limit for the number
46  * of (dynamically allocated) pages that are added to a bio.
47  */
48 #define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
49 #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 
51 /*
52  * The following value times PAGE_SIZE needs to be large enough to match the
53  * largest node/leaf/sector size that shall be supported.
54  */
55 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
56 
57 struct scrub_recover {
58 	refcount_t		refs;
59 	struct btrfs_io_context	*bioc;
60 	u64			map_length;
61 };
62 
63 struct scrub_sector {
64 	struct scrub_block	*sblock;
65 	struct page		*page;
66 	struct btrfs_device	*dev;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	u64			logical;
71 	u64			physical;
72 	u64			physical_for_dev_replace;
73 	atomic_t		refs;
74 	u8			mirror_num;
75 	unsigned int		have_csum:1;
76 	unsigned int		io_error:1;
77 	u8			csum[BTRFS_CSUM_SIZE];
78 
79 	struct scrub_recover	*recover;
80 };
81 
82 struct scrub_bio {
83 	int			index;
84 	struct scrub_ctx	*sctx;
85 	struct btrfs_device	*dev;
86 	struct bio		*bio;
87 	blk_status_t		status;
88 	u64			logical;
89 	u64			physical;
90 	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
91 	int			sector_count;
92 	int			next_free;
93 	struct work_struct	work;
94 };
95 
96 struct scrub_block {
97 	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
98 	int			sector_count;
99 	atomic_t		outstanding_sectors;
100 	refcount_t		refs; /* free mem on transition to zero */
101 	struct scrub_ctx	*sctx;
102 	struct scrub_parity	*sparity;
103 	struct {
104 		unsigned int	header_error:1;
105 		unsigned int	checksum_error:1;
106 		unsigned int	no_io_error_seen:1;
107 		unsigned int	generation_error:1; /* also sets header_error */
108 
109 		/* The following is for the data used to check parity */
110 		/* It is for the data with checksum */
111 		unsigned int	data_corrected:1;
112 	};
113 	struct work_struct	work;
114 };
115 
116 /* Used for the chunks with parity stripe such RAID5/6 */
117 struct scrub_parity {
118 	struct scrub_ctx	*sctx;
119 
120 	struct btrfs_device	*scrub_dev;
121 
122 	u64			logic_start;
123 
124 	u64			logic_end;
125 
126 	int			nsectors;
127 
128 	u32			stripe_len;
129 
130 	refcount_t		refs;
131 
132 	struct list_head	sectors_list;
133 
134 	/* Work of parity check and repair */
135 	struct work_struct	work;
136 
137 	/* Mark the parity blocks which have data */
138 	unsigned long		dbitmap;
139 
140 	/*
141 	 * Mark the parity blocks which have data, but errors happen when
142 	 * read data or check data
143 	 */
144 	unsigned long		ebitmap;
145 };
146 
147 struct scrub_ctx {
148 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
149 	struct btrfs_fs_info	*fs_info;
150 	int			first_free;
151 	int			curr;
152 	atomic_t		bios_in_flight;
153 	atomic_t		workers_pending;
154 	spinlock_t		list_lock;
155 	wait_queue_head_t	list_wait;
156 	struct list_head	csum_list;
157 	atomic_t		cancel_req;
158 	int			readonly;
159 	int			sectors_per_bio;
160 
161 	/* State of IO submission throttling affecting the associated device */
162 	ktime_t			throttle_deadline;
163 	u64			throttle_sent;
164 
165 	int			is_dev_replace;
166 	u64			write_pointer;
167 
168 	struct scrub_bio        *wr_curr_bio;
169 	struct mutex            wr_lock;
170 	struct btrfs_device     *wr_tgtdev;
171 	bool                    flush_all_writes;
172 
173 	/*
174 	 * statistics
175 	 */
176 	struct btrfs_scrub_progress stat;
177 	spinlock_t		stat_lock;
178 
179 	/*
180 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
181 	 * decrement bios_in_flight and workers_pending and then do a wakeup
182 	 * on the list_wait wait queue. We must ensure the main scrub task
183 	 * doesn't free the scrub context before or while the workers are
184 	 * doing the wakeup() call.
185 	 */
186 	refcount_t              refs;
187 };
188 
189 struct scrub_warning {
190 	struct btrfs_path	*path;
191 	u64			extent_item_size;
192 	const char		*errstr;
193 	u64			physical;
194 	u64			logical;
195 	struct btrfs_device	*dev;
196 };
197 
198 struct full_stripe_lock {
199 	struct rb_node node;
200 	u64 logical;
201 	u64 refs;
202 	struct mutex mutex;
203 };
204 
205 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
206 				     struct scrub_block *sblocks_for_recheck);
207 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
208 				struct scrub_block *sblock,
209 				int retry_failed_mirror);
210 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 					     struct scrub_block *sblock_good);
213 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
214 					    struct scrub_block *sblock_good,
215 					    int sector_num, int force_write);
216 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
217 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
218 					     int sector_num);
219 static int scrub_checksum_data(struct scrub_block *sblock);
220 static int scrub_checksum_tree_block(struct scrub_block *sblock);
221 static int scrub_checksum_super(struct scrub_block *sblock);
222 static void scrub_block_put(struct scrub_block *sblock);
223 static void scrub_sector_get(struct scrub_sector *sector);
224 static void scrub_sector_put(struct scrub_sector *sector);
225 static void scrub_parity_get(struct scrub_parity *sparity);
226 static void scrub_parity_put(struct scrub_parity *sparity);
227 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
228 			 u64 physical, struct btrfs_device *dev, u64 flags,
229 			 u64 gen, int mirror_num, u8 *csum,
230 			 u64 physical_for_dev_replace);
231 static void scrub_bio_end_io(struct bio *bio);
232 static void scrub_bio_end_io_worker(struct work_struct *work);
233 static void scrub_block_complete(struct scrub_block *sblock);
234 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
235 				 u64 extent_logical, u32 extent_len,
236 				 u64 *extent_physical,
237 				 struct btrfs_device **extent_dev,
238 				 int *extent_mirror_num);
239 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
240 				      struct scrub_sector *sector);
241 static void scrub_wr_submit(struct scrub_ctx *sctx);
242 static void scrub_wr_bio_end_io(struct bio *bio);
243 static void scrub_wr_bio_end_io_worker(struct work_struct *work);
244 static void scrub_put_ctx(struct scrub_ctx *sctx);
245 
246 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
247 {
248 	return sector->recover &&
249 	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
250 }
251 
252 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
253 {
254 	refcount_inc(&sctx->refs);
255 	atomic_inc(&sctx->bios_in_flight);
256 }
257 
258 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
259 {
260 	atomic_dec(&sctx->bios_in_flight);
261 	wake_up(&sctx->list_wait);
262 	scrub_put_ctx(sctx);
263 }
264 
265 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
266 {
267 	while (atomic_read(&fs_info->scrub_pause_req)) {
268 		mutex_unlock(&fs_info->scrub_lock);
269 		wait_event(fs_info->scrub_pause_wait,
270 		   atomic_read(&fs_info->scrub_pause_req) == 0);
271 		mutex_lock(&fs_info->scrub_lock);
272 	}
273 }
274 
275 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
276 {
277 	atomic_inc(&fs_info->scrubs_paused);
278 	wake_up(&fs_info->scrub_pause_wait);
279 }
280 
281 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
282 {
283 	mutex_lock(&fs_info->scrub_lock);
284 	__scrub_blocked_if_needed(fs_info);
285 	atomic_dec(&fs_info->scrubs_paused);
286 	mutex_unlock(&fs_info->scrub_lock);
287 
288 	wake_up(&fs_info->scrub_pause_wait);
289 }
290 
291 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293 	scrub_pause_on(fs_info);
294 	scrub_pause_off(fs_info);
295 }
296 
297 /*
298  * Insert new full stripe lock into full stripe locks tree
299  *
300  * Return pointer to existing or newly inserted full_stripe_lock structure if
301  * everything works well.
302  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
303  *
304  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
305  * function
306  */
307 static struct full_stripe_lock *insert_full_stripe_lock(
308 		struct btrfs_full_stripe_locks_tree *locks_root,
309 		u64 fstripe_logical)
310 {
311 	struct rb_node **p;
312 	struct rb_node *parent = NULL;
313 	struct full_stripe_lock *entry;
314 	struct full_stripe_lock *ret;
315 
316 	lockdep_assert_held(&locks_root->lock);
317 
318 	p = &locks_root->root.rb_node;
319 	while (*p) {
320 		parent = *p;
321 		entry = rb_entry(parent, struct full_stripe_lock, node);
322 		if (fstripe_logical < entry->logical) {
323 			p = &(*p)->rb_left;
324 		} else if (fstripe_logical > entry->logical) {
325 			p = &(*p)->rb_right;
326 		} else {
327 			entry->refs++;
328 			return entry;
329 		}
330 	}
331 
332 	/*
333 	 * Insert new lock.
334 	 */
335 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
336 	if (!ret)
337 		return ERR_PTR(-ENOMEM);
338 	ret->logical = fstripe_logical;
339 	ret->refs = 1;
340 	mutex_init(&ret->mutex);
341 
342 	rb_link_node(&ret->node, parent, p);
343 	rb_insert_color(&ret->node, &locks_root->root);
344 	return ret;
345 }
346 
347 /*
348  * Search for a full stripe lock of a block group
349  *
350  * Return pointer to existing full stripe lock if found
351  * Return NULL if not found
352  */
353 static struct full_stripe_lock *search_full_stripe_lock(
354 		struct btrfs_full_stripe_locks_tree *locks_root,
355 		u64 fstripe_logical)
356 {
357 	struct rb_node *node;
358 	struct full_stripe_lock *entry;
359 
360 	lockdep_assert_held(&locks_root->lock);
361 
362 	node = locks_root->root.rb_node;
363 	while (node) {
364 		entry = rb_entry(node, struct full_stripe_lock, node);
365 		if (fstripe_logical < entry->logical)
366 			node = node->rb_left;
367 		else if (fstripe_logical > entry->logical)
368 			node = node->rb_right;
369 		else
370 			return entry;
371 	}
372 	return NULL;
373 }
374 
375 /*
376  * Helper to get full stripe logical from a normal bytenr.
377  *
378  * Caller must ensure @cache is a RAID56 block group.
379  */
380 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
381 {
382 	u64 ret;
383 
384 	/*
385 	 * Due to chunk item size limit, full stripe length should not be
386 	 * larger than U32_MAX. Just a sanity check here.
387 	 */
388 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
389 
390 	/*
391 	 * round_down() can only handle power of 2, while RAID56 full
392 	 * stripe length can be 64KiB * n, so we need to manually round down.
393 	 */
394 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
395 			cache->full_stripe_len + cache->start;
396 	return ret;
397 }
398 
399 /*
400  * Lock a full stripe to avoid concurrency of recovery and read
401  *
402  * It's only used for profiles with parities (RAID5/6), for other profiles it
403  * does nothing.
404  *
405  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
406  * So caller must call unlock_full_stripe() at the same context.
407  *
408  * Return <0 if encounters error.
409  */
410 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
411 			    bool *locked_ret)
412 {
413 	struct btrfs_block_group *bg_cache;
414 	struct btrfs_full_stripe_locks_tree *locks_root;
415 	struct full_stripe_lock *existing;
416 	u64 fstripe_start;
417 	int ret = 0;
418 
419 	*locked_ret = false;
420 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
421 	if (!bg_cache) {
422 		ASSERT(0);
423 		return -ENOENT;
424 	}
425 
426 	/* Profiles not based on parity don't need full stripe lock */
427 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
428 		goto out;
429 	locks_root = &bg_cache->full_stripe_locks_root;
430 
431 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
432 
433 	/* Now insert the full stripe lock */
434 	mutex_lock(&locks_root->lock);
435 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
436 	mutex_unlock(&locks_root->lock);
437 	if (IS_ERR(existing)) {
438 		ret = PTR_ERR(existing);
439 		goto out;
440 	}
441 	mutex_lock(&existing->mutex);
442 	*locked_ret = true;
443 out:
444 	btrfs_put_block_group(bg_cache);
445 	return ret;
446 }
447 
448 /*
449  * Unlock a full stripe.
450  *
451  * NOTE: Caller must ensure it's the same context calling corresponding
452  * lock_full_stripe().
453  *
454  * Return 0 if we unlock full stripe without problem.
455  * Return <0 for error
456  */
457 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
458 			      bool locked)
459 {
460 	struct btrfs_block_group *bg_cache;
461 	struct btrfs_full_stripe_locks_tree *locks_root;
462 	struct full_stripe_lock *fstripe_lock;
463 	u64 fstripe_start;
464 	bool freeit = false;
465 	int ret = 0;
466 
467 	/* If we didn't acquire full stripe lock, no need to continue */
468 	if (!locked)
469 		return 0;
470 
471 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
472 	if (!bg_cache) {
473 		ASSERT(0);
474 		return -ENOENT;
475 	}
476 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
477 		goto out;
478 
479 	locks_root = &bg_cache->full_stripe_locks_root;
480 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
481 
482 	mutex_lock(&locks_root->lock);
483 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
484 	/* Unpaired unlock_full_stripe() detected */
485 	if (!fstripe_lock) {
486 		WARN_ON(1);
487 		ret = -ENOENT;
488 		mutex_unlock(&locks_root->lock);
489 		goto out;
490 	}
491 
492 	if (fstripe_lock->refs == 0) {
493 		WARN_ON(1);
494 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
495 			fstripe_lock->logical);
496 	} else {
497 		fstripe_lock->refs--;
498 	}
499 
500 	if (fstripe_lock->refs == 0) {
501 		rb_erase(&fstripe_lock->node, &locks_root->root);
502 		freeit = true;
503 	}
504 	mutex_unlock(&locks_root->lock);
505 
506 	mutex_unlock(&fstripe_lock->mutex);
507 	if (freeit)
508 		kfree(fstripe_lock);
509 out:
510 	btrfs_put_block_group(bg_cache);
511 	return ret;
512 }
513 
514 static void scrub_free_csums(struct scrub_ctx *sctx)
515 {
516 	while (!list_empty(&sctx->csum_list)) {
517 		struct btrfs_ordered_sum *sum;
518 		sum = list_first_entry(&sctx->csum_list,
519 				       struct btrfs_ordered_sum, list);
520 		list_del(&sum->list);
521 		kfree(sum);
522 	}
523 }
524 
525 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
526 {
527 	int i;
528 
529 	if (!sctx)
530 		return;
531 
532 	/* this can happen when scrub is cancelled */
533 	if (sctx->curr != -1) {
534 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
535 
536 		for (i = 0; i < sbio->sector_count; i++) {
537 			WARN_ON(!sbio->sectors[i]->page);
538 			scrub_block_put(sbio->sectors[i]->sblock);
539 		}
540 		bio_put(sbio->bio);
541 	}
542 
543 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
544 		struct scrub_bio *sbio = sctx->bios[i];
545 
546 		if (!sbio)
547 			break;
548 		kfree(sbio);
549 	}
550 
551 	kfree(sctx->wr_curr_bio);
552 	scrub_free_csums(sctx);
553 	kfree(sctx);
554 }
555 
556 static void scrub_put_ctx(struct scrub_ctx *sctx)
557 {
558 	if (refcount_dec_and_test(&sctx->refs))
559 		scrub_free_ctx(sctx);
560 }
561 
562 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
563 		struct btrfs_fs_info *fs_info, int is_dev_replace)
564 {
565 	struct scrub_ctx *sctx;
566 	int		i;
567 
568 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
569 	if (!sctx)
570 		goto nomem;
571 	refcount_set(&sctx->refs, 1);
572 	sctx->is_dev_replace = is_dev_replace;
573 	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
574 	sctx->curr = -1;
575 	sctx->fs_info = fs_info;
576 	INIT_LIST_HEAD(&sctx->csum_list);
577 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
578 		struct scrub_bio *sbio;
579 
580 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
581 		if (!sbio)
582 			goto nomem;
583 		sctx->bios[i] = sbio;
584 
585 		sbio->index = i;
586 		sbio->sctx = sctx;
587 		sbio->sector_count = 0;
588 		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
589 
590 		if (i != SCRUB_BIOS_PER_SCTX - 1)
591 			sctx->bios[i]->next_free = i + 1;
592 		else
593 			sctx->bios[i]->next_free = -1;
594 	}
595 	sctx->first_free = 0;
596 	atomic_set(&sctx->bios_in_flight, 0);
597 	atomic_set(&sctx->workers_pending, 0);
598 	atomic_set(&sctx->cancel_req, 0);
599 
600 	spin_lock_init(&sctx->list_lock);
601 	spin_lock_init(&sctx->stat_lock);
602 	init_waitqueue_head(&sctx->list_wait);
603 	sctx->throttle_deadline = 0;
604 
605 	WARN_ON(sctx->wr_curr_bio != NULL);
606 	mutex_init(&sctx->wr_lock);
607 	sctx->wr_curr_bio = NULL;
608 	if (is_dev_replace) {
609 		WARN_ON(!fs_info->dev_replace.tgtdev);
610 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
611 		sctx->flush_all_writes = false;
612 	}
613 
614 	return sctx;
615 
616 nomem:
617 	scrub_free_ctx(sctx);
618 	return ERR_PTR(-ENOMEM);
619 }
620 
621 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
622 				     void *warn_ctx)
623 {
624 	u32 nlink;
625 	int ret;
626 	int i;
627 	unsigned nofs_flag;
628 	struct extent_buffer *eb;
629 	struct btrfs_inode_item *inode_item;
630 	struct scrub_warning *swarn = warn_ctx;
631 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
632 	struct inode_fs_paths *ipath = NULL;
633 	struct btrfs_root *local_root;
634 	struct btrfs_key key;
635 
636 	local_root = btrfs_get_fs_root(fs_info, root, true);
637 	if (IS_ERR(local_root)) {
638 		ret = PTR_ERR(local_root);
639 		goto err;
640 	}
641 
642 	/*
643 	 * this makes the path point to (inum INODE_ITEM ioff)
644 	 */
645 	key.objectid = inum;
646 	key.type = BTRFS_INODE_ITEM_KEY;
647 	key.offset = 0;
648 
649 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
650 	if (ret) {
651 		btrfs_put_root(local_root);
652 		btrfs_release_path(swarn->path);
653 		goto err;
654 	}
655 
656 	eb = swarn->path->nodes[0];
657 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
658 					struct btrfs_inode_item);
659 	nlink = btrfs_inode_nlink(eb, inode_item);
660 	btrfs_release_path(swarn->path);
661 
662 	/*
663 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
664 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
665 	 * not seem to be strictly necessary.
666 	 */
667 	nofs_flag = memalloc_nofs_save();
668 	ipath = init_ipath(4096, local_root, swarn->path);
669 	memalloc_nofs_restore(nofs_flag);
670 	if (IS_ERR(ipath)) {
671 		btrfs_put_root(local_root);
672 		ret = PTR_ERR(ipath);
673 		ipath = NULL;
674 		goto err;
675 	}
676 	ret = paths_from_inode(inum, ipath);
677 
678 	if (ret < 0)
679 		goto err;
680 
681 	/*
682 	 * we deliberately ignore the bit ipath might have been too small to
683 	 * hold all of the paths here
684 	 */
685 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
686 		btrfs_warn_in_rcu(fs_info,
687 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
688 				  swarn->errstr, swarn->logical,
689 				  rcu_str_deref(swarn->dev->name),
690 				  swarn->physical,
691 				  root, inum, offset,
692 				  fs_info->sectorsize, nlink,
693 				  (char *)(unsigned long)ipath->fspath->val[i]);
694 
695 	btrfs_put_root(local_root);
696 	free_ipath(ipath);
697 	return 0;
698 
699 err:
700 	btrfs_warn_in_rcu(fs_info,
701 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
702 			  swarn->errstr, swarn->logical,
703 			  rcu_str_deref(swarn->dev->name),
704 			  swarn->physical,
705 			  root, inum, offset, ret);
706 
707 	free_ipath(ipath);
708 	return 0;
709 }
710 
711 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
712 {
713 	struct btrfs_device *dev;
714 	struct btrfs_fs_info *fs_info;
715 	struct btrfs_path *path;
716 	struct btrfs_key found_key;
717 	struct extent_buffer *eb;
718 	struct btrfs_extent_item *ei;
719 	struct scrub_warning swarn;
720 	unsigned long ptr = 0;
721 	u64 extent_item_pos;
722 	u64 flags = 0;
723 	u64 ref_root;
724 	u32 item_size;
725 	u8 ref_level = 0;
726 	int ret;
727 
728 	WARN_ON(sblock->sector_count < 1);
729 	dev = sblock->sectors[0]->dev;
730 	fs_info = sblock->sctx->fs_info;
731 
732 	path = btrfs_alloc_path();
733 	if (!path)
734 		return;
735 
736 	swarn.physical = sblock->sectors[0]->physical;
737 	swarn.logical = sblock->sectors[0]->logical;
738 	swarn.errstr = errstr;
739 	swarn.dev = NULL;
740 
741 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
742 				  &flags);
743 	if (ret < 0)
744 		goto out;
745 
746 	extent_item_pos = swarn.logical - found_key.objectid;
747 	swarn.extent_item_size = found_key.offset;
748 
749 	eb = path->nodes[0];
750 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
751 	item_size = btrfs_item_size(eb, path->slots[0]);
752 
753 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
754 		do {
755 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
756 						      item_size, &ref_root,
757 						      &ref_level);
758 			btrfs_warn_in_rcu(fs_info,
759 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
760 				errstr, swarn.logical,
761 				rcu_str_deref(dev->name),
762 				swarn.physical,
763 				ref_level ? "node" : "leaf",
764 				ret < 0 ? -1 : ref_level,
765 				ret < 0 ? -1 : ref_root);
766 		} while (ret != 1);
767 		btrfs_release_path(path);
768 	} else {
769 		btrfs_release_path(path);
770 		swarn.path = path;
771 		swarn.dev = dev;
772 		iterate_extent_inodes(fs_info, found_key.objectid,
773 					extent_item_pos, 1,
774 					scrub_print_warning_inode, &swarn, false);
775 	}
776 
777 out:
778 	btrfs_free_path(path);
779 }
780 
781 static inline void scrub_get_recover(struct scrub_recover *recover)
782 {
783 	refcount_inc(&recover->refs);
784 }
785 
786 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
787 				     struct scrub_recover *recover)
788 {
789 	if (refcount_dec_and_test(&recover->refs)) {
790 		btrfs_bio_counter_dec(fs_info);
791 		btrfs_put_bioc(recover->bioc);
792 		kfree(recover);
793 	}
794 }
795 
796 /*
797  * scrub_handle_errored_block gets called when either verification of the
798  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
799  * case, this function handles all sectors in the bio, even though only one
800  * may be bad.
801  * The goal of this function is to repair the errored block by using the
802  * contents of one of the mirrors.
803  */
804 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
805 {
806 	struct scrub_ctx *sctx = sblock_to_check->sctx;
807 	struct btrfs_device *dev;
808 	struct btrfs_fs_info *fs_info;
809 	u64 logical;
810 	unsigned int failed_mirror_index;
811 	unsigned int is_metadata;
812 	unsigned int have_csum;
813 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
814 	struct scrub_block *sblock_bad;
815 	int ret;
816 	int mirror_index;
817 	int sector_num;
818 	int success;
819 	bool full_stripe_locked;
820 	unsigned int nofs_flag;
821 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
822 				      DEFAULT_RATELIMIT_BURST);
823 
824 	BUG_ON(sblock_to_check->sector_count < 1);
825 	fs_info = sctx->fs_info;
826 	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
827 		/*
828 		 * if we find an error in a super block, we just report it.
829 		 * They will get written with the next transaction commit
830 		 * anyway
831 		 */
832 		spin_lock(&sctx->stat_lock);
833 		++sctx->stat.super_errors;
834 		spin_unlock(&sctx->stat_lock);
835 		return 0;
836 	}
837 	logical = sblock_to_check->sectors[0]->logical;
838 	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
839 	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
840 	is_metadata = !(sblock_to_check->sectors[0]->flags &
841 			BTRFS_EXTENT_FLAG_DATA);
842 	have_csum = sblock_to_check->sectors[0]->have_csum;
843 	dev = sblock_to_check->sectors[0]->dev;
844 
845 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
846 		return 0;
847 
848 	/*
849 	 * We must use GFP_NOFS because the scrub task might be waiting for a
850 	 * worker task executing this function and in turn a transaction commit
851 	 * might be waiting the scrub task to pause (which needs to wait for all
852 	 * the worker tasks to complete before pausing).
853 	 * We do allocations in the workers through insert_full_stripe_lock()
854 	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
855 	 * this function.
856 	 */
857 	nofs_flag = memalloc_nofs_save();
858 	/*
859 	 * For RAID5/6, race can happen for a different device scrub thread.
860 	 * For data corruption, Parity and Data threads will both try
861 	 * to recovery the data.
862 	 * Race can lead to doubly added csum error, or even unrecoverable
863 	 * error.
864 	 */
865 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
866 	if (ret < 0) {
867 		memalloc_nofs_restore(nofs_flag);
868 		spin_lock(&sctx->stat_lock);
869 		if (ret == -ENOMEM)
870 			sctx->stat.malloc_errors++;
871 		sctx->stat.read_errors++;
872 		sctx->stat.uncorrectable_errors++;
873 		spin_unlock(&sctx->stat_lock);
874 		return ret;
875 	}
876 
877 	/*
878 	 * read all mirrors one after the other. This includes to
879 	 * re-read the extent or metadata block that failed (that was
880 	 * the cause that this fixup code is called) another time,
881 	 * sector by sector this time in order to know which sectors
882 	 * caused I/O errors and which ones are good (for all mirrors).
883 	 * It is the goal to handle the situation when more than one
884 	 * mirror contains I/O errors, but the errors do not
885 	 * overlap, i.e. the data can be repaired by selecting the
886 	 * sectors from those mirrors without I/O error on the
887 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
888 	 * would be that mirror #1 has an I/O error on the first sector,
889 	 * the second sector is good, and mirror #2 has an I/O error on
890 	 * the second sector, but the first sector is good.
891 	 * Then the first sector of the first mirror can be repaired by
892 	 * taking the first sector of the second mirror, and the
893 	 * second sector of the second mirror can be repaired by
894 	 * copying the contents of the 2nd sector of the 1st mirror.
895 	 * One more note: if the sectors of one mirror contain I/O
896 	 * errors, the checksum cannot be verified. In order to get
897 	 * the best data for repairing, the first attempt is to find
898 	 * a mirror without I/O errors and with a validated checksum.
899 	 * Only if this is not possible, the sectors are picked from
900 	 * mirrors with I/O errors without considering the checksum.
901 	 * If the latter is the case, at the end, the checksum of the
902 	 * repaired area is verified in order to correctly maintain
903 	 * the statistics.
904 	 */
905 
906 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
907 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
908 	if (!sblocks_for_recheck) {
909 		spin_lock(&sctx->stat_lock);
910 		sctx->stat.malloc_errors++;
911 		sctx->stat.read_errors++;
912 		sctx->stat.uncorrectable_errors++;
913 		spin_unlock(&sctx->stat_lock);
914 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
915 		goto out;
916 	}
917 
918 	/* Setup the context, map the logical blocks and alloc the sectors */
919 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
920 	if (ret) {
921 		spin_lock(&sctx->stat_lock);
922 		sctx->stat.read_errors++;
923 		sctx->stat.uncorrectable_errors++;
924 		spin_unlock(&sctx->stat_lock);
925 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926 		goto out;
927 	}
928 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
929 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
930 
931 	/* build and submit the bios for the failed mirror, check checksums */
932 	scrub_recheck_block(fs_info, sblock_bad, 1);
933 
934 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
935 	    sblock_bad->no_io_error_seen) {
936 		/*
937 		 * The error disappeared after reading sector by sector, or
938 		 * the area was part of a huge bio and other parts of the
939 		 * bio caused I/O errors, or the block layer merged several
940 		 * read requests into one and the error is caused by a
941 		 * different bio (usually one of the two latter cases is
942 		 * the cause)
943 		 */
944 		spin_lock(&sctx->stat_lock);
945 		sctx->stat.unverified_errors++;
946 		sblock_to_check->data_corrected = 1;
947 		spin_unlock(&sctx->stat_lock);
948 
949 		if (sctx->is_dev_replace)
950 			scrub_write_block_to_dev_replace(sblock_bad);
951 		goto out;
952 	}
953 
954 	if (!sblock_bad->no_io_error_seen) {
955 		spin_lock(&sctx->stat_lock);
956 		sctx->stat.read_errors++;
957 		spin_unlock(&sctx->stat_lock);
958 		if (__ratelimit(&rs))
959 			scrub_print_warning("i/o error", sblock_to_check);
960 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
961 	} else if (sblock_bad->checksum_error) {
962 		spin_lock(&sctx->stat_lock);
963 		sctx->stat.csum_errors++;
964 		spin_unlock(&sctx->stat_lock);
965 		if (__ratelimit(&rs))
966 			scrub_print_warning("checksum error", sblock_to_check);
967 		btrfs_dev_stat_inc_and_print(dev,
968 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
969 	} else if (sblock_bad->header_error) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.verify_errors++;
972 		spin_unlock(&sctx->stat_lock);
973 		if (__ratelimit(&rs))
974 			scrub_print_warning("checksum/header error",
975 					    sblock_to_check);
976 		if (sblock_bad->generation_error)
977 			btrfs_dev_stat_inc_and_print(dev,
978 				BTRFS_DEV_STAT_GENERATION_ERRS);
979 		else
980 			btrfs_dev_stat_inc_and_print(dev,
981 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
982 	}
983 
984 	if (sctx->readonly) {
985 		ASSERT(!sctx->is_dev_replace);
986 		goto out;
987 	}
988 
989 	/*
990 	 * now build and submit the bios for the other mirrors, check
991 	 * checksums.
992 	 * First try to pick the mirror which is completely without I/O
993 	 * errors and also does not have a checksum error.
994 	 * If one is found, and if a checksum is present, the full block
995 	 * that is known to contain an error is rewritten. Afterwards
996 	 * the block is known to be corrected.
997 	 * If a mirror is found which is completely correct, and no
998 	 * checksum is present, only those sectors are rewritten that had
999 	 * an I/O error in the block to be repaired, since it cannot be
1000 	 * determined, which copy of the other sectors is better (and it
1001 	 * could happen otherwise that a correct sector would be
1002 	 * overwritten by a bad one).
1003 	 */
1004 	for (mirror_index = 0; ;mirror_index++) {
1005 		struct scrub_block *sblock_other;
1006 
1007 		if (mirror_index == failed_mirror_index)
1008 			continue;
1009 
1010 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1011 		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1012 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1013 				break;
1014 			if (!sblocks_for_recheck[mirror_index].sector_count)
1015 				break;
1016 
1017 			sblock_other = sblocks_for_recheck + mirror_index;
1018 		} else {
1019 			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1020 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1021 
1022 			if (mirror_index >= max_allowed)
1023 				break;
1024 			if (!sblocks_for_recheck[1].sector_count)
1025 				break;
1026 
1027 			ASSERT(failed_mirror_index == 0);
1028 			sblock_other = sblocks_for_recheck + 1;
1029 			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
1030 		}
1031 
1032 		/* build and submit the bios, check checksums */
1033 		scrub_recheck_block(fs_info, sblock_other, 0);
1034 
1035 		if (!sblock_other->header_error &&
1036 		    !sblock_other->checksum_error &&
1037 		    sblock_other->no_io_error_seen) {
1038 			if (sctx->is_dev_replace) {
1039 				scrub_write_block_to_dev_replace(sblock_other);
1040 				goto corrected_error;
1041 			} else {
1042 				ret = scrub_repair_block_from_good_copy(
1043 						sblock_bad, sblock_other);
1044 				if (!ret)
1045 					goto corrected_error;
1046 			}
1047 		}
1048 	}
1049 
1050 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1051 		goto did_not_correct_error;
1052 
1053 	/*
1054 	 * In case of I/O errors in the area that is supposed to be
1055 	 * repaired, continue by picking good copies of those sectors.
1056 	 * Select the good sectors from mirrors to rewrite bad sectors from
1057 	 * the area to fix. Afterwards verify the checksum of the block
1058 	 * that is supposed to be repaired. This verification step is
1059 	 * only done for the purpose of statistic counting and for the
1060 	 * final scrub report, whether errors remain.
1061 	 * A perfect algorithm could make use of the checksum and try
1062 	 * all possible combinations of sectors from the different mirrors
1063 	 * until the checksum verification succeeds. For example, when
1064 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1065 	 * of mirror #2 is readable but the final checksum test fails,
1066 	 * then the 2nd sector of mirror #3 could be tried, whether now
1067 	 * the final checksum succeeds. But this would be a rare
1068 	 * exception and is therefore not implemented. At least it is
1069 	 * avoided that the good copy is overwritten.
1070 	 * A more useful improvement would be to pick the sectors
1071 	 * without I/O error based on sector sizes (512 bytes on legacy
1072 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1073 	 * mirror could be repaired by taking 512 byte of a different
1074 	 * mirror, even if other 512 byte sectors in the same sectorsize
1075 	 * area are unreadable.
1076 	 */
1077 	success = 1;
1078 	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1079 	     sector_num++) {
1080 		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1081 		struct scrub_block *sblock_other = NULL;
1082 
1083 		/* Skip no-io-error sectors in scrub */
1084 		if (!sector_bad->io_error && !sctx->is_dev_replace)
1085 			continue;
1086 
1087 		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1088 			/*
1089 			 * In case of dev replace, if raid56 rebuild process
1090 			 * didn't work out correct data, then copy the content
1091 			 * in sblock_bad to make sure target device is identical
1092 			 * to source device, instead of writing garbage data in
1093 			 * sblock_for_recheck array to target device.
1094 			 */
1095 			sblock_other = NULL;
1096 		} else if (sector_bad->io_error) {
1097 			/* Try to find no-io-error sector in mirrors */
1098 			for (mirror_index = 0;
1099 			     mirror_index < BTRFS_MAX_MIRRORS &&
1100 			     sblocks_for_recheck[mirror_index].sector_count > 0;
1101 			     mirror_index++) {
1102 				if (!sblocks_for_recheck[mirror_index].
1103 				    sectors[sector_num]->io_error) {
1104 					sblock_other = sblocks_for_recheck +
1105 						       mirror_index;
1106 					break;
1107 				}
1108 			}
1109 			if (!sblock_other)
1110 				success = 0;
1111 		}
1112 
1113 		if (sctx->is_dev_replace) {
1114 			/*
1115 			 * Did not find a mirror to fetch the sector from.
1116 			 * scrub_write_sector_to_dev_replace() handles this
1117 			 * case (sector->io_error), by filling the block with
1118 			 * zeros before submitting the write request
1119 			 */
1120 			if (!sblock_other)
1121 				sblock_other = sblock_bad;
1122 
1123 			if (scrub_write_sector_to_dev_replace(sblock_other,
1124 							      sector_num) != 0) {
1125 				atomic64_inc(
1126 					&fs_info->dev_replace.num_write_errors);
1127 				success = 0;
1128 			}
1129 		} else if (sblock_other) {
1130 			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1131 								 sblock_other,
1132 								 sector_num, 0);
1133 			if (0 == ret)
1134 				sector_bad->io_error = 0;
1135 			else
1136 				success = 0;
1137 		}
1138 	}
1139 
1140 	if (success && !sctx->is_dev_replace) {
1141 		if (is_metadata || have_csum) {
1142 			/*
1143 			 * need to verify the checksum now that all
1144 			 * sectors on disk are repaired (the write
1145 			 * request for data to be repaired is on its way).
1146 			 * Just be lazy and use scrub_recheck_block()
1147 			 * which re-reads the data before the checksum
1148 			 * is verified, but most likely the data comes out
1149 			 * of the page cache.
1150 			 */
1151 			scrub_recheck_block(fs_info, sblock_bad, 1);
1152 			if (!sblock_bad->header_error &&
1153 			    !sblock_bad->checksum_error &&
1154 			    sblock_bad->no_io_error_seen)
1155 				goto corrected_error;
1156 			else
1157 				goto did_not_correct_error;
1158 		} else {
1159 corrected_error:
1160 			spin_lock(&sctx->stat_lock);
1161 			sctx->stat.corrected_errors++;
1162 			sblock_to_check->data_corrected = 1;
1163 			spin_unlock(&sctx->stat_lock);
1164 			btrfs_err_rl_in_rcu(fs_info,
1165 				"fixed up error at logical %llu on dev %s",
1166 				logical, rcu_str_deref(dev->name));
1167 		}
1168 	} else {
1169 did_not_correct_error:
1170 		spin_lock(&sctx->stat_lock);
1171 		sctx->stat.uncorrectable_errors++;
1172 		spin_unlock(&sctx->stat_lock);
1173 		btrfs_err_rl_in_rcu(fs_info,
1174 			"unable to fixup (regular) error at logical %llu on dev %s",
1175 			logical, rcu_str_deref(dev->name));
1176 	}
1177 
1178 out:
1179 	if (sblocks_for_recheck) {
1180 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1181 		     mirror_index++) {
1182 			struct scrub_block *sblock = sblocks_for_recheck +
1183 						     mirror_index;
1184 			struct scrub_recover *recover;
1185 			int i;
1186 
1187 			for (i = 0; i < sblock->sector_count; i++) {
1188 				sblock->sectors[i]->sblock = NULL;
1189 				recover = sblock->sectors[i]->recover;
1190 				if (recover) {
1191 					scrub_put_recover(fs_info, recover);
1192 					sblock->sectors[i]->recover = NULL;
1193 				}
1194 				scrub_sector_put(sblock->sectors[i]);
1195 			}
1196 		}
1197 		kfree(sblocks_for_recheck);
1198 	}
1199 
1200 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1201 	memalloc_nofs_restore(nofs_flag);
1202 	if (ret < 0)
1203 		return ret;
1204 	return 0;
1205 }
1206 
1207 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1208 {
1209 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1210 		return 2;
1211 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1212 		return 3;
1213 	else
1214 		return (int)bioc->num_stripes;
1215 }
1216 
1217 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1218 						 u64 *raid_map,
1219 						 int nstripes, int mirror,
1220 						 int *stripe_index,
1221 						 u64 *stripe_offset)
1222 {
1223 	int i;
1224 
1225 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1226 		/* RAID5/6 */
1227 		for (i = 0; i < nstripes; i++) {
1228 			if (raid_map[i] == RAID6_Q_STRIPE ||
1229 			    raid_map[i] == RAID5_P_STRIPE)
1230 				continue;
1231 
1232 			if (logical >= raid_map[i] &&
1233 			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1234 				break;
1235 		}
1236 
1237 		*stripe_index = i;
1238 		*stripe_offset = logical - raid_map[i];
1239 	} else {
1240 		/* The other RAID type */
1241 		*stripe_index = mirror;
1242 		*stripe_offset = 0;
1243 	}
1244 }
1245 
1246 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1247 				     struct scrub_block *sblocks_for_recheck)
1248 {
1249 	struct scrub_ctx *sctx = original_sblock->sctx;
1250 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1251 	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1252 	u64 logical = original_sblock->sectors[0]->logical;
1253 	u64 generation = original_sblock->sectors[0]->generation;
1254 	u64 flags = original_sblock->sectors[0]->flags;
1255 	u64 have_csum = original_sblock->sectors[0]->have_csum;
1256 	struct scrub_recover *recover;
1257 	struct btrfs_io_context *bioc;
1258 	u64 sublen;
1259 	u64 mapped_length;
1260 	u64 stripe_offset;
1261 	int stripe_index;
1262 	int sector_index = 0;
1263 	int mirror_index;
1264 	int nmirrors;
1265 	int ret;
1266 
1267 	/*
1268 	 * Note: the two members refs and outstanding_sectors are not used (and
1269 	 * not set) in the blocks that are used for the recheck procedure.
1270 	 */
1271 
1272 	while (length > 0) {
1273 		sublen = min_t(u64, length, fs_info->sectorsize);
1274 		mapped_length = sublen;
1275 		bioc = NULL;
1276 
1277 		/*
1278 		 * With a length of sectorsize, each returned stripe represents
1279 		 * one mirror
1280 		 */
1281 		btrfs_bio_counter_inc_blocked(fs_info);
1282 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1283 				       logical, &mapped_length, &bioc);
1284 		if (ret || !bioc || mapped_length < sublen) {
1285 			btrfs_put_bioc(bioc);
1286 			btrfs_bio_counter_dec(fs_info);
1287 			return -EIO;
1288 		}
1289 
1290 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1291 		if (!recover) {
1292 			btrfs_put_bioc(bioc);
1293 			btrfs_bio_counter_dec(fs_info);
1294 			return -ENOMEM;
1295 		}
1296 
1297 		refcount_set(&recover->refs, 1);
1298 		recover->bioc = bioc;
1299 		recover->map_length = mapped_length;
1300 
1301 		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1302 
1303 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1304 
1305 		for (mirror_index = 0; mirror_index < nmirrors;
1306 		     mirror_index++) {
1307 			struct scrub_block *sblock;
1308 			struct scrub_sector *sector;
1309 
1310 			sblock = sblocks_for_recheck + mirror_index;
1311 			sblock->sctx = sctx;
1312 
1313 			sector = kzalloc(sizeof(*sector), GFP_NOFS);
1314 			if (!sector) {
1315 leave_nomem:
1316 				spin_lock(&sctx->stat_lock);
1317 				sctx->stat.malloc_errors++;
1318 				spin_unlock(&sctx->stat_lock);
1319 				scrub_put_recover(fs_info, recover);
1320 				return -ENOMEM;
1321 			}
1322 			scrub_sector_get(sector);
1323 			sblock->sectors[sector_index] = sector;
1324 			sector->sblock = sblock;
1325 			sector->flags = flags;
1326 			sector->generation = generation;
1327 			sector->logical = logical;
1328 			sector->have_csum = have_csum;
1329 			if (have_csum)
1330 				memcpy(sector->csum,
1331 				       original_sblock->sectors[0]->csum,
1332 				       sctx->fs_info->csum_size);
1333 
1334 			scrub_stripe_index_and_offset(logical,
1335 						      bioc->map_type,
1336 						      bioc->raid_map,
1337 						      bioc->num_stripes -
1338 						      bioc->num_tgtdevs,
1339 						      mirror_index,
1340 						      &stripe_index,
1341 						      &stripe_offset);
1342 			sector->physical = bioc->stripes[stripe_index].physical +
1343 					 stripe_offset;
1344 			sector->dev = bioc->stripes[stripe_index].dev;
1345 
1346 			BUG_ON(sector_index >= original_sblock->sector_count);
1347 			sector->physical_for_dev_replace =
1348 				original_sblock->sectors[sector_index]->
1349 				physical_for_dev_replace;
1350 			/* For missing devices, dev->bdev is NULL */
1351 			sector->mirror_num = mirror_index + 1;
1352 			sblock->sector_count++;
1353 			sector->page = alloc_page(GFP_NOFS);
1354 			if (!sector->page)
1355 				goto leave_nomem;
1356 
1357 			scrub_get_recover(recover);
1358 			sector->recover = recover;
1359 		}
1360 		scrub_put_recover(fs_info, recover);
1361 		length -= sublen;
1362 		logical += sublen;
1363 		sector_index++;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 static void scrub_bio_wait_endio(struct bio *bio)
1370 {
1371 	complete(bio->bi_private);
1372 }
1373 
1374 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1375 					struct bio *bio,
1376 					struct scrub_sector *sector)
1377 {
1378 	DECLARE_COMPLETION_ONSTACK(done);
1379 
1380 	bio->bi_iter.bi_sector = sector->logical >> 9;
1381 	bio->bi_private = &done;
1382 	bio->bi_end_io = scrub_bio_wait_endio;
1383 	raid56_parity_recover(bio, sector->recover->bioc,
1384 			      sector->sblock->sectors[0]->mirror_num, false);
1385 
1386 	wait_for_completion_io(&done);
1387 	return blk_status_to_errno(bio->bi_status);
1388 }
1389 
1390 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1391 					  struct scrub_block *sblock)
1392 {
1393 	struct scrub_sector *first_sector = sblock->sectors[0];
1394 	struct bio *bio;
1395 	int i;
1396 
1397 	/* All sectors in sblock belong to the same stripe on the same device. */
1398 	ASSERT(first_sector->dev);
1399 	if (!first_sector->dev->bdev)
1400 		goto out;
1401 
1402 	bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1403 
1404 	for (i = 0; i < sblock->sector_count; i++) {
1405 		struct scrub_sector *sector = sblock->sectors[i];
1406 
1407 		WARN_ON(!sector->page);
1408 		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
1409 	}
1410 
1411 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1412 		bio_put(bio);
1413 		goto out;
1414 	}
1415 
1416 	bio_put(bio);
1417 
1418 	scrub_recheck_block_checksum(sblock);
1419 
1420 	return;
1421 out:
1422 	for (i = 0; i < sblock->sector_count; i++)
1423 		sblock->sectors[i]->io_error = 1;
1424 
1425 	sblock->no_io_error_seen = 0;
1426 }
1427 
1428 /*
1429  * This function will check the on disk data for checksum errors, header errors
1430  * and read I/O errors. If any I/O errors happen, the exact sectors which are
1431  * errored are marked as being bad. The goal is to enable scrub to take those
1432  * sectors that are not errored from all the mirrors so that the sectors that
1433  * are errored in the just handled mirror can be repaired.
1434  */
1435 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1436 				struct scrub_block *sblock,
1437 				int retry_failed_mirror)
1438 {
1439 	int i;
1440 
1441 	sblock->no_io_error_seen = 1;
1442 
1443 	/* short cut for raid56 */
1444 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1445 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1446 
1447 	for (i = 0; i < sblock->sector_count; i++) {
1448 		struct scrub_sector *sector = sblock->sectors[i];
1449 		struct bio bio;
1450 		struct bio_vec bvec;
1451 
1452 		if (sector->dev->bdev == NULL) {
1453 			sector->io_error = 1;
1454 			sblock->no_io_error_seen = 0;
1455 			continue;
1456 		}
1457 
1458 		WARN_ON(!sector->page);
1459 		bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ);
1460 		bio_add_page(&bio, sector->page, fs_info->sectorsize, 0);
1461 		bio.bi_iter.bi_sector = sector->physical >> 9;
1462 
1463 		btrfsic_check_bio(&bio);
1464 		if (submit_bio_wait(&bio)) {
1465 			sector->io_error = 1;
1466 			sblock->no_io_error_seen = 0;
1467 		}
1468 
1469 		bio_uninit(&bio);
1470 	}
1471 
1472 	if (sblock->no_io_error_seen)
1473 		scrub_recheck_block_checksum(sblock);
1474 }
1475 
1476 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1477 {
1478 	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
1479 	int ret;
1480 
1481 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1482 	return !ret;
1483 }
1484 
1485 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1486 {
1487 	sblock->header_error = 0;
1488 	sblock->checksum_error = 0;
1489 	sblock->generation_error = 0;
1490 
1491 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1492 		scrub_checksum_data(sblock);
1493 	else
1494 		scrub_checksum_tree_block(sblock);
1495 }
1496 
1497 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1498 					     struct scrub_block *sblock_good)
1499 {
1500 	int i;
1501 	int ret = 0;
1502 
1503 	for (i = 0; i < sblock_bad->sector_count; i++) {
1504 		int ret_sub;
1505 
1506 		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1507 							     sblock_good, i, 1);
1508 		if (ret_sub)
1509 			ret = ret_sub;
1510 	}
1511 
1512 	return ret;
1513 }
1514 
1515 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1516 					      struct scrub_block *sblock_good,
1517 					      int sector_num, int force_write)
1518 {
1519 	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1520 	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1521 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1522 	const u32 sectorsize = fs_info->sectorsize;
1523 
1524 	BUG_ON(sector_bad->page == NULL);
1525 	BUG_ON(sector_good->page == NULL);
1526 	if (force_write || sblock_bad->header_error ||
1527 	    sblock_bad->checksum_error || sector_bad->io_error) {
1528 		struct bio bio;
1529 		struct bio_vec bvec;
1530 		int ret;
1531 
1532 		if (!sector_bad->dev->bdev) {
1533 			btrfs_warn_rl(fs_info,
1534 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1535 			return -EIO;
1536 		}
1537 
1538 		bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1539 		bio.bi_iter.bi_sector = sector_bad->physical >> 9;
1540 		__bio_add_page(&bio, sector_good->page, sectorsize, 0);
1541 
1542 		btrfsic_check_bio(&bio);
1543 		ret = submit_bio_wait(&bio);
1544 		bio_uninit(&bio);
1545 
1546 		if (ret) {
1547 			btrfs_dev_stat_inc_and_print(sector_bad->dev,
1548 				BTRFS_DEV_STAT_WRITE_ERRS);
1549 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1550 			return -EIO;
1551 		}
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1558 {
1559 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1560 	int i;
1561 
1562 	/*
1563 	 * This block is used for the check of the parity on the source device,
1564 	 * so the data needn't be written into the destination device.
1565 	 */
1566 	if (sblock->sparity)
1567 		return;
1568 
1569 	for (i = 0; i < sblock->sector_count; i++) {
1570 		int ret;
1571 
1572 		ret = scrub_write_sector_to_dev_replace(sblock, i);
1573 		if (ret)
1574 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1575 	}
1576 }
1577 
1578 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1579 {
1580 	struct scrub_sector *sector = sblock->sectors[sector_num];
1581 
1582 	BUG_ON(sector->page == NULL);
1583 	if (sector->io_error)
1584 		clear_page(page_address(sector->page));
1585 
1586 	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1587 }
1588 
1589 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1590 {
1591 	int ret = 0;
1592 	u64 length;
1593 
1594 	if (!btrfs_is_zoned(sctx->fs_info))
1595 		return 0;
1596 
1597 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1598 		return 0;
1599 
1600 	if (sctx->write_pointer < physical) {
1601 		length = physical - sctx->write_pointer;
1602 
1603 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1604 						sctx->write_pointer, length);
1605 		if (!ret)
1606 			sctx->write_pointer = physical;
1607 	}
1608 	return ret;
1609 }
1610 
1611 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1612 				      struct scrub_sector *sector)
1613 {
1614 	struct scrub_bio *sbio;
1615 	int ret;
1616 	const u32 sectorsize = sctx->fs_info->sectorsize;
1617 
1618 	mutex_lock(&sctx->wr_lock);
1619 again:
1620 	if (!sctx->wr_curr_bio) {
1621 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1622 					      GFP_KERNEL);
1623 		if (!sctx->wr_curr_bio) {
1624 			mutex_unlock(&sctx->wr_lock);
1625 			return -ENOMEM;
1626 		}
1627 		sctx->wr_curr_bio->sctx = sctx;
1628 		sctx->wr_curr_bio->sector_count = 0;
1629 	}
1630 	sbio = sctx->wr_curr_bio;
1631 	if (sbio->sector_count == 0) {
1632 		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
1633 		if (ret) {
1634 			mutex_unlock(&sctx->wr_lock);
1635 			return ret;
1636 		}
1637 
1638 		sbio->physical = sector->physical_for_dev_replace;
1639 		sbio->logical = sector->logical;
1640 		sbio->dev = sctx->wr_tgtdev;
1641 		if (!sbio->bio) {
1642 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1643 					      REQ_OP_WRITE, GFP_NOFS);
1644 		}
1645 		sbio->bio->bi_private = sbio;
1646 		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1647 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1648 		sbio->status = 0;
1649 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1650 		   sector->physical_for_dev_replace ||
1651 		   sbio->logical + sbio->sector_count * sectorsize !=
1652 		   sector->logical) {
1653 		scrub_wr_submit(sctx);
1654 		goto again;
1655 	}
1656 
1657 	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
1658 	if (ret != sectorsize) {
1659 		if (sbio->sector_count < 1) {
1660 			bio_put(sbio->bio);
1661 			sbio->bio = NULL;
1662 			mutex_unlock(&sctx->wr_lock);
1663 			return -EIO;
1664 		}
1665 		scrub_wr_submit(sctx);
1666 		goto again;
1667 	}
1668 
1669 	sbio->sectors[sbio->sector_count] = sector;
1670 	scrub_sector_get(sector);
1671 	sbio->sector_count++;
1672 	if (sbio->sector_count == sctx->sectors_per_bio)
1673 		scrub_wr_submit(sctx);
1674 	mutex_unlock(&sctx->wr_lock);
1675 
1676 	return 0;
1677 }
1678 
1679 static void scrub_wr_submit(struct scrub_ctx *sctx)
1680 {
1681 	struct scrub_bio *sbio;
1682 
1683 	if (!sctx->wr_curr_bio)
1684 		return;
1685 
1686 	sbio = sctx->wr_curr_bio;
1687 	sctx->wr_curr_bio = NULL;
1688 	scrub_pending_bio_inc(sctx);
1689 	/* process all writes in a single worker thread. Then the block layer
1690 	 * orders the requests before sending them to the driver which
1691 	 * doubled the write performance on spinning disks when measured
1692 	 * with Linux 3.5 */
1693 	btrfsic_check_bio(sbio->bio);
1694 	submit_bio(sbio->bio);
1695 
1696 	if (btrfs_is_zoned(sctx->fs_info))
1697 		sctx->write_pointer = sbio->physical + sbio->sector_count *
1698 			sctx->fs_info->sectorsize;
1699 }
1700 
1701 static void scrub_wr_bio_end_io(struct bio *bio)
1702 {
1703 	struct scrub_bio *sbio = bio->bi_private;
1704 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1705 
1706 	sbio->status = bio->bi_status;
1707 	sbio->bio = bio;
1708 
1709 	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1710 	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1711 }
1712 
1713 static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1714 {
1715 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1716 	struct scrub_ctx *sctx = sbio->sctx;
1717 	int i;
1718 
1719 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1720 	if (sbio->status) {
1721 		struct btrfs_dev_replace *dev_replace =
1722 			&sbio->sctx->fs_info->dev_replace;
1723 
1724 		for (i = 0; i < sbio->sector_count; i++) {
1725 			struct scrub_sector *sector = sbio->sectors[i];
1726 
1727 			sector->io_error = 1;
1728 			atomic64_inc(&dev_replace->num_write_errors);
1729 		}
1730 	}
1731 
1732 	for (i = 0; i < sbio->sector_count; i++)
1733 		scrub_sector_put(sbio->sectors[i]);
1734 
1735 	bio_put(sbio->bio);
1736 	kfree(sbio);
1737 	scrub_pending_bio_dec(sctx);
1738 }
1739 
1740 static int scrub_checksum(struct scrub_block *sblock)
1741 {
1742 	u64 flags;
1743 	int ret;
1744 
1745 	/*
1746 	 * No need to initialize these stats currently,
1747 	 * because this function only use return value
1748 	 * instead of these stats value.
1749 	 *
1750 	 * Todo:
1751 	 * always use stats
1752 	 */
1753 	sblock->header_error = 0;
1754 	sblock->generation_error = 0;
1755 	sblock->checksum_error = 0;
1756 
1757 	WARN_ON(sblock->sector_count < 1);
1758 	flags = sblock->sectors[0]->flags;
1759 	ret = 0;
1760 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1761 		ret = scrub_checksum_data(sblock);
1762 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1763 		ret = scrub_checksum_tree_block(sblock);
1764 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1765 		(void)scrub_checksum_super(sblock);
1766 	else
1767 		WARN_ON(1);
1768 	if (ret)
1769 		scrub_handle_errored_block(sblock);
1770 
1771 	return ret;
1772 }
1773 
1774 static int scrub_checksum_data(struct scrub_block *sblock)
1775 {
1776 	struct scrub_ctx *sctx = sblock->sctx;
1777 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1778 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1779 	u8 csum[BTRFS_CSUM_SIZE];
1780 	struct scrub_sector *sector;
1781 	char *kaddr;
1782 
1783 	BUG_ON(sblock->sector_count < 1);
1784 	sector = sblock->sectors[0];
1785 	if (!sector->have_csum)
1786 		return 0;
1787 
1788 	kaddr = page_address(sector->page);
1789 
1790 	shash->tfm = fs_info->csum_shash;
1791 	crypto_shash_init(shash);
1792 
1793 	/*
1794 	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
1795 	 * only contains one sector of data.
1796 	 */
1797 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1798 
1799 	if (memcmp(csum, sector->csum, fs_info->csum_size))
1800 		sblock->checksum_error = 1;
1801 	return sblock->checksum_error;
1802 }
1803 
1804 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1805 {
1806 	struct scrub_ctx *sctx = sblock->sctx;
1807 	struct btrfs_header *h;
1808 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1809 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1810 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1811 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1812 	/*
1813 	 * This is done in sectorsize steps even for metadata as there's a
1814 	 * constraint for nodesize to be aligned to sectorsize. This will need
1815 	 * to change so we don't misuse data and metadata units like that.
1816 	 */
1817 	const u32 sectorsize = sctx->fs_info->sectorsize;
1818 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1819 	int i;
1820 	struct scrub_sector *sector;
1821 	char *kaddr;
1822 
1823 	BUG_ON(sblock->sector_count < 1);
1824 
1825 	/* Each member in sectors is just one sector */
1826 	ASSERT(sblock->sector_count == num_sectors);
1827 
1828 	sector = sblock->sectors[0];
1829 	kaddr = page_address(sector->page);
1830 	h = (struct btrfs_header *)kaddr;
1831 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1832 
1833 	/*
1834 	 * we don't use the getter functions here, as we
1835 	 * a) don't have an extent buffer and
1836 	 * b) the page is already kmapped
1837 	 */
1838 	if (sector->logical != btrfs_stack_header_bytenr(h))
1839 		sblock->header_error = 1;
1840 
1841 	if (sector->generation != btrfs_stack_header_generation(h)) {
1842 		sblock->header_error = 1;
1843 		sblock->generation_error = 1;
1844 	}
1845 
1846 	if (!scrub_check_fsid(h->fsid, sector))
1847 		sblock->header_error = 1;
1848 
1849 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1850 		   BTRFS_UUID_SIZE))
1851 		sblock->header_error = 1;
1852 
1853 	shash->tfm = fs_info->csum_shash;
1854 	crypto_shash_init(shash);
1855 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1856 			    sectorsize - BTRFS_CSUM_SIZE);
1857 
1858 	for (i = 1; i < num_sectors; i++) {
1859 		kaddr = page_address(sblock->sectors[i]->page);
1860 		crypto_shash_update(shash, kaddr, sectorsize);
1861 	}
1862 
1863 	crypto_shash_final(shash, calculated_csum);
1864 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1865 		sblock->checksum_error = 1;
1866 
1867 	return sblock->header_error || sblock->checksum_error;
1868 }
1869 
1870 static int scrub_checksum_super(struct scrub_block *sblock)
1871 {
1872 	struct btrfs_super_block *s;
1873 	struct scrub_ctx *sctx = sblock->sctx;
1874 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1875 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1876 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1877 	struct scrub_sector *sector;
1878 	char *kaddr;
1879 	int fail_gen = 0;
1880 	int fail_cor = 0;
1881 
1882 	BUG_ON(sblock->sector_count < 1);
1883 	sector = sblock->sectors[0];
1884 	kaddr = page_address(sector->page);
1885 	s = (struct btrfs_super_block *)kaddr;
1886 
1887 	if (sector->logical != btrfs_super_bytenr(s))
1888 		++fail_cor;
1889 
1890 	if (sector->generation != btrfs_super_generation(s))
1891 		++fail_gen;
1892 
1893 	if (!scrub_check_fsid(s->fsid, sector))
1894 		++fail_cor;
1895 
1896 	shash->tfm = fs_info->csum_shash;
1897 	crypto_shash_init(shash);
1898 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1899 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1900 
1901 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1902 		++fail_cor;
1903 
1904 	if (fail_cor + fail_gen) {
1905 		/*
1906 		 * if we find an error in a super block, we just report it.
1907 		 * They will get written with the next transaction commit
1908 		 * anyway
1909 		 */
1910 		spin_lock(&sctx->stat_lock);
1911 		++sctx->stat.super_errors;
1912 		spin_unlock(&sctx->stat_lock);
1913 		if (fail_cor)
1914 			btrfs_dev_stat_inc_and_print(sector->dev,
1915 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1916 		else
1917 			btrfs_dev_stat_inc_and_print(sector->dev,
1918 				BTRFS_DEV_STAT_GENERATION_ERRS);
1919 	}
1920 
1921 	return fail_cor + fail_gen;
1922 }
1923 
1924 static void scrub_block_get(struct scrub_block *sblock)
1925 {
1926 	refcount_inc(&sblock->refs);
1927 }
1928 
1929 static void scrub_block_put(struct scrub_block *sblock)
1930 {
1931 	if (refcount_dec_and_test(&sblock->refs)) {
1932 		int i;
1933 
1934 		if (sblock->sparity)
1935 			scrub_parity_put(sblock->sparity);
1936 
1937 		for (i = 0; i < sblock->sector_count; i++)
1938 			scrub_sector_put(sblock->sectors[i]);
1939 		kfree(sblock);
1940 	}
1941 }
1942 
1943 static void scrub_sector_get(struct scrub_sector *sector)
1944 {
1945 	atomic_inc(&sector->refs);
1946 }
1947 
1948 static void scrub_sector_put(struct scrub_sector *sector)
1949 {
1950 	if (atomic_dec_and_test(&sector->refs)) {
1951 		if (sector->page)
1952 			__free_page(sector->page);
1953 		kfree(sector);
1954 	}
1955 }
1956 
1957 /*
1958  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1959  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1960  */
1961 static void scrub_throttle(struct scrub_ctx *sctx)
1962 {
1963 	const int time_slice = 1000;
1964 	struct scrub_bio *sbio;
1965 	struct btrfs_device *device;
1966 	s64 delta;
1967 	ktime_t now;
1968 	u32 div;
1969 	u64 bwlimit;
1970 
1971 	sbio = sctx->bios[sctx->curr];
1972 	device = sbio->dev;
1973 	bwlimit = READ_ONCE(device->scrub_speed_max);
1974 	if (bwlimit == 0)
1975 		return;
1976 
1977 	/*
1978 	 * Slice is divided into intervals when the IO is submitted, adjust by
1979 	 * bwlimit and maximum of 64 intervals.
1980 	 */
1981 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1982 	div = min_t(u32, 64, div);
1983 
1984 	/* Start new epoch, set deadline */
1985 	now = ktime_get();
1986 	if (sctx->throttle_deadline == 0) {
1987 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1988 		sctx->throttle_sent = 0;
1989 	}
1990 
1991 	/* Still in the time to send? */
1992 	if (ktime_before(now, sctx->throttle_deadline)) {
1993 		/* If current bio is within the limit, send it */
1994 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
1995 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1996 			return;
1997 
1998 		/* We're over the limit, sleep until the rest of the slice */
1999 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2000 	} else {
2001 		/* New request after deadline, start new epoch */
2002 		delta = 0;
2003 	}
2004 
2005 	if (delta) {
2006 		long timeout;
2007 
2008 		timeout = div_u64(delta * HZ, 1000);
2009 		schedule_timeout_interruptible(timeout);
2010 	}
2011 
2012 	/* Next call will start the deadline period */
2013 	sctx->throttle_deadline = 0;
2014 }
2015 
2016 static void scrub_submit(struct scrub_ctx *sctx)
2017 {
2018 	struct scrub_bio *sbio;
2019 
2020 	if (sctx->curr == -1)
2021 		return;
2022 
2023 	scrub_throttle(sctx);
2024 
2025 	sbio = sctx->bios[sctx->curr];
2026 	sctx->curr = -1;
2027 	scrub_pending_bio_inc(sctx);
2028 	btrfsic_check_bio(sbio->bio);
2029 	submit_bio(sbio->bio);
2030 }
2031 
2032 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2033 				      struct scrub_sector *sector)
2034 {
2035 	struct scrub_block *sblock = sector->sblock;
2036 	struct scrub_bio *sbio;
2037 	const u32 sectorsize = sctx->fs_info->sectorsize;
2038 	int ret;
2039 
2040 again:
2041 	/*
2042 	 * grab a fresh bio or wait for one to become available
2043 	 */
2044 	while (sctx->curr == -1) {
2045 		spin_lock(&sctx->list_lock);
2046 		sctx->curr = sctx->first_free;
2047 		if (sctx->curr != -1) {
2048 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2049 			sctx->bios[sctx->curr]->next_free = -1;
2050 			sctx->bios[sctx->curr]->sector_count = 0;
2051 			spin_unlock(&sctx->list_lock);
2052 		} else {
2053 			spin_unlock(&sctx->list_lock);
2054 			wait_event(sctx->list_wait, sctx->first_free != -1);
2055 		}
2056 	}
2057 	sbio = sctx->bios[sctx->curr];
2058 	if (sbio->sector_count == 0) {
2059 		sbio->physical = sector->physical;
2060 		sbio->logical = sector->logical;
2061 		sbio->dev = sector->dev;
2062 		if (!sbio->bio) {
2063 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2064 					      REQ_OP_READ, GFP_NOFS);
2065 		}
2066 		sbio->bio->bi_private = sbio;
2067 		sbio->bio->bi_end_io = scrub_bio_end_io;
2068 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2069 		sbio->status = 0;
2070 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2071 		   sector->physical ||
2072 		   sbio->logical + sbio->sector_count * sectorsize !=
2073 		   sector->logical ||
2074 		   sbio->dev != sector->dev) {
2075 		scrub_submit(sctx);
2076 		goto again;
2077 	}
2078 
2079 	sbio->sectors[sbio->sector_count] = sector;
2080 	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
2081 	if (ret != sectorsize) {
2082 		if (sbio->sector_count < 1) {
2083 			bio_put(sbio->bio);
2084 			sbio->bio = NULL;
2085 			return -EIO;
2086 		}
2087 		scrub_submit(sctx);
2088 		goto again;
2089 	}
2090 
2091 	scrub_block_get(sblock); /* one for the page added to the bio */
2092 	atomic_inc(&sblock->outstanding_sectors);
2093 	sbio->sector_count++;
2094 	if (sbio->sector_count == sctx->sectors_per_bio)
2095 		scrub_submit(sctx);
2096 
2097 	return 0;
2098 }
2099 
2100 static void scrub_missing_raid56_end_io(struct bio *bio)
2101 {
2102 	struct scrub_block *sblock = bio->bi_private;
2103 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2104 
2105 	if (bio->bi_status)
2106 		sblock->no_io_error_seen = 0;
2107 
2108 	bio_put(bio);
2109 
2110 	queue_work(fs_info->scrub_workers, &sblock->work);
2111 }
2112 
2113 static void scrub_missing_raid56_worker(struct work_struct *work)
2114 {
2115 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2116 	struct scrub_ctx *sctx = sblock->sctx;
2117 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2118 	u64 logical;
2119 	struct btrfs_device *dev;
2120 
2121 	logical = sblock->sectors[0]->logical;
2122 	dev = sblock->sectors[0]->dev;
2123 
2124 	if (sblock->no_io_error_seen)
2125 		scrub_recheck_block_checksum(sblock);
2126 
2127 	if (!sblock->no_io_error_seen) {
2128 		spin_lock(&sctx->stat_lock);
2129 		sctx->stat.read_errors++;
2130 		spin_unlock(&sctx->stat_lock);
2131 		btrfs_err_rl_in_rcu(fs_info,
2132 			"IO error rebuilding logical %llu for dev %s",
2133 			logical, rcu_str_deref(dev->name));
2134 	} else if (sblock->header_error || sblock->checksum_error) {
2135 		spin_lock(&sctx->stat_lock);
2136 		sctx->stat.uncorrectable_errors++;
2137 		spin_unlock(&sctx->stat_lock);
2138 		btrfs_err_rl_in_rcu(fs_info,
2139 			"failed to rebuild valid logical %llu for dev %s",
2140 			logical, rcu_str_deref(dev->name));
2141 	} else {
2142 		scrub_write_block_to_dev_replace(sblock);
2143 	}
2144 
2145 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2146 		mutex_lock(&sctx->wr_lock);
2147 		scrub_wr_submit(sctx);
2148 		mutex_unlock(&sctx->wr_lock);
2149 	}
2150 
2151 	scrub_block_put(sblock);
2152 	scrub_pending_bio_dec(sctx);
2153 }
2154 
2155 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2156 {
2157 	struct scrub_ctx *sctx = sblock->sctx;
2158 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2159 	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2160 	u64 logical = sblock->sectors[0]->logical;
2161 	struct btrfs_io_context *bioc = NULL;
2162 	struct bio *bio;
2163 	struct btrfs_raid_bio *rbio;
2164 	int ret;
2165 	int i;
2166 
2167 	btrfs_bio_counter_inc_blocked(fs_info);
2168 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2169 			       &length, &bioc);
2170 	if (ret || !bioc || !bioc->raid_map)
2171 		goto bioc_out;
2172 
2173 	if (WARN_ON(!sctx->is_dev_replace ||
2174 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2175 		/*
2176 		 * We shouldn't be scrubbing a missing device. Even for dev
2177 		 * replace, we should only get here for RAID 5/6. We either
2178 		 * managed to mount something with no mirrors remaining or
2179 		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2180 		 */
2181 		goto bioc_out;
2182 	}
2183 
2184 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2185 	bio->bi_iter.bi_sector = logical >> 9;
2186 	bio->bi_private = sblock;
2187 	bio->bi_end_io = scrub_missing_raid56_end_io;
2188 
2189 	rbio = raid56_alloc_missing_rbio(bio, bioc);
2190 	if (!rbio)
2191 		goto rbio_out;
2192 
2193 	for (i = 0; i < sblock->sector_count; i++) {
2194 		struct scrub_sector *sector = sblock->sectors[i];
2195 
2196 		/*
2197 		 * For now, our scrub is still one page per sector, so pgoff
2198 		 * is always 0.
2199 		 */
2200 		raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical);
2201 	}
2202 
2203 	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2204 	scrub_block_get(sblock);
2205 	scrub_pending_bio_inc(sctx);
2206 	raid56_submit_missing_rbio(rbio);
2207 	return;
2208 
2209 rbio_out:
2210 	bio_put(bio);
2211 bioc_out:
2212 	btrfs_bio_counter_dec(fs_info);
2213 	btrfs_put_bioc(bioc);
2214 	spin_lock(&sctx->stat_lock);
2215 	sctx->stat.malloc_errors++;
2216 	spin_unlock(&sctx->stat_lock);
2217 }
2218 
2219 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2220 		       u64 physical, struct btrfs_device *dev, u64 flags,
2221 		       u64 gen, int mirror_num, u8 *csum,
2222 		       u64 physical_for_dev_replace)
2223 {
2224 	struct scrub_block *sblock;
2225 	const u32 sectorsize = sctx->fs_info->sectorsize;
2226 	int index;
2227 
2228 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2229 	if (!sblock) {
2230 		spin_lock(&sctx->stat_lock);
2231 		sctx->stat.malloc_errors++;
2232 		spin_unlock(&sctx->stat_lock);
2233 		return -ENOMEM;
2234 	}
2235 
2236 	/* one ref inside this function, plus one for each page added to
2237 	 * a bio later on */
2238 	refcount_set(&sblock->refs, 1);
2239 	sblock->sctx = sctx;
2240 	sblock->no_io_error_seen = 1;
2241 
2242 	for (index = 0; len > 0; index++) {
2243 		struct scrub_sector *sector;
2244 		/*
2245 		 * Here we will allocate one page for one sector to scrub.
2246 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2247 		 * more memory for PAGE_SIZE > sectorsize case.
2248 		 */
2249 		u32 l = min(sectorsize, len);
2250 
2251 		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
2252 		if (!sector) {
2253 leave_nomem:
2254 			spin_lock(&sctx->stat_lock);
2255 			sctx->stat.malloc_errors++;
2256 			spin_unlock(&sctx->stat_lock);
2257 			scrub_block_put(sblock);
2258 			return -ENOMEM;
2259 		}
2260 		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2261 		scrub_sector_get(sector);
2262 		sblock->sectors[index] = sector;
2263 		sector->sblock = sblock;
2264 		sector->dev = dev;
2265 		sector->flags = flags;
2266 		sector->generation = gen;
2267 		sector->logical = logical;
2268 		sector->physical = physical;
2269 		sector->physical_for_dev_replace = physical_for_dev_replace;
2270 		sector->mirror_num = mirror_num;
2271 		if (csum) {
2272 			sector->have_csum = 1;
2273 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2274 		} else {
2275 			sector->have_csum = 0;
2276 		}
2277 		sblock->sector_count++;
2278 		sector->page = alloc_page(GFP_KERNEL);
2279 		if (!sector->page)
2280 			goto leave_nomem;
2281 		len -= l;
2282 		logical += l;
2283 		physical += l;
2284 		physical_for_dev_replace += l;
2285 	}
2286 
2287 	WARN_ON(sblock->sector_count == 0);
2288 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2289 		/*
2290 		 * This case should only be hit for RAID 5/6 device replace. See
2291 		 * the comment in scrub_missing_raid56_pages() for details.
2292 		 */
2293 		scrub_missing_raid56_pages(sblock);
2294 	} else {
2295 		for (index = 0; index < sblock->sector_count; index++) {
2296 			struct scrub_sector *sector = sblock->sectors[index];
2297 			int ret;
2298 
2299 			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2300 			if (ret) {
2301 				scrub_block_put(sblock);
2302 				return ret;
2303 			}
2304 		}
2305 
2306 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2307 			scrub_submit(sctx);
2308 	}
2309 
2310 	/* last one frees, either here or in bio completion for last page */
2311 	scrub_block_put(sblock);
2312 	return 0;
2313 }
2314 
2315 static void scrub_bio_end_io(struct bio *bio)
2316 {
2317 	struct scrub_bio *sbio = bio->bi_private;
2318 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2319 
2320 	sbio->status = bio->bi_status;
2321 	sbio->bio = bio;
2322 
2323 	queue_work(fs_info->scrub_workers, &sbio->work);
2324 }
2325 
2326 static void scrub_bio_end_io_worker(struct work_struct *work)
2327 {
2328 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2329 	struct scrub_ctx *sctx = sbio->sctx;
2330 	int i;
2331 
2332 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2333 	if (sbio->status) {
2334 		for (i = 0; i < sbio->sector_count; i++) {
2335 			struct scrub_sector *sector = sbio->sectors[i];
2336 
2337 			sector->io_error = 1;
2338 			sector->sblock->no_io_error_seen = 0;
2339 		}
2340 	}
2341 
2342 	/* Now complete the scrub_block items that have all pages completed */
2343 	for (i = 0; i < sbio->sector_count; i++) {
2344 		struct scrub_sector *sector = sbio->sectors[i];
2345 		struct scrub_block *sblock = sector->sblock;
2346 
2347 		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2348 			scrub_block_complete(sblock);
2349 		scrub_block_put(sblock);
2350 	}
2351 
2352 	bio_put(sbio->bio);
2353 	sbio->bio = NULL;
2354 	spin_lock(&sctx->list_lock);
2355 	sbio->next_free = sctx->first_free;
2356 	sctx->first_free = sbio->index;
2357 	spin_unlock(&sctx->list_lock);
2358 
2359 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2360 		mutex_lock(&sctx->wr_lock);
2361 		scrub_wr_submit(sctx);
2362 		mutex_unlock(&sctx->wr_lock);
2363 	}
2364 
2365 	scrub_pending_bio_dec(sctx);
2366 }
2367 
2368 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2369 				       unsigned long *bitmap,
2370 				       u64 start, u32 len)
2371 {
2372 	u64 offset;
2373 	u32 nsectors;
2374 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2375 
2376 	if (len >= sparity->stripe_len) {
2377 		bitmap_set(bitmap, 0, sparity->nsectors);
2378 		return;
2379 	}
2380 
2381 	start -= sparity->logic_start;
2382 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383 	offset = offset >> sectorsize_bits;
2384 	nsectors = len >> sectorsize_bits;
2385 
2386 	if (offset + nsectors <= sparity->nsectors) {
2387 		bitmap_set(bitmap, offset, nsectors);
2388 		return;
2389 	}
2390 
2391 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2392 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2393 }
2394 
2395 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2396 						   u64 start, u32 len)
2397 {
2398 	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2399 }
2400 
2401 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2402 						  u64 start, u32 len)
2403 {
2404 	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2405 }
2406 
2407 static void scrub_block_complete(struct scrub_block *sblock)
2408 {
2409 	int corrupted = 0;
2410 
2411 	if (!sblock->no_io_error_seen) {
2412 		corrupted = 1;
2413 		scrub_handle_errored_block(sblock);
2414 	} else {
2415 		/*
2416 		 * if has checksum error, write via repair mechanism in
2417 		 * dev replace case, otherwise write here in dev replace
2418 		 * case.
2419 		 */
2420 		corrupted = scrub_checksum(sblock);
2421 		if (!corrupted && sblock->sctx->is_dev_replace)
2422 			scrub_write_block_to_dev_replace(sblock);
2423 	}
2424 
2425 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2426 		u64 start = sblock->sectors[0]->logical;
2427 		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
2428 			  sblock->sctx->fs_info->sectorsize;
2429 
2430 		ASSERT(end - start <= U32_MAX);
2431 		scrub_parity_mark_sectors_error(sblock->sparity,
2432 						start, end - start);
2433 	}
2434 }
2435 
2436 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2437 {
2438 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2439 	list_del(&sum->list);
2440 	kfree(sum);
2441 }
2442 
2443 /*
2444  * Find the desired csum for range [logical, logical + sectorsize), and store
2445  * the csum into @csum.
2446  *
2447  * The search source is sctx->csum_list, which is a pre-populated list
2448  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2449  * that is before @logical.
2450  *
2451  * Return 0 if there is no csum for the range.
2452  * Return 1 if there is csum for the range and copied to @csum.
2453  */
2454 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2455 {
2456 	bool found = false;
2457 
2458 	while (!list_empty(&sctx->csum_list)) {
2459 		struct btrfs_ordered_sum *sum = NULL;
2460 		unsigned long index;
2461 		unsigned long num_sectors;
2462 
2463 		sum = list_first_entry(&sctx->csum_list,
2464 				       struct btrfs_ordered_sum, list);
2465 		/* The current csum range is beyond our range, no csum found */
2466 		if (sum->bytenr > logical)
2467 			break;
2468 
2469 		/*
2470 		 * The current sum is before our bytenr, since scrub is always
2471 		 * done in bytenr order, the csum will never be used anymore,
2472 		 * clean it up so that later calls won't bother with the range,
2473 		 * and continue search the next range.
2474 		 */
2475 		if (sum->bytenr + sum->len <= logical) {
2476 			drop_csum_range(sctx, sum);
2477 			continue;
2478 		}
2479 
2480 		/* Now the csum range covers our bytenr, copy the csum */
2481 		found = true;
2482 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2483 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2484 
2485 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2486 		       sctx->fs_info->csum_size);
2487 
2488 		/* Cleanup the range if we're at the end of the csum range */
2489 		if (index == num_sectors - 1)
2490 			drop_csum_range(sctx, sum);
2491 		break;
2492 	}
2493 	if (!found)
2494 		return 0;
2495 	return 1;
2496 }
2497 
2498 /* scrub extent tries to collect up to 64 kB for each bio */
2499 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2500 			u64 logical, u32 len,
2501 			u64 physical, struct btrfs_device *dev, u64 flags,
2502 			u64 gen, int mirror_num)
2503 {
2504 	struct btrfs_device *src_dev = dev;
2505 	u64 src_physical = physical;
2506 	int src_mirror = mirror_num;
2507 	int ret;
2508 	u8 csum[BTRFS_CSUM_SIZE];
2509 	u32 blocksize;
2510 
2511 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2512 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2513 			blocksize = map->stripe_len;
2514 		else
2515 			blocksize = sctx->fs_info->sectorsize;
2516 		spin_lock(&sctx->stat_lock);
2517 		sctx->stat.data_extents_scrubbed++;
2518 		sctx->stat.data_bytes_scrubbed += len;
2519 		spin_unlock(&sctx->stat_lock);
2520 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2521 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2522 			blocksize = map->stripe_len;
2523 		else
2524 			blocksize = sctx->fs_info->nodesize;
2525 		spin_lock(&sctx->stat_lock);
2526 		sctx->stat.tree_extents_scrubbed++;
2527 		sctx->stat.tree_bytes_scrubbed += len;
2528 		spin_unlock(&sctx->stat_lock);
2529 	} else {
2530 		blocksize = sctx->fs_info->sectorsize;
2531 		WARN_ON(1);
2532 	}
2533 
2534 	/*
2535 	 * For dev-replace case, we can have @dev being a missing device.
2536 	 * Regular scrub will avoid its execution on missing device at all,
2537 	 * as that would trigger tons of read error.
2538 	 *
2539 	 * Reading from missing device will cause read error counts to
2540 	 * increase unnecessarily.
2541 	 * So here we change the read source to a good mirror.
2542 	 */
2543 	if (sctx->is_dev_replace && !dev->bdev)
2544 		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2545 				     &src_dev, &src_mirror);
2546 	while (len) {
2547 		u32 l = min(len, blocksize);
2548 		int have_csum = 0;
2549 
2550 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2551 			/* push csums to sbio */
2552 			have_csum = scrub_find_csum(sctx, logical, csum);
2553 			if (have_csum == 0)
2554 				++sctx->stat.no_csum;
2555 		}
2556 		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2557 				    flags, gen, src_mirror,
2558 				    have_csum ? csum : NULL, physical);
2559 		if (ret)
2560 			return ret;
2561 		len -= l;
2562 		logical += l;
2563 		physical += l;
2564 		src_physical += l;
2565 	}
2566 	return 0;
2567 }
2568 
2569 static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2570 				  u64 logical, u32 len,
2571 				  u64 physical, struct btrfs_device *dev,
2572 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2573 {
2574 	struct scrub_ctx *sctx = sparity->sctx;
2575 	struct scrub_block *sblock;
2576 	const u32 sectorsize = sctx->fs_info->sectorsize;
2577 	int index;
2578 
2579 	ASSERT(IS_ALIGNED(len, sectorsize));
2580 
2581 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2582 	if (!sblock) {
2583 		spin_lock(&sctx->stat_lock);
2584 		sctx->stat.malloc_errors++;
2585 		spin_unlock(&sctx->stat_lock);
2586 		return -ENOMEM;
2587 	}
2588 
2589 	/* one ref inside this function, plus one for each page added to
2590 	 * a bio later on */
2591 	refcount_set(&sblock->refs, 1);
2592 	sblock->sctx = sctx;
2593 	sblock->no_io_error_seen = 1;
2594 	sblock->sparity = sparity;
2595 	scrub_parity_get(sparity);
2596 
2597 	for (index = 0; len > 0; index++) {
2598 		struct scrub_sector *sector;
2599 
2600 		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
2601 		if (!sector) {
2602 leave_nomem:
2603 			spin_lock(&sctx->stat_lock);
2604 			sctx->stat.malloc_errors++;
2605 			spin_unlock(&sctx->stat_lock);
2606 			scrub_block_put(sblock);
2607 			return -ENOMEM;
2608 		}
2609 		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2610 		/* For scrub block */
2611 		scrub_sector_get(sector);
2612 		sblock->sectors[index] = sector;
2613 		/* For scrub parity */
2614 		scrub_sector_get(sector);
2615 		list_add_tail(&sector->list, &sparity->sectors_list);
2616 		sector->sblock = sblock;
2617 		sector->dev = dev;
2618 		sector->flags = flags;
2619 		sector->generation = gen;
2620 		sector->logical = logical;
2621 		sector->physical = physical;
2622 		sector->mirror_num = mirror_num;
2623 		if (csum) {
2624 			sector->have_csum = 1;
2625 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2626 		} else {
2627 			sector->have_csum = 0;
2628 		}
2629 		sblock->sector_count++;
2630 		sector->page = alloc_page(GFP_KERNEL);
2631 		if (!sector->page)
2632 			goto leave_nomem;
2633 
2634 
2635 		/* Iterate over the stripe range in sectorsize steps */
2636 		len -= sectorsize;
2637 		logical += sectorsize;
2638 		physical += sectorsize;
2639 	}
2640 
2641 	WARN_ON(sblock->sector_count == 0);
2642 	for (index = 0; index < sblock->sector_count; index++) {
2643 		struct scrub_sector *sector = sblock->sectors[index];
2644 		int ret;
2645 
2646 		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2647 		if (ret) {
2648 			scrub_block_put(sblock);
2649 			return ret;
2650 		}
2651 	}
2652 
2653 	/* Last one frees, either here or in bio completion for last sector */
2654 	scrub_block_put(sblock);
2655 	return 0;
2656 }
2657 
2658 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2659 				   u64 logical, u32 len,
2660 				   u64 physical, struct btrfs_device *dev,
2661 				   u64 flags, u64 gen, int mirror_num)
2662 {
2663 	struct scrub_ctx *sctx = sparity->sctx;
2664 	int ret;
2665 	u8 csum[BTRFS_CSUM_SIZE];
2666 	u32 blocksize;
2667 
2668 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2669 		scrub_parity_mark_sectors_error(sparity, logical, len);
2670 		return 0;
2671 	}
2672 
2673 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2674 		blocksize = sparity->stripe_len;
2675 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2676 		blocksize = sparity->stripe_len;
2677 	} else {
2678 		blocksize = sctx->fs_info->sectorsize;
2679 		WARN_ON(1);
2680 	}
2681 
2682 	while (len) {
2683 		u32 l = min(len, blocksize);
2684 		int have_csum = 0;
2685 
2686 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2687 			/* push csums to sbio */
2688 			have_csum = scrub_find_csum(sctx, logical, csum);
2689 			if (have_csum == 0)
2690 				goto skip;
2691 		}
2692 		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2693 					     flags, gen, mirror_num,
2694 					     have_csum ? csum : NULL);
2695 		if (ret)
2696 			return ret;
2697 skip:
2698 		len -= l;
2699 		logical += l;
2700 		physical += l;
2701 	}
2702 	return 0;
2703 }
2704 
2705 /*
2706  * Given a physical address, this will calculate it's
2707  * logical offset. if this is a parity stripe, it will return
2708  * the most left data stripe's logical offset.
2709  *
2710  * return 0 if it is a data stripe, 1 means parity stripe.
2711  */
2712 static int get_raid56_logic_offset(u64 physical, int num,
2713 				   struct map_lookup *map, u64 *offset,
2714 				   u64 *stripe_start)
2715 {
2716 	int i;
2717 	int j = 0;
2718 	u64 stripe_nr;
2719 	u64 last_offset;
2720 	u32 stripe_index;
2721 	u32 rot;
2722 	const int data_stripes = nr_data_stripes(map);
2723 
2724 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2725 	if (stripe_start)
2726 		*stripe_start = last_offset;
2727 
2728 	*offset = last_offset;
2729 	for (i = 0; i < data_stripes; i++) {
2730 		*offset = last_offset + i * map->stripe_len;
2731 
2732 		stripe_nr = div64_u64(*offset, map->stripe_len);
2733 		stripe_nr = div_u64(stripe_nr, data_stripes);
2734 
2735 		/* Work out the disk rotation on this stripe-set */
2736 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2737 		/* calculate which stripe this data locates */
2738 		rot += i;
2739 		stripe_index = rot % map->num_stripes;
2740 		if (stripe_index == num)
2741 			return 0;
2742 		if (stripe_index < num)
2743 			j++;
2744 	}
2745 	*offset = last_offset + j * map->stripe_len;
2746 	return 1;
2747 }
2748 
2749 static void scrub_free_parity(struct scrub_parity *sparity)
2750 {
2751 	struct scrub_ctx *sctx = sparity->sctx;
2752 	struct scrub_sector *curr, *next;
2753 	int nbits;
2754 
2755 	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2756 	if (nbits) {
2757 		spin_lock(&sctx->stat_lock);
2758 		sctx->stat.read_errors += nbits;
2759 		sctx->stat.uncorrectable_errors += nbits;
2760 		spin_unlock(&sctx->stat_lock);
2761 	}
2762 
2763 	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2764 		list_del_init(&curr->list);
2765 		scrub_sector_put(curr);
2766 	}
2767 
2768 	kfree(sparity);
2769 }
2770 
2771 static void scrub_parity_bio_endio_worker(struct work_struct *work)
2772 {
2773 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2774 						    work);
2775 	struct scrub_ctx *sctx = sparity->sctx;
2776 
2777 	scrub_free_parity(sparity);
2778 	scrub_pending_bio_dec(sctx);
2779 }
2780 
2781 static void scrub_parity_bio_endio(struct bio *bio)
2782 {
2783 	struct scrub_parity *sparity = bio->bi_private;
2784 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2785 
2786 	if (bio->bi_status)
2787 		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2788 			  &sparity->dbitmap, sparity->nsectors);
2789 
2790 	bio_put(bio);
2791 
2792 	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2793 	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2794 }
2795 
2796 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2797 {
2798 	struct scrub_ctx *sctx = sparity->sctx;
2799 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2800 	struct bio *bio;
2801 	struct btrfs_raid_bio *rbio;
2802 	struct btrfs_io_context *bioc = NULL;
2803 	u64 length;
2804 	int ret;
2805 
2806 	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2807 			   &sparity->ebitmap, sparity->nsectors))
2808 		goto out;
2809 
2810 	length = sparity->logic_end - sparity->logic_start;
2811 
2812 	btrfs_bio_counter_inc_blocked(fs_info);
2813 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2814 			       &length, &bioc);
2815 	if (ret || !bioc || !bioc->raid_map)
2816 		goto bioc_out;
2817 
2818 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2819 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2820 	bio->bi_private = sparity;
2821 	bio->bi_end_io = scrub_parity_bio_endio;
2822 
2823 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2824 					      sparity->scrub_dev,
2825 					      &sparity->dbitmap,
2826 					      sparity->nsectors);
2827 	if (!rbio)
2828 		goto rbio_out;
2829 
2830 	scrub_pending_bio_inc(sctx);
2831 	raid56_parity_submit_scrub_rbio(rbio);
2832 	return;
2833 
2834 rbio_out:
2835 	bio_put(bio);
2836 bioc_out:
2837 	btrfs_bio_counter_dec(fs_info);
2838 	btrfs_put_bioc(bioc);
2839 	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
2840 		  sparity->nsectors);
2841 	spin_lock(&sctx->stat_lock);
2842 	sctx->stat.malloc_errors++;
2843 	spin_unlock(&sctx->stat_lock);
2844 out:
2845 	scrub_free_parity(sparity);
2846 }
2847 
2848 static void scrub_parity_get(struct scrub_parity *sparity)
2849 {
2850 	refcount_inc(&sparity->refs);
2851 }
2852 
2853 static void scrub_parity_put(struct scrub_parity *sparity)
2854 {
2855 	if (!refcount_dec_and_test(&sparity->refs))
2856 		return;
2857 
2858 	scrub_parity_check_and_repair(sparity);
2859 }
2860 
2861 /*
2862  * Return 0 if the extent item range covers any byte of the range.
2863  * Return <0 if the extent item is before @search_start.
2864  * Return >0 if the extent item is after @start_start + @search_len.
2865  */
2866 static int compare_extent_item_range(struct btrfs_path *path,
2867 				     u64 search_start, u64 search_len)
2868 {
2869 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
2870 	u64 len;
2871 	struct btrfs_key key;
2872 
2873 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2874 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
2875 	       key.type == BTRFS_METADATA_ITEM_KEY);
2876 	if (key.type == BTRFS_METADATA_ITEM_KEY)
2877 		len = fs_info->nodesize;
2878 	else
2879 		len = key.offset;
2880 
2881 	if (key.objectid + len <= search_start)
2882 		return -1;
2883 	if (key.objectid >= search_start + search_len)
2884 		return 1;
2885 	return 0;
2886 }
2887 
2888 /*
2889  * Locate one extent item which covers any byte in range
2890  * [@search_start, @search_start + @search_length)
2891  *
2892  * If the path is not initialized, we will initialize the search by doing
2893  * a btrfs_search_slot().
2894  * If the path is already initialized, we will use the path as the initial
2895  * slot, to avoid duplicated btrfs_search_slot() calls.
2896  *
2897  * NOTE: If an extent item starts before @search_start, we will still
2898  * return the extent item. This is for data extent crossing stripe boundary.
2899  *
2900  * Return 0 if we found such extent item, and @path will point to the extent item.
2901  * Return >0 if no such extent item can be found, and @path will be released.
2902  * Return <0 if hit fatal error, and @path will be released.
2903  */
2904 static int find_first_extent_item(struct btrfs_root *extent_root,
2905 				  struct btrfs_path *path,
2906 				  u64 search_start, u64 search_len)
2907 {
2908 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
2909 	struct btrfs_key key;
2910 	int ret;
2911 
2912 	/* Continue using the existing path */
2913 	if (path->nodes[0])
2914 		goto search_forward;
2915 
2916 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2917 		key.type = BTRFS_METADATA_ITEM_KEY;
2918 	else
2919 		key.type = BTRFS_EXTENT_ITEM_KEY;
2920 	key.objectid = search_start;
2921 	key.offset = (u64)-1;
2922 
2923 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2924 	if (ret < 0)
2925 		return ret;
2926 
2927 	ASSERT(ret > 0);
2928 	/*
2929 	 * Here we intentionally pass 0 as @min_objectid, as there could be
2930 	 * an extent item starting before @search_start.
2931 	 */
2932 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2933 	if (ret < 0)
2934 		return ret;
2935 	/*
2936 	 * No matter whether we have found an extent item, the next loop will
2937 	 * properly do every check on the key.
2938 	 */
2939 search_forward:
2940 	while (true) {
2941 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2942 		if (key.objectid >= search_start + search_len)
2943 			break;
2944 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
2945 		    key.type != BTRFS_EXTENT_ITEM_KEY)
2946 			goto next;
2947 
2948 		ret = compare_extent_item_range(path, search_start, search_len);
2949 		if (ret == 0)
2950 			return ret;
2951 		if (ret > 0)
2952 			break;
2953 next:
2954 		path->slots[0]++;
2955 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2956 			ret = btrfs_next_leaf(extent_root, path);
2957 			if (ret) {
2958 				/* Either no more item or fatal error */
2959 				btrfs_release_path(path);
2960 				return ret;
2961 			}
2962 		}
2963 	}
2964 	btrfs_release_path(path);
2965 	return 1;
2966 }
2967 
2968 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
2969 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
2970 {
2971 	struct btrfs_key key;
2972 	struct btrfs_extent_item *ei;
2973 
2974 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2975 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
2976 	       key.type == BTRFS_EXTENT_ITEM_KEY);
2977 	*extent_start_ret = key.objectid;
2978 	if (key.type == BTRFS_METADATA_ITEM_KEY)
2979 		*size_ret = path->nodes[0]->fs_info->nodesize;
2980 	else
2981 		*size_ret = key.offset;
2982 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
2983 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
2984 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
2985 }
2986 
2987 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
2988 				      u64 boundary_start, u64 boudary_len)
2989 {
2990 	return (extent_start < boundary_start &&
2991 		extent_start + extent_len > boundary_start) ||
2992 	       (extent_start < boundary_start + boudary_len &&
2993 		extent_start + extent_len > boundary_start + boudary_len);
2994 }
2995 
2996 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
2997 					       struct scrub_parity *sparity,
2998 					       struct map_lookup *map,
2999 					       struct btrfs_device *sdev,
3000 					       struct btrfs_path *path,
3001 					       u64 logical)
3002 {
3003 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3004 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3005 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3006 	u64 cur_logical = logical;
3007 	int ret;
3008 
3009 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3010 
3011 	/* Path must not be populated */
3012 	ASSERT(!path->nodes[0]);
3013 
3014 	while (cur_logical < logical + map->stripe_len) {
3015 		struct btrfs_io_context *bioc = NULL;
3016 		struct btrfs_device *extent_dev;
3017 		u64 extent_start;
3018 		u64 extent_size;
3019 		u64 mapped_length;
3020 		u64 extent_flags;
3021 		u64 extent_gen;
3022 		u64 extent_physical;
3023 		u64 extent_mirror_num;
3024 
3025 		ret = find_first_extent_item(extent_root, path, cur_logical,
3026 					     logical + map->stripe_len - cur_logical);
3027 		/* No more extent item in this data stripe */
3028 		if (ret > 0) {
3029 			ret = 0;
3030 			break;
3031 		}
3032 		if (ret < 0)
3033 			break;
3034 		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3035 				&extent_gen);
3036 
3037 		/* Metadata should not cross stripe boundaries */
3038 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3039 		    does_range_cross_boundary(extent_start, extent_size,
3040 					      logical, map->stripe_len)) {
3041 			btrfs_err(fs_info,
3042 	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3043 				  extent_start, logical);
3044 			spin_lock(&sctx->stat_lock);
3045 			sctx->stat.uncorrectable_errors++;
3046 			spin_unlock(&sctx->stat_lock);
3047 			cur_logical += extent_size;
3048 			continue;
3049 		}
3050 
3051 		/* Skip hole range which doesn't have any extent */
3052 		cur_logical = max(extent_start, cur_logical);
3053 
3054 		/* Truncate the range inside this data stripe */
3055 		extent_size = min(extent_start + extent_size,
3056 				  logical + map->stripe_len) - cur_logical;
3057 		extent_start = cur_logical;
3058 		ASSERT(extent_size <= U32_MAX);
3059 
3060 		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3061 
3062 		mapped_length = extent_size;
3063 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3064 				      &mapped_length, &bioc, 0);
3065 		if (!ret && (!bioc || mapped_length < extent_size))
3066 			ret = -EIO;
3067 		if (ret) {
3068 			btrfs_put_bioc(bioc);
3069 			scrub_parity_mark_sectors_error(sparity, extent_start,
3070 							extent_size);
3071 			break;
3072 		}
3073 		extent_physical = bioc->stripes[0].physical;
3074 		extent_mirror_num = bioc->mirror_num;
3075 		extent_dev = bioc->stripes[0].dev;
3076 		btrfs_put_bioc(bioc);
3077 
3078 		ret = btrfs_lookup_csums_range(csum_root, extent_start,
3079 					       extent_start + extent_size - 1,
3080 					       &sctx->csum_list, 1);
3081 		if (ret) {
3082 			scrub_parity_mark_sectors_error(sparity, extent_start,
3083 							extent_size);
3084 			break;
3085 		}
3086 
3087 		ret = scrub_extent_for_parity(sparity, extent_start,
3088 					      extent_size, extent_physical,
3089 					      extent_dev, extent_flags,
3090 					      extent_gen, extent_mirror_num);
3091 		scrub_free_csums(sctx);
3092 
3093 		if (ret) {
3094 			scrub_parity_mark_sectors_error(sparity, extent_start,
3095 							extent_size);
3096 			break;
3097 		}
3098 
3099 		cond_resched();
3100 		cur_logical += extent_size;
3101 	}
3102 	btrfs_release_path(path);
3103 	return ret;
3104 }
3105 
3106 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3107 						  struct map_lookup *map,
3108 						  struct btrfs_device *sdev,
3109 						  u64 logic_start,
3110 						  u64 logic_end)
3111 {
3112 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3113 	struct btrfs_path *path;
3114 	u64 cur_logical;
3115 	int ret;
3116 	struct scrub_parity *sparity;
3117 	int nsectors;
3118 
3119 	path = btrfs_alloc_path();
3120 	if (!path) {
3121 		spin_lock(&sctx->stat_lock);
3122 		sctx->stat.malloc_errors++;
3123 		spin_unlock(&sctx->stat_lock);
3124 		return -ENOMEM;
3125 	}
3126 	path->search_commit_root = 1;
3127 	path->skip_locking = 1;
3128 
3129 	ASSERT(map->stripe_len <= U32_MAX);
3130 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3131 	ASSERT(nsectors <= BITS_PER_LONG);
3132 	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3133 	if (!sparity) {
3134 		spin_lock(&sctx->stat_lock);
3135 		sctx->stat.malloc_errors++;
3136 		spin_unlock(&sctx->stat_lock);
3137 		btrfs_free_path(path);
3138 		return -ENOMEM;
3139 	}
3140 
3141 	ASSERT(map->stripe_len <= U32_MAX);
3142 	sparity->stripe_len = map->stripe_len;
3143 	sparity->nsectors = nsectors;
3144 	sparity->sctx = sctx;
3145 	sparity->scrub_dev = sdev;
3146 	sparity->logic_start = logic_start;
3147 	sparity->logic_end = logic_end;
3148 	refcount_set(&sparity->refs, 1);
3149 	INIT_LIST_HEAD(&sparity->sectors_list);
3150 
3151 	ret = 0;
3152 	for (cur_logical = logic_start; cur_logical < logic_end;
3153 	     cur_logical += map->stripe_len) {
3154 		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3155 							  sdev, path, cur_logical);
3156 		if (ret < 0)
3157 			break;
3158 	}
3159 
3160 	scrub_parity_put(sparity);
3161 	scrub_submit(sctx);
3162 	mutex_lock(&sctx->wr_lock);
3163 	scrub_wr_submit(sctx);
3164 	mutex_unlock(&sctx->wr_lock);
3165 
3166 	btrfs_free_path(path);
3167 	return ret < 0 ? ret : 0;
3168 }
3169 
3170 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3171 {
3172 	if (!btrfs_is_zoned(sctx->fs_info))
3173 		return;
3174 
3175 	sctx->flush_all_writes = true;
3176 	scrub_submit(sctx);
3177 	mutex_lock(&sctx->wr_lock);
3178 	scrub_wr_submit(sctx);
3179 	mutex_unlock(&sctx->wr_lock);
3180 
3181 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3182 }
3183 
3184 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3185 					u64 physical, u64 physical_end)
3186 {
3187 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3188 	int ret = 0;
3189 
3190 	if (!btrfs_is_zoned(fs_info))
3191 		return 0;
3192 
3193 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3194 
3195 	mutex_lock(&sctx->wr_lock);
3196 	if (sctx->write_pointer < physical_end) {
3197 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3198 						    physical,
3199 						    sctx->write_pointer);
3200 		if (ret)
3201 			btrfs_err(fs_info,
3202 				  "zoned: failed to recover write pointer");
3203 	}
3204 	mutex_unlock(&sctx->wr_lock);
3205 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3206 
3207 	return ret;
3208 }
3209 
3210 /*
3211  * Scrub one range which can only has simple mirror based profile.
3212  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3213  *  RAID0/RAID10).
3214  *
3215  * Since we may need to handle a subset of block group, we need @logical_start
3216  * and @logical_length parameter.
3217  */
3218 static int scrub_simple_mirror(struct scrub_ctx *sctx,
3219 			       struct btrfs_root *extent_root,
3220 			       struct btrfs_root *csum_root,
3221 			       struct btrfs_block_group *bg,
3222 			       struct map_lookup *map,
3223 			       u64 logical_start, u64 logical_length,
3224 			       struct btrfs_device *device,
3225 			       u64 physical, int mirror_num)
3226 {
3227 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3228 	const u64 logical_end = logical_start + logical_length;
3229 	/* An artificial limit, inherit from old scrub behavior */
3230 	const u32 max_length = SZ_64K;
3231 	struct btrfs_path path = { 0 };
3232 	u64 cur_logical = logical_start;
3233 	int ret;
3234 
3235 	/* The range must be inside the bg */
3236 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3237 
3238 	path.search_commit_root = 1;
3239 	path.skip_locking = 1;
3240 	/* Go through each extent items inside the logical range */
3241 	while (cur_logical < logical_end) {
3242 		u64 extent_start;
3243 		u64 extent_len;
3244 		u64 extent_flags;
3245 		u64 extent_gen;
3246 		u64 scrub_len;
3247 
3248 		/* Canceled? */
3249 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3250 		    atomic_read(&sctx->cancel_req)) {
3251 			ret = -ECANCELED;
3252 			break;
3253 		}
3254 		/* Paused? */
3255 		if (atomic_read(&fs_info->scrub_pause_req)) {
3256 			/* Push queued extents */
3257 			sctx->flush_all_writes = true;
3258 			scrub_submit(sctx);
3259 			mutex_lock(&sctx->wr_lock);
3260 			scrub_wr_submit(sctx);
3261 			mutex_unlock(&sctx->wr_lock);
3262 			wait_event(sctx->list_wait,
3263 				   atomic_read(&sctx->bios_in_flight) == 0);
3264 			sctx->flush_all_writes = false;
3265 			scrub_blocked_if_needed(fs_info);
3266 		}
3267 		/* Block group removed? */
3268 		spin_lock(&bg->lock);
3269 		if (bg->removed) {
3270 			spin_unlock(&bg->lock);
3271 			ret = 0;
3272 			break;
3273 		}
3274 		spin_unlock(&bg->lock);
3275 
3276 		ret = find_first_extent_item(extent_root, &path, cur_logical,
3277 					     logical_end - cur_logical);
3278 		if (ret > 0) {
3279 			/* No more extent, just update the accounting */
3280 			sctx->stat.last_physical = physical + logical_length;
3281 			ret = 0;
3282 			break;
3283 		}
3284 		if (ret < 0)
3285 			break;
3286 		get_extent_info(&path, &extent_start, &extent_len,
3287 				&extent_flags, &extent_gen);
3288 		/* Skip hole range which doesn't have any extent */
3289 		cur_logical = max(extent_start, cur_logical);
3290 
3291 		/*
3292 		 * Scrub len has three limits:
3293 		 * - Extent size limit
3294 		 * - Scrub range limit
3295 		 *   This is especially imporatant for RAID0/RAID10 to reuse
3296 		 *   this function
3297 		 * - Max scrub size limit
3298 		 */
3299 		scrub_len = min(min(extent_start + extent_len,
3300 				    logical_end), cur_logical + max_length) -
3301 			    cur_logical;
3302 
3303 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3304 			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
3305 					cur_logical + scrub_len - 1,
3306 					&sctx->csum_list, 1);
3307 			if (ret)
3308 				break;
3309 		}
3310 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3311 		    does_range_cross_boundary(extent_start, extent_len,
3312 					      logical_start, logical_length)) {
3313 			btrfs_err(fs_info,
3314 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3315 				  extent_start, logical_start, logical_end);
3316 			spin_lock(&sctx->stat_lock);
3317 			sctx->stat.uncorrectable_errors++;
3318 			spin_unlock(&sctx->stat_lock);
3319 			cur_logical += scrub_len;
3320 			continue;
3321 		}
3322 		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3323 				   cur_logical - logical_start + physical,
3324 				   device, extent_flags, extent_gen,
3325 				   mirror_num);
3326 		scrub_free_csums(sctx);
3327 		if (ret)
3328 			break;
3329 		if (sctx->is_dev_replace)
3330 			sync_replace_for_zoned(sctx);
3331 		cur_logical += scrub_len;
3332 		/* Don't hold CPU for too long time */
3333 		cond_resched();
3334 	}
3335 	btrfs_release_path(&path);
3336 	return ret;
3337 }
3338 
3339 /* Calculate the full stripe length for simple stripe based profiles */
3340 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3341 {
3342 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3343 			    BTRFS_BLOCK_GROUP_RAID10));
3344 
3345 	return map->num_stripes / map->sub_stripes * map->stripe_len;
3346 }
3347 
3348 /* Get the logical bytenr for the stripe */
3349 static u64 simple_stripe_get_logical(struct map_lookup *map,
3350 				     struct btrfs_block_group *bg,
3351 				     int stripe_index)
3352 {
3353 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3354 			    BTRFS_BLOCK_GROUP_RAID10));
3355 	ASSERT(stripe_index < map->num_stripes);
3356 
3357 	/*
3358 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3359 	 * skip.
3360 	 */
3361 	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3362 }
3363 
3364 /* Get the mirror number for the stripe */
3365 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3366 {
3367 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3368 			    BTRFS_BLOCK_GROUP_RAID10));
3369 	ASSERT(stripe_index < map->num_stripes);
3370 
3371 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3372 	return stripe_index % map->sub_stripes + 1;
3373 }
3374 
3375 static int scrub_simple_stripe(struct scrub_ctx *sctx,
3376 			       struct btrfs_root *extent_root,
3377 			       struct btrfs_root *csum_root,
3378 			       struct btrfs_block_group *bg,
3379 			       struct map_lookup *map,
3380 			       struct btrfs_device *device,
3381 			       int stripe_index)
3382 {
3383 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3384 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3385 	const u64 orig_physical = map->stripes[stripe_index].physical;
3386 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3387 	u64 cur_logical = orig_logical;
3388 	u64 cur_physical = orig_physical;
3389 	int ret = 0;
3390 
3391 	while (cur_logical < bg->start + bg->length) {
3392 		/*
3393 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3394 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3395 		 * this stripe.
3396 		 */
3397 		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3398 					  cur_logical, map->stripe_len, device,
3399 					  cur_physical, mirror_num);
3400 		if (ret)
3401 			return ret;
3402 		/* Skip to next stripe which belongs to the target device */
3403 		cur_logical += logical_increment;
3404 		/* For physical offset, we just go to next stripe */
3405 		cur_physical += map->stripe_len;
3406 	}
3407 	return ret;
3408 }
3409 
3410 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3411 					   struct btrfs_block_group *bg,
3412 					   struct extent_map *em,
3413 					   struct btrfs_device *scrub_dev,
3414 					   int stripe_index)
3415 {
3416 	struct btrfs_path *path;
3417 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3418 	struct btrfs_root *root;
3419 	struct btrfs_root *csum_root;
3420 	struct blk_plug plug;
3421 	struct map_lookup *map = em->map_lookup;
3422 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3423 	const u64 chunk_logical = bg->start;
3424 	int ret;
3425 	u64 physical = map->stripes[stripe_index].physical;
3426 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3427 	const u64 physical_end = physical + dev_stripe_len;
3428 	u64 logical;
3429 	u64 logic_end;
3430 	/* The logical increment after finishing one stripe */
3431 	u64 increment;
3432 	/* Offset inside the chunk */
3433 	u64 offset;
3434 	u64 stripe_logical;
3435 	u64 stripe_end;
3436 	int stop_loop = 0;
3437 
3438 	path = btrfs_alloc_path();
3439 	if (!path)
3440 		return -ENOMEM;
3441 
3442 	/*
3443 	 * work on commit root. The related disk blocks are static as
3444 	 * long as COW is applied. This means, it is save to rewrite
3445 	 * them to repair disk errors without any race conditions
3446 	 */
3447 	path->search_commit_root = 1;
3448 	path->skip_locking = 1;
3449 	path->reada = READA_FORWARD;
3450 
3451 	wait_event(sctx->list_wait,
3452 		   atomic_read(&sctx->bios_in_flight) == 0);
3453 	scrub_blocked_if_needed(fs_info);
3454 
3455 	root = btrfs_extent_root(fs_info, bg->start);
3456 	csum_root = btrfs_csum_root(fs_info, bg->start);
3457 
3458 	/*
3459 	 * collect all data csums for the stripe to avoid seeking during
3460 	 * the scrub. This might currently (crc32) end up to be about 1MB
3461 	 */
3462 	blk_start_plug(&plug);
3463 
3464 	if (sctx->is_dev_replace &&
3465 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3466 		mutex_lock(&sctx->wr_lock);
3467 		sctx->write_pointer = physical;
3468 		mutex_unlock(&sctx->wr_lock);
3469 		sctx->flush_all_writes = true;
3470 	}
3471 
3472 	/*
3473 	 * There used to be a big double loop to handle all profiles using the
3474 	 * same routine, which grows larger and more gross over time.
3475 	 *
3476 	 * So here we handle each profile differently, so simpler profiles
3477 	 * have simpler scrubbing function.
3478 	 */
3479 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3480 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3481 		/*
3482 		 * Above check rules out all complex profile, the remaining
3483 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3484 		 * mirrored duplication without stripe.
3485 		 *
3486 		 * Only @physical and @mirror_num needs to calculated using
3487 		 * @stripe_index.
3488 		 */
3489 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3490 				bg->start, bg->length, scrub_dev,
3491 				map->stripes[stripe_index].physical,
3492 				stripe_index + 1);
3493 		offset = 0;
3494 		goto out;
3495 	}
3496 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3497 		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3498 					  scrub_dev, stripe_index);
3499 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3500 		goto out;
3501 	}
3502 
3503 	/* Only RAID56 goes through the old code */
3504 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3505 	ret = 0;
3506 
3507 	/* Calculate the logical end of the stripe */
3508 	get_raid56_logic_offset(physical_end, stripe_index,
3509 				map, &logic_end, NULL);
3510 	logic_end += chunk_logical;
3511 
3512 	/* Initialize @offset in case we need to go to out: label */
3513 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3514 	increment = map->stripe_len * nr_data_stripes(map);
3515 
3516 	/*
3517 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3518 	 * using their physical offset.
3519 	 */
3520 	while (physical < physical_end) {
3521 		ret = get_raid56_logic_offset(physical, stripe_index, map,
3522 					      &logical, &stripe_logical);
3523 		logical += chunk_logical;
3524 		if (ret) {
3525 			/* it is parity strip */
3526 			stripe_logical += chunk_logical;
3527 			stripe_end = stripe_logical + increment;
3528 			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3529 						  stripe_logical,
3530 						  stripe_end);
3531 			if (ret)
3532 				goto out;
3533 			goto next;
3534 		}
3535 
3536 		/*
3537 		 * Now we're at a data stripe, scrub each extents in the range.
3538 		 *
3539 		 * At this stage, if we ignore the repair part, inside each data
3540 		 * stripe it is no different than SINGLE profile.
3541 		 * We can reuse scrub_simple_mirror() here, as the repair part
3542 		 * is still based on @mirror_num.
3543 		 */
3544 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3545 					  logical, map->stripe_len,
3546 					  scrub_dev, physical, 1);
3547 		if (ret < 0)
3548 			goto out;
3549 next:
3550 		logical += increment;
3551 		physical += map->stripe_len;
3552 		spin_lock(&sctx->stat_lock);
3553 		if (stop_loop)
3554 			sctx->stat.last_physical =
3555 				map->stripes[stripe_index].physical + dev_stripe_len;
3556 		else
3557 			sctx->stat.last_physical = physical;
3558 		spin_unlock(&sctx->stat_lock);
3559 		if (stop_loop)
3560 			break;
3561 	}
3562 out:
3563 	/* push queued extents */
3564 	scrub_submit(sctx);
3565 	mutex_lock(&sctx->wr_lock);
3566 	scrub_wr_submit(sctx);
3567 	mutex_unlock(&sctx->wr_lock);
3568 
3569 	blk_finish_plug(&plug);
3570 	btrfs_free_path(path);
3571 
3572 	if (sctx->is_dev_replace && ret >= 0) {
3573 		int ret2;
3574 
3575 		ret2 = sync_write_pointer_for_zoned(sctx,
3576 				chunk_logical + offset,
3577 				map->stripes[stripe_index].physical,
3578 				physical_end);
3579 		if (ret2)
3580 			ret = ret2;
3581 	}
3582 
3583 	return ret < 0 ? ret : 0;
3584 }
3585 
3586 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3587 					  struct btrfs_block_group *bg,
3588 					  struct btrfs_device *scrub_dev,
3589 					  u64 dev_offset,
3590 					  u64 dev_extent_len)
3591 {
3592 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3593 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3594 	struct map_lookup *map;
3595 	struct extent_map *em;
3596 	int i;
3597 	int ret = 0;
3598 
3599 	read_lock(&map_tree->lock);
3600 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3601 	read_unlock(&map_tree->lock);
3602 
3603 	if (!em) {
3604 		/*
3605 		 * Might have been an unused block group deleted by the cleaner
3606 		 * kthread or relocation.
3607 		 */
3608 		spin_lock(&bg->lock);
3609 		if (!bg->removed)
3610 			ret = -EINVAL;
3611 		spin_unlock(&bg->lock);
3612 
3613 		return ret;
3614 	}
3615 	if (em->start != bg->start)
3616 		goto out;
3617 	if (em->len < dev_extent_len)
3618 		goto out;
3619 
3620 	map = em->map_lookup;
3621 	for (i = 0; i < map->num_stripes; ++i) {
3622 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3623 		    map->stripes[i].physical == dev_offset) {
3624 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
3625 			if (ret)
3626 				goto out;
3627 		}
3628 	}
3629 out:
3630 	free_extent_map(em);
3631 
3632 	return ret;
3633 }
3634 
3635 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3636 					  struct btrfs_block_group *cache)
3637 {
3638 	struct btrfs_fs_info *fs_info = cache->fs_info;
3639 	struct btrfs_trans_handle *trans;
3640 
3641 	if (!btrfs_is_zoned(fs_info))
3642 		return 0;
3643 
3644 	btrfs_wait_block_group_reservations(cache);
3645 	btrfs_wait_nocow_writers(cache);
3646 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3647 
3648 	trans = btrfs_join_transaction(root);
3649 	if (IS_ERR(trans))
3650 		return PTR_ERR(trans);
3651 	return btrfs_commit_transaction(trans);
3652 }
3653 
3654 static noinline_for_stack
3655 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3656 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3657 {
3658 	struct btrfs_dev_extent *dev_extent = NULL;
3659 	struct btrfs_path *path;
3660 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3661 	struct btrfs_root *root = fs_info->dev_root;
3662 	u64 chunk_offset;
3663 	int ret = 0;
3664 	int ro_set;
3665 	int slot;
3666 	struct extent_buffer *l;
3667 	struct btrfs_key key;
3668 	struct btrfs_key found_key;
3669 	struct btrfs_block_group *cache;
3670 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3671 
3672 	path = btrfs_alloc_path();
3673 	if (!path)
3674 		return -ENOMEM;
3675 
3676 	path->reada = READA_FORWARD;
3677 	path->search_commit_root = 1;
3678 	path->skip_locking = 1;
3679 
3680 	key.objectid = scrub_dev->devid;
3681 	key.offset = 0ull;
3682 	key.type = BTRFS_DEV_EXTENT_KEY;
3683 
3684 	while (1) {
3685 		u64 dev_extent_len;
3686 
3687 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3688 		if (ret < 0)
3689 			break;
3690 		if (ret > 0) {
3691 			if (path->slots[0] >=
3692 			    btrfs_header_nritems(path->nodes[0])) {
3693 				ret = btrfs_next_leaf(root, path);
3694 				if (ret < 0)
3695 					break;
3696 				if (ret > 0) {
3697 					ret = 0;
3698 					break;
3699 				}
3700 			} else {
3701 				ret = 0;
3702 			}
3703 		}
3704 
3705 		l = path->nodes[0];
3706 		slot = path->slots[0];
3707 
3708 		btrfs_item_key_to_cpu(l, &found_key, slot);
3709 
3710 		if (found_key.objectid != scrub_dev->devid)
3711 			break;
3712 
3713 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3714 			break;
3715 
3716 		if (found_key.offset >= end)
3717 			break;
3718 
3719 		if (found_key.offset < key.offset)
3720 			break;
3721 
3722 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3723 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3724 
3725 		if (found_key.offset + dev_extent_len <= start)
3726 			goto skip;
3727 
3728 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3729 
3730 		/*
3731 		 * get a reference on the corresponding block group to prevent
3732 		 * the chunk from going away while we scrub it
3733 		 */
3734 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3735 
3736 		/* some chunks are removed but not committed to disk yet,
3737 		 * continue scrubbing */
3738 		if (!cache)
3739 			goto skip;
3740 
3741 		ASSERT(cache->start <= chunk_offset);
3742 		/*
3743 		 * We are using the commit root to search for device extents, so
3744 		 * that means we could have found a device extent item from a
3745 		 * block group that was deleted in the current transaction. The
3746 		 * logical start offset of the deleted block group, stored at
3747 		 * @chunk_offset, might be part of the logical address range of
3748 		 * a new block group (which uses different physical extents).
3749 		 * In this case btrfs_lookup_block_group() has returned the new
3750 		 * block group, and its start address is less than @chunk_offset.
3751 		 *
3752 		 * We skip such new block groups, because it's pointless to
3753 		 * process them, as we won't find their extents because we search
3754 		 * for them using the commit root of the extent tree. For a device
3755 		 * replace it's also fine to skip it, we won't miss copying them
3756 		 * to the target device because we have the write duplication
3757 		 * setup through the regular write path (by btrfs_map_block()),
3758 		 * and we have committed a transaction when we started the device
3759 		 * replace, right after setting up the device replace state.
3760 		 */
3761 		if (cache->start < chunk_offset) {
3762 			btrfs_put_block_group(cache);
3763 			goto skip;
3764 		}
3765 
3766 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3767 			spin_lock(&cache->lock);
3768 			if (!cache->to_copy) {
3769 				spin_unlock(&cache->lock);
3770 				btrfs_put_block_group(cache);
3771 				goto skip;
3772 			}
3773 			spin_unlock(&cache->lock);
3774 		}
3775 
3776 		/*
3777 		 * Make sure that while we are scrubbing the corresponding block
3778 		 * group doesn't get its logical address and its device extents
3779 		 * reused for another block group, which can possibly be of a
3780 		 * different type and different profile. We do this to prevent
3781 		 * false error detections and crashes due to bogus attempts to
3782 		 * repair extents.
3783 		 */
3784 		spin_lock(&cache->lock);
3785 		if (cache->removed) {
3786 			spin_unlock(&cache->lock);
3787 			btrfs_put_block_group(cache);
3788 			goto skip;
3789 		}
3790 		btrfs_freeze_block_group(cache);
3791 		spin_unlock(&cache->lock);
3792 
3793 		/*
3794 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3795 		 * to avoid deadlock caused by:
3796 		 * btrfs_inc_block_group_ro()
3797 		 * -> btrfs_wait_for_commit()
3798 		 * -> btrfs_commit_transaction()
3799 		 * -> btrfs_scrub_pause()
3800 		 */
3801 		scrub_pause_on(fs_info);
3802 
3803 		/*
3804 		 * Don't do chunk preallocation for scrub.
3805 		 *
3806 		 * This is especially important for SYSTEM bgs, or we can hit
3807 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3808 		 * 1. The only SYSTEM bg is marked RO.
3809 		 *    Since SYSTEM bg is small, that's pretty common.
3810 		 * 2. New SYSTEM bg will be allocated
3811 		 *    Due to regular version will allocate new chunk.
3812 		 * 3. New SYSTEM bg is empty and will get cleaned up
3813 		 *    Before cleanup really happens, it's marked RO again.
3814 		 * 4. Empty SYSTEM bg get scrubbed
3815 		 *    We go back to 2.
3816 		 *
3817 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3818 		 * thread can't be triggered fast enough, and use up all space
3819 		 * of btrfs_super_block::sys_chunk_array
3820 		 *
3821 		 * While for dev replace, we need to try our best to mark block
3822 		 * group RO, to prevent race between:
3823 		 * - Write duplication
3824 		 *   Contains latest data
3825 		 * - Scrub copy
3826 		 *   Contains data from commit tree
3827 		 *
3828 		 * If target block group is not marked RO, nocow writes can
3829 		 * be overwritten by scrub copy, causing data corruption.
3830 		 * So for dev-replace, it's not allowed to continue if a block
3831 		 * group is not RO.
3832 		 */
3833 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3834 		if (!ret && sctx->is_dev_replace) {
3835 			ret = finish_extent_writes_for_zoned(root, cache);
3836 			if (ret) {
3837 				btrfs_dec_block_group_ro(cache);
3838 				scrub_pause_off(fs_info);
3839 				btrfs_put_block_group(cache);
3840 				break;
3841 			}
3842 		}
3843 
3844 		if (ret == 0) {
3845 			ro_set = 1;
3846 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3847 			/*
3848 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3849 			 * failed in creating new chunk for metadata.
3850 			 * It is not a problem for scrub, because
3851 			 * metadata are always cowed, and our scrub paused
3852 			 * commit_transactions.
3853 			 */
3854 			ro_set = 0;
3855 		} else if (ret == -ETXTBSY) {
3856 			btrfs_warn(fs_info,
3857 		   "skipping scrub of block group %llu due to active swapfile",
3858 				   cache->start);
3859 			scrub_pause_off(fs_info);
3860 			ret = 0;
3861 			goto skip_unfreeze;
3862 		} else {
3863 			btrfs_warn(fs_info,
3864 				   "failed setting block group ro: %d", ret);
3865 			btrfs_unfreeze_block_group(cache);
3866 			btrfs_put_block_group(cache);
3867 			scrub_pause_off(fs_info);
3868 			break;
3869 		}
3870 
3871 		/*
3872 		 * Now the target block is marked RO, wait for nocow writes to
3873 		 * finish before dev-replace.
3874 		 * COW is fine, as COW never overwrites extents in commit tree.
3875 		 */
3876 		if (sctx->is_dev_replace) {
3877 			btrfs_wait_nocow_writers(cache);
3878 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3879 					cache->length);
3880 		}
3881 
3882 		scrub_pause_off(fs_info);
3883 		down_write(&dev_replace->rwsem);
3884 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3885 		dev_replace->cursor_left = found_key.offset;
3886 		dev_replace->item_needs_writeback = 1;
3887 		up_write(&dev_replace->rwsem);
3888 
3889 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
3890 				  dev_extent_len);
3891 
3892 		/*
3893 		 * flush, submit all pending read and write bios, afterwards
3894 		 * wait for them.
3895 		 * Note that in the dev replace case, a read request causes
3896 		 * write requests that are submitted in the read completion
3897 		 * worker. Therefore in the current situation, it is required
3898 		 * that all write requests are flushed, so that all read and
3899 		 * write requests are really completed when bios_in_flight
3900 		 * changes to 0.
3901 		 */
3902 		sctx->flush_all_writes = true;
3903 		scrub_submit(sctx);
3904 		mutex_lock(&sctx->wr_lock);
3905 		scrub_wr_submit(sctx);
3906 		mutex_unlock(&sctx->wr_lock);
3907 
3908 		wait_event(sctx->list_wait,
3909 			   atomic_read(&sctx->bios_in_flight) == 0);
3910 
3911 		scrub_pause_on(fs_info);
3912 
3913 		/*
3914 		 * must be called before we decrease @scrub_paused.
3915 		 * make sure we don't block transaction commit while
3916 		 * we are waiting pending workers finished.
3917 		 */
3918 		wait_event(sctx->list_wait,
3919 			   atomic_read(&sctx->workers_pending) == 0);
3920 		sctx->flush_all_writes = false;
3921 
3922 		scrub_pause_off(fs_info);
3923 
3924 		if (sctx->is_dev_replace &&
3925 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3926 						      cache, found_key.offset))
3927 			ro_set = 0;
3928 
3929 		down_write(&dev_replace->rwsem);
3930 		dev_replace->cursor_left = dev_replace->cursor_right;
3931 		dev_replace->item_needs_writeback = 1;
3932 		up_write(&dev_replace->rwsem);
3933 
3934 		if (ro_set)
3935 			btrfs_dec_block_group_ro(cache);
3936 
3937 		/*
3938 		 * We might have prevented the cleaner kthread from deleting
3939 		 * this block group if it was already unused because we raced
3940 		 * and set it to RO mode first. So add it back to the unused
3941 		 * list, otherwise it might not ever be deleted unless a manual
3942 		 * balance is triggered or it becomes used and unused again.
3943 		 */
3944 		spin_lock(&cache->lock);
3945 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3946 		    cache->used == 0) {
3947 			spin_unlock(&cache->lock);
3948 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3949 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3950 							 cache);
3951 			else
3952 				btrfs_mark_bg_unused(cache);
3953 		} else {
3954 			spin_unlock(&cache->lock);
3955 		}
3956 skip_unfreeze:
3957 		btrfs_unfreeze_block_group(cache);
3958 		btrfs_put_block_group(cache);
3959 		if (ret)
3960 			break;
3961 		if (sctx->is_dev_replace &&
3962 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3963 			ret = -EIO;
3964 			break;
3965 		}
3966 		if (sctx->stat.malloc_errors > 0) {
3967 			ret = -ENOMEM;
3968 			break;
3969 		}
3970 skip:
3971 		key.offset = found_key.offset + dev_extent_len;
3972 		btrfs_release_path(path);
3973 	}
3974 
3975 	btrfs_free_path(path);
3976 
3977 	return ret;
3978 }
3979 
3980 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3981 					   struct btrfs_device *scrub_dev)
3982 {
3983 	int	i;
3984 	u64	bytenr;
3985 	u64	gen;
3986 	int	ret;
3987 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3988 
3989 	if (BTRFS_FS_ERROR(fs_info))
3990 		return -EROFS;
3991 
3992 	/* Seed devices of a new filesystem has their own generation. */
3993 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3994 		gen = scrub_dev->generation;
3995 	else
3996 		gen = fs_info->last_trans_committed;
3997 
3998 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3999 		bytenr = btrfs_sb_offset(i);
4000 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4001 		    scrub_dev->commit_total_bytes)
4002 			break;
4003 		if (!btrfs_check_super_location(scrub_dev, bytenr))
4004 			continue;
4005 
4006 		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4007 				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4008 				    NULL, bytenr);
4009 		if (ret)
4010 			return ret;
4011 	}
4012 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4013 
4014 	return 0;
4015 }
4016 
4017 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4018 {
4019 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4020 					&fs_info->scrub_lock)) {
4021 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4022 		struct workqueue_struct *scrub_wr_comp =
4023 						fs_info->scrub_wr_completion_workers;
4024 		struct workqueue_struct *scrub_parity =
4025 						fs_info->scrub_parity_workers;
4026 
4027 		fs_info->scrub_workers = NULL;
4028 		fs_info->scrub_wr_completion_workers = NULL;
4029 		fs_info->scrub_parity_workers = NULL;
4030 		mutex_unlock(&fs_info->scrub_lock);
4031 
4032 		if (scrub_workers)
4033 			destroy_workqueue(scrub_workers);
4034 		if (scrub_wr_comp)
4035 			destroy_workqueue(scrub_wr_comp);
4036 		if (scrub_parity)
4037 			destroy_workqueue(scrub_parity);
4038 	}
4039 }
4040 
4041 /*
4042  * get a reference count on fs_info->scrub_workers. start worker if necessary
4043  */
4044 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4045 						int is_dev_replace)
4046 {
4047 	struct workqueue_struct *scrub_workers = NULL;
4048 	struct workqueue_struct *scrub_wr_comp = NULL;
4049 	struct workqueue_struct *scrub_parity = NULL;
4050 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4051 	int max_active = fs_info->thread_pool_size;
4052 	int ret = -ENOMEM;
4053 
4054 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4055 		return 0;
4056 
4057 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4058 					is_dev_replace ? 1 : max_active);
4059 	if (!scrub_workers)
4060 		goto fail_scrub_workers;
4061 
4062 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4063 	if (!scrub_wr_comp)
4064 		goto fail_scrub_wr_completion_workers;
4065 
4066 	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4067 	if (!scrub_parity)
4068 		goto fail_scrub_parity_workers;
4069 
4070 	mutex_lock(&fs_info->scrub_lock);
4071 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4072 		ASSERT(fs_info->scrub_workers == NULL &&
4073 		       fs_info->scrub_wr_completion_workers == NULL &&
4074 		       fs_info->scrub_parity_workers == NULL);
4075 		fs_info->scrub_workers = scrub_workers;
4076 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4077 		fs_info->scrub_parity_workers = scrub_parity;
4078 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4079 		mutex_unlock(&fs_info->scrub_lock);
4080 		return 0;
4081 	}
4082 	/* Other thread raced in and created the workers for us */
4083 	refcount_inc(&fs_info->scrub_workers_refcnt);
4084 	mutex_unlock(&fs_info->scrub_lock);
4085 
4086 	ret = 0;
4087 	destroy_workqueue(scrub_parity);
4088 fail_scrub_parity_workers:
4089 	destroy_workqueue(scrub_wr_comp);
4090 fail_scrub_wr_completion_workers:
4091 	destroy_workqueue(scrub_workers);
4092 fail_scrub_workers:
4093 	return ret;
4094 }
4095 
4096 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4097 		    u64 end, struct btrfs_scrub_progress *progress,
4098 		    int readonly, int is_dev_replace)
4099 {
4100 	struct btrfs_dev_lookup_args args = { .devid = devid };
4101 	struct scrub_ctx *sctx;
4102 	int ret;
4103 	struct btrfs_device *dev;
4104 	unsigned int nofs_flag;
4105 
4106 	if (btrfs_fs_closing(fs_info))
4107 		return -EAGAIN;
4108 
4109 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4110 		/*
4111 		 * in this case scrub is unable to calculate the checksum
4112 		 * the way scrub is implemented. Do not handle this
4113 		 * situation at all because it won't ever happen.
4114 		 */
4115 		btrfs_err(fs_info,
4116 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4117 		       fs_info->nodesize,
4118 		       BTRFS_STRIPE_LEN);
4119 		return -EINVAL;
4120 	}
4121 
4122 	if (fs_info->nodesize >
4123 	    SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits ||
4124 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) {
4125 		/*
4126 		 * Would exhaust the array bounds of sectorv member in
4127 		 * struct scrub_block
4128 		 */
4129 		btrfs_err(fs_info,
4130 "scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails",
4131 		       fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK,
4132 		       fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK);
4133 		return -EINVAL;
4134 	}
4135 
4136 	/* Allocate outside of device_list_mutex */
4137 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4138 	if (IS_ERR(sctx))
4139 		return PTR_ERR(sctx);
4140 
4141 	ret = scrub_workers_get(fs_info, is_dev_replace);
4142 	if (ret)
4143 		goto out_free_ctx;
4144 
4145 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4146 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4147 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4148 		     !is_dev_replace)) {
4149 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4150 		ret = -ENODEV;
4151 		goto out;
4152 	}
4153 
4154 	if (!is_dev_replace && !readonly &&
4155 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4156 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4157 		btrfs_err_in_rcu(fs_info,
4158 			"scrub on devid %llu: filesystem on %s is not writable",
4159 				 devid, rcu_str_deref(dev->name));
4160 		ret = -EROFS;
4161 		goto out;
4162 	}
4163 
4164 	mutex_lock(&fs_info->scrub_lock);
4165 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4166 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4167 		mutex_unlock(&fs_info->scrub_lock);
4168 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4169 		ret = -EIO;
4170 		goto out;
4171 	}
4172 
4173 	down_read(&fs_info->dev_replace.rwsem);
4174 	if (dev->scrub_ctx ||
4175 	    (!is_dev_replace &&
4176 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4177 		up_read(&fs_info->dev_replace.rwsem);
4178 		mutex_unlock(&fs_info->scrub_lock);
4179 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4180 		ret = -EINPROGRESS;
4181 		goto out;
4182 	}
4183 	up_read(&fs_info->dev_replace.rwsem);
4184 
4185 	sctx->readonly = readonly;
4186 	dev->scrub_ctx = sctx;
4187 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188 
4189 	/*
4190 	 * checking @scrub_pause_req here, we can avoid
4191 	 * race between committing transaction and scrubbing.
4192 	 */
4193 	__scrub_blocked_if_needed(fs_info);
4194 	atomic_inc(&fs_info->scrubs_running);
4195 	mutex_unlock(&fs_info->scrub_lock);
4196 
4197 	/*
4198 	 * In order to avoid deadlock with reclaim when there is a transaction
4199 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4200 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4201 	 * invoked by our callees. The pausing request is done when the
4202 	 * transaction commit starts, and it blocks the transaction until scrub
4203 	 * is paused (done at specific points at scrub_stripe() or right above
4204 	 * before incrementing fs_info->scrubs_running).
4205 	 */
4206 	nofs_flag = memalloc_nofs_save();
4207 	if (!is_dev_replace) {
4208 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4209 		/*
4210 		 * by holding device list mutex, we can
4211 		 * kick off writing super in log tree sync.
4212 		 */
4213 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4214 		ret = scrub_supers(sctx, dev);
4215 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4216 	}
4217 
4218 	if (!ret)
4219 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4220 	memalloc_nofs_restore(nofs_flag);
4221 
4222 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4223 	atomic_dec(&fs_info->scrubs_running);
4224 	wake_up(&fs_info->scrub_pause_wait);
4225 
4226 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4227 
4228 	if (progress)
4229 		memcpy(progress, &sctx->stat, sizeof(*progress));
4230 
4231 	if (!is_dev_replace)
4232 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4233 			ret ? "not finished" : "finished", devid, ret);
4234 
4235 	mutex_lock(&fs_info->scrub_lock);
4236 	dev->scrub_ctx = NULL;
4237 	mutex_unlock(&fs_info->scrub_lock);
4238 
4239 	scrub_workers_put(fs_info);
4240 	scrub_put_ctx(sctx);
4241 
4242 	return ret;
4243 out:
4244 	scrub_workers_put(fs_info);
4245 out_free_ctx:
4246 	scrub_free_ctx(sctx);
4247 
4248 	return ret;
4249 }
4250 
4251 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4252 {
4253 	mutex_lock(&fs_info->scrub_lock);
4254 	atomic_inc(&fs_info->scrub_pause_req);
4255 	while (atomic_read(&fs_info->scrubs_paused) !=
4256 	       atomic_read(&fs_info->scrubs_running)) {
4257 		mutex_unlock(&fs_info->scrub_lock);
4258 		wait_event(fs_info->scrub_pause_wait,
4259 			   atomic_read(&fs_info->scrubs_paused) ==
4260 			   atomic_read(&fs_info->scrubs_running));
4261 		mutex_lock(&fs_info->scrub_lock);
4262 	}
4263 	mutex_unlock(&fs_info->scrub_lock);
4264 }
4265 
4266 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4267 {
4268 	atomic_dec(&fs_info->scrub_pause_req);
4269 	wake_up(&fs_info->scrub_pause_wait);
4270 }
4271 
4272 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4273 {
4274 	mutex_lock(&fs_info->scrub_lock);
4275 	if (!atomic_read(&fs_info->scrubs_running)) {
4276 		mutex_unlock(&fs_info->scrub_lock);
4277 		return -ENOTCONN;
4278 	}
4279 
4280 	atomic_inc(&fs_info->scrub_cancel_req);
4281 	while (atomic_read(&fs_info->scrubs_running)) {
4282 		mutex_unlock(&fs_info->scrub_lock);
4283 		wait_event(fs_info->scrub_pause_wait,
4284 			   atomic_read(&fs_info->scrubs_running) == 0);
4285 		mutex_lock(&fs_info->scrub_lock);
4286 	}
4287 	atomic_dec(&fs_info->scrub_cancel_req);
4288 	mutex_unlock(&fs_info->scrub_lock);
4289 
4290 	return 0;
4291 }
4292 
4293 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4294 {
4295 	struct btrfs_fs_info *fs_info = dev->fs_info;
4296 	struct scrub_ctx *sctx;
4297 
4298 	mutex_lock(&fs_info->scrub_lock);
4299 	sctx = dev->scrub_ctx;
4300 	if (!sctx) {
4301 		mutex_unlock(&fs_info->scrub_lock);
4302 		return -ENOTCONN;
4303 	}
4304 	atomic_inc(&sctx->cancel_req);
4305 	while (dev->scrub_ctx) {
4306 		mutex_unlock(&fs_info->scrub_lock);
4307 		wait_event(fs_info->scrub_pause_wait,
4308 			   dev->scrub_ctx == NULL);
4309 		mutex_lock(&fs_info->scrub_lock);
4310 	}
4311 	mutex_unlock(&fs_info->scrub_lock);
4312 
4313 	return 0;
4314 }
4315 
4316 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4317 			 struct btrfs_scrub_progress *progress)
4318 {
4319 	struct btrfs_dev_lookup_args args = { .devid = devid };
4320 	struct btrfs_device *dev;
4321 	struct scrub_ctx *sctx = NULL;
4322 
4323 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4324 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4325 	if (dev)
4326 		sctx = dev->scrub_ctx;
4327 	if (sctx)
4328 		memcpy(progress, &sctx->stat, sizeof(*progress));
4329 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4330 
4331 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4332 }
4333 
4334 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4335 				 u64 extent_logical, u32 extent_len,
4336 				 u64 *extent_physical,
4337 				 struct btrfs_device **extent_dev,
4338 				 int *extent_mirror_num)
4339 {
4340 	u64 mapped_length;
4341 	struct btrfs_io_context *bioc = NULL;
4342 	int ret;
4343 
4344 	mapped_length = extent_len;
4345 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4346 			      &mapped_length, &bioc, 0);
4347 	if (ret || !bioc || mapped_length < extent_len ||
4348 	    !bioc->stripes[0].dev->bdev) {
4349 		btrfs_put_bioc(bioc);
4350 		return;
4351 	}
4352 
4353 	*extent_physical = bioc->stripes[0].physical;
4354 	*extent_mirror_num = bioc->mirror_num;
4355 	*extent_dev = bioc->stripes[0].dev;
4356 	btrfs_put_bioc(bioc);
4357 }
4358