1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_recover { 67 refcount_t refs; 68 struct btrfs_bio *bbio; 69 u64 map_length; 70 }; 71 72 struct scrub_page { 73 struct scrub_block *sblock; 74 struct page *page; 75 struct btrfs_device *dev; 76 struct list_head list; 77 u64 flags; /* extent flags */ 78 u64 generation; 79 u64 logical; 80 u64 physical; 81 u64 physical_for_dev_replace; 82 atomic_t refs; 83 struct { 84 unsigned int mirror_num:8; 85 unsigned int have_csum:1; 86 unsigned int io_error:1; 87 }; 88 u8 csum[BTRFS_CSUM_SIZE]; 89 90 struct scrub_recover *recover; 91 }; 92 93 struct scrub_bio { 94 int index; 95 struct scrub_ctx *sctx; 96 struct btrfs_device *dev; 97 struct bio *bio; 98 int err; 99 u64 logical; 100 u64 physical; 101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 103 #else 104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 105 #endif 106 int page_count; 107 int next_free; 108 struct btrfs_work work; 109 }; 110 111 struct scrub_block { 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 113 int page_count; 114 atomic_t outstanding_pages; 115 refcount_t refs; /* free mem on transition to zero */ 116 struct scrub_ctx *sctx; 117 struct scrub_parity *sparity; 118 struct { 119 unsigned int header_error:1; 120 unsigned int checksum_error:1; 121 unsigned int no_io_error_seen:1; 122 unsigned int generation_error:1; /* also sets header_error */ 123 124 /* The following is for the data used to check parity */ 125 /* It is for the data with checksum */ 126 unsigned int data_corrected:1; 127 }; 128 struct btrfs_work work; 129 }; 130 131 /* Used for the chunks with parity stripe such RAID5/6 */ 132 struct scrub_parity { 133 struct scrub_ctx *sctx; 134 135 struct btrfs_device *scrub_dev; 136 137 u64 logic_start; 138 139 u64 logic_end; 140 141 int nsectors; 142 143 u64 stripe_len; 144 145 refcount_t refs; 146 147 struct list_head spages; 148 149 /* Work of parity check and repair */ 150 struct btrfs_work work; 151 152 /* Mark the parity blocks which have data */ 153 unsigned long *dbitmap; 154 155 /* 156 * Mark the parity blocks which have data, but errors happen when 157 * read data or check data 158 */ 159 unsigned long *ebitmap; 160 161 unsigned long bitmap[0]; 162 }; 163 164 struct scrub_wr_ctx { 165 struct scrub_bio *wr_curr_bio; 166 struct btrfs_device *tgtdev; 167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 168 atomic_t flush_all_writes; 169 struct mutex wr_lock; 170 }; 171 172 struct scrub_ctx { 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 174 struct btrfs_fs_info *fs_info; 175 int first_free; 176 int curr; 177 atomic_t bios_in_flight; 178 atomic_t workers_pending; 179 spinlock_t list_lock; 180 wait_queue_head_t list_wait; 181 u16 csum_size; 182 struct list_head csum_list; 183 atomic_t cancel_req; 184 int readonly; 185 int pages_per_rd_bio; 186 u32 sectorsize; 187 u32 nodesize; 188 189 int is_dev_replace; 190 struct scrub_wr_ctx wr_ctx; 191 192 /* 193 * statistics 194 */ 195 struct btrfs_scrub_progress stat; 196 spinlock_t stat_lock; 197 198 /* 199 * Use a ref counter to avoid use-after-free issues. Scrub workers 200 * decrement bios_in_flight and workers_pending and then do a wakeup 201 * on the list_wait wait queue. We must ensure the main scrub task 202 * doesn't free the scrub context before or while the workers are 203 * doing the wakeup() call. 204 */ 205 refcount_t refs; 206 }; 207 208 struct scrub_fixup_nodatasum { 209 struct scrub_ctx *sctx; 210 struct btrfs_device *dev; 211 u64 logical; 212 struct btrfs_root *root; 213 struct btrfs_work work; 214 int mirror_num; 215 }; 216 217 struct scrub_nocow_inode { 218 u64 inum; 219 u64 offset; 220 u64 root; 221 struct list_head list; 222 }; 223 224 struct scrub_copy_nocow_ctx { 225 struct scrub_ctx *sctx; 226 u64 logical; 227 u64 len; 228 int mirror_num; 229 u64 physical_for_dev_replace; 230 struct list_head inodes; 231 struct btrfs_work work; 232 }; 233 234 struct scrub_warning { 235 struct btrfs_path *path; 236 u64 extent_item_size; 237 const char *errstr; 238 sector_t sector; 239 u64 logical; 240 struct btrfs_device *dev; 241 }; 242 243 struct full_stripe_lock { 244 struct rb_node node; 245 u64 logical; 246 u64 refs; 247 struct mutex mutex; 248 }; 249 250 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 251 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 252 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 253 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 254 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 255 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 256 struct scrub_block *sblocks_for_recheck); 257 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 258 struct scrub_block *sblock, 259 int retry_failed_mirror); 260 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 261 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 262 struct scrub_block *sblock_good); 263 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 264 struct scrub_block *sblock_good, 265 int page_num, int force_write); 266 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 267 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 268 int page_num); 269 static int scrub_checksum_data(struct scrub_block *sblock); 270 static int scrub_checksum_tree_block(struct scrub_block *sblock); 271 static int scrub_checksum_super(struct scrub_block *sblock); 272 static void scrub_block_get(struct scrub_block *sblock); 273 static void scrub_block_put(struct scrub_block *sblock); 274 static void scrub_page_get(struct scrub_page *spage); 275 static void scrub_page_put(struct scrub_page *spage); 276 static void scrub_parity_get(struct scrub_parity *sparity); 277 static void scrub_parity_put(struct scrub_parity *sparity); 278 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 279 struct scrub_page *spage); 280 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 281 u64 physical, struct btrfs_device *dev, u64 flags, 282 u64 gen, int mirror_num, u8 *csum, int force, 283 u64 physical_for_dev_replace); 284 static void scrub_bio_end_io(struct bio *bio); 285 static void scrub_bio_end_io_worker(struct btrfs_work *work); 286 static void scrub_block_complete(struct scrub_block *sblock); 287 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 288 u64 extent_logical, u64 extent_len, 289 u64 *extent_physical, 290 struct btrfs_device **extent_dev, 291 int *extent_mirror_num); 292 static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx, 293 struct btrfs_device *dev, 294 int is_dev_replace); 295 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 296 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 297 struct scrub_page *spage); 298 static void scrub_wr_submit(struct scrub_ctx *sctx); 299 static void scrub_wr_bio_end_io(struct bio *bio); 300 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 301 static int write_page_nocow(struct scrub_ctx *sctx, 302 u64 physical_for_dev_replace, struct page *page); 303 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 304 struct scrub_copy_nocow_ctx *ctx); 305 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 306 int mirror_num, u64 physical_for_dev_replace); 307 static void copy_nocow_pages_worker(struct btrfs_work *work); 308 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 309 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 310 static void scrub_put_ctx(struct scrub_ctx *sctx); 311 312 313 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 314 { 315 refcount_inc(&sctx->refs); 316 atomic_inc(&sctx->bios_in_flight); 317 } 318 319 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 320 { 321 atomic_dec(&sctx->bios_in_flight); 322 wake_up(&sctx->list_wait); 323 scrub_put_ctx(sctx); 324 } 325 326 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 327 { 328 while (atomic_read(&fs_info->scrub_pause_req)) { 329 mutex_unlock(&fs_info->scrub_lock); 330 wait_event(fs_info->scrub_pause_wait, 331 atomic_read(&fs_info->scrub_pause_req) == 0); 332 mutex_lock(&fs_info->scrub_lock); 333 } 334 } 335 336 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 337 { 338 atomic_inc(&fs_info->scrubs_paused); 339 wake_up(&fs_info->scrub_pause_wait); 340 } 341 342 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 343 { 344 mutex_lock(&fs_info->scrub_lock); 345 __scrub_blocked_if_needed(fs_info); 346 atomic_dec(&fs_info->scrubs_paused); 347 mutex_unlock(&fs_info->scrub_lock); 348 349 wake_up(&fs_info->scrub_pause_wait); 350 } 351 352 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 353 { 354 scrub_pause_on(fs_info); 355 scrub_pause_off(fs_info); 356 } 357 358 /* 359 * Insert new full stripe lock into full stripe locks tree 360 * 361 * Return pointer to existing or newly inserted full_stripe_lock structure if 362 * everything works well. 363 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 364 * 365 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 366 * function 367 */ 368 static struct full_stripe_lock *insert_full_stripe_lock( 369 struct btrfs_full_stripe_locks_tree *locks_root, 370 u64 fstripe_logical) 371 { 372 struct rb_node **p; 373 struct rb_node *parent = NULL; 374 struct full_stripe_lock *entry; 375 struct full_stripe_lock *ret; 376 377 WARN_ON(!mutex_is_locked(&locks_root->lock)); 378 379 p = &locks_root->root.rb_node; 380 while (*p) { 381 parent = *p; 382 entry = rb_entry(parent, struct full_stripe_lock, node); 383 if (fstripe_logical < entry->logical) { 384 p = &(*p)->rb_left; 385 } else if (fstripe_logical > entry->logical) { 386 p = &(*p)->rb_right; 387 } else { 388 entry->refs++; 389 return entry; 390 } 391 } 392 393 /* Insert new lock */ 394 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 395 if (!ret) 396 return ERR_PTR(-ENOMEM); 397 ret->logical = fstripe_logical; 398 ret->refs = 1; 399 mutex_init(&ret->mutex); 400 401 rb_link_node(&ret->node, parent, p); 402 rb_insert_color(&ret->node, &locks_root->root); 403 return ret; 404 } 405 406 /* 407 * Search for a full stripe lock of a block group 408 * 409 * Return pointer to existing full stripe lock if found 410 * Return NULL if not found 411 */ 412 static struct full_stripe_lock *search_full_stripe_lock( 413 struct btrfs_full_stripe_locks_tree *locks_root, 414 u64 fstripe_logical) 415 { 416 struct rb_node *node; 417 struct full_stripe_lock *entry; 418 419 WARN_ON(!mutex_is_locked(&locks_root->lock)); 420 421 node = locks_root->root.rb_node; 422 while (node) { 423 entry = rb_entry(node, struct full_stripe_lock, node); 424 if (fstripe_logical < entry->logical) 425 node = node->rb_left; 426 else if (fstripe_logical > entry->logical) 427 node = node->rb_right; 428 else 429 return entry; 430 } 431 return NULL; 432 } 433 434 /* 435 * Helper to get full stripe logical from a normal bytenr. 436 * 437 * Caller must ensure @cache is a RAID56 block group. 438 */ 439 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 440 u64 bytenr) 441 { 442 u64 ret; 443 444 /* 445 * Due to chunk item size limit, full stripe length should not be 446 * larger than U32_MAX. Just a sanity check here. 447 */ 448 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 449 450 /* 451 * round_down() can only handle power of 2, while RAID56 full 452 * stripe length can be 64KiB * n, so we need to manually round down. 453 */ 454 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 455 cache->full_stripe_len + cache->key.objectid; 456 return ret; 457 } 458 459 /* 460 * Lock a full stripe to avoid concurrency of recovery and read 461 * 462 * It's only used for profiles with parities (RAID5/6), for other profiles it 463 * does nothing. 464 * 465 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 466 * So caller must call unlock_full_stripe() at the same context. 467 * 468 * Return <0 if encounters error. 469 */ 470 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 471 bool *locked_ret) 472 { 473 struct btrfs_block_group_cache *bg_cache; 474 struct btrfs_full_stripe_locks_tree *locks_root; 475 struct full_stripe_lock *existing; 476 u64 fstripe_start; 477 int ret = 0; 478 479 *locked_ret = false; 480 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 481 if (!bg_cache) { 482 ASSERT(0); 483 return -ENOENT; 484 } 485 486 /* Profiles not based on parity don't need full stripe lock */ 487 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 488 goto out; 489 locks_root = &bg_cache->full_stripe_locks_root; 490 491 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 492 493 /* Now insert the full stripe lock */ 494 mutex_lock(&locks_root->lock); 495 existing = insert_full_stripe_lock(locks_root, fstripe_start); 496 mutex_unlock(&locks_root->lock); 497 if (IS_ERR(existing)) { 498 ret = PTR_ERR(existing); 499 goto out; 500 } 501 mutex_lock(&existing->mutex); 502 *locked_ret = true; 503 out: 504 btrfs_put_block_group(bg_cache); 505 return ret; 506 } 507 508 /* 509 * Unlock a full stripe. 510 * 511 * NOTE: Caller must ensure it's the same context calling corresponding 512 * lock_full_stripe(). 513 * 514 * Return 0 if we unlock full stripe without problem. 515 * Return <0 for error 516 */ 517 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 518 bool locked) 519 { 520 struct btrfs_block_group_cache *bg_cache; 521 struct btrfs_full_stripe_locks_tree *locks_root; 522 struct full_stripe_lock *fstripe_lock; 523 u64 fstripe_start; 524 bool freeit = false; 525 int ret = 0; 526 527 /* If we didn't acquire full stripe lock, no need to continue */ 528 if (!locked) 529 return 0; 530 531 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 532 if (!bg_cache) { 533 ASSERT(0); 534 return -ENOENT; 535 } 536 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 537 goto out; 538 539 locks_root = &bg_cache->full_stripe_locks_root; 540 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 541 542 mutex_lock(&locks_root->lock); 543 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 544 /* Unpaired unlock_full_stripe() detected */ 545 if (!fstripe_lock) { 546 WARN_ON(1); 547 ret = -ENOENT; 548 mutex_unlock(&locks_root->lock); 549 goto out; 550 } 551 552 if (fstripe_lock->refs == 0) { 553 WARN_ON(1); 554 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 555 fstripe_lock->logical); 556 } else { 557 fstripe_lock->refs--; 558 } 559 560 if (fstripe_lock->refs == 0) { 561 rb_erase(&fstripe_lock->node, &locks_root->root); 562 freeit = true; 563 } 564 mutex_unlock(&locks_root->lock); 565 566 mutex_unlock(&fstripe_lock->mutex); 567 if (freeit) 568 kfree(fstripe_lock); 569 out: 570 btrfs_put_block_group(bg_cache); 571 return ret; 572 } 573 574 /* 575 * used for workers that require transaction commits (i.e., for the 576 * NOCOW case) 577 */ 578 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 579 { 580 struct btrfs_fs_info *fs_info = sctx->fs_info; 581 582 refcount_inc(&sctx->refs); 583 /* 584 * increment scrubs_running to prevent cancel requests from 585 * completing as long as a worker is running. we must also 586 * increment scrubs_paused to prevent deadlocking on pause 587 * requests used for transactions commits (as the worker uses a 588 * transaction context). it is safe to regard the worker 589 * as paused for all matters practical. effectively, we only 590 * avoid cancellation requests from completing. 591 */ 592 mutex_lock(&fs_info->scrub_lock); 593 atomic_inc(&fs_info->scrubs_running); 594 atomic_inc(&fs_info->scrubs_paused); 595 mutex_unlock(&fs_info->scrub_lock); 596 597 /* 598 * check if @scrubs_running=@scrubs_paused condition 599 * inside wait_event() is not an atomic operation. 600 * which means we may inc/dec @scrub_running/paused 601 * at any time. Let's wake up @scrub_pause_wait as 602 * much as we can to let commit transaction blocked less. 603 */ 604 wake_up(&fs_info->scrub_pause_wait); 605 606 atomic_inc(&sctx->workers_pending); 607 } 608 609 /* used for workers that require transaction commits */ 610 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 611 { 612 struct btrfs_fs_info *fs_info = sctx->fs_info; 613 614 /* 615 * see scrub_pending_trans_workers_inc() why we're pretending 616 * to be paused in the scrub counters 617 */ 618 mutex_lock(&fs_info->scrub_lock); 619 atomic_dec(&fs_info->scrubs_running); 620 atomic_dec(&fs_info->scrubs_paused); 621 mutex_unlock(&fs_info->scrub_lock); 622 atomic_dec(&sctx->workers_pending); 623 wake_up(&fs_info->scrub_pause_wait); 624 wake_up(&sctx->list_wait); 625 scrub_put_ctx(sctx); 626 } 627 628 static void scrub_free_csums(struct scrub_ctx *sctx) 629 { 630 while (!list_empty(&sctx->csum_list)) { 631 struct btrfs_ordered_sum *sum; 632 sum = list_first_entry(&sctx->csum_list, 633 struct btrfs_ordered_sum, list); 634 list_del(&sum->list); 635 kfree(sum); 636 } 637 } 638 639 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 640 { 641 int i; 642 643 if (!sctx) 644 return; 645 646 scrub_free_wr_ctx(&sctx->wr_ctx); 647 648 /* this can happen when scrub is cancelled */ 649 if (sctx->curr != -1) { 650 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 651 652 for (i = 0; i < sbio->page_count; i++) { 653 WARN_ON(!sbio->pagev[i]->page); 654 scrub_block_put(sbio->pagev[i]->sblock); 655 } 656 bio_put(sbio->bio); 657 } 658 659 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 660 struct scrub_bio *sbio = sctx->bios[i]; 661 662 if (!sbio) 663 break; 664 kfree(sbio); 665 } 666 667 scrub_free_csums(sctx); 668 kfree(sctx); 669 } 670 671 static void scrub_put_ctx(struct scrub_ctx *sctx) 672 { 673 if (refcount_dec_and_test(&sctx->refs)) 674 scrub_free_ctx(sctx); 675 } 676 677 static noinline_for_stack 678 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 679 { 680 struct scrub_ctx *sctx; 681 int i; 682 struct btrfs_fs_info *fs_info = dev->fs_info; 683 int ret; 684 685 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 686 if (!sctx) 687 goto nomem; 688 refcount_set(&sctx->refs, 1); 689 sctx->is_dev_replace = is_dev_replace; 690 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 691 sctx->curr = -1; 692 sctx->fs_info = dev->fs_info; 693 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 694 struct scrub_bio *sbio; 695 696 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 697 if (!sbio) 698 goto nomem; 699 sctx->bios[i] = sbio; 700 701 sbio->index = i; 702 sbio->sctx = sctx; 703 sbio->page_count = 0; 704 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 705 scrub_bio_end_io_worker, NULL, NULL); 706 707 if (i != SCRUB_BIOS_PER_SCTX - 1) 708 sctx->bios[i]->next_free = i + 1; 709 else 710 sctx->bios[i]->next_free = -1; 711 } 712 sctx->first_free = 0; 713 sctx->nodesize = fs_info->nodesize; 714 sctx->sectorsize = fs_info->sectorsize; 715 atomic_set(&sctx->bios_in_flight, 0); 716 atomic_set(&sctx->workers_pending, 0); 717 atomic_set(&sctx->cancel_req, 0); 718 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 719 INIT_LIST_HEAD(&sctx->csum_list); 720 721 spin_lock_init(&sctx->list_lock); 722 spin_lock_init(&sctx->stat_lock); 723 init_waitqueue_head(&sctx->list_wait); 724 725 ret = scrub_setup_wr_ctx(&sctx->wr_ctx, 726 fs_info->dev_replace.tgtdev, is_dev_replace); 727 if (ret) { 728 scrub_free_ctx(sctx); 729 return ERR_PTR(ret); 730 } 731 return sctx; 732 733 nomem: 734 scrub_free_ctx(sctx); 735 return ERR_PTR(-ENOMEM); 736 } 737 738 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 739 void *warn_ctx) 740 { 741 u64 isize; 742 u32 nlink; 743 int ret; 744 int i; 745 struct extent_buffer *eb; 746 struct btrfs_inode_item *inode_item; 747 struct scrub_warning *swarn = warn_ctx; 748 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 749 struct inode_fs_paths *ipath = NULL; 750 struct btrfs_root *local_root; 751 struct btrfs_key root_key; 752 struct btrfs_key key; 753 754 root_key.objectid = root; 755 root_key.type = BTRFS_ROOT_ITEM_KEY; 756 root_key.offset = (u64)-1; 757 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 758 if (IS_ERR(local_root)) { 759 ret = PTR_ERR(local_root); 760 goto err; 761 } 762 763 /* 764 * this makes the path point to (inum INODE_ITEM ioff) 765 */ 766 key.objectid = inum; 767 key.type = BTRFS_INODE_ITEM_KEY; 768 key.offset = 0; 769 770 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 771 if (ret) { 772 btrfs_release_path(swarn->path); 773 goto err; 774 } 775 776 eb = swarn->path->nodes[0]; 777 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 778 struct btrfs_inode_item); 779 isize = btrfs_inode_size(eb, inode_item); 780 nlink = btrfs_inode_nlink(eb, inode_item); 781 btrfs_release_path(swarn->path); 782 783 ipath = init_ipath(4096, local_root, swarn->path); 784 if (IS_ERR(ipath)) { 785 ret = PTR_ERR(ipath); 786 ipath = NULL; 787 goto err; 788 } 789 ret = paths_from_inode(inum, ipath); 790 791 if (ret < 0) 792 goto err; 793 794 /* 795 * we deliberately ignore the bit ipath might have been too small to 796 * hold all of the paths here 797 */ 798 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 799 btrfs_warn_in_rcu(fs_info, 800 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 801 swarn->errstr, swarn->logical, 802 rcu_str_deref(swarn->dev->name), 803 (unsigned long long)swarn->sector, 804 root, inum, offset, 805 min(isize - offset, (u64)PAGE_SIZE), nlink, 806 (char *)(unsigned long)ipath->fspath->val[i]); 807 808 free_ipath(ipath); 809 return 0; 810 811 err: 812 btrfs_warn_in_rcu(fs_info, 813 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 814 swarn->errstr, swarn->logical, 815 rcu_str_deref(swarn->dev->name), 816 (unsigned long long)swarn->sector, 817 root, inum, offset, ret); 818 819 free_ipath(ipath); 820 return 0; 821 } 822 823 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 824 { 825 struct btrfs_device *dev; 826 struct btrfs_fs_info *fs_info; 827 struct btrfs_path *path; 828 struct btrfs_key found_key; 829 struct extent_buffer *eb; 830 struct btrfs_extent_item *ei; 831 struct scrub_warning swarn; 832 unsigned long ptr = 0; 833 u64 extent_item_pos; 834 u64 flags = 0; 835 u64 ref_root; 836 u32 item_size; 837 u8 ref_level = 0; 838 int ret; 839 840 WARN_ON(sblock->page_count < 1); 841 dev = sblock->pagev[0]->dev; 842 fs_info = sblock->sctx->fs_info; 843 844 path = btrfs_alloc_path(); 845 if (!path) 846 return; 847 848 swarn.sector = (sblock->pagev[0]->physical) >> 9; 849 swarn.logical = sblock->pagev[0]->logical; 850 swarn.errstr = errstr; 851 swarn.dev = NULL; 852 853 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 854 &flags); 855 if (ret < 0) 856 goto out; 857 858 extent_item_pos = swarn.logical - found_key.objectid; 859 swarn.extent_item_size = found_key.offset; 860 861 eb = path->nodes[0]; 862 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 863 item_size = btrfs_item_size_nr(eb, path->slots[0]); 864 865 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 866 do { 867 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 868 item_size, &ref_root, 869 &ref_level); 870 btrfs_warn_in_rcu(fs_info, 871 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu", 872 errstr, swarn.logical, 873 rcu_str_deref(dev->name), 874 (unsigned long long)swarn.sector, 875 ref_level ? "node" : "leaf", 876 ret < 0 ? -1 : ref_level, 877 ret < 0 ? -1 : ref_root); 878 } while (ret != 1); 879 btrfs_release_path(path); 880 } else { 881 btrfs_release_path(path); 882 swarn.path = path; 883 swarn.dev = dev; 884 iterate_extent_inodes(fs_info, found_key.objectid, 885 extent_item_pos, 1, 886 scrub_print_warning_inode, &swarn); 887 } 888 889 out: 890 btrfs_free_path(path); 891 } 892 893 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 894 { 895 struct page *page = NULL; 896 unsigned long index; 897 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 898 int ret; 899 int corrected = 0; 900 struct btrfs_key key; 901 struct inode *inode = NULL; 902 struct btrfs_fs_info *fs_info; 903 u64 end = offset + PAGE_SIZE - 1; 904 struct btrfs_root *local_root; 905 int srcu_index; 906 907 key.objectid = root; 908 key.type = BTRFS_ROOT_ITEM_KEY; 909 key.offset = (u64)-1; 910 911 fs_info = fixup->root->fs_info; 912 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 913 914 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 915 if (IS_ERR(local_root)) { 916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 917 return PTR_ERR(local_root); 918 } 919 920 key.type = BTRFS_INODE_ITEM_KEY; 921 key.objectid = inum; 922 key.offset = 0; 923 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 924 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 925 if (IS_ERR(inode)) 926 return PTR_ERR(inode); 927 928 index = offset >> PAGE_SHIFT; 929 930 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 931 if (!page) { 932 ret = -ENOMEM; 933 goto out; 934 } 935 936 if (PageUptodate(page)) { 937 if (PageDirty(page)) { 938 /* 939 * we need to write the data to the defect sector. the 940 * data that was in that sector is not in memory, 941 * because the page was modified. we must not write the 942 * modified page to that sector. 943 * 944 * TODO: what could be done here: wait for the delalloc 945 * runner to write out that page (might involve 946 * COW) and see whether the sector is still 947 * referenced afterwards. 948 * 949 * For the meantime, we'll treat this error 950 * incorrectable, although there is a chance that a 951 * later scrub will find the bad sector again and that 952 * there's no dirty page in memory, then. 953 */ 954 ret = -EIO; 955 goto out; 956 } 957 ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE, 958 fixup->logical, page, 959 offset - page_offset(page), 960 fixup->mirror_num); 961 unlock_page(page); 962 corrected = !ret; 963 } else { 964 /* 965 * we need to get good data first. the general readpage path 966 * will call repair_io_failure for us, we just have to make 967 * sure we read the bad mirror. 968 */ 969 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 970 EXTENT_DAMAGED); 971 if (ret) { 972 /* set_extent_bits should give proper error */ 973 WARN_ON(ret > 0); 974 if (ret > 0) 975 ret = -EFAULT; 976 goto out; 977 } 978 979 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 980 btrfs_get_extent, 981 fixup->mirror_num); 982 wait_on_page_locked(page); 983 984 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 985 end, EXTENT_DAMAGED, 0, NULL); 986 if (!corrected) 987 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 988 EXTENT_DAMAGED); 989 } 990 991 out: 992 if (page) 993 put_page(page); 994 995 iput(inode); 996 997 if (ret < 0) 998 return ret; 999 1000 if (ret == 0 && corrected) { 1001 /* 1002 * we only need to call readpage for one of the inodes belonging 1003 * to this extent. so make iterate_extent_inodes stop 1004 */ 1005 return 1; 1006 } 1007 1008 return -EIO; 1009 } 1010 1011 static void scrub_fixup_nodatasum(struct btrfs_work *work) 1012 { 1013 struct btrfs_fs_info *fs_info; 1014 int ret; 1015 struct scrub_fixup_nodatasum *fixup; 1016 struct scrub_ctx *sctx; 1017 struct btrfs_trans_handle *trans = NULL; 1018 struct btrfs_path *path; 1019 int uncorrectable = 0; 1020 1021 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 1022 sctx = fixup->sctx; 1023 fs_info = fixup->root->fs_info; 1024 1025 path = btrfs_alloc_path(); 1026 if (!path) { 1027 spin_lock(&sctx->stat_lock); 1028 ++sctx->stat.malloc_errors; 1029 spin_unlock(&sctx->stat_lock); 1030 uncorrectable = 1; 1031 goto out; 1032 } 1033 1034 trans = btrfs_join_transaction(fixup->root); 1035 if (IS_ERR(trans)) { 1036 uncorrectable = 1; 1037 goto out; 1038 } 1039 1040 /* 1041 * the idea is to trigger a regular read through the standard path. we 1042 * read a page from the (failed) logical address by specifying the 1043 * corresponding copynum of the failed sector. thus, that readpage is 1044 * expected to fail. 1045 * that is the point where on-the-fly error correction will kick in 1046 * (once it's finished) and rewrite the failed sector if a good copy 1047 * can be found. 1048 */ 1049 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path, 1050 scrub_fixup_readpage, fixup); 1051 if (ret < 0) { 1052 uncorrectable = 1; 1053 goto out; 1054 } 1055 WARN_ON(ret != 1); 1056 1057 spin_lock(&sctx->stat_lock); 1058 ++sctx->stat.corrected_errors; 1059 spin_unlock(&sctx->stat_lock); 1060 1061 out: 1062 if (trans && !IS_ERR(trans)) 1063 btrfs_end_transaction(trans); 1064 if (uncorrectable) { 1065 spin_lock(&sctx->stat_lock); 1066 ++sctx->stat.uncorrectable_errors; 1067 spin_unlock(&sctx->stat_lock); 1068 btrfs_dev_replace_stats_inc( 1069 &fs_info->dev_replace.num_uncorrectable_read_errors); 1070 btrfs_err_rl_in_rcu(fs_info, 1071 "unable to fixup (nodatasum) error at logical %llu on dev %s", 1072 fixup->logical, rcu_str_deref(fixup->dev->name)); 1073 } 1074 1075 btrfs_free_path(path); 1076 kfree(fixup); 1077 1078 scrub_pending_trans_workers_dec(sctx); 1079 } 1080 1081 static inline void scrub_get_recover(struct scrub_recover *recover) 1082 { 1083 refcount_inc(&recover->refs); 1084 } 1085 1086 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 1087 struct scrub_recover *recover) 1088 { 1089 if (refcount_dec_and_test(&recover->refs)) { 1090 btrfs_bio_counter_dec(fs_info); 1091 btrfs_put_bbio(recover->bbio); 1092 kfree(recover); 1093 } 1094 } 1095 1096 /* 1097 * scrub_handle_errored_block gets called when either verification of the 1098 * pages failed or the bio failed to read, e.g. with EIO. In the latter 1099 * case, this function handles all pages in the bio, even though only one 1100 * may be bad. 1101 * The goal of this function is to repair the errored block by using the 1102 * contents of one of the mirrors. 1103 */ 1104 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 1105 { 1106 struct scrub_ctx *sctx = sblock_to_check->sctx; 1107 struct btrfs_device *dev; 1108 struct btrfs_fs_info *fs_info; 1109 u64 length; 1110 u64 logical; 1111 unsigned int failed_mirror_index; 1112 unsigned int is_metadata; 1113 unsigned int have_csum; 1114 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 1115 struct scrub_block *sblock_bad; 1116 int ret; 1117 int mirror_index; 1118 int page_num; 1119 int success; 1120 bool full_stripe_locked; 1121 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1122 DEFAULT_RATELIMIT_BURST); 1123 1124 BUG_ON(sblock_to_check->page_count < 1); 1125 fs_info = sctx->fs_info; 1126 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 1127 /* 1128 * if we find an error in a super block, we just report it. 1129 * They will get written with the next transaction commit 1130 * anyway 1131 */ 1132 spin_lock(&sctx->stat_lock); 1133 ++sctx->stat.super_errors; 1134 spin_unlock(&sctx->stat_lock); 1135 return 0; 1136 } 1137 length = sblock_to_check->page_count * PAGE_SIZE; 1138 logical = sblock_to_check->pagev[0]->logical; 1139 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 1140 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 1141 is_metadata = !(sblock_to_check->pagev[0]->flags & 1142 BTRFS_EXTENT_FLAG_DATA); 1143 have_csum = sblock_to_check->pagev[0]->have_csum; 1144 dev = sblock_to_check->pagev[0]->dev; 1145 1146 /* 1147 * For RAID5/6, race can happen for a different device scrub thread. 1148 * For data corruption, Parity and Data threads will both try 1149 * to recovery the data. 1150 * Race can lead to doubly added csum error, or even unrecoverable 1151 * error. 1152 */ 1153 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 1154 if (ret < 0) { 1155 spin_lock(&sctx->stat_lock); 1156 if (ret == -ENOMEM) 1157 sctx->stat.malloc_errors++; 1158 sctx->stat.read_errors++; 1159 sctx->stat.uncorrectable_errors++; 1160 spin_unlock(&sctx->stat_lock); 1161 return ret; 1162 } 1163 1164 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 1165 sblocks_for_recheck = NULL; 1166 goto nodatasum_case; 1167 } 1168 1169 /* 1170 * read all mirrors one after the other. This includes to 1171 * re-read the extent or metadata block that failed (that was 1172 * the cause that this fixup code is called) another time, 1173 * page by page this time in order to know which pages 1174 * caused I/O errors and which ones are good (for all mirrors). 1175 * It is the goal to handle the situation when more than one 1176 * mirror contains I/O errors, but the errors do not 1177 * overlap, i.e. the data can be repaired by selecting the 1178 * pages from those mirrors without I/O error on the 1179 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 1180 * would be that mirror #1 has an I/O error on the first page, 1181 * the second page is good, and mirror #2 has an I/O error on 1182 * the second page, but the first page is good. 1183 * Then the first page of the first mirror can be repaired by 1184 * taking the first page of the second mirror, and the 1185 * second page of the second mirror can be repaired by 1186 * copying the contents of the 2nd page of the 1st mirror. 1187 * One more note: if the pages of one mirror contain I/O 1188 * errors, the checksum cannot be verified. In order to get 1189 * the best data for repairing, the first attempt is to find 1190 * a mirror without I/O errors and with a validated checksum. 1191 * Only if this is not possible, the pages are picked from 1192 * mirrors with I/O errors without considering the checksum. 1193 * If the latter is the case, at the end, the checksum of the 1194 * repaired area is verified in order to correctly maintain 1195 * the statistics. 1196 */ 1197 1198 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 1199 sizeof(*sblocks_for_recheck), GFP_NOFS); 1200 if (!sblocks_for_recheck) { 1201 spin_lock(&sctx->stat_lock); 1202 sctx->stat.malloc_errors++; 1203 sctx->stat.read_errors++; 1204 sctx->stat.uncorrectable_errors++; 1205 spin_unlock(&sctx->stat_lock); 1206 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1207 goto out; 1208 } 1209 1210 /* setup the context, map the logical blocks and alloc the pages */ 1211 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 1212 if (ret) { 1213 spin_lock(&sctx->stat_lock); 1214 sctx->stat.read_errors++; 1215 sctx->stat.uncorrectable_errors++; 1216 spin_unlock(&sctx->stat_lock); 1217 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1218 goto out; 1219 } 1220 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 1221 sblock_bad = sblocks_for_recheck + failed_mirror_index; 1222 1223 /* build and submit the bios for the failed mirror, check checksums */ 1224 scrub_recheck_block(fs_info, sblock_bad, 1); 1225 1226 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 1227 sblock_bad->no_io_error_seen) { 1228 /* 1229 * the error disappeared after reading page by page, or 1230 * the area was part of a huge bio and other parts of the 1231 * bio caused I/O errors, or the block layer merged several 1232 * read requests into one and the error is caused by a 1233 * different bio (usually one of the two latter cases is 1234 * the cause) 1235 */ 1236 spin_lock(&sctx->stat_lock); 1237 sctx->stat.unverified_errors++; 1238 sblock_to_check->data_corrected = 1; 1239 spin_unlock(&sctx->stat_lock); 1240 1241 if (sctx->is_dev_replace) 1242 scrub_write_block_to_dev_replace(sblock_bad); 1243 goto out; 1244 } 1245 1246 if (!sblock_bad->no_io_error_seen) { 1247 spin_lock(&sctx->stat_lock); 1248 sctx->stat.read_errors++; 1249 spin_unlock(&sctx->stat_lock); 1250 if (__ratelimit(&_rs)) 1251 scrub_print_warning("i/o error", sblock_to_check); 1252 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1253 } else if (sblock_bad->checksum_error) { 1254 spin_lock(&sctx->stat_lock); 1255 sctx->stat.csum_errors++; 1256 spin_unlock(&sctx->stat_lock); 1257 if (__ratelimit(&_rs)) 1258 scrub_print_warning("checksum error", sblock_to_check); 1259 btrfs_dev_stat_inc_and_print(dev, 1260 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1261 } else if (sblock_bad->header_error) { 1262 spin_lock(&sctx->stat_lock); 1263 sctx->stat.verify_errors++; 1264 spin_unlock(&sctx->stat_lock); 1265 if (__ratelimit(&_rs)) 1266 scrub_print_warning("checksum/header error", 1267 sblock_to_check); 1268 if (sblock_bad->generation_error) 1269 btrfs_dev_stat_inc_and_print(dev, 1270 BTRFS_DEV_STAT_GENERATION_ERRS); 1271 else 1272 btrfs_dev_stat_inc_and_print(dev, 1273 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1274 } 1275 1276 if (sctx->readonly) { 1277 ASSERT(!sctx->is_dev_replace); 1278 goto out; 1279 } 1280 1281 if (!is_metadata && !have_csum) { 1282 struct scrub_fixup_nodatasum *fixup_nodatasum; 1283 1284 WARN_ON(sctx->is_dev_replace); 1285 1286 nodatasum_case: 1287 1288 /* 1289 * !is_metadata and !have_csum, this means that the data 1290 * might not be COWed, that it might be modified 1291 * concurrently. The general strategy to work on the 1292 * commit root does not help in the case when COW is not 1293 * used. 1294 */ 1295 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1296 if (!fixup_nodatasum) 1297 goto did_not_correct_error; 1298 fixup_nodatasum->sctx = sctx; 1299 fixup_nodatasum->dev = dev; 1300 fixup_nodatasum->logical = logical; 1301 fixup_nodatasum->root = fs_info->extent_root; 1302 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1303 scrub_pending_trans_workers_inc(sctx); 1304 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1305 scrub_fixup_nodatasum, NULL, NULL); 1306 btrfs_queue_work(fs_info->scrub_workers, 1307 &fixup_nodatasum->work); 1308 goto out; 1309 } 1310 1311 /* 1312 * now build and submit the bios for the other mirrors, check 1313 * checksums. 1314 * First try to pick the mirror which is completely without I/O 1315 * errors and also does not have a checksum error. 1316 * If one is found, and if a checksum is present, the full block 1317 * that is known to contain an error is rewritten. Afterwards 1318 * the block is known to be corrected. 1319 * If a mirror is found which is completely correct, and no 1320 * checksum is present, only those pages are rewritten that had 1321 * an I/O error in the block to be repaired, since it cannot be 1322 * determined, which copy of the other pages is better (and it 1323 * could happen otherwise that a correct page would be 1324 * overwritten by a bad one). 1325 */ 1326 for (mirror_index = 0; 1327 mirror_index < BTRFS_MAX_MIRRORS && 1328 sblocks_for_recheck[mirror_index].page_count > 0; 1329 mirror_index++) { 1330 struct scrub_block *sblock_other; 1331 1332 if (mirror_index == failed_mirror_index) 1333 continue; 1334 sblock_other = sblocks_for_recheck + mirror_index; 1335 1336 /* build and submit the bios, check checksums */ 1337 scrub_recheck_block(fs_info, sblock_other, 0); 1338 1339 if (!sblock_other->header_error && 1340 !sblock_other->checksum_error && 1341 sblock_other->no_io_error_seen) { 1342 if (sctx->is_dev_replace) { 1343 scrub_write_block_to_dev_replace(sblock_other); 1344 goto corrected_error; 1345 } else { 1346 ret = scrub_repair_block_from_good_copy( 1347 sblock_bad, sblock_other); 1348 if (!ret) 1349 goto corrected_error; 1350 } 1351 } 1352 } 1353 1354 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1355 goto did_not_correct_error; 1356 1357 /* 1358 * In case of I/O errors in the area that is supposed to be 1359 * repaired, continue by picking good copies of those pages. 1360 * Select the good pages from mirrors to rewrite bad pages from 1361 * the area to fix. Afterwards verify the checksum of the block 1362 * that is supposed to be repaired. This verification step is 1363 * only done for the purpose of statistic counting and for the 1364 * final scrub report, whether errors remain. 1365 * A perfect algorithm could make use of the checksum and try 1366 * all possible combinations of pages from the different mirrors 1367 * until the checksum verification succeeds. For example, when 1368 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1369 * of mirror #2 is readable but the final checksum test fails, 1370 * then the 2nd page of mirror #3 could be tried, whether now 1371 * the final checksum succeeds. But this would be a rare 1372 * exception and is therefore not implemented. At least it is 1373 * avoided that the good copy is overwritten. 1374 * A more useful improvement would be to pick the sectors 1375 * without I/O error based on sector sizes (512 bytes on legacy 1376 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1377 * mirror could be repaired by taking 512 byte of a different 1378 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1379 * area are unreadable. 1380 */ 1381 success = 1; 1382 for (page_num = 0; page_num < sblock_bad->page_count; 1383 page_num++) { 1384 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1385 struct scrub_block *sblock_other = NULL; 1386 1387 /* skip no-io-error page in scrub */ 1388 if (!page_bad->io_error && !sctx->is_dev_replace) 1389 continue; 1390 1391 /* try to find no-io-error page in mirrors */ 1392 if (page_bad->io_error) { 1393 for (mirror_index = 0; 1394 mirror_index < BTRFS_MAX_MIRRORS && 1395 sblocks_for_recheck[mirror_index].page_count > 0; 1396 mirror_index++) { 1397 if (!sblocks_for_recheck[mirror_index]. 1398 pagev[page_num]->io_error) { 1399 sblock_other = sblocks_for_recheck + 1400 mirror_index; 1401 break; 1402 } 1403 } 1404 if (!sblock_other) 1405 success = 0; 1406 } 1407 1408 if (sctx->is_dev_replace) { 1409 /* 1410 * did not find a mirror to fetch the page 1411 * from. scrub_write_page_to_dev_replace() 1412 * handles this case (page->io_error), by 1413 * filling the block with zeros before 1414 * submitting the write request 1415 */ 1416 if (!sblock_other) 1417 sblock_other = sblock_bad; 1418 1419 if (scrub_write_page_to_dev_replace(sblock_other, 1420 page_num) != 0) { 1421 btrfs_dev_replace_stats_inc( 1422 &fs_info->dev_replace.num_write_errors); 1423 success = 0; 1424 } 1425 } else if (sblock_other) { 1426 ret = scrub_repair_page_from_good_copy(sblock_bad, 1427 sblock_other, 1428 page_num, 0); 1429 if (0 == ret) 1430 page_bad->io_error = 0; 1431 else 1432 success = 0; 1433 } 1434 } 1435 1436 if (success && !sctx->is_dev_replace) { 1437 if (is_metadata || have_csum) { 1438 /* 1439 * need to verify the checksum now that all 1440 * sectors on disk are repaired (the write 1441 * request for data to be repaired is on its way). 1442 * Just be lazy and use scrub_recheck_block() 1443 * which re-reads the data before the checksum 1444 * is verified, but most likely the data comes out 1445 * of the page cache. 1446 */ 1447 scrub_recheck_block(fs_info, sblock_bad, 1); 1448 if (!sblock_bad->header_error && 1449 !sblock_bad->checksum_error && 1450 sblock_bad->no_io_error_seen) 1451 goto corrected_error; 1452 else 1453 goto did_not_correct_error; 1454 } else { 1455 corrected_error: 1456 spin_lock(&sctx->stat_lock); 1457 sctx->stat.corrected_errors++; 1458 sblock_to_check->data_corrected = 1; 1459 spin_unlock(&sctx->stat_lock); 1460 btrfs_err_rl_in_rcu(fs_info, 1461 "fixed up error at logical %llu on dev %s", 1462 logical, rcu_str_deref(dev->name)); 1463 } 1464 } else { 1465 did_not_correct_error: 1466 spin_lock(&sctx->stat_lock); 1467 sctx->stat.uncorrectable_errors++; 1468 spin_unlock(&sctx->stat_lock); 1469 btrfs_err_rl_in_rcu(fs_info, 1470 "unable to fixup (regular) error at logical %llu on dev %s", 1471 logical, rcu_str_deref(dev->name)); 1472 } 1473 1474 out: 1475 if (sblocks_for_recheck) { 1476 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1477 mirror_index++) { 1478 struct scrub_block *sblock = sblocks_for_recheck + 1479 mirror_index; 1480 struct scrub_recover *recover; 1481 int page_index; 1482 1483 for (page_index = 0; page_index < sblock->page_count; 1484 page_index++) { 1485 sblock->pagev[page_index]->sblock = NULL; 1486 recover = sblock->pagev[page_index]->recover; 1487 if (recover) { 1488 scrub_put_recover(fs_info, recover); 1489 sblock->pagev[page_index]->recover = 1490 NULL; 1491 } 1492 scrub_page_put(sblock->pagev[page_index]); 1493 } 1494 } 1495 kfree(sblocks_for_recheck); 1496 } 1497 1498 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1499 if (ret < 0) 1500 return ret; 1501 return 0; 1502 } 1503 1504 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1505 { 1506 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1507 return 2; 1508 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1509 return 3; 1510 else 1511 return (int)bbio->num_stripes; 1512 } 1513 1514 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1515 u64 *raid_map, 1516 u64 mapped_length, 1517 int nstripes, int mirror, 1518 int *stripe_index, 1519 u64 *stripe_offset) 1520 { 1521 int i; 1522 1523 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1524 /* RAID5/6 */ 1525 for (i = 0; i < nstripes; i++) { 1526 if (raid_map[i] == RAID6_Q_STRIPE || 1527 raid_map[i] == RAID5_P_STRIPE) 1528 continue; 1529 1530 if (logical >= raid_map[i] && 1531 logical < raid_map[i] + mapped_length) 1532 break; 1533 } 1534 1535 *stripe_index = i; 1536 *stripe_offset = logical - raid_map[i]; 1537 } else { 1538 /* The other RAID type */ 1539 *stripe_index = mirror; 1540 *stripe_offset = 0; 1541 } 1542 } 1543 1544 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1545 struct scrub_block *sblocks_for_recheck) 1546 { 1547 struct scrub_ctx *sctx = original_sblock->sctx; 1548 struct btrfs_fs_info *fs_info = sctx->fs_info; 1549 u64 length = original_sblock->page_count * PAGE_SIZE; 1550 u64 logical = original_sblock->pagev[0]->logical; 1551 u64 generation = original_sblock->pagev[0]->generation; 1552 u64 flags = original_sblock->pagev[0]->flags; 1553 u64 have_csum = original_sblock->pagev[0]->have_csum; 1554 struct scrub_recover *recover; 1555 struct btrfs_bio *bbio; 1556 u64 sublen; 1557 u64 mapped_length; 1558 u64 stripe_offset; 1559 int stripe_index; 1560 int page_index = 0; 1561 int mirror_index; 1562 int nmirrors; 1563 int ret; 1564 1565 /* 1566 * note: the two members refs and outstanding_pages 1567 * are not used (and not set) in the blocks that are used for 1568 * the recheck procedure 1569 */ 1570 1571 while (length > 0) { 1572 sublen = min_t(u64, length, PAGE_SIZE); 1573 mapped_length = sublen; 1574 bbio = NULL; 1575 1576 /* 1577 * with a length of PAGE_SIZE, each returned stripe 1578 * represents one mirror 1579 */ 1580 btrfs_bio_counter_inc_blocked(fs_info); 1581 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1582 logical, &mapped_length, &bbio); 1583 if (ret || !bbio || mapped_length < sublen) { 1584 btrfs_put_bbio(bbio); 1585 btrfs_bio_counter_dec(fs_info); 1586 return -EIO; 1587 } 1588 1589 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1590 if (!recover) { 1591 btrfs_put_bbio(bbio); 1592 btrfs_bio_counter_dec(fs_info); 1593 return -ENOMEM; 1594 } 1595 1596 refcount_set(&recover->refs, 1); 1597 recover->bbio = bbio; 1598 recover->map_length = mapped_length; 1599 1600 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1601 1602 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1603 1604 for (mirror_index = 0; mirror_index < nmirrors; 1605 mirror_index++) { 1606 struct scrub_block *sblock; 1607 struct scrub_page *page; 1608 1609 sblock = sblocks_for_recheck + mirror_index; 1610 sblock->sctx = sctx; 1611 1612 page = kzalloc(sizeof(*page), GFP_NOFS); 1613 if (!page) { 1614 leave_nomem: 1615 spin_lock(&sctx->stat_lock); 1616 sctx->stat.malloc_errors++; 1617 spin_unlock(&sctx->stat_lock); 1618 scrub_put_recover(fs_info, recover); 1619 return -ENOMEM; 1620 } 1621 scrub_page_get(page); 1622 sblock->pagev[page_index] = page; 1623 page->sblock = sblock; 1624 page->flags = flags; 1625 page->generation = generation; 1626 page->logical = logical; 1627 page->have_csum = have_csum; 1628 if (have_csum) 1629 memcpy(page->csum, 1630 original_sblock->pagev[0]->csum, 1631 sctx->csum_size); 1632 1633 scrub_stripe_index_and_offset(logical, 1634 bbio->map_type, 1635 bbio->raid_map, 1636 mapped_length, 1637 bbio->num_stripes - 1638 bbio->num_tgtdevs, 1639 mirror_index, 1640 &stripe_index, 1641 &stripe_offset); 1642 page->physical = bbio->stripes[stripe_index].physical + 1643 stripe_offset; 1644 page->dev = bbio->stripes[stripe_index].dev; 1645 1646 BUG_ON(page_index >= original_sblock->page_count); 1647 page->physical_for_dev_replace = 1648 original_sblock->pagev[page_index]-> 1649 physical_for_dev_replace; 1650 /* for missing devices, dev->bdev is NULL */ 1651 page->mirror_num = mirror_index + 1; 1652 sblock->page_count++; 1653 page->page = alloc_page(GFP_NOFS); 1654 if (!page->page) 1655 goto leave_nomem; 1656 1657 scrub_get_recover(recover); 1658 page->recover = recover; 1659 } 1660 scrub_put_recover(fs_info, recover); 1661 length -= sublen; 1662 logical += sublen; 1663 page_index++; 1664 } 1665 1666 return 0; 1667 } 1668 1669 struct scrub_bio_ret { 1670 struct completion event; 1671 int error; 1672 }; 1673 1674 static void scrub_bio_wait_endio(struct bio *bio) 1675 { 1676 struct scrub_bio_ret *ret = bio->bi_private; 1677 1678 ret->error = bio->bi_error; 1679 complete(&ret->event); 1680 } 1681 1682 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1683 { 1684 return page->recover && 1685 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1686 } 1687 1688 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1689 struct bio *bio, 1690 struct scrub_page *page) 1691 { 1692 struct scrub_bio_ret done; 1693 int ret; 1694 1695 init_completion(&done.event); 1696 done.error = 0; 1697 bio->bi_iter.bi_sector = page->logical >> 9; 1698 bio->bi_private = &done; 1699 bio->bi_end_io = scrub_bio_wait_endio; 1700 1701 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1702 page->recover->map_length, 1703 page->mirror_num, 0); 1704 if (ret) 1705 return ret; 1706 1707 wait_for_completion(&done.event); 1708 if (done.error) 1709 return -EIO; 1710 1711 return 0; 1712 } 1713 1714 /* 1715 * this function will check the on disk data for checksum errors, header 1716 * errors and read I/O errors. If any I/O errors happen, the exact pages 1717 * which are errored are marked as being bad. The goal is to enable scrub 1718 * to take those pages that are not errored from all the mirrors so that 1719 * the pages that are errored in the just handled mirror can be repaired. 1720 */ 1721 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1722 struct scrub_block *sblock, 1723 int retry_failed_mirror) 1724 { 1725 int page_num; 1726 1727 sblock->no_io_error_seen = 1; 1728 1729 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1730 struct bio *bio; 1731 struct scrub_page *page = sblock->pagev[page_num]; 1732 1733 if (page->dev->bdev == NULL) { 1734 page->io_error = 1; 1735 sblock->no_io_error_seen = 0; 1736 continue; 1737 } 1738 1739 WARN_ON(!page->page); 1740 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1741 if (!bio) { 1742 page->io_error = 1; 1743 sblock->no_io_error_seen = 0; 1744 continue; 1745 } 1746 bio->bi_bdev = page->dev->bdev; 1747 1748 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1749 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1750 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) { 1751 page->io_error = 1; 1752 sblock->no_io_error_seen = 0; 1753 } 1754 } else { 1755 bio->bi_iter.bi_sector = page->physical >> 9; 1756 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1757 1758 if (btrfsic_submit_bio_wait(bio)) { 1759 page->io_error = 1; 1760 sblock->no_io_error_seen = 0; 1761 } 1762 } 1763 1764 bio_put(bio); 1765 } 1766 1767 if (sblock->no_io_error_seen) 1768 scrub_recheck_block_checksum(sblock); 1769 } 1770 1771 static inline int scrub_check_fsid(u8 fsid[], 1772 struct scrub_page *spage) 1773 { 1774 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1775 int ret; 1776 1777 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1778 return !ret; 1779 } 1780 1781 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1782 { 1783 sblock->header_error = 0; 1784 sblock->checksum_error = 0; 1785 sblock->generation_error = 0; 1786 1787 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1788 scrub_checksum_data(sblock); 1789 else 1790 scrub_checksum_tree_block(sblock); 1791 } 1792 1793 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1794 struct scrub_block *sblock_good) 1795 { 1796 int page_num; 1797 int ret = 0; 1798 1799 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1800 int ret_sub; 1801 1802 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1803 sblock_good, 1804 page_num, 1); 1805 if (ret_sub) 1806 ret = ret_sub; 1807 } 1808 1809 return ret; 1810 } 1811 1812 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1813 struct scrub_block *sblock_good, 1814 int page_num, int force_write) 1815 { 1816 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1817 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1818 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1819 1820 BUG_ON(page_bad->page == NULL); 1821 BUG_ON(page_good->page == NULL); 1822 if (force_write || sblock_bad->header_error || 1823 sblock_bad->checksum_error || page_bad->io_error) { 1824 struct bio *bio; 1825 int ret; 1826 1827 if (!page_bad->dev->bdev) { 1828 btrfs_warn_rl(fs_info, 1829 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1830 return -EIO; 1831 } 1832 1833 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1834 if (!bio) 1835 return -EIO; 1836 bio->bi_bdev = page_bad->dev->bdev; 1837 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1838 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1839 1840 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1841 if (PAGE_SIZE != ret) { 1842 bio_put(bio); 1843 return -EIO; 1844 } 1845 1846 if (btrfsic_submit_bio_wait(bio)) { 1847 btrfs_dev_stat_inc_and_print(page_bad->dev, 1848 BTRFS_DEV_STAT_WRITE_ERRS); 1849 btrfs_dev_replace_stats_inc( 1850 &fs_info->dev_replace.num_write_errors); 1851 bio_put(bio); 1852 return -EIO; 1853 } 1854 bio_put(bio); 1855 } 1856 1857 return 0; 1858 } 1859 1860 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1861 { 1862 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1863 int page_num; 1864 1865 /* 1866 * This block is used for the check of the parity on the source device, 1867 * so the data needn't be written into the destination device. 1868 */ 1869 if (sblock->sparity) 1870 return; 1871 1872 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1873 int ret; 1874 1875 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1876 if (ret) 1877 btrfs_dev_replace_stats_inc( 1878 &fs_info->dev_replace.num_write_errors); 1879 } 1880 } 1881 1882 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1883 int page_num) 1884 { 1885 struct scrub_page *spage = sblock->pagev[page_num]; 1886 1887 BUG_ON(spage->page == NULL); 1888 if (spage->io_error) { 1889 void *mapped_buffer = kmap_atomic(spage->page); 1890 1891 clear_page(mapped_buffer); 1892 flush_dcache_page(spage->page); 1893 kunmap_atomic(mapped_buffer); 1894 } 1895 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1896 } 1897 1898 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1899 struct scrub_page *spage) 1900 { 1901 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1902 struct scrub_bio *sbio; 1903 int ret; 1904 1905 mutex_lock(&wr_ctx->wr_lock); 1906 again: 1907 if (!wr_ctx->wr_curr_bio) { 1908 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1909 GFP_KERNEL); 1910 if (!wr_ctx->wr_curr_bio) { 1911 mutex_unlock(&wr_ctx->wr_lock); 1912 return -ENOMEM; 1913 } 1914 wr_ctx->wr_curr_bio->sctx = sctx; 1915 wr_ctx->wr_curr_bio->page_count = 0; 1916 } 1917 sbio = wr_ctx->wr_curr_bio; 1918 if (sbio->page_count == 0) { 1919 struct bio *bio; 1920 1921 sbio->physical = spage->physical_for_dev_replace; 1922 sbio->logical = spage->logical; 1923 sbio->dev = wr_ctx->tgtdev; 1924 bio = sbio->bio; 1925 if (!bio) { 1926 bio = btrfs_io_bio_alloc(GFP_KERNEL, 1927 wr_ctx->pages_per_wr_bio); 1928 if (!bio) { 1929 mutex_unlock(&wr_ctx->wr_lock); 1930 return -ENOMEM; 1931 } 1932 sbio->bio = bio; 1933 } 1934 1935 bio->bi_private = sbio; 1936 bio->bi_end_io = scrub_wr_bio_end_io; 1937 bio->bi_bdev = sbio->dev->bdev; 1938 bio->bi_iter.bi_sector = sbio->physical >> 9; 1939 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1940 sbio->err = 0; 1941 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1942 spage->physical_for_dev_replace || 1943 sbio->logical + sbio->page_count * PAGE_SIZE != 1944 spage->logical) { 1945 scrub_wr_submit(sctx); 1946 goto again; 1947 } 1948 1949 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1950 if (ret != PAGE_SIZE) { 1951 if (sbio->page_count < 1) { 1952 bio_put(sbio->bio); 1953 sbio->bio = NULL; 1954 mutex_unlock(&wr_ctx->wr_lock); 1955 return -EIO; 1956 } 1957 scrub_wr_submit(sctx); 1958 goto again; 1959 } 1960 1961 sbio->pagev[sbio->page_count] = spage; 1962 scrub_page_get(spage); 1963 sbio->page_count++; 1964 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1965 scrub_wr_submit(sctx); 1966 mutex_unlock(&wr_ctx->wr_lock); 1967 1968 return 0; 1969 } 1970 1971 static void scrub_wr_submit(struct scrub_ctx *sctx) 1972 { 1973 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1974 struct scrub_bio *sbio; 1975 1976 if (!wr_ctx->wr_curr_bio) 1977 return; 1978 1979 sbio = wr_ctx->wr_curr_bio; 1980 wr_ctx->wr_curr_bio = NULL; 1981 WARN_ON(!sbio->bio->bi_bdev); 1982 scrub_pending_bio_inc(sctx); 1983 /* process all writes in a single worker thread. Then the block layer 1984 * orders the requests before sending them to the driver which 1985 * doubled the write performance on spinning disks when measured 1986 * with Linux 3.5 */ 1987 btrfsic_submit_bio(sbio->bio); 1988 } 1989 1990 static void scrub_wr_bio_end_io(struct bio *bio) 1991 { 1992 struct scrub_bio *sbio = bio->bi_private; 1993 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1994 1995 sbio->err = bio->bi_error; 1996 sbio->bio = bio; 1997 1998 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1999 scrub_wr_bio_end_io_worker, NULL, NULL); 2000 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 2001 } 2002 2003 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 2004 { 2005 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2006 struct scrub_ctx *sctx = sbio->sctx; 2007 int i; 2008 2009 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 2010 if (sbio->err) { 2011 struct btrfs_dev_replace *dev_replace = 2012 &sbio->sctx->fs_info->dev_replace; 2013 2014 for (i = 0; i < sbio->page_count; i++) { 2015 struct scrub_page *spage = sbio->pagev[i]; 2016 2017 spage->io_error = 1; 2018 btrfs_dev_replace_stats_inc(&dev_replace-> 2019 num_write_errors); 2020 } 2021 } 2022 2023 for (i = 0; i < sbio->page_count; i++) 2024 scrub_page_put(sbio->pagev[i]); 2025 2026 bio_put(sbio->bio); 2027 kfree(sbio); 2028 scrub_pending_bio_dec(sctx); 2029 } 2030 2031 static int scrub_checksum(struct scrub_block *sblock) 2032 { 2033 u64 flags; 2034 int ret; 2035 2036 /* 2037 * No need to initialize these stats currently, 2038 * because this function only use return value 2039 * instead of these stats value. 2040 * 2041 * Todo: 2042 * always use stats 2043 */ 2044 sblock->header_error = 0; 2045 sblock->generation_error = 0; 2046 sblock->checksum_error = 0; 2047 2048 WARN_ON(sblock->page_count < 1); 2049 flags = sblock->pagev[0]->flags; 2050 ret = 0; 2051 if (flags & BTRFS_EXTENT_FLAG_DATA) 2052 ret = scrub_checksum_data(sblock); 2053 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2054 ret = scrub_checksum_tree_block(sblock); 2055 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 2056 (void)scrub_checksum_super(sblock); 2057 else 2058 WARN_ON(1); 2059 if (ret) 2060 scrub_handle_errored_block(sblock); 2061 2062 return ret; 2063 } 2064 2065 static int scrub_checksum_data(struct scrub_block *sblock) 2066 { 2067 struct scrub_ctx *sctx = sblock->sctx; 2068 u8 csum[BTRFS_CSUM_SIZE]; 2069 u8 *on_disk_csum; 2070 struct page *page; 2071 void *buffer; 2072 u32 crc = ~(u32)0; 2073 u64 len; 2074 int index; 2075 2076 BUG_ON(sblock->page_count < 1); 2077 if (!sblock->pagev[0]->have_csum) 2078 return 0; 2079 2080 on_disk_csum = sblock->pagev[0]->csum; 2081 page = sblock->pagev[0]->page; 2082 buffer = kmap_atomic(page); 2083 2084 len = sctx->sectorsize; 2085 index = 0; 2086 for (;;) { 2087 u64 l = min_t(u64, len, PAGE_SIZE); 2088 2089 crc = btrfs_csum_data(buffer, crc, l); 2090 kunmap_atomic(buffer); 2091 len -= l; 2092 if (len == 0) 2093 break; 2094 index++; 2095 BUG_ON(index >= sblock->page_count); 2096 BUG_ON(!sblock->pagev[index]->page); 2097 page = sblock->pagev[index]->page; 2098 buffer = kmap_atomic(page); 2099 } 2100 2101 btrfs_csum_final(crc, csum); 2102 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 2103 sblock->checksum_error = 1; 2104 2105 return sblock->checksum_error; 2106 } 2107 2108 static int scrub_checksum_tree_block(struct scrub_block *sblock) 2109 { 2110 struct scrub_ctx *sctx = sblock->sctx; 2111 struct btrfs_header *h; 2112 struct btrfs_fs_info *fs_info = sctx->fs_info; 2113 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2114 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2115 struct page *page; 2116 void *mapped_buffer; 2117 u64 mapped_size; 2118 void *p; 2119 u32 crc = ~(u32)0; 2120 u64 len; 2121 int index; 2122 2123 BUG_ON(sblock->page_count < 1); 2124 page = sblock->pagev[0]->page; 2125 mapped_buffer = kmap_atomic(page); 2126 h = (struct btrfs_header *)mapped_buffer; 2127 memcpy(on_disk_csum, h->csum, sctx->csum_size); 2128 2129 /* 2130 * we don't use the getter functions here, as we 2131 * a) don't have an extent buffer and 2132 * b) the page is already kmapped 2133 */ 2134 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 2135 sblock->header_error = 1; 2136 2137 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 2138 sblock->header_error = 1; 2139 sblock->generation_error = 1; 2140 } 2141 2142 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 2143 sblock->header_error = 1; 2144 2145 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 2146 BTRFS_UUID_SIZE)) 2147 sblock->header_error = 1; 2148 2149 len = sctx->nodesize - BTRFS_CSUM_SIZE; 2150 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2151 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2152 index = 0; 2153 for (;;) { 2154 u64 l = min_t(u64, len, mapped_size); 2155 2156 crc = btrfs_csum_data(p, crc, l); 2157 kunmap_atomic(mapped_buffer); 2158 len -= l; 2159 if (len == 0) 2160 break; 2161 index++; 2162 BUG_ON(index >= sblock->page_count); 2163 BUG_ON(!sblock->pagev[index]->page); 2164 page = sblock->pagev[index]->page; 2165 mapped_buffer = kmap_atomic(page); 2166 mapped_size = PAGE_SIZE; 2167 p = mapped_buffer; 2168 } 2169 2170 btrfs_csum_final(crc, calculated_csum); 2171 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2172 sblock->checksum_error = 1; 2173 2174 return sblock->header_error || sblock->checksum_error; 2175 } 2176 2177 static int scrub_checksum_super(struct scrub_block *sblock) 2178 { 2179 struct btrfs_super_block *s; 2180 struct scrub_ctx *sctx = sblock->sctx; 2181 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2182 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2183 struct page *page; 2184 void *mapped_buffer; 2185 u64 mapped_size; 2186 void *p; 2187 u32 crc = ~(u32)0; 2188 int fail_gen = 0; 2189 int fail_cor = 0; 2190 u64 len; 2191 int index; 2192 2193 BUG_ON(sblock->page_count < 1); 2194 page = sblock->pagev[0]->page; 2195 mapped_buffer = kmap_atomic(page); 2196 s = (struct btrfs_super_block *)mapped_buffer; 2197 memcpy(on_disk_csum, s->csum, sctx->csum_size); 2198 2199 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 2200 ++fail_cor; 2201 2202 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 2203 ++fail_gen; 2204 2205 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 2206 ++fail_cor; 2207 2208 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 2209 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2210 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2211 index = 0; 2212 for (;;) { 2213 u64 l = min_t(u64, len, mapped_size); 2214 2215 crc = btrfs_csum_data(p, crc, l); 2216 kunmap_atomic(mapped_buffer); 2217 len -= l; 2218 if (len == 0) 2219 break; 2220 index++; 2221 BUG_ON(index >= sblock->page_count); 2222 BUG_ON(!sblock->pagev[index]->page); 2223 page = sblock->pagev[index]->page; 2224 mapped_buffer = kmap_atomic(page); 2225 mapped_size = PAGE_SIZE; 2226 p = mapped_buffer; 2227 } 2228 2229 btrfs_csum_final(crc, calculated_csum); 2230 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2231 ++fail_cor; 2232 2233 if (fail_cor + fail_gen) { 2234 /* 2235 * if we find an error in a super block, we just report it. 2236 * They will get written with the next transaction commit 2237 * anyway 2238 */ 2239 spin_lock(&sctx->stat_lock); 2240 ++sctx->stat.super_errors; 2241 spin_unlock(&sctx->stat_lock); 2242 if (fail_cor) 2243 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2244 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2245 else 2246 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2247 BTRFS_DEV_STAT_GENERATION_ERRS); 2248 } 2249 2250 return fail_cor + fail_gen; 2251 } 2252 2253 static void scrub_block_get(struct scrub_block *sblock) 2254 { 2255 refcount_inc(&sblock->refs); 2256 } 2257 2258 static void scrub_block_put(struct scrub_block *sblock) 2259 { 2260 if (refcount_dec_and_test(&sblock->refs)) { 2261 int i; 2262 2263 if (sblock->sparity) 2264 scrub_parity_put(sblock->sparity); 2265 2266 for (i = 0; i < sblock->page_count; i++) 2267 scrub_page_put(sblock->pagev[i]); 2268 kfree(sblock); 2269 } 2270 } 2271 2272 static void scrub_page_get(struct scrub_page *spage) 2273 { 2274 atomic_inc(&spage->refs); 2275 } 2276 2277 static void scrub_page_put(struct scrub_page *spage) 2278 { 2279 if (atomic_dec_and_test(&spage->refs)) { 2280 if (spage->page) 2281 __free_page(spage->page); 2282 kfree(spage); 2283 } 2284 } 2285 2286 static void scrub_submit(struct scrub_ctx *sctx) 2287 { 2288 struct scrub_bio *sbio; 2289 2290 if (sctx->curr == -1) 2291 return; 2292 2293 sbio = sctx->bios[sctx->curr]; 2294 sctx->curr = -1; 2295 scrub_pending_bio_inc(sctx); 2296 btrfsic_submit_bio(sbio->bio); 2297 } 2298 2299 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2300 struct scrub_page *spage) 2301 { 2302 struct scrub_block *sblock = spage->sblock; 2303 struct scrub_bio *sbio; 2304 int ret; 2305 2306 again: 2307 /* 2308 * grab a fresh bio or wait for one to become available 2309 */ 2310 while (sctx->curr == -1) { 2311 spin_lock(&sctx->list_lock); 2312 sctx->curr = sctx->first_free; 2313 if (sctx->curr != -1) { 2314 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2315 sctx->bios[sctx->curr]->next_free = -1; 2316 sctx->bios[sctx->curr]->page_count = 0; 2317 spin_unlock(&sctx->list_lock); 2318 } else { 2319 spin_unlock(&sctx->list_lock); 2320 wait_event(sctx->list_wait, sctx->first_free != -1); 2321 } 2322 } 2323 sbio = sctx->bios[sctx->curr]; 2324 if (sbio->page_count == 0) { 2325 struct bio *bio; 2326 2327 sbio->physical = spage->physical; 2328 sbio->logical = spage->logical; 2329 sbio->dev = spage->dev; 2330 bio = sbio->bio; 2331 if (!bio) { 2332 bio = btrfs_io_bio_alloc(GFP_KERNEL, 2333 sctx->pages_per_rd_bio); 2334 if (!bio) 2335 return -ENOMEM; 2336 sbio->bio = bio; 2337 } 2338 2339 bio->bi_private = sbio; 2340 bio->bi_end_io = scrub_bio_end_io; 2341 bio->bi_bdev = sbio->dev->bdev; 2342 bio->bi_iter.bi_sector = sbio->physical >> 9; 2343 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2344 sbio->err = 0; 2345 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2346 spage->physical || 2347 sbio->logical + sbio->page_count * PAGE_SIZE != 2348 spage->logical || 2349 sbio->dev != spage->dev) { 2350 scrub_submit(sctx); 2351 goto again; 2352 } 2353 2354 sbio->pagev[sbio->page_count] = spage; 2355 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2356 if (ret != PAGE_SIZE) { 2357 if (sbio->page_count < 1) { 2358 bio_put(sbio->bio); 2359 sbio->bio = NULL; 2360 return -EIO; 2361 } 2362 scrub_submit(sctx); 2363 goto again; 2364 } 2365 2366 scrub_block_get(sblock); /* one for the page added to the bio */ 2367 atomic_inc(&sblock->outstanding_pages); 2368 sbio->page_count++; 2369 if (sbio->page_count == sctx->pages_per_rd_bio) 2370 scrub_submit(sctx); 2371 2372 return 0; 2373 } 2374 2375 static void scrub_missing_raid56_end_io(struct bio *bio) 2376 { 2377 struct scrub_block *sblock = bio->bi_private; 2378 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2379 2380 if (bio->bi_error) 2381 sblock->no_io_error_seen = 0; 2382 2383 bio_put(bio); 2384 2385 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2386 } 2387 2388 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2389 { 2390 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2391 struct scrub_ctx *sctx = sblock->sctx; 2392 struct btrfs_fs_info *fs_info = sctx->fs_info; 2393 u64 logical; 2394 struct btrfs_device *dev; 2395 2396 logical = sblock->pagev[0]->logical; 2397 dev = sblock->pagev[0]->dev; 2398 2399 if (sblock->no_io_error_seen) 2400 scrub_recheck_block_checksum(sblock); 2401 2402 if (!sblock->no_io_error_seen) { 2403 spin_lock(&sctx->stat_lock); 2404 sctx->stat.read_errors++; 2405 spin_unlock(&sctx->stat_lock); 2406 btrfs_err_rl_in_rcu(fs_info, 2407 "IO error rebuilding logical %llu for dev %s", 2408 logical, rcu_str_deref(dev->name)); 2409 } else if (sblock->header_error || sblock->checksum_error) { 2410 spin_lock(&sctx->stat_lock); 2411 sctx->stat.uncorrectable_errors++; 2412 spin_unlock(&sctx->stat_lock); 2413 btrfs_err_rl_in_rcu(fs_info, 2414 "failed to rebuild valid logical %llu for dev %s", 2415 logical, rcu_str_deref(dev->name)); 2416 } else { 2417 scrub_write_block_to_dev_replace(sblock); 2418 } 2419 2420 scrub_block_put(sblock); 2421 2422 if (sctx->is_dev_replace && 2423 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2424 mutex_lock(&sctx->wr_ctx.wr_lock); 2425 scrub_wr_submit(sctx); 2426 mutex_unlock(&sctx->wr_ctx.wr_lock); 2427 } 2428 2429 scrub_pending_bio_dec(sctx); 2430 } 2431 2432 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2433 { 2434 struct scrub_ctx *sctx = sblock->sctx; 2435 struct btrfs_fs_info *fs_info = sctx->fs_info; 2436 u64 length = sblock->page_count * PAGE_SIZE; 2437 u64 logical = sblock->pagev[0]->logical; 2438 struct btrfs_bio *bbio = NULL; 2439 struct bio *bio; 2440 struct btrfs_raid_bio *rbio; 2441 int ret; 2442 int i; 2443 2444 btrfs_bio_counter_inc_blocked(fs_info); 2445 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2446 &length, &bbio); 2447 if (ret || !bbio || !bbio->raid_map) 2448 goto bbio_out; 2449 2450 if (WARN_ON(!sctx->is_dev_replace || 2451 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2452 /* 2453 * We shouldn't be scrubbing a missing device. Even for dev 2454 * replace, we should only get here for RAID 5/6. We either 2455 * managed to mount something with no mirrors remaining or 2456 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2457 */ 2458 goto bbio_out; 2459 } 2460 2461 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2462 if (!bio) 2463 goto bbio_out; 2464 2465 bio->bi_iter.bi_sector = logical >> 9; 2466 bio->bi_private = sblock; 2467 bio->bi_end_io = scrub_missing_raid56_end_io; 2468 2469 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2470 if (!rbio) 2471 goto rbio_out; 2472 2473 for (i = 0; i < sblock->page_count; i++) { 2474 struct scrub_page *spage = sblock->pagev[i]; 2475 2476 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2477 } 2478 2479 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2480 scrub_missing_raid56_worker, NULL, NULL); 2481 scrub_block_get(sblock); 2482 scrub_pending_bio_inc(sctx); 2483 raid56_submit_missing_rbio(rbio); 2484 return; 2485 2486 rbio_out: 2487 bio_put(bio); 2488 bbio_out: 2489 btrfs_bio_counter_dec(fs_info); 2490 btrfs_put_bbio(bbio); 2491 spin_lock(&sctx->stat_lock); 2492 sctx->stat.malloc_errors++; 2493 spin_unlock(&sctx->stat_lock); 2494 } 2495 2496 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2497 u64 physical, struct btrfs_device *dev, u64 flags, 2498 u64 gen, int mirror_num, u8 *csum, int force, 2499 u64 physical_for_dev_replace) 2500 { 2501 struct scrub_block *sblock; 2502 int index; 2503 2504 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2505 if (!sblock) { 2506 spin_lock(&sctx->stat_lock); 2507 sctx->stat.malloc_errors++; 2508 spin_unlock(&sctx->stat_lock); 2509 return -ENOMEM; 2510 } 2511 2512 /* one ref inside this function, plus one for each page added to 2513 * a bio later on */ 2514 refcount_set(&sblock->refs, 1); 2515 sblock->sctx = sctx; 2516 sblock->no_io_error_seen = 1; 2517 2518 for (index = 0; len > 0; index++) { 2519 struct scrub_page *spage; 2520 u64 l = min_t(u64, len, PAGE_SIZE); 2521 2522 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2523 if (!spage) { 2524 leave_nomem: 2525 spin_lock(&sctx->stat_lock); 2526 sctx->stat.malloc_errors++; 2527 spin_unlock(&sctx->stat_lock); 2528 scrub_block_put(sblock); 2529 return -ENOMEM; 2530 } 2531 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2532 scrub_page_get(spage); 2533 sblock->pagev[index] = spage; 2534 spage->sblock = sblock; 2535 spage->dev = dev; 2536 spage->flags = flags; 2537 spage->generation = gen; 2538 spage->logical = logical; 2539 spage->physical = physical; 2540 spage->physical_for_dev_replace = physical_for_dev_replace; 2541 spage->mirror_num = mirror_num; 2542 if (csum) { 2543 spage->have_csum = 1; 2544 memcpy(spage->csum, csum, sctx->csum_size); 2545 } else { 2546 spage->have_csum = 0; 2547 } 2548 sblock->page_count++; 2549 spage->page = alloc_page(GFP_KERNEL); 2550 if (!spage->page) 2551 goto leave_nomem; 2552 len -= l; 2553 logical += l; 2554 physical += l; 2555 physical_for_dev_replace += l; 2556 } 2557 2558 WARN_ON(sblock->page_count == 0); 2559 if (dev->missing) { 2560 /* 2561 * This case should only be hit for RAID 5/6 device replace. See 2562 * the comment in scrub_missing_raid56_pages() for details. 2563 */ 2564 scrub_missing_raid56_pages(sblock); 2565 } else { 2566 for (index = 0; index < sblock->page_count; index++) { 2567 struct scrub_page *spage = sblock->pagev[index]; 2568 int ret; 2569 2570 ret = scrub_add_page_to_rd_bio(sctx, spage); 2571 if (ret) { 2572 scrub_block_put(sblock); 2573 return ret; 2574 } 2575 } 2576 2577 if (force) 2578 scrub_submit(sctx); 2579 } 2580 2581 /* last one frees, either here or in bio completion for last page */ 2582 scrub_block_put(sblock); 2583 return 0; 2584 } 2585 2586 static void scrub_bio_end_io(struct bio *bio) 2587 { 2588 struct scrub_bio *sbio = bio->bi_private; 2589 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2590 2591 sbio->err = bio->bi_error; 2592 sbio->bio = bio; 2593 2594 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2595 } 2596 2597 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2598 { 2599 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2600 struct scrub_ctx *sctx = sbio->sctx; 2601 int i; 2602 2603 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2604 if (sbio->err) { 2605 for (i = 0; i < sbio->page_count; i++) { 2606 struct scrub_page *spage = sbio->pagev[i]; 2607 2608 spage->io_error = 1; 2609 spage->sblock->no_io_error_seen = 0; 2610 } 2611 } 2612 2613 /* now complete the scrub_block items that have all pages completed */ 2614 for (i = 0; i < sbio->page_count; i++) { 2615 struct scrub_page *spage = sbio->pagev[i]; 2616 struct scrub_block *sblock = spage->sblock; 2617 2618 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2619 scrub_block_complete(sblock); 2620 scrub_block_put(sblock); 2621 } 2622 2623 bio_put(sbio->bio); 2624 sbio->bio = NULL; 2625 spin_lock(&sctx->list_lock); 2626 sbio->next_free = sctx->first_free; 2627 sctx->first_free = sbio->index; 2628 spin_unlock(&sctx->list_lock); 2629 2630 if (sctx->is_dev_replace && 2631 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2632 mutex_lock(&sctx->wr_ctx.wr_lock); 2633 scrub_wr_submit(sctx); 2634 mutex_unlock(&sctx->wr_ctx.wr_lock); 2635 } 2636 2637 scrub_pending_bio_dec(sctx); 2638 } 2639 2640 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2641 unsigned long *bitmap, 2642 u64 start, u64 len) 2643 { 2644 u64 offset; 2645 int nsectors; 2646 int sectorsize = sparity->sctx->fs_info->sectorsize; 2647 2648 if (len >= sparity->stripe_len) { 2649 bitmap_set(bitmap, 0, sparity->nsectors); 2650 return; 2651 } 2652 2653 start -= sparity->logic_start; 2654 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2655 offset = div_u64(offset, sectorsize); 2656 nsectors = (int)len / sectorsize; 2657 2658 if (offset + nsectors <= sparity->nsectors) { 2659 bitmap_set(bitmap, offset, nsectors); 2660 return; 2661 } 2662 2663 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2664 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2665 } 2666 2667 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2668 u64 start, u64 len) 2669 { 2670 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2671 } 2672 2673 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2674 u64 start, u64 len) 2675 { 2676 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2677 } 2678 2679 static void scrub_block_complete(struct scrub_block *sblock) 2680 { 2681 int corrupted = 0; 2682 2683 if (!sblock->no_io_error_seen) { 2684 corrupted = 1; 2685 scrub_handle_errored_block(sblock); 2686 } else { 2687 /* 2688 * if has checksum error, write via repair mechanism in 2689 * dev replace case, otherwise write here in dev replace 2690 * case. 2691 */ 2692 corrupted = scrub_checksum(sblock); 2693 if (!corrupted && sblock->sctx->is_dev_replace) 2694 scrub_write_block_to_dev_replace(sblock); 2695 } 2696 2697 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2698 u64 start = sblock->pagev[0]->logical; 2699 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2700 PAGE_SIZE; 2701 2702 scrub_parity_mark_sectors_error(sblock->sparity, 2703 start, end - start); 2704 } 2705 } 2706 2707 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2708 { 2709 struct btrfs_ordered_sum *sum = NULL; 2710 unsigned long index; 2711 unsigned long num_sectors; 2712 2713 while (!list_empty(&sctx->csum_list)) { 2714 sum = list_first_entry(&sctx->csum_list, 2715 struct btrfs_ordered_sum, list); 2716 if (sum->bytenr > logical) 2717 return 0; 2718 if (sum->bytenr + sum->len > logical) 2719 break; 2720 2721 ++sctx->stat.csum_discards; 2722 list_del(&sum->list); 2723 kfree(sum); 2724 sum = NULL; 2725 } 2726 if (!sum) 2727 return 0; 2728 2729 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2730 num_sectors = sum->len / sctx->sectorsize; 2731 memcpy(csum, sum->sums + index, sctx->csum_size); 2732 if (index == num_sectors - 1) { 2733 list_del(&sum->list); 2734 kfree(sum); 2735 } 2736 return 1; 2737 } 2738 2739 /* scrub extent tries to collect up to 64 kB for each bio */ 2740 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2741 u64 physical, struct btrfs_device *dev, u64 flags, 2742 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2743 { 2744 int ret; 2745 u8 csum[BTRFS_CSUM_SIZE]; 2746 u32 blocksize; 2747 2748 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2749 blocksize = sctx->sectorsize; 2750 spin_lock(&sctx->stat_lock); 2751 sctx->stat.data_extents_scrubbed++; 2752 sctx->stat.data_bytes_scrubbed += len; 2753 spin_unlock(&sctx->stat_lock); 2754 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2755 blocksize = sctx->nodesize; 2756 spin_lock(&sctx->stat_lock); 2757 sctx->stat.tree_extents_scrubbed++; 2758 sctx->stat.tree_bytes_scrubbed += len; 2759 spin_unlock(&sctx->stat_lock); 2760 } else { 2761 blocksize = sctx->sectorsize; 2762 WARN_ON(1); 2763 } 2764 2765 while (len) { 2766 u64 l = min_t(u64, len, blocksize); 2767 int have_csum = 0; 2768 2769 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2770 /* push csums to sbio */ 2771 have_csum = scrub_find_csum(sctx, logical, csum); 2772 if (have_csum == 0) 2773 ++sctx->stat.no_csum; 2774 if (sctx->is_dev_replace && !have_csum) { 2775 ret = copy_nocow_pages(sctx, logical, l, 2776 mirror_num, 2777 physical_for_dev_replace); 2778 goto behind_scrub_pages; 2779 } 2780 } 2781 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2782 mirror_num, have_csum ? csum : NULL, 0, 2783 physical_for_dev_replace); 2784 behind_scrub_pages: 2785 if (ret) 2786 return ret; 2787 len -= l; 2788 logical += l; 2789 physical += l; 2790 physical_for_dev_replace += l; 2791 } 2792 return 0; 2793 } 2794 2795 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2796 u64 logical, u64 len, 2797 u64 physical, struct btrfs_device *dev, 2798 u64 flags, u64 gen, int mirror_num, u8 *csum) 2799 { 2800 struct scrub_ctx *sctx = sparity->sctx; 2801 struct scrub_block *sblock; 2802 int index; 2803 2804 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2805 if (!sblock) { 2806 spin_lock(&sctx->stat_lock); 2807 sctx->stat.malloc_errors++; 2808 spin_unlock(&sctx->stat_lock); 2809 return -ENOMEM; 2810 } 2811 2812 /* one ref inside this function, plus one for each page added to 2813 * a bio later on */ 2814 refcount_set(&sblock->refs, 1); 2815 sblock->sctx = sctx; 2816 sblock->no_io_error_seen = 1; 2817 sblock->sparity = sparity; 2818 scrub_parity_get(sparity); 2819 2820 for (index = 0; len > 0; index++) { 2821 struct scrub_page *spage; 2822 u64 l = min_t(u64, len, PAGE_SIZE); 2823 2824 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2825 if (!spage) { 2826 leave_nomem: 2827 spin_lock(&sctx->stat_lock); 2828 sctx->stat.malloc_errors++; 2829 spin_unlock(&sctx->stat_lock); 2830 scrub_block_put(sblock); 2831 return -ENOMEM; 2832 } 2833 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2834 /* For scrub block */ 2835 scrub_page_get(spage); 2836 sblock->pagev[index] = spage; 2837 /* For scrub parity */ 2838 scrub_page_get(spage); 2839 list_add_tail(&spage->list, &sparity->spages); 2840 spage->sblock = sblock; 2841 spage->dev = dev; 2842 spage->flags = flags; 2843 spage->generation = gen; 2844 spage->logical = logical; 2845 spage->physical = physical; 2846 spage->mirror_num = mirror_num; 2847 if (csum) { 2848 spage->have_csum = 1; 2849 memcpy(spage->csum, csum, sctx->csum_size); 2850 } else { 2851 spage->have_csum = 0; 2852 } 2853 sblock->page_count++; 2854 spage->page = alloc_page(GFP_KERNEL); 2855 if (!spage->page) 2856 goto leave_nomem; 2857 len -= l; 2858 logical += l; 2859 physical += l; 2860 } 2861 2862 WARN_ON(sblock->page_count == 0); 2863 for (index = 0; index < sblock->page_count; index++) { 2864 struct scrub_page *spage = sblock->pagev[index]; 2865 int ret; 2866 2867 ret = scrub_add_page_to_rd_bio(sctx, spage); 2868 if (ret) { 2869 scrub_block_put(sblock); 2870 return ret; 2871 } 2872 } 2873 2874 /* last one frees, either here or in bio completion for last page */ 2875 scrub_block_put(sblock); 2876 return 0; 2877 } 2878 2879 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2880 u64 logical, u64 len, 2881 u64 physical, struct btrfs_device *dev, 2882 u64 flags, u64 gen, int mirror_num) 2883 { 2884 struct scrub_ctx *sctx = sparity->sctx; 2885 int ret; 2886 u8 csum[BTRFS_CSUM_SIZE]; 2887 u32 blocksize; 2888 2889 if (dev->missing) { 2890 scrub_parity_mark_sectors_error(sparity, logical, len); 2891 return 0; 2892 } 2893 2894 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2895 blocksize = sctx->sectorsize; 2896 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2897 blocksize = sctx->nodesize; 2898 } else { 2899 blocksize = sctx->sectorsize; 2900 WARN_ON(1); 2901 } 2902 2903 while (len) { 2904 u64 l = min_t(u64, len, blocksize); 2905 int have_csum = 0; 2906 2907 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2908 /* push csums to sbio */ 2909 have_csum = scrub_find_csum(sctx, logical, csum); 2910 if (have_csum == 0) 2911 goto skip; 2912 } 2913 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2914 flags, gen, mirror_num, 2915 have_csum ? csum : NULL); 2916 if (ret) 2917 return ret; 2918 skip: 2919 len -= l; 2920 logical += l; 2921 physical += l; 2922 } 2923 return 0; 2924 } 2925 2926 /* 2927 * Given a physical address, this will calculate it's 2928 * logical offset. if this is a parity stripe, it will return 2929 * the most left data stripe's logical offset. 2930 * 2931 * return 0 if it is a data stripe, 1 means parity stripe. 2932 */ 2933 static int get_raid56_logic_offset(u64 physical, int num, 2934 struct map_lookup *map, u64 *offset, 2935 u64 *stripe_start) 2936 { 2937 int i; 2938 int j = 0; 2939 u64 stripe_nr; 2940 u64 last_offset; 2941 u32 stripe_index; 2942 u32 rot; 2943 2944 last_offset = (physical - map->stripes[num].physical) * 2945 nr_data_stripes(map); 2946 if (stripe_start) 2947 *stripe_start = last_offset; 2948 2949 *offset = last_offset; 2950 for (i = 0; i < nr_data_stripes(map); i++) { 2951 *offset = last_offset + i * map->stripe_len; 2952 2953 stripe_nr = div64_u64(*offset, map->stripe_len); 2954 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2955 2956 /* Work out the disk rotation on this stripe-set */ 2957 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2958 /* calculate which stripe this data locates */ 2959 rot += i; 2960 stripe_index = rot % map->num_stripes; 2961 if (stripe_index == num) 2962 return 0; 2963 if (stripe_index < num) 2964 j++; 2965 } 2966 *offset = last_offset + j * map->stripe_len; 2967 return 1; 2968 } 2969 2970 static void scrub_free_parity(struct scrub_parity *sparity) 2971 { 2972 struct scrub_ctx *sctx = sparity->sctx; 2973 struct scrub_page *curr, *next; 2974 int nbits; 2975 2976 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2977 if (nbits) { 2978 spin_lock(&sctx->stat_lock); 2979 sctx->stat.read_errors += nbits; 2980 sctx->stat.uncorrectable_errors += nbits; 2981 spin_unlock(&sctx->stat_lock); 2982 } 2983 2984 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2985 list_del_init(&curr->list); 2986 scrub_page_put(curr); 2987 } 2988 2989 kfree(sparity); 2990 } 2991 2992 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2993 { 2994 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2995 work); 2996 struct scrub_ctx *sctx = sparity->sctx; 2997 2998 scrub_free_parity(sparity); 2999 scrub_pending_bio_dec(sctx); 3000 } 3001 3002 static void scrub_parity_bio_endio(struct bio *bio) 3003 { 3004 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 3005 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 3006 3007 if (bio->bi_error) 3008 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3009 sparity->nsectors); 3010 3011 bio_put(bio); 3012 3013 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 3014 scrub_parity_bio_endio_worker, NULL, NULL); 3015 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 3016 } 3017 3018 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 3019 { 3020 struct scrub_ctx *sctx = sparity->sctx; 3021 struct btrfs_fs_info *fs_info = sctx->fs_info; 3022 struct bio *bio; 3023 struct btrfs_raid_bio *rbio; 3024 struct btrfs_bio *bbio = NULL; 3025 u64 length; 3026 int ret; 3027 3028 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 3029 sparity->nsectors)) 3030 goto out; 3031 3032 length = sparity->logic_end - sparity->logic_start; 3033 3034 btrfs_bio_counter_inc_blocked(fs_info); 3035 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 3036 &length, &bbio); 3037 if (ret || !bbio || !bbio->raid_map) 3038 goto bbio_out; 3039 3040 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3041 if (!bio) 3042 goto bbio_out; 3043 3044 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 3045 bio->bi_private = sparity; 3046 bio->bi_end_io = scrub_parity_bio_endio; 3047 3048 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 3049 length, sparity->scrub_dev, 3050 sparity->dbitmap, 3051 sparity->nsectors); 3052 if (!rbio) 3053 goto rbio_out; 3054 3055 scrub_pending_bio_inc(sctx); 3056 raid56_parity_submit_scrub_rbio(rbio); 3057 return; 3058 3059 rbio_out: 3060 bio_put(bio); 3061 bbio_out: 3062 btrfs_bio_counter_dec(fs_info); 3063 btrfs_put_bbio(bbio); 3064 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3065 sparity->nsectors); 3066 spin_lock(&sctx->stat_lock); 3067 sctx->stat.malloc_errors++; 3068 spin_unlock(&sctx->stat_lock); 3069 out: 3070 scrub_free_parity(sparity); 3071 } 3072 3073 static inline int scrub_calc_parity_bitmap_len(int nsectors) 3074 { 3075 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 3076 } 3077 3078 static void scrub_parity_get(struct scrub_parity *sparity) 3079 { 3080 refcount_inc(&sparity->refs); 3081 } 3082 3083 static void scrub_parity_put(struct scrub_parity *sparity) 3084 { 3085 if (!refcount_dec_and_test(&sparity->refs)) 3086 return; 3087 3088 scrub_parity_check_and_repair(sparity); 3089 } 3090 3091 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3092 struct map_lookup *map, 3093 struct btrfs_device *sdev, 3094 struct btrfs_path *path, 3095 u64 logic_start, 3096 u64 logic_end) 3097 { 3098 struct btrfs_fs_info *fs_info = sctx->fs_info; 3099 struct btrfs_root *root = fs_info->extent_root; 3100 struct btrfs_root *csum_root = fs_info->csum_root; 3101 struct btrfs_extent_item *extent; 3102 struct btrfs_bio *bbio = NULL; 3103 u64 flags; 3104 int ret; 3105 int slot; 3106 struct extent_buffer *l; 3107 struct btrfs_key key; 3108 u64 generation; 3109 u64 extent_logical; 3110 u64 extent_physical; 3111 u64 extent_len; 3112 u64 mapped_length; 3113 struct btrfs_device *extent_dev; 3114 struct scrub_parity *sparity; 3115 int nsectors; 3116 int bitmap_len; 3117 int extent_mirror_num; 3118 int stop_loop = 0; 3119 3120 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 3121 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 3122 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 3123 GFP_NOFS); 3124 if (!sparity) { 3125 spin_lock(&sctx->stat_lock); 3126 sctx->stat.malloc_errors++; 3127 spin_unlock(&sctx->stat_lock); 3128 return -ENOMEM; 3129 } 3130 3131 sparity->stripe_len = map->stripe_len; 3132 sparity->nsectors = nsectors; 3133 sparity->sctx = sctx; 3134 sparity->scrub_dev = sdev; 3135 sparity->logic_start = logic_start; 3136 sparity->logic_end = logic_end; 3137 refcount_set(&sparity->refs, 1); 3138 INIT_LIST_HEAD(&sparity->spages); 3139 sparity->dbitmap = sparity->bitmap; 3140 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 3141 3142 ret = 0; 3143 while (logic_start < logic_end) { 3144 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3145 key.type = BTRFS_METADATA_ITEM_KEY; 3146 else 3147 key.type = BTRFS_EXTENT_ITEM_KEY; 3148 key.objectid = logic_start; 3149 key.offset = (u64)-1; 3150 3151 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3152 if (ret < 0) 3153 goto out; 3154 3155 if (ret > 0) { 3156 ret = btrfs_previous_extent_item(root, path, 0); 3157 if (ret < 0) 3158 goto out; 3159 if (ret > 0) { 3160 btrfs_release_path(path); 3161 ret = btrfs_search_slot(NULL, root, &key, 3162 path, 0, 0); 3163 if (ret < 0) 3164 goto out; 3165 } 3166 } 3167 3168 stop_loop = 0; 3169 while (1) { 3170 u64 bytes; 3171 3172 l = path->nodes[0]; 3173 slot = path->slots[0]; 3174 if (slot >= btrfs_header_nritems(l)) { 3175 ret = btrfs_next_leaf(root, path); 3176 if (ret == 0) 3177 continue; 3178 if (ret < 0) 3179 goto out; 3180 3181 stop_loop = 1; 3182 break; 3183 } 3184 btrfs_item_key_to_cpu(l, &key, slot); 3185 3186 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3187 key.type != BTRFS_METADATA_ITEM_KEY) 3188 goto next; 3189 3190 if (key.type == BTRFS_METADATA_ITEM_KEY) 3191 bytes = fs_info->nodesize; 3192 else 3193 bytes = key.offset; 3194 3195 if (key.objectid + bytes <= logic_start) 3196 goto next; 3197 3198 if (key.objectid >= logic_end) { 3199 stop_loop = 1; 3200 break; 3201 } 3202 3203 while (key.objectid >= logic_start + map->stripe_len) 3204 logic_start += map->stripe_len; 3205 3206 extent = btrfs_item_ptr(l, slot, 3207 struct btrfs_extent_item); 3208 flags = btrfs_extent_flags(l, extent); 3209 generation = btrfs_extent_generation(l, extent); 3210 3211 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3212 (key.objectid < logic_start || 3213 key.objectid + bytes > 3214 logic_start + map->stripe_len)) { 3215 btrfs_err(fs_info, 3216 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3217 key.objectid, logic_start); 3218 spin_lock(&sctx->stat_lock); 3219 sctx->stat.uncorrectable_errors++; 3220 spin_unlock(&sctx->stat_lock); 3221 goto next; 3222 } 3223 again: 3224 extent_logical = key.objectid; 3225 extent_len = bytes; 3226 3227 if (extent_logical < logic_start) { 3228 extent_len -= logic_start - extent_logical; 3229 extent_logical = logic_start; 3230 } 3231 3232 if (extent_logical + extent_len > 3233 logic_start + map->stripe_len) 3234 extent_len = logic_start + map->stripe_len - 3235 extent_logical; 3236 3237 scrub_parity_mark_sectors_data(sparity, extent_logical, 3238 extent_len); 3239 3240 mapped_length = extent_len; 3241 bbio = NULL; 3242 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3243 extent_logical, &mapped_length, &bbio, 3244 0); 3245 if (!ret) { 3246 if (!bbio || mapped_length < extent_len) 3247 ret = -EIO; 3248 } 3249 if (ret) { 3250 btrfs_put_bbio(bbio); 3251 goto out; 3252 } 3253 extent_physical = bbio->stripes[0].physical; 3254 extent_mirror_num = bbio->mirror_num; 3255 extent_dev = bbio->stripes[0].dev; 3256 btrfs_put_bbio(bbio); 3257 3258 ret = btrfs_lookup_csums_range(csum_root, 3259 extent_logical, 3260 extent_logical + extent_len - 1, 3261 &sctx->csum_list, 1); 3262 if (ret) 3263 goto out; 3264 3265 ret = scrub_extent_for_parity(sparity, extent_logical, 3266 extent_len, 3267 extent_physical, 3268 extent_dev, flags, 3269 generation, 3270 extent_mirror_num); 3271 3272 scrub_free_csums(sctx); 3273 3274 if (ret) 3275 goto out; 3276 3277 if (extent_logical + extent_len < 3278 key.objectid + bytes) { 3279 logic_start += map->stripe_len; 3280 3281 if (logic_start >= logic_end) { 3282 stop_loop = 1; 3283 break; 3284 } 3285 3286 if (logic_start < key.objectid + bytes) { 3287 cond_resched(); 3288 goto again; 3289 } 3290 } 3291 next: 3292 path->slots[0]++; 3293 } 3294 3295 btrfs_release_path(path); 3296 3297 if (stop_loop) 3298 break; 3299 3300 logic_start += map->stripe_len; 3301 } 3302 out: 3303 if (ret < 0) 3304 scrub_parity_mark_sectors_error(sparity, logic_start, 3305 logic_end - logic_start); 3306 scrub_parity_put(sparity); 3307 scrub_submit(sctx); 3308 mutex_lock(&sctx->wr_ctx.wr_lock); 3309 scrub_wr_submit(sctx); 3310 mutex_unlock(&sctx->wr_ctx.wr_lock); 3311 3312 btrfs_release_path(path); 3313 return ret < 0 ? ret : 0; 3314 } 3315 3316 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3317 struct map_lookup *map, 3318 struct btrfs_device *scrub_dev, 3319 int num, u64 base, u64 length, 3320 int is_dev_replace) 3321 { 3322 struct btrfs_path *path, *ppath; 3323 struct btrfs_fs_info *fs_info = sctx->fs_info; 3324 struct btrfs_root *root = fs_info->extent_root; 3325 struct btrfs_root *csum_root = fs_info->csum_root; 3326 struct btrfs_extent_item *extent; 3327 struct blk_plug plug; 3328 u64 flags; 3329 int ret; 3330 int slot; 3331 u64 nstripes; 3332 struct extent_buffer *l; 3333 u64 physical; 3334 u64 logical; 3335 u64 logic_end; 3336 u64 physical_end; 3337 u64 generation; 3338 int mirror_num; 3339 struct reada_control *reada1; 3340 struct reada_control *reada2; 3341 struct btrfs_key key; 3342 struct btrfs_key key_end; 3343 u64 increment = map->stripe_len; 3344 u64 offset; 3345 u64 extent_logical; 3346 u64 extent_physical; 3347 u64 extent_len; 3348 u64 stripe_logical; 3349 u64 stripe_end; 3350 struct btrfs_device *extent_dev; 3351 int extent_mirror_num; 3352 int stop_loop = 0; 3353 3354 physical = map->stripes[num].physical; 3355 offset = 0; 3356 nstripes = div64_u64(length, map->stripe_len); 3357 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3358 offset = map->stripe_len * num; 3359 increment = map->stripe_len * map->num_stripes; 3360 mirror_num = 1; 3361 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3362 int factor = map->num_stripes / map->sub_stripes; 3363 offset = map->stripe_len * (num / map->sub_stripes); 3364 increment = map->stripe_len * factor; 3365 mirror_num = num % map->sub_stripes + 1; 3366 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3367 increment = map->stripe_len; 3368 mirror_num = num % map->num_stripes + 1; 3369 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3370 increment = map->stripe_len; 3371 mirror_num = num % map->num_stripes + 1; 3372 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3373 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3374 increment = map->stripe_len * nr_data_stripes(map); 3375 mirror_num = 1; 3376 } else { 3377 increment = map->stripe_len; 3378 mirror_num = 1; 3379 } 3380 3381 path = btrfs_alloc_path(); 3382 if (!path) 3383 return -ENOMEM; 3384 3385 ppath = btrfs_alloc_path(); 3386 if (!ppath) { 3387 btrfs_free_path(path); 3388 return -ENOMEM; 3389 } 3390 3391 /* 3392 * work on commit root. The related disk blocks are static as 3393 * long as COW is applied. This means, it is save to rewrite 3394 * them to repair disk errors without any race conditions 3395 */ 3396 path->search_commit_root = 1; 3397 path->skip_locking = 1; 3398 3399 ppath->search_commit_root = 1; 3400 ppath->skip_locking = 1; 3401 /* 3402 * trigger the readahead for extent tree csum tree and wait for 3403 * completion. During readahead, the scrub is officially paused 3404 * to not hold off transaction commits 3405 */ 3406 logical = base + offset; 3407 physical_end = physical + nstripes * map->stripe_len; 3408 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3409 get_raid56_logic_offset(physical_end, num, 3410 map, &logic_end, NULL); 3411 logic_end += base; 3412 } else { 3413 logic_end = logical + increment * nstripes; 3414 } 3415 wait_event(sctx->list_wait, 3416 atomic_read(&sctx->bios_in_flight) == 0); 3417 scrub_blocked_if_needed(fs_info); 3418 3419 /* FIXME it might be better to start readahead at commit root */ 3420 key.objectid = logical; 3421 key.type = BTRFS_EXTENT_ITEM_KEY; 3422 key.offset = (u64)0; 3423 key_end.objectid = logic_end; 3424 key_end.type = BTRFS_METADATA_ITEM_KEY; 3425 key_end.offset = (u64)-1; 3426 reada1 = btrfs_reada_add(root, &key, &key_end); 3427 3428 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3429 key.type = BTRFS_EXTENT_CSUM_KEY; 3430 key.offset = logical; 3431 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3432 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3433 key_end.offset = logic_end; 3434 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3435 3436 if (!IS_ERR(reada1)) 3437 btrfs_reada_wait(reada1); 3438 if (!IS_ERR(reada2)) 3439 btrfs_reada_wait(reada2); 3440 3441 3442 /* 3443 * collect all data csums for the stripe to avoid seeking during 3444 * the scrub. This might currently (crc32) end up to be about 1MB 3445 */ 3446 blk_start_plug(&plug); 3447 3448 /* 3449 * now find all extents for each stripe and scrub them 3450 */ 3451 ret = 0; 3452 while (physical < physical_end) { 3453 /* 3454 * canceled? 3455 */ 3456 if (atomic_read(&fs_info->scrub_cancel_req) || 3457 atomic_read(&sctx->cancel_req)) { 3458 ret = -ECANCELED; 3459 goto out; 3460 } 3461 /* 3462 * check to see if we have to pause 3463 */ 3464 if (atomic_read(&fs_info->scrub_pause_req)) { 3465 /* push queued extents */ 3466 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3467 scrub_submit(sctx); 3468 mutex_lock(&sctx->wr_ctx.wr_lock); 3469 scrub_wr_submit(sctx); 3470 mutex_unlock(&sctx->wr_ctx.wr_lock); 3471 wait_event(sctx->list_wait, 3472 atomic_read(&sctx->bios_in_flight) == 0); 3473 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3474 scrub_blocked_if_needed(fs_info); 3475 } 3476 3477 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3478 ret = get_raid56_logic_offset(physical, num, map, 3479 &logical, 3480 &stripe_logical); 3481 logical += base; 3482 if (ret) { 3483 /* it is parity strip */ 3484 stripe_logical += base; 3485 stripe_end = stripe_logical + increment; 3486 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3487 ppath, stripe_logical, 3488 stripe_end); 3489 if (ret) 3490 goto out; 3491 goto skip; 3492 } 3493 } 3494 3495 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3496 key.type = BTRFS_METADATA_ITEM_KEY; 3497 else 3498 key.type = BTRFS_EXTENT_ITEM_KEY; 3499 key.objectid = logical; 3500 key.offset = (u64)-1; 3501 3502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3503 if (ret < 0) 3504 goto out; 3505 3506 if (ret > 0) { 3507 ret = btrfs_previous_extent_item(root, path, 0); 3508 if (ret < 0) 3509 goto out; 3510 if (ret > 0) { 3511 /* there's no smaller item, so stick with the 3512 * larger one */ 3513 btrfs_release_path(path); 3514 ret = btrfs_search_slot(NULL, root, &key, 3515 path, 0, 0); 3516 if (ret < 0) 3517 goto out; 3518 } 3519 } 3520 3521 stop_loop = 0; 3522 while (1) { 3523 u64 bytes; 3524 3525 l = path->nodes[0]; 3526 slot = path->slots[0]; 3527 if (slot >= btrfs_header_nritems(l)) { 3528 ret = btrfs_next_leaf(root, path); 3529 if (ret == 0) 3530 continue; 3531 if (ret < 0) 3532 goto out; 3533 3534 stop_loop = 1; 3535 break; 3536 } 3537 btrfs_item_key_to_cpu(l, &key, slot); 3538 3539 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3540 key.type != BTRFS_METADATA_ITEM_KEY) 3541 goto next; 3542 3543 if (key.type == BTRFS_METADATA_ITEM_KEY) 3544 bytes = fs_info->nodesize; 3545 else 3546 bytes = key.offset; 3547 3548 if (key.objectid + bytes <= logical) 3549 goto next; 3550 3551 if (key.objectid >= logical + map->stripe_len) { 3552 /* out of this device extent */ 3553 if (key.objectid >= logic_end) 3554 stop_loop = 1; 3555 break; 3556 } 3557 3558 extent = btrfs_item_ptr(l, slot, 3559 struct btrfs_extent_item); 3560 flags = btrfs_extent_flags(l, extent); 3561 generation = btrfs_extent_generation(l, extent); 3562 3563 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3564 (key.objectid < logical || 3565 key.objectid + bytes > 3566 logical + map->stripe_len)) { 3567 btrfs_err(fs_info, 3568 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3569 key.objectid, logical); 3570 spin_lock(&sctx->stat_lock); 3571 sctx->stat.uncorrectable_errors++; 3572 spin_unlock(&sctx->stat_lock); 3573 goto next; 3574 } 3575 3576 again: 3577 extent_logical = key.objectid; 3578 extent_len = bytes; 3579 3580 /* 3581 * trim extent to this stripe 3582 */ 3583 if (extent_logical < logical) { 3584 extent_len -= logical - extent_logical; 3585 extent_logical = logical; 3586 } 3587 if (extent_logical + extent_len > 3588 logical + map->stripe_len) { 3589 extent_len = logical + map->stripe_len - 3590 extent_logical; 3591 } 3592 3593 extent_physical = extent_logical - logical + physical; 3594 extent_dev = scrub_dev; 3595 extent_mirror_num = mirror_num; 3596 if (is_dev_replace) 3597 scrub_remap_extent(fs_info, extent_logical, 3598 extent_len, &extent_physical, 3599 &extent_dev, 3600 &extent_mirror_num); 3601 3602 ret = btrfs_lookup_csums_range(csum_root, 3603 extent_logical, 3604 extent_logical + 3605 extent_len - 1, 3606 &sctx->csum_list, 1); 3607 if (ret) 3608 goto out; 3609 3610 ret = scrub_extent(sctx, extent_logical, extent_len, 3611 extent_physical, extent_dev, flags, 3612 generation, extent_mirror_num, 3613 extent_logical - logical + physical); 3614 3615 scrub_free_csums(sctx); 3616 3617 if (ret) 3618 goto out; 3619 3620 if (extent_logical + extent_len < 3621 key.objectid + bytes) { 3622 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3623 /* 3624 * loop until we find next data stripe 3625 * or we have finished all stripes. 3626 */ 3627 loop: 3628 physical += map->stripe_len; 3629 ret = get_raid56_logic_offset(physical, 3630 num, map, &logical, 3631 &stripe_logical); 3632 logical += base; 3633 3634 if (ret && physical < physical_end) { 3635 stripe_logical += base; 3636 stripe_end = stripe_logical + 3637 increment; 3638 ret = scrub_raid56_parity(sctx, 3639 map, scrub_dev, ppath, 3640 stripe_logical, 3641 stripe_end); 3642 if (ret) 3643 goto out; 3644 goto loop; 3645 } 3646 } else { 3647 physical += map->stripe_len; 3648 logical += increment; 3649 } 3650 if (logical < key.objectid + bytes) { 3651 cond_resched(); 3652 goto again; 3653 } 3654 3655 if (physical >= physical_end) { 3656 stop_loop = 1; 3657 break; 3658 } 3659 } 3660 next: 3661 path->slots[0]++; 3662 } 3663 btrfs_release_path(path); 3664 skip: 3665 logical += increment; 3666 physical += map->stripe_len; 3667 spin_lock(&sctx->stat_lock); 3668 if (stop_loop) 3669 sctx->stat.last_physical = map->stripes[num].physical + 3670 length; 3671 else 3672 sctx->stat.last_physical = physical; 3673 spin_unlock(&sctx->stat_lock); 3674 if (stop_loop) 3675 break; 3676 } 3677 out: 3678 /* push queued extents */ 3679 scrub_submit(sctx); 3680 mutex_lock(&sctx->wr_ctx.wr_lock); 3681 scrub_wr_submit(sctx); 3682 mutex_unlock(&sctx->wr_ctx.wr_lock); 3683 3684 blk_finish_plug(&plug); 3685 btrfs_free_path(path); 3686 btrfs_free_path(ppath); 3687 return ret < 0 ? ret : 0; 3688 } 3689 3690 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3691 struct btrfs_device *scrub_dev, 3692 u64 chunk_offset, u64 length, 3693 u64 dev_offset, 3694 struct btrfs_block_group_cache *cache, 3695 int is_dev_replace) 3696 { 3697 struct btrfs_fs_info *fs_info = sctx->fs_info; 3698 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 3699 struct map_lookup *map; 3700 struct extent_map *em; 3701 int i; 3702 int ret = 0; 3703 3704 read_lock(&map_tree->map_tree.lock); 3705 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3706 read_unlock(&map_tree->map_tree.lock); 3707 3708 if (!em) { 3709 /* 3710 * Might have been an unused block group deleted by the cleaner 3711 * kthread or relocation. 3712 */ 3713 spin_lock(&cache->lock); 3714 if (!cache->removed) 3715 ret = -EINVAL; 3716 spin_unlock(&cache->lock); 3717 3718 return ret; 3719 } 3720 3721 map = em->map_lookup; 3722 if (em->start != chunk_offset) 3723 goto out; 3724 3725 if (em->len < length) 3726 goto out; 3727 3728 for (i = 0; i < map->num_stripes; ++i) { 3729 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3730 map->stripes[i].physical == dev_offset) { 3731 ret = scrub_stripe(sctx, map, scrub_dev, i, 3732 chunk_offset, length, 3733 is_dev_replace); 3734 if (ret) 3735 goto out; 3736 } 3737 } 3738 out: 3739 free_extent_map(em); 3740 3741 return ret; 3742 } 3743 3744 static noinline_for_stack 3745 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3746 struct btrfs_device *scrub_dev, u64 start, u64 end, 3747 int is_dev_replace) 3748 { 3749 struct btrfs_dev_extent *dev_extent = NULL; 3750 struct btrfs_path *path; 3751 struct btrfs_fs_info *fs_info = sctx->fs_info; 3752 struct btrfs_root *root = fs_info->dev_root; 3753 u64 length; 3754 u64 chunk_offset; 3755 int ret = 0; 3756 int ro_set; 3757 int slot; 3758 struct extent_buffer *l; 3759 struct btrfs_key key; 3760 struct btrfs_key found_key; 3761 struct btrfs_block_group_cache *cache; 3762 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3763 3764 path = btrfs_alloc_path(); 3765 if (!path) 3766 return -ENOMEM; 3767 3768 path->reada = READA_FORWARD; 3769 path->search_commit_root = 1; 3770 path->skip_locking = 1; 3771 3772 key.objectid = scrub_dev->devid; 3773 key.offset = 0ull; 3774 key.type = BTRFS_DEV_EXTENT_KEY; 3775 3776 while (1) { 3777 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3778 if (ret < 0) 3779 break; 3780 if (ret > 0) { 3781 if (path->slots[0] >= 3782 btrfs_header_nritems(path->nodes[0])) { 3783 ret = btrfs_next_leaf(root, path); 3784 if (ret < 0) 3785 break; 3786 if (ret > 0) { 3787 ret = 0; 3788 break; 3789 } 3790 } else { 3791 ret = 0; 3792 } 3793 } 3794 3795 l = path->nodes[0]; 3796 slot = path->slots[0]; 3797 3798 btrfs_item_key_to_cpu(l, &found_key, slot); 3799 3800 if (found_key.objectid != scrub_dev->devid) 3801 break; 3802 3803 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3804 break; 3805 3806 if (found_key.offset >= end) 3807 break; 3808 3809 if (found_key.offset < key.offset) 3810 break; 3811 3812 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3813 length = btrfs_dev_extent_length(l, dev_extent); 3814 3815 if (found_key.offset + length <= start) 3816 goto skip; 3817 3818 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3819 3820 /* 3821 * get a reference on the corresponding block group to prevent 3822 * the chunk from going away while we scrub it 3823 */ 3824 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3825 3826 /* some chunks are removed but not committed to disk yet, 3827 * continue scrubbing */ 3828 if (!cache) 3829 goto skip; 3830 3831 /* 3832 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3833 * to avoid deadlock caused by: 3834 * btrfs_inc_block_group_ro() 3835 * -> btrfs_wait_for_commit() 3836 * -> btrfs_commit_transaction() 3837 * -> btrfs_scrub_pause() 3838 */ 3839 scrub_pause_on(fs_info); 3840 ret = btrfs_inc_block_group_ro(fs_info, cache); 3841 if (!ret && is_dev_replace) { 3842 /* 3843 * If we are doing a device replace wait for any tasks 3844 * that started dellaloc right before we set the block 3845 * group to RO mode, as they might have just allocated 3846 * an extent from it or decided they could do a nocow 3847 * write. And if any such tasks did that, wait for their 3848 * ordered extents to complete and then commit the 3849 * current transaction, so that we can later see the new 3850 * extent items in the extent tree - the ordered extents 3851 * create delayed data references (for cow writes) when 3852 * they complete, which will be run and insert the 3853 * corresponding extent items into the extent tree when 3854 * we commit the transaction they used when running 3855 * inode.c:btrfs_finish_ordered_io(). We later use 3856 * the commit root of the extent tree to find extents 3857 * to copy from the srcdev into the tgtdev, and we don't 3858 * want to miss any new extents. 3859 */ 3860 btrfs_wait_block_group_reservations(cache); 3861 btrfs_wait_nocow_writers(cache); 3862 ret = btrfs_wait_ordered_roots(fs_info, -1, 3863 cache->key.objectid, 3864 cache->key.offset); 3865 if (ret > 0) { 3866 struct btrfs_trans_handle *trans; 3867 3868 trans = btrfs_join_transaction(root); 3869 if (IS_ERR(trans)) 3870 ret = PTR_ERR(trans); 3871 else 3872 ret = btrfs_commit_transaction(trans); 3873 if (ret) { 3874 scrub_pause_off(fs_info); 3875 btrfs_put_block_group(cache); 3876 break; 3877 } 3878 } 3879 } 3880 scrub_pause_off(fs_info); 3881 3882 if (ret == 0) { 3883 ro_set = 1; 3884 } else if (ret == -ENOSPC) { 3885 /* 3886 * btrfs_inc_block_group_ro return -ENOSPC when it 3887 * failed in creating new chunk for metadata. 3888 * It is not a problem for scrub/replace, because 3889 * metadata are always cowed, and our scrub paused 3890 * commit_transactions. 3891 */ 3892 ro_set = 0; 3893 } else { 3894 btrfs_warn(fs_info, 3895 "failed setting block group ro, ret=%d\n", 3896 ret); 3897 btrfs_put_block_group(cache); 3898 break; 3899 } 3900 3901 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3902 dev_replace->cursor_right = found_key.offset + length; 3903 dev_replace->cursor_left = found_key.offset; 3904 dev_replace->item_needs_writeback = 1; 3905 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3906 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3907 found_key.offset, cache, is_dev_replace); 3908 3909 /* 3910 * flush, submit all pending read and write bios, afterwards 3911 * wait for them. 3912 * Note that in the dev replace case, a read request causes 3913 * write requests that are submitted in the read completion 3914 * worker. Therefore in the current situation, it is required 3915 * that all write requests are flushed, so that all read and 3916 * write requests are really completed when bios_in_flight 3917 * changes to 0. 3918 */ 3919 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3920 scrub_submit(sctx); 3921 mutex_lock(&sctx->wr_ctx.wr_lock); 3922 scrub_wr_submit(sctx); 3923 mutex_unlock(&sctx->wr_ctx.wr_lock); 3924 3925 wait_event(sctx->list_wait, 3926 atomic_read(&sctx->bios_in_flight) == 0); 3927 3928 scrub_pause_on(fs_info); 3929 3930 /* 3931 * must be called before we decrease @scrub_paused. 3932 * make sure we don't block transaction commit while 3933 * we are waiting pending workers finished. 3934 */ 3935 wait_event(sctx->list_wait, 3936 atomic_read(&sctx->workers_pending) == 0); 3937 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3938 3939 scrub_pause_off(fs_info); 3940 3941 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3942 dev_replace->cursor_left = dev_replace->cursor_right; 3943 dev_replace->item_needs_writeback = 1; 3944 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3945 3946 if (ro_set) 3947 btrfs_dec_block_group_ro(cache); 3948 3949 /* 3950 * We might have prevented the cleaner kthread from deleting 3951 * this block group if it was already unused because we raced 3952 * and set it to RO mode first. So add it back to the unused 3953 * list, otherwise it might not ever be deleted unless a manual 3954 * balance is triggered or it becomes used and unused again. 3955 */ 3956 spin_lock(&cache->lock); 3957 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3958 btrfs_block_group_used(&cache->item) == 0) { 3959 spin_unlock(&cache->lock); 3960 spin_lock(&fs_info->unused_bgs_lock); 3961 if (list_empty(&cache->bg_list)) { 3962 btrfs_get_block_group(cache); 3963 list_add_tail(&cache->bg_list, 3964 &fs_info->unused_bgs); 3965 } 3966 spin_unlock(&fs_info->unused_bgs_lock); 3967 } else { 3968 spin_unlock(&cache->lock); 3969 } 3970 3971 btrfs_put_block_group(cache); 3972 if (ret) 3973 break; 3974 if (is_dev_replace && 3975 atomic64_read(&dev_replace->num_write_errors) > 0) { 3976 ret = -EIO; 3977 break; 3978 } 3979 if (sctx->stat.malloc_errors > 0) { 3980 ret = -ENOMEM; 3981 break; 3982 } 3983 skip: 3984 key.offset = found_key.offset + length; 3985 btrfs_release_path(path); 3986 } 3987 3988 btrfs_free_path(path); 3989 3990 return ret; 3991 } 3992 3993 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3994 struct btrfs_device *scrub_dev) 3995 { 3996 int i; 3997 u64 bytenr; 3998 u64 gen; 3999 int ret; 4000 struct btrfs_fs_info *fs_info = sctx->fs_info; 4001 4002 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4003 return -EIO; 4004 4005 /* Seed devices of a new filesystem has their own generation. */ 4006 if (scrub_dev->fs_devices != fs_info->fs_devices) 4007 gen = scrub_dev->generation; 4008 else 4009 gen = fs_info->last_trans_committed; 4010 4011 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 4012 bytenr = btrfs_sb_offset(i); 4013 if (bytenr + BTRFS_SUPER_INFO_SIZE > 4014 scrub_dev->commit_total_bytes) 4015 break; 4016 4017 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 4018 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 4019 NULL, 1, bytenr); 4020 if (ret) 4021 return ret; 4022 } 4023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4024 4025 return 0; 4026 } 4027 4028 /* 4029 * get a reference count on fs_info->scrub_workers. start worker if necessary 4030 */ 4031 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4032 int is_dev_replace) 4033 { 4034 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4035 int max_active = fs_info->thread_pool_size; 4036 4037 if (fs_info->scrub_workers_refcnt == 0) { 4038 if (is_dev_replace) 4039 fs_info->scrub_workers = 4040 btrfs_alloc_workqueue(fs_info, "scrub", flags, 4041 1, 4); 4042 else 4043 fs_info->scrub_workers = 4044 btrfs_alloc_workqueue(fs_info, "scrub", flags, 4045 max_active, 4); 4046 if (!fs_info->scrub_workers) 4047 goto fail_scrub_workers; 4048 4049 fs_info->scrub_wr_completion_workers = 4050 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4051 max_active, 2); 4052 if (!fs_info->scrub_wr_completion_workers) 4053 goto fail_scrub_wr_completion_workers; 4054 4055 fs_info->scrub_nocow_workers = 4056 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0); 4057 if (!fs_info->scrub_nocow_workers) 4058 goto fail_scrub_nocow_workers; 4059 fs_info->scrub_parity_workers = 4060 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4061 max_active, 2); 4062 if (!fs_info->scrub_parity_workers) 4063 goto fail_scrub_parity_workers; 4064 } 4065 ++fs_info->scrub_workers_refcnt; 4066 return 0; 4067 4068 fail_scrub_parity_workers: 4069 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4070 fail_scrub_nocow_workers: 4071 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4072 fail_scrub_wr_completion_workers: 4073 btrfs_destroy_workqueue(fs_info->scrub_workers); 4074 fail_scrub_workers: 4075 return -ENOMEM; 4076 } 4077 4078 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 4079 { 4080 if (--fs_info->scrub_workers_refcnt == 0) { 4081 btrfs_destroy_workqueue(fs_info->scrub_workers); 4082 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4083 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4084 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 4085 } 4086 WARN_ON(fs_info->scrub_workers_refcnt < 0); 4087 } 4088 4089 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4090 u64 end, struct btrfs_scrub_progress *progress, 4091 int readonly, int is_dev_replace) 4092 { 4093 struct scrub_ctx *sctx; 4094 int ret; 4095 struct btrfs_device *dev; 4096 struct rcu_string *name; 4097 4098 if (btrfs_fs_closing(fs_info)) 4099 return -EINVAL; 4100 4101 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4102 /* 4103 * in this case scrub is unable to calculate the checksum 4104 * the way scrub is implemented. Do not handle this 4105 * situation at all because it won't ever happen. 4106 */ 4107 btrfs_err(fs_info, 4108 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4109 fs_info->nodesize, 4110 BTRFS_STRIPE_LEN); 4111 return -EINVAL; 4112 } 4113 4114 if (fs_info->sectorsize != PAGE_SIZE) { 4115 /* not supported for data w/o checksums */ 4116 btrfs_err_rl(fs_info, 4117 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 4118 fs_info->sectorsize, PAGE_SIZE); 4119 return -EINVAL; 4120 } 4121 4122 if (fs_info->nodesize > 4123 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4124 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4125 /* 4126 * would exhaust the array bounds of pagev member in 4127 * struct scrub_block 4128 */ 4129 btrfs_err(fs_info, 4130 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4131 fs_info->nodesize, 4132 SCRUB_MAX_PAGES_PER_BLOCK, 4133 fs_info->sectorsize, 4134 SCRUB_MAX_PAGES_PER_BLOCK); 4135 return -EINVAL; 4136 } 4137 4138 4139 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4140 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4141 if (!dev || (dev->missing && !is_dev_replace)) { 4142 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4143 return -ENODEV; 4144 } 4145 4146 if (!is_dev_replace && !readonly && !dev->writeable) { 4147 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4148 rcu_read_lock(); 4149 name = rcu_dereference(dev->name); 4150 btrfs_err(fs_info, "scrub: device %s is not writable", 4151 name->str); 4152 rcu_read_unlock(); 4153 return -EROFS; 4154 } 4155 4156 mutex_lock(&fs_info->scrub_lock); 4157 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 4158 mutex_unlock(&fs_info->scrub_lock); 4159 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4160 return -EIO; 4161 } 4162 4163 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 4164 if (dev->scrub_device || 4165 (!is_dev_replace && 4166 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4167 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 4168 mutex_unlock(&fs_info->scrub_lock); 4169 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4170 return -EINPROGRESS; 4171 } 4172 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 4173 4174 ret = scrub_workers_get(fs_info, is_dev_replace); 4175 if (ret) { 4176 mutex_unlock(&fs_info->scrub_lock); 4177 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4178 return ret; 4179 } 4180 4181 sctx = scrub_setup_ctx(dev, is_dev_replace); 4182 if (IS_ERR(sctx)) { 4183 mutex_unlock(&fs_info->scrub_lock); 4184 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4185 scrub_workers_put(fs_info); 4186 return PTR_ERR(sctx); 4187 } 4188 sctx->readonly = readonly; 4189 dev->scrub_device = sctx; 4190 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4191 4192 /* 4193 * checking @scrub_pause_req here, we can avoid 4194 * race between committing transaction and scrubbing. 4195 */ 4196 __scrub_blocked_if_needed(fs_info); 4197 atomic_inc(&fs_info->scrubs_running); 4198 mutex_unlock(&fs_info->scrub_lock); 4199 4200 if (!is_dev_replace) { 4201 /* 4202 * by holding device list mutex, we can 4203 * kick off writing super in log tree sync. 4204 */ 4205 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4206 ret = scrub_supers(sctx, dev); 4207 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4208 } 4209 4210 if (!ret) 4211 ret = scrub_enumerate_chunks(sctx, dev, start, end, 4212 is_dev_replace); 4213 4214 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4215 atomic_dec(&fs_info->scrubs_running); 4216 wake_up(&fs_info->scrub_pause_wait); 4217 4218 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4219 4220 if (progress) 4221 memcpy(progress, &sctx->stat, sizeof(*progress)); 4222 4223 mutex_lock(&fs_info->scrub_lock); 4224 dev->scrub_device = NULL; 4225 scrub_workers_put(fs_info); 4226 mutex_unlock(&fs_info->scrub_lock); 4227 4228 scrub_put_ctx(sctx); 4229 4230 return ret; 4231 } 4232 4233 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4234 { 4235 mutex_lock(&fs_info->scrub_lock); 4236 atomic_inc(&fs_info->scrub_pause_req); 4237 while (atomic_read(&fs_info->scrubs_paused) != 4238 atomic_read(&fs_info->scrubs_running)) { 4239 mutex_unlock(&fs_info->scrub_lock); 4240 wait_event(fs_info->scrub_pause_wait, 4241 atomic_read(&fs_info->scrubs_paused) == 4242 atomic_read(&fs_info->scrubs_running)); 4243 mutex_lock(&fs_info->scrub_lock); 4244 } 4245 mutex_unlock(&fs_info->scrub_lock); 4246 } 4247 4248 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4249 { 4250 atomic_dec(&fs_info->scrub_pause_req); 4251 wake_up(&fs_info->scrub_pause_wait); 4252 } 4253 4254 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4255 { 4256 mutex_lock(&fs_info->scrub_lock); 4257 if (!atomic_read(&fs_info->scrubs_running)) { 4258 mutex_unlock(&fs_info->scrub_lock); 4259 return -ENOTCONN; 4260 } 4261 4262 atomic_inc(&fs_info->scrub_cancel_req); 4263 while (atomic_read(&fs_info->scrubs_running)) { 4264 mutex_unlock(&fs_info->scrub_lock); 4265 wait_event(fs_info->scrub_pause_wait, 4266 atomic_read(&fs_info->scrubs_running) == 0); 4267 mutex_lock(&fs_info->scrub_lock); 4268 } 4269 atomic_dec(&fs_info->scrub_cancel_req); 4270 mutex_unlock(&fs_info->scrub_lock); 4271 4272 return 0; 4273 } 4274 4275 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 4276 struct btrfs_device *dev) 4277 { 4278 struct scrub_ctx *sctx; 4279 4280 mutex_lock(&fs_info->scrub_lock); 4281 sctx = dev->scrub_device; 4282 if (!sctx) { 4283 mutex_unlock(&fs_info->scrub_lock); 4284 return -ENOTCONN; 4285 } 4286 atomic_inc(&sctx->cancel_req); 4287 while (dev->scrub_device) { 4288 mutex_unlock(&fs_info->scrub_lock); 4289 wait_event(fs_info->scrub_pause_wait, 4290 dev->scrub_device == NULL); 4291 mutex_lock(&fs_info->scrub_lock); 4292 } 4293 mutex_unlock(&fs_info->scrub_lock); 4294 4295 return 0; 4296 } 4297 4298 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4299 struct btrfs_scrub_progress *progress) 4300 { 4301 struct btrfs_device *dev; 4302 struct scrub_ctx *sctx = NULL; 4303 4304 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4305 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4306 if (dev) 4307 sctx = dev->scrub_device; 4308 if (sctx) 4309 memcpy(progress, &sctx->stat, sizeof(*progress)); 4310 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4311 4312 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4313 } 4314 4315 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4316 u64 extent_logical, u64 extent_len, 4317 u64 *extent_physical, 4318 struct btrfs_device **extent_dev, 4319 int *extent_mirror_num) 4320 { 4321 u64 mapped_length; 4322 struct btrfs_bio *bbio = NULL; 4323 int ret; 4324 4325 mapped_length = extent_len; 4326 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4327 &mapped_length, &bbio, 0); 4328 if (ret || !bbio || mapped_length < extent_len || 4329 !bbio->stripes[0].dev->bdev) { 4330 btrfs_put_bbio(bbio); 4331 return; 4332 } 4333 4334 *extent_physical = bbio->stripes[0].physical; 4335 *extent_mirror_num = bbio->mirror_num; 4336 *extent_dev = bbio->stripes[0].dev; 4337 btrfs_put_bbio(bbio); 4338 } 4339 4340 static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx, 4341 struct btrfs_device *dev, 4342 int is_dev_replace) 4343 { 4344 WARN_ON(wr_ctx->wr_curr_bio != NULL); 4345 4346 mutex_init(&wr_ctx->wr_lock); 4347 wr_ctx->wr_curr_bio = NULL; 4348 if (!is_dev_replace) 4349 return 0; 4350 4351 WARN_ON(!dev->bdev); 4352 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 4353 wr_ctx->tgtdev = dev; 4354 atomic_set(&wr_ctx->flush_all_writes, 0); 4355 return 0; 4356 } 4357 4358 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 4359 { 4360 mutex_lock(&wr_ctx->wr_lock); 4361 kfree(wr_ctx->wr_curr_bio); 4362 wr_ctx->wr_curr_bio = NULL; 4363 mutex_unlock(&wr_ctx->wr_lock); 4364 } 4365 4366 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4367 int mirror_num, u64 physical_for_dev_replace) 4368 { 4369 struct scrub_copy_nocow_ctx *nocow_ctx; 4370 struct btrfs_fs_info *fs_info = sctx->fs_info; 4371 4372 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4373 if (!nocow_ctx) { 4374 spin_lock(&sctx->stat_lock); 4375 sctx->stat.malloc_errors++; 4376 spin_unlock(&sctx->stat_lock); 4377 return -ENOMEM; 4378 } 4379 4380 scrub_pending_trans_workers_inc(sctx); 4381 4382 nocow_ctx->sctx = sctx; 4383 nocow_ctx->logical = logical; 4384 nocow_ctx->len = len; 4385 nocow_ctx->mirror_num = mirror_num; 4386 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4387 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4388 copy_nocow_pages_worker, NULL, NULL); 4389 INIT_LIST_HEAD(&nocow_ctx->inodes); 4390 btrfs_queue_work(fs_info->scrub_nocow_workers, 4391 &nocow_ctx->work); 4392 4393 return 0; 4394 } 4395 4396 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4397 { 4398 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4399 struct scrub_nocow_inode *nocow_inode; 4400 4401 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4402 if (!nocow_inode) 4403 return -ENOMEM; 4404 nocow_inode->inum = inum; 4405 nocow_inode->offset = offset; 4406 nocow_inode->root = root; 4407 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4408 return 0; 4409 } 4410 4411 #define COPY_COMPLETE 1 4412 4413 static void copy_nocow_pages_worker(struct btrfs_work *work) 4414 { 4415 struct scrub_copy_nocow_ctx *nocow_ctx = 4416 container_of(work, struct scrub_copy_nocow_ctx, work); 4417 struct scrub_ctx *sctx = nocow_ctx->sctx; 4418 struct btrfs_fs_info *fs_info = sctx->fs_info; 4419 struct btrfs_root *root = fs_info->extent_root; 4420 u64 logical = nocow_ctx->logical; 4421 u64 len = nocow_ctx->len; 4422 int mirror_num = nocow_ctx->mirror_num; 4423 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4424 int ret; 4425 struct btrfs_trans_handle *trans = NULL; 4426 struct btrfs_path *path; 4427 int not_written = 0; 4428 4429 path = btrfs_alloc_path(); 4430 if (!path) { 4431 spin_lock(&sctx->stat_lock); 4432 sctx->stat.malloc_errors++; 4433 spin_unlock(&sctx->stat_lock); 4434 not_written = 1; 4435 goto out; 4436 } 4437 4438 trans = btrfs_join_transaction(root); 4439 if (IS_ERR(trans)) { 4440 not_written = 1; 4441 goto out; 4442 } 4443 4444 ret = iterate_inodes_from_logical(logical, fs_info, path, 4445 record_inode_for_nocow, nocow_ctx); 4446 if (ret != 0 && ret != -ENOENT) { 4447 btrfs_warn(fs_info, 4448 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d", 4449 logical, physical_for_dev_replace, len, mirror_num, 4450 ret); 4451 not_written = 1; 4452 goto out; 4453 } 4454 4455 btrfs_end_transaction(trans); 4456 trans = NULL; 4457 while (!list_empty(&nocow_ctx->inodes)) { 4458 struct scrub_nocow_inode *entry; 4459 entry = list_first_entry(&nocow_ctx->inodes, 4460 struct scrub_nocow_inode, 4461 list); 4462 list_del_init(&entry->list); 4463 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4464 entry->root, nocow_ctx); 4465 kfree(entry); 4466 if (ret == COPY_COMPLETE) { 4467 ret = 0; 4468 break; 4469 } else if (ret) { 4470 break; 4471 } 4472 } 4473 out: 4474 while (!list_empty(&nocow_ctx->inodes)) { 4475 struct scrub_nocow_inode *entry; 4476 entry = list_first_entry(&nocow_ctx->inodes, 4477 struct scrub_nocow_inode, 4478 list); 4479 list_del_init(&entry->list); 4480 kfree(entry); 4481 } 4482 if (trans && !IS_ERR(trans)) 4483 btrfs_end_transaction(trans); 4484 if (not_written) 4485 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4486 num_uncorrectable_read_errors); 4487 4488 btrfs_free_path(path); 4489 kfree(nocow_ctx); 4490 4491 scrub_pending_trans_workers_dec(sctx); 4492 } 4493 4494 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len, 4495 u64 logical) 4496 { 4497 struct extent_state *cached_state = NULL; 4498 struct btrfs_ordered_extent *ordered; 4499 struct extent_io_tree *io_tree; 4500 struct extent_map *em; 4501 u64 lockstart = start, lockend = start + len - 1; 4502 int ret = 0; 4503 4504 io_tree = &inode->io_tree; 4505 4506 lock_extent_bits(io_tree, lockstart, lockend, &cached_state); 4507 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4508 if (ordered) { 4509 btrfs_put_ordered_extent(ordered); 4510 ret = 1; 4511 goto out_unlock; 4512 } 4513 4514 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4515 if (IS_ERR(em)) { 4516 ret = PTR_ERR(em); 4517 goto out_unlock; 4518 } 4519 4520 /* 4521 * This extent does not actually cover the logical extent anymore, 4522 * move on to the next inode. 4523 */ 4524 if (em->block_start > logical || 4525 em->block_start + em->block_len < logical + len) { 4526 free_extent_map(em); 4527 ret = 1; 4528 goto out_unlock; 4529 } 4530 free_extent_map(em); 4531 4532 out_unlock: 4533 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4534 GFP_NOFS); 4535 return ret; 4536 } 4537 4538 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4539 struct scrub_copy_nocow_ctx *nocow_ctx) 4540 { 4541 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info; 4542 struct btrfs_key key; 4543 struct inode *inode; 4544 struct page *page; 4545 struct btrfs_root *local_root; 4546 struct extent_io_tree *io_tree; 4547 u64 physical_for_dev_replace; 4548 u64 nocow_ctx_logical; 4549 u64 len = nocow_ctx->len; 4550 unsigned long index; 4551 int srcu_index; 4552 int ret = 0; 4553 int err = 0; 4554 4555 key.objectid = root; 4556 key.type = BTRFS_ROOT_ITEM_KEY; 4557 key.offset = (u64)-1; 4558 4559 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4560 4561 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4562 if (IS_ERR(local_root)) { 4563 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4564 return PTR_ERR(local_root); 4565 } 4566 4567 key.type = BTRFS_INODE_ITEM_KEY; 4568 key.objectid = inum; 4569 key.offset = 0; 4570 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4571 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4572 if (IS_ERR(inode)) 4573 return PTR_ERR(inode); 4574 4575 /* Avoid truncate/dio/punch hole.. */ 4576 inode_lock(inode); 4577 inode_dio_wait(inode); 4578 4579 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4580 io_tree = &BTRFS_I(inode)->io_tree; 4581 nocow_ctx_logical = nocow_ctx->logical; 4582 4583 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4584 nocow_ctx_logical); 4585 if (ret) { 4586 ret = ret > 0 ? 0 : ret; 4587 goto out; 4588 } 4589 4590 while (len >= PAGE_SIZE) { 4591 index = offset >> PAGE_SHIFT; 4592 again: 4593 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4594 if (!page) { 4595 btrfs_err(fs_info, "find_or_create_page() failed"); 4596 ret = -ENOMEM; 4597 goto out; 4598 } 4599 4600 if (PageUptodate(page)) { 4601 if (PageDirty(page)) 4602 goto next_page; 4603 } else { 4604 ClearPageError(page); 4605 err = extent_read_full_page(io_tree, page, 4606 btrfs_get_extent, 4607 nocow_ctx->mirror_num); 4608 if (err) { 4609 ret = err; 4610 goto next_page; 4611 } 4612 4613 lock_page(page); 4614 /* 4615 * If the page has been remove from the page cache, 4616 * the data on it is meaningless, because it may be 4617 * old one, the new data may be written into the new 4618 * page in the page cache. 4619 */ 4620 if (page->mapping != inode->i_mapping) { 4621 unlock_page(page); 4622 put_page(page); 4623 goto again; 4624 } 4625 if (!PageUptodate(page)) { 4626 ret = -EIO; 4627 goto next_page; 4628 } 4629 } 4630 4631 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4632 nocow_ctx_logical); 4633 if (ret) { 4634 ret = ret > 0 ? 0 : ret; 4635 goto next_page; 4636 } 4637 4638 err = write_page_nocow(nocow_ctx->sctx, 4639 physical_for_dev_replace, page); 4640 if (err) 4641 ret = err; 4642 next_page: 4643 unlock_page(page); 4644 put_page(page); 4645 4646 if (ret) 4647 break; 4648 4649 offset += PAGE_SIZE; 4650 physical_for_dev_replace += PAGE_SIZE; 4651 nocow_ctx_logical += PAGE_SIZE; 4652 len -= PAGE_SIZE; 4653 } 4654 ret = COPY_COMPLETE; 4655 out: 4656 inode_unlock(inode); 4657 iput(inode); 4658 return ret; 4659 } 4660 4661 static int write_page_nocow(struct scrub_ctx *sctx, 4662 u64 physical_for_dev_replace, struct page *page) 4663 { 4664 struct bio *bio; 4665 struct btrfs_device *dev; 4666 int ret; 4667 4668 dev = sctx->wr_ctx.tgtdev; 4669 if (!dev) 4670 return -EIO; 4671 if (!dev->bdev) { 4672 btrfs_warn_rl(dev->fs_info, 4673 "scrub write_page_nocow(bdev == NULL) is unexpected"); 4674 return -EIO; 4675 } 4676 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 4677 if (!bio) { 4678 spin_lock(&sctx->stat_lock); 4679 sctx->stat.malloc_errors++; 4680 spin_unlock(&sctx->stat_lock); 4681 return -ENOMEM; 4682 } 4683 bio->bi_iter.bi_size = 0; 4684 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4685 bio->bi_bdev = dev->bdev; 4686 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 4687 ret = bio_add_page(bio, page, PAGE_SIZE, 0); 4688 if (ret != PAGE_SIZE) { 4689 leave_with_eio: 4690 bio_put(bio); 4691 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4692 return -EIO; 4693 } 4694 4695 if (btrfsic_submit_bio_wait(bio)) 4696 goto leave_with_eio; 4697 4698 bio_put(bio); 4699 return 0; 4700 } 4701