1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_recover { 67 atomic_t refs; 68 struct btrfs_bio *bbio; 69 u64 map_length; 70 }; 71 72 struct scrub_page { 73 struct scrub_block *sblock; 74 struct page *page; 75 struct btrfs_device *dev; 76 struct list_head list; 77 u64 flags; /* extent flags */ 78 u64 generation; 79 u64 logical; 80 u64 physical; 81 u64 physical_for_dev_replace; 82 atomic_t refs; 83 struct { 84 unsigned int mirror_num:8; 85 unsigned int have_csum:1; 86 unsigned int io_error:1; 87 }; 88 u8 csum[BTRFS_CSUM_SIZE]; 89 90 struct scrub_recover *recover; 91 }; 92 93 struct scrub_bio { 94 int index; 95 struct scrub_ctx *sctx; 96 struct btrfs_device *dev; 97 struct bio *bio; 98 int err; 99 u64 logical; 100 u64 physical; 101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 103 #else 104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 105 #endif 106 int page_count; 107 int next_free; 108 struct btrfs_work work; 109 }; 110 111 struct scrub_block { 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 113 int page_count; 114 atomic_t outstanding_pages; 115 atomic_t refs; /* free mem on transition to zero */ 116 struct scrub_ctx *sctx; 117 struct scrub_parity *sparity; 118 struct { 119 unsigned int header_error:1; 120 unsigned int checksum_error:1; 121 unsigned int no_io_error_seen:1; 122 unsigned int generation_error:1; /* also sets header_error */ 123 124 /* The following is for the data used to check parity */ 125 /* It is for the data with checksum */ 126 unsigned int data_corrected:1; 127 }; 128 struct btrfs_work work; 129 }; 130 131 /* Used for the chunks with parity stripe such RAID5/6 */ 132 struct scrub_parity { 133 struct scrub_ctx *sctx; 134 135 struct btrfs_device *scrub_dev; 136 137 u64 logic_start; 138 139 u64 logic_end; 140 141 int nsectors; 142 143 int stripe_len; 144 145 atomic_t refs; 146 147 struct list_head spages; 148 149 /* Work of parity check and repair */ 150 struct btrfs_work work; 151 152 /* Mark the parity blocks which have data */ 153 unsigned long *dbitmap; 154 155 /* 156 * Mark the parity blocks which have data, but errors happen when 157 * read data or check data 158 */ 159 unsigned long *ebitmap; 160 161 unsigned long bitmap[0]; 162 }; 163 164 struct scrub_wr_ctx { 165 struct scrub_bio *wr_curr_bio; 166 struct btrfs_device *tgtdev; 167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 168 atomic_t flush_all_writes; 169 struct mutex wr_lock; 170 }; 171 172 struct scrub_ctx { 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 174 struct btrfs_root *dev_root; 175 int first_free; 176 int curr; 177 atomic_t bios_in_flight; 178 atomic_t workers_pending; 179 spinlock_t list_lock; 180 wait_queue_head_t list_wait; 181 u16 csum_size; 182 struct list_head csum_list; 183 atomic_t cancel_req; 184 int readonly; 185 int pages_per_rd_bio; 186 u32 sectorsize; 187 u32 nodesize; 188 189 int is_dev_replace; 190 struct scrub_wr_ctx wr_ctx; 191 192 /* 193 * statistics 194 */ 195 struct btrfs_scrub_progress stat; 196 spinlock_t stat_lock; 197 198 /* 199 * Use a ref counter to avoid use-after-free issues. Scrub workers 200 * decrement bios_in_flight and workers_pending and then do a wakeup 201 * on the list_wait wait queue. We must ensure the main scrub task 202 * doesn't free the scrub context before or while the workers are 203 * doing the wakeup() call. 204 */ 205 atomic_t refs; 206 }; 207 208 struct scrub_fixup_nodatasum { 209 struct scrub_ctx *sctx; 210 struct btrfs_device *dev; 211 u64 logical; 212 struct btrfs_root *root; 213 struct btrfs_work work; 214 int mirror_num; 215 }; 216 217 struct scrub_nocow_inode { 218 u64 inum; 219 u64 offset; 220 u64 root; 221 struct list_head list; 222 }; 223 224 struct scrub_copy_nocow_ctx { 225 struct scrub_ctx *sctx; 226 u64 logical; 227 u64 len; 228 int mirror_num; 229 u64 physical_for_dev_replace; 230 struct list_head inodes; 231 struct btrfs_work work; 232 }; 233 234 struct scrub_warning { 235 struct btrfs_path *path; 236 u64 extent_item_size; 237 const char *errstr; 238 sector_t sector; 239 u64 logical; 240 struct btrfs_device *dev; 241 }; 242 243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 249 struct scrub_block *sblocks_for_recheck); 250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 251 struct scrub_block *sblock, int is_metadata, 252 int have_csum, u8 *csum, u64 generation, 253 u16 csum_size, int retry_failed_mirror); 254 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 255 struct scrub_block *sblock, 256 int is_metadata, int have_csum, 257 const u8 *csum, u64 generation, 258 u16 csum_size); 259 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 260 struct scrub_block *sblock_good); 261 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 262 struct scrub_block *sblock_good, 263 int page_num, int force_write); 264 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 265 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 266 int page_num); 267 static int scrub_checksum_data(struct scrub_block *sblock); 268 static int scrub_checksum_tree_block(struct scrub_block *sblock); 269 static int scrub_checksum_super(struct scrub_block *sblock); 270 static void scrub_block_get(struct scrub_block *sblock); 271 static void scrub_block_put(struct scrub_block *sblock); 272 static void scrub_page_get(struct scrub_page *spage); 273 static void scrub_page_put(struct scrub_page *spage); 274 static void scrub_parity_get(struct scrub_parity *sparity); 275 static void scrub_parity_put(struct scrub_parity *sparity); 276 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 277 struct scrub_page *spage); 278 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 279 u64 physical, struct btrfs_device *dev, u64 flags, 280 u64 gen, int mirror_num, u8 *csum, int force, 281 u64 physical_for_dev_replace); 282 static void scrub_bio_end_io(struct bio *bio); 283 static void scrub_bio_end_io_worker(struct btrfs_work *work); 284 static void scrub_block_complete(struct scrub_block *sblock); 285 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 286 u64 extent_logical, u64 extent_len, 287 u64 *extent_physical, 288 struct btrfs_device **extent_dev, 289 int *extent_mirror_num); 290 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 291 struct scrub_wr_ctx *wr_ctx, 292 struct btrfs_fs_info *fs_info, 293 struct btrfs_device *dev, 294 int is_dev_replace); 295 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 296 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 297 struct scrub_page *spage); 298 static void scrub_wr_submit(struct scrub_ctx *sctx); 299 static void scrub_wr_bio_end_io(struct bio *bio); 300 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 301 static int write_page_nocow(struct scrub_ctx *sctx, 302 u64 physical_for_dev_replace, struct page *page); 303 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 304 struct scrub_copy_nocow_ctx *ctx); 305 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 306 int mirror_num, u64 physical_for_dev_replace); 307 static void copy_nocow_pages_worker(struct btrfs_work *work); 308 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 309 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 310 static void scrub_put_ctx(struct scrub_ctx *sctx); 311 312 313 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 314 { 315 atomic_inc(&sctx->refs); 316 atomic_inc(&sctx->bios_in_flight); 317 } 318 319 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 320 { 321 atomic_dec(&sctx->bios_in_flight); 322 wake_up(&sctx->list_wait); 323 scrub_put_ctx(sctx); 324 } 325 326 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 327 { 328 while (atomic_read(&fs_info->scrub_pause_req)) { 329 mutex_unlock(&fs_info->scrub_lock); 330 wait_event(fs_info->scrub_pause_wait, 331 atomic_read(&fs_info->scrub_pause_req) == 0); 332 mutex_lock(&fs_info->scrub_lock); 333 } 334 } 335 336 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 337 { 338 atomic_inc(&fs_info->scrubs_paused); 339 wake_up(&fs_info->scrub_pause_wait); 340 } 341 342 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 343 { 344 mutex_lock(&fs_info->scrub_lock); 345 __scrub_blocked_if_needed(fs_info); 346 atomic_dec(&fs_info->scrubs_paused); 347 mutex_unlock(&fs_info->scrub_lock); 348 349 wake_up(&fs_info->scrub_pause_wait); 350 } 351 352 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 353 { 354 scrub_pause_on(fs_info); 355 scrub_pause_off(fs_info); 356 } 357 358 /* 359 * used for workers that require transaction commits (i.e., for the 360 * NOCOW case) 361 */ 362 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 363 { 364 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 365 366 atomic_inc(&sctx->refs); 367 /* 368 * increment scrubs_running to prevent cancel requests from 369 * completing as long as a worker is running. we must also 370 * increment scrubs_paused to prevent deadlocking on pause 371 * requests used for transactions commits (as the worker uses a 372 * transaction context). it is safe to regard the worker 373 * as paused for all matters practical. effectively, we only 374 * avoid cancellation requests from completing. 375 */ 376 mutex_lock(&fs_info->scrub_lock); 377 atomic_inc(&fs_info->scrubs_running); 378 atomic_inc(&fs_info->scrubs_paused); 379 mutex_unlock(&fs_info->scrub_lock); 380 381 /* 382 * check if @scrubs_running=@scrubs_paused condition 383 * inside wait_event() is not an atomic operation. 384 * which means we may inc/dec @scrub_running/paused 385 * at any time. Let's wake up @scrub_pause_wait as 386 * much as we can to let commit transaction blocked less. 387 */ 388 wake_up(&fs_info->scrub_pause_wait); 389 390 atomic_inc(&sctx->workers_pending); 391 } 392 393 /* used for workers that require transaction commits */ 394 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 395 { 396 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 397 398 /* 399 * see scrub_pending_trans_workers_inc() why we're pretending 400 * to be paused in the scrub counters 401 */ 402 mutex_lock(&fs_info->scrub_lock); 403 atomic_dec(&fs_info->scrubs_running); 404 atomic_dec(&fs_info->scrubs_paused); 405 mutex_unlock(&fs_info->scrub_lock); 406 atomic_dec(&sctx->workers_pending); 407 wake_up(&fs_info->scrub_pause_wait); 408 wake_up(&sctx->list_wait); 409 scrub_put_ctx(sctx); 410 } 411 412 static void scrub_free_csums(struct scrub_ctx *sctx) 413 { 414 while (!list_empty(&sctx->csum_list)) { 415 struct btrfs_ordered_sum *sum; 416 sum = list_first_entry(&sctx->csum_list, 417 struct btrfs_ordered_sum, list); 418 list_del(&sum->list); 419 kfree(sum); 420 } 421 } 422 423 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 424 { 425 int i; 426 427 if (!sctx) 428 return; 429 430 scrub_free_wr_ctx(&sctx->wr_ctx); 431 432 /* this can happen when scrub is cancelled */ 433 if (sctx->curr != -1) { 434 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 435 436 for (i = 0; i < sbio->page_count; i++) { 437 WARN_ON(!sbio->pagev[i]->page); 438 scrub_block_put(sbio->pagev[i]->sblock); 439 } 440 bio_put(sbio->bio); 441 } 442 443 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 444 struct scrub_bio *sbio = sctx->bios[i]; 445 446 if (!sbio) 447 break; 448 kfree(sbio); 449 } 450 451 scrub_free_csums(sctx); 452 kfree(sctx); 453 } 454 455 static void scrub_put_ctx(struct scrub_ctx *sctx) 456 { 457 if (atomic_dec_and_test(&sctx->refs)) 458 scrub_free_ctx(sctx); 459 } 460 461 static noinline_for_stack 462 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 463 { 464 struct scrub_ctx *sctx; 465 int i; 466 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 467 int ret; 468 469 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 470 if (!sctx) 471 goto nomem; 472 atomic_set(&sctx->refs, 1); 473 sctx->is_dev_replace = is_dev_replace; 474 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 475 sctx->curr = -1; 476 sctx->dev_root = dev->dev_root; 477 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 478 struct scrub_bio *sbio; 479 480 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 481 if (!sbio) 482 goto nomem; 483 sctx->bios[i] = sbio; 484 485 sbio->index = i; 486 sbio->sctx = sctx; 487 sbio->page_count = 0; 488 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 489 scrub_bio_end_io_worker, NULL, NULL); 490 491 if (i != SCRUB_BIOS_PER_SCTX - 1) 492 sctx->bios[i]->next_free = i + 1; 493 else 494 sctx->bios[i]->next_free = -1; 495 } 496 sctx->first_free = 0; 497 sctx->nodesize = dev->dev_root->nodesize; 498 sctx->sectorsize = dev->dev_root->sectorsize; 499 atomic_set(&sctx->bios_in_flight, 0); 500 atomic_set(&sctx->workers_pending, 0); 501 atomic_set(&sctx->cancel_req, 0); 502 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 503 INIT_LIST_HEAD(&sctx->csum_list); 504 505 spin_lock_init(&sctx->list_lock); 506 spin_lock_init(&sctx->stat_lock); 507 init_waitqueue_head(&sctx->list_wait); 508 509 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 510 fs_info->dev_replace.tgtdev, is_dev_replace); 511 if (ret) { 512 scrub_free_ctx(sctx); 513 return ERR_PTR(ret); 514 } 515 return sctx; 516 517 nomem: 518 scrub_free_ctx(sctx); 519 return ERR_PTR(-ENOMEM); 520 } 521 522 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 523 void *warn_ctx) 524 { 525 u64 isize; 526 u32 nlink; 527 int ret; 528 int i; 529 struct extent_buffer *eb; 530 struct btrfs_inode_item *inode_item; 531 struct scrub_warning *swarn = warn_ctx; 532 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 533 struct inode_fs_paths *ipath = NULL; 534 struct btrfs_root *local_root; 535 struct btrfs_key root_key; 536 struct btrfs_key key; 537 538 root_key.objectid = root; 539 root_key.type = BTRFS_ROOT_ITEM_KEY; 540 root_key.offset = (u64)-1; 541 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 542 if (IS_ERR(local_root)) { 543 ret = PTR_ERR(local_root); 544 goto err; 545 } 546 547 /* 548 * this makes the path point to (inum INODE_ITEM ioff) 549 */ 550 key.objectid = inum; 551 key.type = BTRFS_INODE_ITEM_KEY; 552 key.offset = 0; 553 554 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 555 if (ret) { 556 btrfs_release_path(swarn->path); 557 goto err; 558 } 559 560 eb = swarn->path->nodes[0]; 561 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 562 struct btrfs_inode_item); 563 isize = btrfs_inode_size(eb, inode_item); 564 nlink = btrfs_inode_nlink(eb, inode_item); 565 btrfs_release_path(swarn->path); 566 567 ipath = init_ipath(4096, local_root, swarn->path); 568 if (IS_ERR(ipath)) { 569 ret = PTR_ERR(ipath); 570 ipath = NULL; 571 goto err; 572 } 573 ret = paths_from_inode(inum, ipath); 574 575 if (ret < 0) 576 goto err; 577 578 /* 579 * we deliberately ignore the bit ipath might have been too small to 580 * hold all of the paths here 581 */ 582 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 583 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 584 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 585 "length %llu, links %u (path: %s)\n", swarn->errstr, 586 swarn->logical, rcu_str_deref(swarn->dev->name), 587 (unsigned long long)swarn->sector, root, inum, offset, 588 min(isize - offset, (u64)PAGE_SIZE), nlink, 589 (char *)(unsigned long)ipath->fspath->val[i]); 590 591 free_ipath(ipath); 592 return 0; 593 594 err: 595 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 596 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 597 "resolving failed with ret=%d\n", swarn->errstr, 598 swarn->logical, rcu_str_deref(swarn->dev->name), 599 (unsigned long long)swarn->sector, root, inum, offset, ret); 600 601 free_ipath(ipath); 602 return 0; 603 } 604 605 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 606 { 607 struct btrfs_device *dev; 608 struct btrfs_fs_info *fs_info; 609 struct btrfs_path *path; 610 struct btrfs_key found_key; 611 struct extent_buffer *eb; 612 struct btrfs_extent_item *ei; 613 struct scrub_warning swarn; 614 unsigned long ptr = 0; 615 u64 extent_item_pos; 616 u64 flags = 0; 617 u64 ref_root; 618 u32 item_size; 619 u8 ref_level; 620 int ret; 621 622 WARN_ON(sblock->page_count < 1); 623 dev = sblock->pagev[0]->dev; 624 fs_info = sblock->sctx->dev_root->fs_info; 625 626 path = btrfs_alloc_path(); 627 if (!path) 628 return; 629 630 swarn.sector = (sblock->pagev[0]->physical) >> 9; 631 swarn.logical = sblock->pagev[0]->logical; 632 swarn.errstr = errstr; 633 swarn.dev = NULL; 634 635 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 636 &flags); 637 if (ret < 0) 638 goto out; 639 640 extent_item_pos = swarn.logical - found_key.objectid; 641 swarn.extent_item_size = found_key.offset; 642 643 eb = path->nodes[0]; 644 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 645 item_size = btrfs_item_size_nr(eb, path->slots[0]); 646 647 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 648 do { 649 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 650 item_size, &ref_root, 651 &ref_level); 652 printk_in_rcu(KERN_WARNING 653 "BTRFS: %s at logical %llu on dev %s, " 654 "sector %llu: metadata %s (level %d) in tree " 655 "%llu\n", errstr, swarn.logical, 656 rcu_str_deref(dev->name), 657 (unsigned long long)swarn.sector, 658 ref_level ? "node" : "leaf", 659 ret < 0 ? -1 : ref_level, 660 ret < 0 ? -1 : ref_root); 661 } while (ret != 1); 662 btrfs_release_path(path); 663 } else { 664 btrfs_release_path(path); 665 swarn.path = path; 666 swarn.dev = dev; 667 iterate_extent_inodes(fs_info, found_key.objectid, 668 extent_item_pos, 1, 669 scrub_print_warning_inode, &swarn); 670 } 671 672 out: 673 btrfs_free_path(path); 674 } 675 676 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 677 { 678 struct page *page = NULL; 679 unsigned long index; 680 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 681 int ret; 682 int corrected = 0; 683 struct btrfs_key key; 684 struct inode *inode = NULL; 685 struct btrfs_fs_info *fs_info; 686 u64 end = offset + PAGE_SIZE - 1; 687 struct btrfs_root *local_root; 688 int srcu_index; 689 690 key.objectid = root; 691 key.type = BTRFS_ROOT_ITEM_KEY; 692 key.offset = (u64)-1; 693 694 fs_info = fixup->root->fs_info; 695 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 696 697 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 698 if (IS_ERR(local_root)) { 699 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 700 return PTR_ERR(local_root); 701 } 702 703 key.type = BTRFS_INODE_ITEM_KEY; 704 key.objectid = inum; 705 key.offset = 0; 706 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 707 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 708 if (IS_ERR(inode)) 709 return PTR_ERR(inode); 710 711 index = offset >> PAGE_CACHE_SHIFT; 712 713 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 714 if (!page) { 715 ret = -ENOMEM; 716 goto out; 717 } 718 719 if (PageUptodate(page)) { 720 if (PageDirty(page)) { 721 /* 722 * we need to write the data to the defect sector. the 723 * data that was in that sector is not in memory, 724 * because the page was modified. we must not write the 725 * modified page to that sector. 726 * 727 * TODO: what could be done here: wait for the delalloc 728 * runner to write out that page (might involve 729 * COW) and see whether the sector is still 730 * referenced afterwards. 731 * 732 * For the meantime, we'll treat this error 733 * incorrectable, although there is a chance that a 734 * later scrub will find the bad sector again and that 735 * there's no dirty page in memory, then. 736 */ 737 ret = -EIO; 738 goto out; 739 } 740 ret = repair_io_failure(inode, offset, PAGE_SIZE, 741 fixup->logical, page, 742 offset - page_offset(page), 743 fixup->mirror_num); 744 unlock_page(page); 745 corrected = !ret; 746 } else { 747 /* 748 * we need to get good data first. the general readpage path 749 * will call repair_io_failure for us, we just have to make 750 * sure we read the bad mirror. 751 */ 752 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 753 EXTENT_DAMAGED, GFP_NOFS); 754 if (ret) { 755 /* set_extent_bits should give proper error */ 756 WARN_ON(ret > 0); 757 if (ret > 0) 758 ret = -EFAULT; 759 goto out; 760 } 761 762 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 763 btrfs_get_extent, 764 fixup->mirror_num); 765 wait_on_page_locked(page); 766 767 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 768 end, EXTENT_DAMAGED, 0, NULL); 769 if (!corrected) 770 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 771 EXTENT_DAMAGED, GFP_NOFS); 772 } 773 774 out: 775 if (page) 776 put_page(page); 777 778 iput(inode); 779 780 if (ret < 0) 781 return ret; 782 783 if (ret == 0 && corrected) { 784 /* 785 * we only need to call readpage for one of the inodes belonging 786 * to this extent. so make iterate_extent_inodes stop 787 */ 788 return 1; 789 } 790 791 return -EIO; 792 } 793 794 static void scrub_fixup_nodatasum(struct btrfs_work *work) 795 { 796 int ret; 797 struct scrub_fixup_nodatasum *fixup; 798 struct scrub_ctx *sctx; 799 struct btrfs_trans_handle *trans = NULL; 800 struct btrfs_path *path; 801 int uncorrectable = 0; 802 803 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 804 sctx = fixup->sctx; 805 806 path = btrfs_alloc_path(); 807 if (!path) { 808 spin_lock(&sctx->stat_lock); 809 ++sctx->stat.malloc_errors; 810 spin_unlock(&sctx->stat_lock); 811 uncorrectable = 1; 812 goto out; 813 } 814 815 trans = btrfs_join_transaction(fixup->root); 816 if (IS_ERR(trans)) { 817 uncorrectable = 1; 818 goto out; 819 } 820 821 /* 822 * the idea is to trigger a regular read through the standard path. we 823 * read a page from the (failed) logical address by specifying the 824 * corresponding copynum of the failed sector. thus, that readpage is 825 * expected to fail. 826 * that is the point where on-the-fly error correction will kick in 827 * (once it's finished) and rewrite the failed sector if a good copy 828 * can be found. 829 */ 830 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 831 path, scrub_fixup_readpage, 832 fixup); 833 if (ret < 0) { 834 uncorrectable = 1; 835 goto out; 836 } 837 WARN_ON(ret != 1); 838 839 spin_lock(&sctx->stat_lock); 840 ++sctx->stat.corrected_errors; 841 spin_unlock(&sctx->stat_lock); 842 843 out: 844 if (trans && !IS_ERR(trans)) 845 btrfs_end_transaction(trans, fixup->root); 846 if (uncorrectable) { 847 spin_lock(&sctx->stat_lock); 848 ++sctx->stat.uncorrectable_errors; 849 spin_unlock(&sctx->stat_lock); 850 btrfs_dev_replace_stats_inc( 851 &sctx->dev_root->fs_info->dev_replace. 852 num_uncorrectable_read_errors); 853 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 854 "unable to fixup (nodatasum) error at logical %llu on dev %s\n", 855 fixup->logical, rcu_str_deref(fixup->dev->name)); 856 } 857 858 btrfs_free_path(path); 859 kfree(fixup); 860 861 scrub_pending_trans_workers_dec(sctx); 862 } 863 864 static inline void scrub_get_recover(struct scrub_recover *recover) 865 { 866 atomic_inc(&recover->refs); 867 } 868 869 static inline void scrub_put_recover(struct scrub_recover *recover) 870 { 871 if (atomic_dec_and_test(&recover->refs)) { 872 btrfs_put_bbio(recover->bbio); 873 kfree(recover); 874 } 875 } 876 877 /* 878 * scrub_handle_errored_block gets called when either verification of the 879 * pages failed or the bio failed to read, e.g. with EIO. In the latter 880 * case, this function handles all pages in the bio, even though only one 881 * may be bad. 882 * The goal of this function is to repair the errored block by using the 883 * contents of one of the mirrors. 884 */ 885 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 886 { 887 struct scrub_ctx *sctx = sblock_to_check->sctx; 888 struct btrfs_device *dev; 889 struct btrfs_fs_info *fs_info; 890 u64 length; 891 u64 logical; 892 u64 generation; 893 unsigned int failed_mirror_index; 894 unsigned int is_metadata; 895 unsigned int have_csum; 896 u8 *csum; 897 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 898 struct scrub_block *sblock_bad; 899 int ret; 900 int mirror_index; 901 int page_num; 902 int success; 903 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 904 DEFAULT_RATELIMIT_BURST); 905 906 BUG_ON(sblock_to_check->page_count < 1); 907 fs_info = sctx->dev_root->fs_info; 908 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 909 /* 910 * if we find an error in a super block, we just report it. 911 * They will get written with the next transaction commit 912 * anyway 913 */ 914 spin_lock(&sctx->stat_lock); 915 ++sctx->stat.super_errors; 916 spin_unlock(&sctx->stat_lock); 917 return 0; 918 } 919 length = sblock_to_check->page_count * PAGE_SIZE; 920 logical = sblock_to_check->pagev[0]->logical; 921 generation = sblock_to_check->pagev[0]->generation; 922 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 923 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 924 is_metadata = !(sblock_to_check->pagev[0]->flags & 925 BTRFS_EXTENT_FLAG_DATA); 926 have_csum = sblock_to_check->pagev[0]->have_csum; 927 csum = sblock_to_check->pagev[0]->csum; 928 dev = sblock_to_check->pagev[0]->dev; 929 930 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 931 sblocks_for_recheck = NULL; 932 goto nodatasum_case; 933 } 934 935 /* 936 * read all mirrors one after the other. This includes to 937 * re-read the extent or metadata block that failed (that was 938 * the cause that this fixup code is called) another time, 939 * page by page this time in order to know which pages 940 * caused I/O errors and which ones are good (for all mirrors). 941 * It is the goal to handle the situation when more than one 942 * mirror contains I/O errors, but the errors do not 943 * overlap, i.e. the data can be repaired by selecting the 944 * pages from those mirrors without I/O error on the 945 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 946 * would be that mirror #1 has an I/O error on the first page, 947 * the second page is good, and mirror #2 has an I/O error on 948 * the second page, but the first page is good. 949 * Then the first page of the first mirror can be repaired by 950 * taking the first page of the second mirror, and the 951 * second page of the second mirror can be repaired by 952 * copying the contents of the 2nd page of the 1st mirror. 953 * One more note: if the pages of one mirror contain I/O 954 * errors, the checksum cannot be verified. In order to get 955 * the best data for repairing, the first attempt is to find 956 * a mirror without I/O errors and with a validated checksum. 957 * Only if this is not possible, the pages are picked from 958 * mirrors with I/O errors without considering the checksum. 959 * If the latter is the case, at the end, the checksum of the 960 * repaired area is verified in order to correctly maintain 961 * the statistics. 962 */ 963 964 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 965 sizeof(*sblocks_for_recheck), GFP_NOFS); 966 if (!sblocks_for_recheck) { 967 spin_lock(&sctx->stat_lock); 968 sctx->stat.malloc_errors++; 969 sctx->stat.read_errors++; 970 sctx->stat.uncorrectable_errors++; 971 spin_unlock(&sctx->stat_lock); 972 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 973 goto out; 974 } 975 976 /* setup the context, map the logical blocks and alloc the pages */ 977 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 978 if (ret) { 979 spin_lock(&sctx->stat_lock); 980 sctx->stat.read_errors++; 981 sctx->stat.uncorrectable_errors++; 982 spin_unlock(&sctx->stat_lock); 983 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 984 goto out; 985 } 986 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 987 sblock_bad = sblocks_for_recheck + failed_mirror_index; 988 989 /* build and submit the bios for the failed mirror, check checksums */ 990 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 991 csum, generation, sctx->csum_size, 1); 992 993 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 994 sblock_bad->no_io_error_seen) { 995 /* 996 * the error disappeared after reading page by page, or 997 * the area was part of a huge bio and other parts of the 998 * bio caused I/O errors, or the block layer merged several 999 * read requests into one and the error is caused by a 1000 * different bio (usually one of the two latter cases is 1001 * the cause) 1002 */ 1003 spin_lock(&sctx->stat_lock); 1004 sctx->stat.unverified_errors++; 1005 sblock_to_check->data_corrected = 1; 1006 spin_unlock(&sctx->stat_lock); 1007 1008 if (sctx->is_dev_replace) 1009 scrub_write_block_to_dev_replace(sblock_bad); 1010 goto out; 1011 } 1012 1013 if (!sblock_bad->no_io_error_seen) { 1014 spin_lock(&sctx->stat_lock); 1015 sctx->stat.read_errors++; 1016 spin_unlock(&sctx->stat_lock); 1017 if (__ratelimit(&_rs)) 1018 scrub_print_warning("i/o error", sblock_to_check); 1019 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1020 } else if (sblock_bad->checksum_error) { 1021 spin_lock(&sctx->stat_lock); 1022 sctx->stat.csum_errors++; 1023 spin_unlock(&sctx->stat_lock); 1024 if (__ratelimit(&_rs)) 1025 scrub_print_warning("checksum error", sblock_to_check); 1026 btrfs_dev_stat_inc_and_print(dev, 1027 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1028 } else if (sblock_bad->header_error) { 1029 spin_lock(&sctx->stat_lock); 1030 sctx->stat.verify_errors++; 1031 spin_unlock(&sctx->stat_lock); 1032 if (__ratelimit(&_rs)) 1033 scrub_print_warning("checksum/header error", 1034 sblock_to_check); 1035 if (sblock_bad->generation_error) 1036 btrfs_dev_stat_inc_and_print(dev, 1037 BTRFS_DEV_STAT_GENERATION_ERRS); 1038 else 1039 btrfs_dev_stat_inc_and_print(dev, 1040 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1041 } 1042 1043 if (sctx->readonly) { 1044 ASSERT(!sctx->is_dev_replace); 1045 goto out; 1046 } 1047 1048 if (!is_metadata && !have_csum) { 1049 struct scrub_fixup_nodatasum *fixup_nodatasum; 1050 1051 WARN_ON(sctx->is_dev_replace); 1052 1053 nodatasum_case: 1054 1055 /* 1056 * !is_metadata and !have_csum, this means that the data 1057 * might not be COW'ed, that it might be modified 1058 * concurrently. The general strategy to work on the 1059 * commit root does not help in the case when COW is not 1060 * used. 1061 */ 1062 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1063 if (!fixup_nodatasum) 1064 goto did_not_correct_error; 1065 fixup_nodatasum->sctx = sctx; 1066 fixup_nodatasum->dev = dev; 1067 fixup_nodatasum->logical = logical; 1068 fixup_nodatasum->root = fs_info->extent_root; 1069 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1070 scrub_pending_trans_workers_inc(sctx); 1071 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1072 scrub_fixup_nodatasum, NULL, NULL); 1073 btrfs_queue_work(fs_info->scrub_workers, 1074 &fixup_nodatasum->work); 1075 goto out; 1076 } 1077 1078 /* 1079 * now build and submit the bios for the other mirrors, check 1080 * checksums. 1081 * First try to pick the mirror which is completely without I/O 1082 * errors and also does not have a checksum error. 1083 * If one is found, and if a checksum is present, the full block 1084 * that is known to contain an error is rewritten. Afterwards 1085 * the block is known to be corrected. 1086 * If a mirror is found which is completely correct, and no 1087 * checksum is present, only those pages are rewritten that had 1088 * an I/O error in the block to be repaired, since it cannot be 1089 * determined, which copy of the other pages is better (and it 1090 * could happen otherwise that a correct page would be 1091 * overwritten by a bad one). 1092 */ 1093 for (mirror_index = 0; 1094 mirror_index < BTRFS_MAX_MIRRORS && 1095 sblocks_for_recheck[mirror_index].page_count > 0; 1096 mirror_index++) { 1097 struct scrub_block *sblock_other; 1098 1099 if (mirror_index == failed_mirror_index) 1100 continue; 1101 sblock_other = sblocks_for_recheck + mirror_index; 1102 1103 /* build and submit the bios, check checksums */ 1104 scrub_recheck_block(fs_info, sblock_other, is_metadata, 1105 have_csum, csum, generation, 1106 sctx->csum_size, 0); 1107 1108 if (!sblock_other->header_error && 1109 !sblock_other->checksum_error && 1110 sblock_other->no_io_error_seen) { 1111 if (sctx->is_dev_replace) { 1112 scrub_write_block_to_dev_replace(sblock_other); 1113 goto corrected_error; 1114 } else { 1115 ret = scrub_repair_block_from_good_copy( 1116 sblock_bad, sblock_other); 1117 if (!ret) 1118 goto corrected_error; 1119 } 1120 } 1121 } 1122 1123 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1124 goto did_not_correct_error; 1125 1126 /* 1127 * In case of I/O errors in the area that is supposed to be 1128 * repaired, continue by picking good copies of those pages. 1129 * Select the good pages from mirrors to rewrite bad pages from 1130 * the area to fix. Afterwards verify the checksum of the block 1131 * that is supposed to be repaired. This verification step is 1132 * only done for the purpose of statistic counting and for the 1133 * final scrub report, whether errors remain. 1134 * A perfect algorithm could make use of the checksum and try 1135 * all possible combinations of pages from the different mirrors 1136 * until the checksum verification succeeds. For example, when 1137 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1138 * of mirror #2 is readable but the final checksum test fails, 1139 * then the 2nd page of mirror #3 could be tried, whether now 1140 * the final checksum succeedes. But this would be a rare 1141 * exception and is therefore not implemented. At least it is 1142 * avoided that the good copy is overwritten. 1143 * A more useful improvement would be to pick the sectors 1144 * without I/O error based on sector sizes (512 bytes on legacy 1145 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1146 * mirror could be repaired by taking 512 byte of a different 1147 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1148 * area are unreadable. 1149 */ 1150 success = 1; 1151 for (page_num = 0; page_num < sblock_bad->page_count; 1152 page_num++) { 1153 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1154 struct scrub_block *sblock_other = NULL; 1155 1156 /* skip no-io-error page in scrub */ 1157 if (!page_bad->io_error && !sctx->is_dev_replace) 1158 continue; 1159 1160 /* try to find no-io-error page in mirrors */ 1161 if (page_bad->io_error) { 1162 for (mirror_index = 0; 1163 mirror_index < BTRFS_MAX_MIRRORS && 1164 sblocks_for_recheck[mirror_index].page_count > 0; 1165 mirror_index++) { 1166 if (!sblocks_for_recheck[mirror_index]. 1167 pagev[page_num]->io_error) { 1168 sblock_other = sblocks_for_recheck + 1169 mirror_index; 1170 break; 1171 } 1172 } 1173 if (!sblock_other) 1174 success = 0; 1175 } 1176 1177 if (sctx->is_dev_replace) { 1178 /* 1179 * did not find a mirror to fetch the page 1180 * from. scrub_write_page_to_dev_replace() 1181 * handles this case (page->io_error), by 1182 * filling the block with zeros before 1183 * submitting the write request 1184 */ 1185 if (!sblock_other) 1186 sblock_other = sblock_bad; 1187 1188 if (scrub_write_page_to_dev_replace(sblock_other, 1189 page_num) != 0) { 1190 btrfs_dev_replace_stats_inc( 1191 &sctx->dev_root-> 1192 fs_info->dev_replace. 1193 num_write_errors); 1194 success = 0; 1195 } 1196 } else if (sblock_other) { 1197 ret = scrub_repair_page_from_good_copy(sblock_bad, 1198 sblock_other, 1199 page_num, 0); 1200 if (0 == ret) 1201 page_bad->io_error = 0; 1202 else 1203 success = 0; 1204 } 1205 } 1206 1207 if (success && !sctx->is_dev_replace) { 1208 if (is_metadata || have_csum) { 1209 /* 1210 * need to verify the checksum now that all 1211 * sectors on disk are repaired (the write 1212 * request for data to be repaired is on its way). 1213 * Just be lazy and use scrub_recheck_block() 1214 * which re-reads the data before the checksum 1215 * is verified, but most likely the data comes out 1216 * of the page cache. 1217 */ 1218 scrub_recheck_block(fs_info, sblock_bad, 1219 is_metadata, have_csum, csum, 1220 generation, sctx->csum_size, 1); 1221 if (!sblock_bad->header_error && 1222 !sblock_bad->checksum_error && 1223 sblock_bad->no_io_error_seen) 1224 goto corrected_error; 1225 else 1226 goto did_not_correct_error; 1227 } else { 1228 corrected_error: 1229 spin_lock(&sctx->stat_lock); 1230 sctx->stat.corrected_errors++; 1231 sblock_to_check->data_corrected = 1; 1232 spin_unlock(&sctx->stat_lock); 1233 printk_ratelimited_in_rcu(KERN_ERR 1234 "BTRFS: fixed up error at logical %llu on dev %s\n", 1235 logical, rcu_str_deref(dev->name)); 1236 } 1237 } else { 1238 did_not_correct_error: 1239 spin_lock(&sctx->stat_lock); 1240 sctx->stat.uncorrectable_errors++; 1241 spin_unlock(&sctx->stat_lock); 1242 printk_ratelimited_in_rcu(KERN_ERR 1243 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n", 1244 logical, rcu_str_deref(dev->name)); 1245 } 1246 1247 out: 1248 if (sblocks_for_recheck) { 1249 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1250 mirror_index++) { 1251 struct scrub_block *sblock = sblocks_for_recheck + 1252 mirror_index; 1253 struct scrub_recover *recover; 1254 int page_index; 1255 1256 for (page_index = 0; page_index < sblock->page_count; 1257 page_index++) { 1258 sblock->pagev[page_index]->sblock = NULL; 1259 recover = sblock->pagev[page_index]->recover; 1260 if (recover) { 1261 scrub_put_recover(recover); 1262 sblock->pagev[page_index]->recover = 1263 NULL; 1264 } 1265 scrub_page_put(sblock->pagev[page_index]); 1266 } 1267 } 1268 kfree(sblocks_for_recheck); 1269 } 1270 1271 return 0; 1272 } 1273 1274 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1275 { 1276 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1277 return 2; 1278 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1279 return 3; 1280 else 1281 return (int)bbio->num_stripes; 1282 } 1283 1284 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1285 u64 *raid_map, 1286 u64 mapped_length, 1287 int nstripes, int mirror, 1288 int *stripe_index, 1289 u64 *stripe_offset) 1290 { 1291 int i; 1292 1293 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1294 /* RAID5/6 */ 1295 for (i = 0; i < nstripes; i++) { 1296 if (raid_map[i] == RAID6_Q_STRIPE || 1297 raid_map[i] == RAID5_P_STRIPE) 1298 continue; 1299 1300 if (logical >= raid_map[i] && 1301 logical < raid_map[i] + mapped_length) 1302 break; 1303 } 1304 1305 *stripe_index = i; 1306 *stripe_offset = logical - raid_map[i]; 1307 } else { 1308 /* The other RAID type */ 1309 *stripe_index = mirror; 1310 *stripe_offset = 0; 1311 } 1312 } 1313 1314 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1315 struct scrub_block *sblocks_for_recheck) 1316 { 1317 struct scrub_ctx *sctx = original_sblock->sctx; 1318 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 1319 u64 length = original_sblock->page_count * PAGE_SIZE; 1320 u64 logical = original_sblock->pagev[0]->logical; 1321 struct scrub_recover *recover; 1322 struct btrfs_bio *bbio; 1323 u64 sublen; 1324 u64 mapped_length; 1325 u64 stripe_offset; 1326 int stripe_index; 1327 int page_index = 0; 1328 int mirror_index; 1329 int nmirrors; 1330 int ret; 1331 1332 /* 1333 * note: the two members refs and outstanding_pages 1334 * are not used (and not set) in the blocks that are used for 1335 * the recheck procedure 1336 */ 1337 1338 while (length > 0) { 1339 sublen = min_t(u64, length, PAGE_SIZE); 1340 mapped_length = sublen; 1341 bbio = NULL; 1342 1343 /* 1344 * with a length of PAGE_SIZE, each returned stripe 1345 * represents one mirror 1346 */ 1347 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, 1348 &mapped_length, &bbio, 0, 1); 1349 if (ret || !bbio || mapped_length < sublen) { 1350 btrfs_put_bbio(bbio); 1351 return -EIO; 1352 } 1353 1354 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1355 if (!recover) { 1356 btrfs_put_bbio(bbio); 1357 return -ENOMEM; 1358 } 1359 1360 atomic_set(&recover->refs, 1); 1361 recover->bbio = bbio; 1362 recover->map_length = mapped_length; 1363 1364 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1365 1366 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1367 1368 for (mirror_index = 0; mirror_index < nmirrors; 1369 mirror_index++) { 1370 struct scrub_block *sblock; 1371 struct scrub_page *page; 1372 1373 sblock = sblocks_for_recheck + mirror_index; 1374 sblock->sctx = sctx; 1375 page = kzalloc(sizeof(*page), GFP_NOFS); 1376 if (!page) { 1377 leave_nomem: 1378 spin_lock(&sctx->stat_lock); 1379 sctx->stat.malloc_errors++; 1380 spin_unlock(&sctx->stat_lock); 1381 scrub_put_recover(recover); 1382 return -ENOMEM; 1383 } 1384 scrub_page_get(page); 1385 sblock->pagev[page_index] = page; 1386 page->logical = logical; 1387 1388 scrub_stripe_index_and_offset(logical, 1389 bbio->map_type, 1390 bbio->raid_map, 1391 mapped_length, 1392 bbio->num_stripes - 1393 bbio->num_tgtdevs, 1394 mirror_index, 1395 &stripe_index, 1396 &stripe_offset); 1397 page->physical = bbio->stripes[stripe_index].physical + 1398 stripe_offset; 1399 page->dev = bbio->stripes[stripe_index].dev; 1400 1401 BUG_ON(page_index >= original_sblock->page_count); 1402 page->physical_for_dev_replace = 1403 original_sblock->pagev[page_index]-> 1404 physical_for_dev_replace; 1405 /* for missing devices, dev->bdev is NULL */ 1406 page->mirror_num = mirror_index + 1; 1407 sblock->page_count++; 1408 page->page = alloc_page(GFP_NOFS); 1409 if (!page->page) 1410 goto leave_nomem; 1411 1412 scrub_get_recover(recover); 1413 page->recover = recover; 1414 } 1415 scrub_put_recover(recover); 1416 length -= sublen; 1417 logical += sublen; 1418 page_index++; 1419 } 1420 1421 return 0; 1422 } 1423 1424 struct scrub_bio_ret { 1425 struct completion event; 1426 int error; 1427 }; 1428 1429 static void scrub_bio_wait_endio(struct bio *bio) 1430 { 1431 struct scrub_bio_ret *ret = bio->bi_private; 1432 1433 ret->error = bio->bi_error; 1434 complete(&ret->event); 1435 } 1436 1437 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1438 { 1439 return page->recover && 1440 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1441 } 1442 1443 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1444 struct bio *bio, 1445 struct scrub_page *page) 1446 { 1447 struct scrub_bio_ret done; 1448 int ret; 1449 1450 init_completion(&done.event); 1451 done.error = 0; 1452 bio->bi_iter.bi_sector = page->logical >> 9; 1453 bio->bi_private = &done; 1454 bio->bi_end_io = scrub_bio_wait_endio; 1455 1456 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio, 1457 page->recover->map_length, 1458 page->mirror_num, 0); 1459 if (ret) 1460 return ret; 1461 1462 wait_for_completion(&done.event); 1463 if (done.error) 1464 return -EIO; 1465 1466 return 0; 1467 } 1468 1469 /* 1470 * this function will check the on disk data for checksum errors, header 1471 * errors and read I/O errors. If any I/O errors happen, the exact pages 1472 * which are errored are marked as being bad. The goal is to enable scrub 1473 * to take those pages that are not errored from all the mirrors so that 1474 * the pages that are errored in the just handled mirror can be repaired. 1475 */ 1476 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1477 struct scrub_block *sblock, int is_metadata, 1478 int have_csum, u8 *csum, u64 generation, 1479 u16 csum_size, int retry_failed_mirror) 1480 { 1481 int page_num; 1482 1483 sblock->no_io_error_seen = 1; 1484 sblock->header_error = 0; 1485 sblock->checksum_error = 0; 1486 1487 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1488 struct bio *bio; 1489 struct scrub_page *page = sblock->pagev[page_num]; 1490 1491 if (page->dev->bdev == NULL) { 1492 page->io_error = 1; 1493 sblock->no_io_error_seen = 0; 1494 continue; 1495 } 1496 1497 WARN_ON(!page->page); 1498 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1499 if (!bio) { 1500 page->io_error = 1; 1501 sblock->no_io_error_seen = 0; 1502 continue; 1503 } 1504 bio->bi_bdev = page->dev->bdev; 1505 1506 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1507 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1508 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) 1509 sblock->no_io_error_seen = 0; 1510 } else { 1511 bio->bi_iter.bi_sector = page->physical >> 9; 1512 1513 if (btrfsic_submit_bio_wait(READ, bio)) 1514 sblock->no_io_error_seen = 0; 1515 } 1516 1517 bio_put(bio); 1518 } 1519 1520 if (sblock->no_io_error_seen) 1521 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1522 have_csum, csum, generation, 1523 csum_size); 1524 1525 return; 1526 } 1527 1528 static inline int scrub_check_fsid(u8 fsid[], 1529 struct scrub_page *spage) 1530 { 1531 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1532 int ret; 1533 1534 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1535 return !ret; 1536 } 1537 1538 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1539 struct scrub_block *sblock, 1540 int is_metadata, int have_csum, 1541 const u8 *csum, u64 generation, 1542 u16 csum_size) 1543 { 1544 int page_num; 1545 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1546 u32 crc = ~(u32)0; 1547 void *mapped_buffer; 1548 1549 WARN_ON(!sblock->pagev[0]->page); 1550 if (is_metadata) { 1551 struct btrfs_header *h; 1552 1553 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1554 h = (struct btrfs_header *)mapped_buffer; 1555 1556 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) || 1557 !scrub_check_fsid(h->fsid, sblock->pagev[0]) || 1558 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1559 BTRFS_UUID_SIZE)) { 1560 sblock->header_error = 1; 1561 } else if (generation != btrfs_stack_header_generation(h)) { 1562 sblock->header_error = 1; 1563 sblock->generation_error = 1; 1564 } 1565 csum = h->csum; 1566 } else { 1567 if (!have_csum) 1568 return; 1569 1570 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1571 } 1572 1573 for (page_num = 0;;) { 1574 if (page_num == 0 && is_metadata) 1575 crc = btrfs_csum_data( 1576 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1577 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1578 else 1579 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE); 1580 1581 kunmap_atomic(mapped_buffer); 1582 page_num++; 1583 if (page_num >= sblock->page_count) 1584 break; 1585 WARN_ON(!sblock->pagev[page_num]->page); 1586 1587 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1588 } 1589 1590 btrfs_csum_final(crc, calculated_csum); 1591 if (memcmp(calculated_csum, csum, csum_size)) 1592 sblock->checksum_error = 1; 1593 } 1594 1595 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1596 struct scrub_block *sblock_good) 1597 { 1598 int page_num; 1599 int ret = 0; 1600 1601 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1602 int ret_sub; 1603 1604 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1605 sblock_good, 1606 page_num, 1); 1607 if (ret_sub) 1608 ret = ret_sub; 1609 } 1610 1611 return ret; 1612 } 1613 1614 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1615 struct scrub_block *sblock_good, 1616 int page_num, int force_write) 1617 { 1618 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1619 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1620 1621 BUG_ON(page_bad->page == NULL); 1622 BUG_ON(page_good->page == NULL); 1623 if (force_write || sblock_bad->header_error || 1624 sblock_bad->checksum_error || page_bad->io_error) { 1625 struct bio *bio; 1626 int ret; 1627 1628 if (!page_bad->dev->bdev) { 1629 printk_ratelimited(KERN_WARNING "BTRFS: " 1630 "scrub_repair_page_from_good_copy(bdev == NULL) " 1631 "is unexpected!\n"); 1632 return -EIO; 1633 } 1634 1635 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1636 if (!bio) 1637 return -EIO; 1638 bio->bi_bdev = page_bad->dev->bdev; 1639 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1640 1641 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1642 if (PAGE_SIZE != ret) { 1643 bio_put(bio); 1644 return -EIO; 1645 } 1646 1647 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1648 btrfs_dev_stat_inc_and_print(page_bad->dev, 1649 BTRFS_DEV_STAT_WRITE_ERRS); 1650 btrfs_dev_replace_stats_inc( 1651 &sblock_bad->sctx->dev_root->fs_info-> 1652 dev_replace.num_write_errors); 1653 bio_put(bio); 1654 return -EIO; 1655 } 1656 bio_put(bio); 1657 } 1658 1659 return 0; 1660 } 1661 1662 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1663 { 1664 int page_num; 1665 1666 /* 1667 * This block is used for the check of the parity on the source device, 1668 * so the data needn't be written into the destination device. 1669 */ 1670 if (sblock->sparity) 1671 return; 1672 1673 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1674 int ret; 1675 1676 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1677 if (ret) 1678 btrfs_dev_replace_stats_inc( 1679 &sblock->sctx->dev_root->fs_info->dev_replace. 1680 num_write_errors); 1681 } 1682 } 1683 1684 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1685 int page_num) 1686 { 1687 struct scrub_page *spage = sblock->pagev[page_num]; 1688 1689 BUG_ON(spage->page == NULL); 1690 if (spage->io_error) { 1691 void *mapped_buffer = kmap_atomic(spage->page); 1692 1693 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1694 flush_dcache_page(spage->page); 1695 kunmap_atomic(mapped_buffer); 1696 } 1697 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1698 } 1699 1700 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1701 struct scrub_page *spage) 1702 { 1703 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1704 struct scrub_bio *sbio; 1705 int ret; 1706 1707 mutex_lock(&wr_ctx->wr_lock); 1708 again: 1709 if (!wr_ctx->wr_curr_bio) { 1710 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1711 GFP_NOFS); 1712 if (!wr_ctx->wr_curr_bio) { 1713 mutex_unlock(&wr_ctx->wr_lock); 1714 return -ENOMEM; 1715 } 1716 wr_ctx->wr_curr_bio->sctx = sctx; 1717 wr_ctx->wr_curr_bio->page_count = 0; 1718 } 1719 sbio = wr_ctx->wr_curr_bio; 1720 if (sbio->page_count == 0) { 1721 struct bio *bio; 1722 1723 sbio->physical = spage->physical_for_dev_replace; 1724 sbio->logical = spage->logical; 1725 sbio->dev = wr_ctx->tgtdev; 1726 bio = sbio->bio; 1727 if (!bio) { 1728 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1729 if (!bio) { 1730 mutex_unlock(&wr_ctx->wr_lock); 1731 return -ENOMEM; 1732 } 1733 sbio->bio = bio; 1734 } 1735 1736 bio->bi_private = sbio; 1737 bio->bi_end_io = scrub_wr_bio_end_io; 1738 bio->bi_bdev = sbio->dev->bdev; 1739 bio->bi_iter.bi_sector = sbio->physical >> 9; 1740 sbio->err = 0; 1741 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1742 spage->physical_for_dev_replace || 1743 sbio->logical + sbio->page_count * PAGE_SIZE != 1744 spage->logical) { 1745 scrub_wr_submit(sctx); 1746 goto again; 1747 } 1748 1749 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1750 if (ret != PAGE_SIZE) { 1751 if (sbio->page_count < 1) { 1752 bio_put(sbio->bio); 1753 sbio->bio = NULL; 1754 mutex_unlock(&wr_ctx->wr_lock); 1755 return -EIO; 1756 } 1757 scrub_wr_submit(sctx); 1758 goto again; 1759 } 1760 1761 sbio->pagev[sbio->page_count] = spage; 1762 scrub_page_get(spage); 1763 sbio->page_count++; 1764 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1765 scrub_wr_submit(sctx); 1766 mutex_unlock(&wr_ctx->wr_lock); 1767 1768 return 0; 1769 } 1770 1771 static void scrub_wr_submit(struct scrub_ctx *sctx) 1772 { 1773 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1774 struct scrub_bio *sbio; 1775 1776 if (!wr_ctx->wr_curr_bio) 1777 return; 1778 1779 sbio = wr_ctx->wr_curr_bio; 1780 wr_ctx->wr_curr_bio = NULL; 1781 WARN_ON(!sbio->bio->bi_bdev); 1782 scrub_pending_bio_inc(sctx); 1783 /* process all writes in a single worker thread. Then the block layer 1784 * orders the requests before sending them to the driver which 1785 * doubled the write performance on spinning disks when measured 1786 * with Linux 3.5 */ 1787 btrfsic_submit_bio(WRITE, sbio->bio); 1788 } 1789 1790 static void scrub_wr_bio_end_io(struct bio *bio) 1791 { 1792 struct scrub_bio *sbio = bio->bi_private; 1793 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1794 1795 sbio->err = bio->bi_error; 1796 sbio->bio = bio; 1797 1798 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1799 scrub_wr_bio_end_io_worker, NULL, NULL); 1800 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1801 } 1802 1803 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1804 { 1805 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1806 struct scrub_ctx *sctx = sbio->sctx; 1807 int i; 1808 1809 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1810 if (sbio->err) { 1811 struct btrfs_dev_replace *dev_replace = 1812 &sbio->sctx->dev_root->fs_info->dev_replace; 1813 1814 for (i = 0; i < sbio->page_count; i++) { 1815 struct scrub_page *spage = sbio->pagev[i]; 1816 1817 spage->io_error = 1; 1818 btrfs_dev_replace_stats_inc(&dev_replace-> 1819 num_write_errors); 1820 } 1821 } 1822 1823 for (i = 0; i < sbio->page_count; i++) 1824 scrub_page_put(sbio->pagev[i]); 1825 1826 bio_put(sbio->bio); 1827 kfree(sbio); 1828 scrub_pending_bio_dec(sctx); 1829 } 1830 1831 static int scrub_checksum(struct scrub_block *sblock) 1832 { 1833 u64 flags; 1834 int ret; 1835 1836 WARN_ON(sblock->page_count < 1); 1837 flags = sblock->pagev[0]->flags; 1838 ret = 0; 1839 if (flags & BTRFS_EXTENT_FLAG_DATA) 1840 ret = scrub_checksum_data(sblock); 1841 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1842 ret = scrub_checksum_tree_block(sblock); 1843 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1844 (void)scrub_checksum_super(sblock); 1845 else 1846 WARN_ON(1); 1847 if (ret) 1848 scrub_handle_errored_block(sblock); 1849 1850 return ret; 1851 } 1852 1853 static int scrub_checksum_data(struct scrub_block *sblock) 1854 { 1855 struct scrub_ctx *sctx = sblock->sctx; 1856 u8 csum[BTRFS_CSUM_SIZE]; 1857 u8 *on_disk_csum; 1858 struct page *page; 1859 void *buffer; 1860 u32 crc = ~(u32)0; 1861 int fail = 0; 1862 u64 len; 1863 int index; 1864 1865 BUG_ON(sblock->page_count < 1); 1866 if (!sblock->pagev[0]->have_csum) 1867 return 0; 1868 1869 on_disk_csum = sblock->pagev[0]->csum; 1870 page = sblock->pagev[0]->page; 1871 buffer = kmap_atomic(page); 1872 1873 len = sctx->sectorsize; 1874 index = 0; 1875 for (;;) { 1876 u64 l = min_t(u64, len, PAGE_SIZE); 1877 1878 crc = btrfs_csum_data(buffer, crc, l); 1879 kunmap_atomic(buffer); 1880 len -= l; 1881 if (len == 0) 1882 break; 1883 index++; 1884 BUG_ON(index >= sblock->page_count); 1885 BUG_ON(!sblock->pagev[index]->page); 1886 page = sblock->pagev[index]->page; 1887 buffer = kmap_atomic(page); 1888 } 1889 1890 btrfs_csum_final(crc, csum); 1891 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1892 fail = 1; 1893 1894 return fail; 1895 } 1896 1897 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1898 { 1899 struct scrub_ctx *sctx = sblock->sctx; 1900 struct btrfs_header *h; 1901 struct btrfs_root *root = sctx->dev_root; 1902 struct btrfs_fs_info *fs_info = root->fs_info; 1903 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1904 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1905 struct page *page; 1906 void *mapped_buffer; 1907 u64 mapped_size; 1908 void *p; 1909 u32 crc = ~(u32)0; 1910 int fail = 0; 1911 int crc_fail = 0; 1912 u64 len; 1913 int index; 1914 1915 BUG_ON(sblock->page_count < 1); 1916 page = sblock->pagev[0]->page; 1917 mapped_buffer = kmap_atomic(page); 1918 h = (struct btrfs_header *)mapped_buffer; 1919 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1920 1921 /* 1922 * we don't use the getter functions here, as we 1923 * a) don't have an extent buffer and 1924 * b) the page is already kmapped 1925 */ 1926 1927 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1928 ++fail; 1929 1930 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) 1931 ++fail; 1932 1933 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1934 ++fail; 1935 1936 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1937 BTRFS_UUID_SIZE)) 1938 ++fail; 1939 1940 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1941 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1942 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1943 index = 0; 1944 for (;;) { 1945 u64 l = min_t(u64, len, mapped_size); 1946 1947 crc = btrfs_csum_data(p, crc, l); 1948 kunmap_atomic(mapped_buffer); 1949 len -= l; 1950 if (len == 0) 1951 break; 1952 index++; 1953 BUG_ON(index >= sblock->page_count); 1954 BUG_ON(!sblock->pagev[index]->page); 1955 page = sblock->pagev[index]->page; 1956 mapped_buffer = kmap_atomic(page); 1957 mapped_size = PAGE_SIZE; 1958 p = mapped_buffer; 1959 } 1960 1961 btrfs_csum_final(crc, calculated_csum); 1962 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1963 ++crc_fail; 1964 1965 return fail || crc_fail; 1966 } 1967 1968 static int scrub_checksum_super(struct scrub_block *sblock) 1969 { 1970 struct btrfs_super_block *s; 1971 struct scrub_ctx *sctx = sblock->sctx; 1972 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1973 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1974 struct page *page; 1975 void *mapped_buffer; 1976 u64 mapped_size; 1977 void *p; 1978 u32 crc = ~(u32)0; 1979 int fail_gen = 0; 1980 int fail_cor = 0; 1981 u64 len; 1982 int index; 1983 1984 BUG_ON(sblock->page_count < 1); 1985 page = sblock->pagev[0]->page; 1986 mapped_buffer = kmap_atomic(page); 1987 s = (struct btrfs_super_block *)mapped_buffer; 1988 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1989 1990 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1991 ++fail_cor; 1992 1993 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1994 ++fail_gen; 1995 1996 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1997 ++fail_cor; 1998 1999 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 2000 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2001 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2002 index = 0; 2003 for (;;) { 2004 u64 l = min_t(u64, len, mapped_size); 2005 2006 crc = btrfs_csum_data(p, crc, l); 2007 kunmap_atomic(mapped_buffer); 2008 len -= l; 2009 if (len == 0) 2010 break; 2011 index++; 2012 BUG_ON(index >= sblock->page_count); 2013 BUG_ON(!sblock->pagev[index]->page); 2014 page = sblock->pagev[index]->page; 2015 mapped_buffer = kmap_atomic(page); 2016 mapped_size = PAGE_SIZE; 2017 p = mapped_buffer; 2018 } 2019 2020 btrfs_csum_final(crc, calculated_csum); 2021 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2022 ++fail_cor; 2023 2024 if (fail_cor + fail_gen) { 2025 /* 2026 * if we find an error in a super block, we just report it. 2027 * They will get written with the next transaction commit 2028 * anyway 2029 */ 2030 spin_lock(&sctx->stat_lock); 2031 ++sctx->stat.super_errors; 2032 spin_unlock(&sctx->stat_lock); 2033 if (fail_cor) 2034 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2035 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2036 else 2037 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2038 BTRFS_DEV_STAT_GENERATION_ERRS); 2039 } 2040 2041 return fail_cor + fail_gen; 2042 } 2043 2044 static void scrub_block_get(struct scrub_block *sblock) 2045 { 2046 atomic_inc(&sblock->refs); 2047 } 2048 2049 static void scrub_block_put(struct scrub_block *sblock) 2050 { 2051 if (atomic_dec_and_test(&sblock->refs)) { 2052 int i; 2053 2054 if (sblock->sparity) 2055 scrub_parity_put(sblock->sparity); 2056 2057 for (i = 0; i < sblock->page_count; i++) 2058 scrub_page_put(sblock->pagev[i]); 2059 kfree(sblock); 2060 } 2061 } 2062 2063 static void scrub_page_get(struct scrub_page *spage) 2064 { 2065 atomic_inc(&spage->refs); 2066 } 2067 2068 static void scrub_page_put(struct scrub_page *spage) 2069 { 2070 if (atomic_dec_and_test(&spage->refs)) { 2071 if (spage->page) 2072 __free_page(spage->page); 2073 kfree(spage); 2074 } 2075 } 2076 2077 static void scrub_submit(struct scrub_ctx *sctx) 2078 { 2079 struct scrub_bio *sbio; 2080 2081 if (sctx->curr == -1) 2082 return; 2083 2084 sbio = sctx->bios[sctx->curr]; 2085 sctx->curr = -1; 2086 scrub_pending_bio_inc(sctx); 2087 btrfsic_submit_bio(READ, sbio->bio); 2088 } 2089 2090 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2091 struct scrub_page *spage) 2092 { 2093 struct scrub_block *sblock = spage->sblock; 2094 struct scrub_bio *sbio; 2095 int ret; 2096 2097 again: 2098 /* 2099 * grab a fresh bio or wait for one to become available 2100 */ 2101 while (sctx->curr == -1) { 2102 spin_lock(&sctx->list_lock); 2103 sctx->curr = sctx->first_free; 2104 if (sctx->curr != -1) { 2105 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2106 sctx->bios[sctx->curr]->next_free = -1; 2107 sctx->bios[sctx->curr]->page_count = 0; 2108 spin_unlock(&sctx->list_lock); 2109 } else { 2110 spin_unlock(&sctx->list_lock); 2111 wait_event(sctx->list_wait, sctx->first_free != -1); 2112 } 2113 } 2114 sbio = sctx->bios[sctx->curr]; 2115 if (sbio->page_count == 0) { 2116 struct bio *bio; 2117 2118 sbio->physical = spage->physical; 2119 sbio->logical = spage->logical; 2120 sbio->dev = spage->dev; 2121 bio = sbio->bio; 2122 if (!bio) { 2123 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 2124 if (!bio) 2125 return -ENOMEM; 2126 sbio->bio = bio; 2127 } 2128 2129 bio->bi_private = sbio; 2130 bio->bi_end_io = scrub_bio_end_io; 2131 bio->bi_bdev = sbio->dev->bdev; 2132 bio->bi_iter.bi_sector = sbio->physical >> 9; 2133 sbio->err = 0; 2134 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2135 spage->physical || 2136 sbio->logical + sbio->page_count * PAGE_SIZE != 2137 spage->logical || 2138 sbio->dev != spage->dev) { 2139 scrub_submit(sctx); 2140 goto again; 2141 } 2142 2143 sbio->pagev[sbio->page_count] = spage; 2144 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2145 if (ret != PAGE_SIZE) { 2146 if (sbio->page_count < 1) { 2147 bio_put(sbio->bio); 2148 sbio->bio = NULL; 2149 return -EIO; 2150 } 2151 scrub_submit(sctx); 2152 goto again; 2153 } 2154 2155 scrub_block_get(sblock); /* one for the page added to the bio */ 2156 atomic_inc(&sblock->outstanding_pages); 2157 sbio->page_count++; 2158 if (sbio->page_count == sctx->pages_per_rd_bio) 2159 scrub_submit(sctx); 2160 2161 return 0; 2162 } 2163 2164 static void scrub_missing_raid56_end_io(struct bio *bio) 2165 { 2166 struct scrub_block *sblock = bio->bi_private; 2167 struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info; 2168 2169 if (bio->bi_error) 2170 sblock->no_io_error_seen = 0; 2171 2172 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2173 } 2174 2175 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2176 { 2177 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2178 struct scrub_ctx *sctx = sblock->sctx; 2179 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2180 unsigned int is_metadata; 2181 unsigned int have_csum; 2182 u8 *csum; 2183 u64 generation; 2184 u64 logical; 2185 struct btrfs_device *dev; 2186 2187 is_metadata = !(sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA); 2188 have_csum = sblock->pagev[0]->have_csum; 2189 csum = sblock->pagev[0]->csum; 2190 generation = sblock->pagev[0]->generation; 2191 logical = sblock->pagev[0]->logical; 2192 dev = sblock->pagev[0]->dev; 2193 2194 if (sblock->no_io_error_seen) { 2195 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 2196 have_csum, csum, generation, 2197 sctx->csum_size); 2198 } 2199 2200 if (!sblock->no_io_error_seen) { 2201 spin_lock(&sctx->stat_lock); 2202 sctx->stat.read_errors++; 2203 spin_unlock(&sctx->stat_lock); 2204 printk_ratelimited_in_rcu(KERN_ERR 2205 "BTRFS: I/O error rebulding logical %llu for dev %s\n", 2206 logical, rcu_str_deref(dev->name)); 2207 } else if (sblock->header_error || sblock->checksum_error) { 2208 spin_lock(&sctx->stat_lock); 2209 sctx->stat.uncorrectable_errors++; 2210 spin_unlock(&sctx->stat_lock); 2211 printk_ratelimited_in_rcu(KERN_ERR 2212 "BTRFS: failed to rebuild valid logical %llu for dev %s\n", 2213 logical, rcu_str_deref(dev->name)); 2214 } else { 2215 scrub_write_block_to_dev_replace(sblock); 2216 } 2217 2218 scrub_block_put(sblock); 2219 2220 if (sctx->is_dev_replace && 2221 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2222 mutex_lock(&sctx->wr_ctx.wr_lock); 2223 scrub_wr_submit(sctx); 2224 mutex_unlock(&sctx->wr_ctx.wr_lock); 2225 } 2226 2227 scrub_pending_bio_dec(sctx); 2228 } 2229 2230 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2231 { 2232 struct scrub_ctx *sctx = sblock->sctx; 2233 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2234 u64 length = sblock->page_count * PAGE_SIZE; 2235 u64 logical = sblock->pagev[0]->logical; 2236 struct btrfs_bio *bbio; 2237 struct bio *bio; 2238 struct btrfs_raid_bio *rbio; 2239 int ret; 2240 int i; 2241 2242 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length, 2243 &bbio, 0, 1); 2244 if (ret || !bbio || !bbio->raid_map) 2245 goto bbio_out; 2246 2247 if (WARN_ON(!sctx->is_dev_replace || 2248 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2249 /* 2250 * We shouldn't be scrubbing a missing device. Even for dev 2251 * replace, we should only get here for RAID 5/6. We either 2252 * managed to mount something with no mirrors remaining or 2253 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2254 */ 2255 goto bbio_out; 2256 } 2257 2258 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2259 if (!bio) 2260 goto bbio_out; 2261 2262 bio->bi_iter.bi_sector = logical >> 9; 2263 bio->bi_private = sblock; 2264 bio->bi_end_io = scrub_missing_raid56_end_io; 2265 2266 rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length); 2267 if (!rbio) 2268 goto rbio_out; 2269 2270 for (i = 0; i < sblock->page_count; i++) { 2271 struct scrub_page *spage = sblock->pagev[i]; 2272 2273 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2274 } 2275 2276 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2277 scrub_missing_raid56_worker, NULL, NULL); 2278 scrub_block_get(sblock); 2279 scrub_pending_bio_inc(sctx); 2280 raid56_submit_missing_rbio(rbio); 2281 return; 2282 2283 rbio_out: 2284 bio_put(bio); 2285 bbio_out: 2286 btrfs_put_bbio(bbio); 2287 spin_lock(&sctx->stat_lock); 2288 sctx->stat.malloc_errors++; 2289 spin_unlock(&sctx->stat_lock); 2290 } 2291 2292 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2293 u64 physical, struct btrfs_device *dev, u64 flags, 2294 u64 gen, int mirror_num, u8 *csum, int force, 2295 u64 physical_for_dev_replace) 2296 { 2297 struct scrub_block *sblock; 2298 int index; 2299 2300 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2301 if (!sblock) { 2302 spin_lock(&sctx->stat_lock); 2303 sctx->stat.malloc_errors++; 2304 spin_unlock(&sctx->stat_lock); 2305 return -ENOMEM; 2306 } 2307 2308 /* one ref inside this function, plus one for each page added to 2309 * a bio later on */ 2310 atomic_set(&sblock->refs, 1); 2311 sblock->sctx = sctx; 2312 sblock->no_io_error_seen = 1; 2313 2314 for (index = 0; len > 0; index++) { 2315 struct scrub_page *spage; 2316 u64 l = min_t(u64, len, PAGE_SIZE); 2317 2318 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2319 if (!spage) { 2320 leave_nomem: 2321 spin_lock(&sctx->stat_lock); 2322 sctx->stat.malloc_errors++; 2323 spin_unlock(&sctx->stat_lock); 2324 scrub_block_put(sblock); 2325 return -ENOMEM; 2326 } 2327 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2328 scrub_page_get(spage); 2329 sblock->pagev[index] = spage; 2330 spage->sblock = sblock; 2331 spage->dev = dev; 2332 spage->flags = flags; 2333 spage->generation = gen; 2334 spage->logical = logical; 2335 spage->physical = physical; 2336 spage->physical_for_dev_replace = physical_for_dev_replace; 2337 spage->mirror_num = mirror_num; 2338 if (csum) { 2339 spage->have_csum = 1; 2340 memcpy(spage->csum, csum, sctx->csum_size); 2341 } else { 2342 spage->have_csum = 0; 2343 } 2344 sblock->page_count++; 2345 spage->page = alloc_page(GFP_NOFS); 2346 if (!spage->page) 2347 goto leave_nomem; 2348 len -= l; 2349 logical += l; 2350 physical += l; 2351 physical_for_dev_replace += l; 2352 } 2353 2354 WARN_ON(sblock->page_count == 0); 2355 if (dev->missing) { 2356 /* 2357 * This case should only be hit for RAID 5/6 device replace. See 2358 * the comment in scrub_missing_raid56_pages() for details. 2359 */ 2360 scrub_missing_raid56_pages(sblock); 2361 } else { 2362 for (index = 0; index < sblock->page_count; index++) { 2363 struct scrub_page *spage = sblock->pagev[index]; 2364 int ret; 2365 2366 ret = scrub_add_page_to_rd_bio(sctx, spage); 2367 if (ret) { 2368 scrub_block_put(sblock); 2369 return ret; 2370 } 2371 } 2372 2373 if (force) 2374 scrub_submit(sctx); 2375 } 2376 2377 /* last one frees, either here or in bio completion for last page */ 2378 scrub_block_put(sblock); 2379 return 0; 2380 } 2381 2382 static void scrub_bio_end_io(struct bio *bio) 2383 { 2384 struct scrub_bio *sbio = bio->bi_private; 2385 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2386 2387 sbio->err = bio->bi_error; 2388 sbio->bio = bio; 2389 2390 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2391 } 2392 2393 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2394 { 2395 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2396 struct scrub_ctx *sctx = sbio->sctx; 2397 int i; 2398 2399 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2400 if (sbio->err) { 2401 for (i = 0; i < sbio->page_count; i++) { 2402 struct scrub_page *spage = sbio->pagev[i]; 2403 2404 spage->io_error = 1; 2405 spage->sblock->no_io_error_seen = 0; 2406 } 2407 } 2408 2409 /* now complete the scrub_block items that have all pages completed */ 2410 for (i = 0; i < sbio->page_count; i++) { 2411 struct scrub_page *spage = sbio->pagev[i]; 2412 struct scrub_block *sblock = spage->sblock; 2413 2414 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2415 scrub_block_complete(sblock); 2416 scrub_block_put(sblock); 2417 } 2418 2419 bio_put(sbio->bio); 2420 sbio->bio = NULL; 2421 spin_lock(&sctx->list_lock); 2422 sbio->next_free = sctx->first_free; 2423 sctx->first_free = sbio->index; 2424 spin_unlock(&sctx->list_lock); 2425 2426 if (sctx->is_dev_replace && 2427 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2428 mutex_lock(&sctx->wr_ctx.wr_lock); 2429 scrub_wr_submit(sctx); 2430 mutex_unlock(&sctx->wr_ctx.wr_lock); 2431 } 2432 2433 scrub_pending_bio_dec(sctx); 2434 } 2435 2436 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2437 unsigned long *bitmap, 2438 u64 start, u64 len) 2439 { 2440 u32 offset; 2441 int nsectors; 2442 int sectorsize = sparity->sctx->dev_root->sectorsize; 2443 2444 if (len >= sparity->stripe_len) { 2445 bitmap_set(bitmap, 0, sparity->nsectors); 2446 return; 2447 } 2448 2449 start -= sparity->logic_start; 2450 start = div_u64_rem(start, sparity->stripe_len, &offset); 2451 offset /= sectorsize; 2452 nsectors = (int)len / sectorsize; 2453 2454 if (offset + nsectors <= sparity->nsectors) { 2455 bitmap_set(bitmap, offset, nsectors); 2456 return; 2457 } 2458 2459 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2460 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2461 } 2462 2463 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2464 u64 start, u64 len) 2465 { 2466 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2467 } 2468 2469 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2470 u64 start, u64 len) 2471 { 2472 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2473 } 2474 2475 static void scrub_block_complete(struct scrub_block *sblock) 2476 { 2477 int corrupted = 0; 2478 2479 if (!sblock->no_io_error_seen) { 2480 corrupted = 1; 2481 scrub_handle_errored_block(sblock); 2482 } else { 2483 /* 2484 * if has checksum error, write via repair mechanism in 2485 * dev replace case, otherwise write here in dev replace 2486 * case. 2487 */ 2488 corrupted = scrub_checksum(sblock); 2489 if (!corrupted && sblock->sctx->is_dev_replace) 2490 scrub_write_block_to_dev_replace(sblock); 2491 } 2492 2493 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2494 u64 start = sblock->pagev[0]->logical; 2495 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2496 PAGE_SIZE; 2497 2498 scrub_parity_mark_sectors_error(sblock->sparity, 2499 start, end - start); 2500 } 2501 } 2502 2503 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2504 u8 *csum) 2505 { 2506 struct btrfs_ordered_sum *sum = NULL; 2507 unsigned long index; 2508 unsigned long num_sectors; 2509 2510 while (!list_empty(&sctx->csum_list)) { 2511 sum = list_first_entry(&sctx->csum_list, 2512 struct btrfs_ordered_sum, list); 2513 if (sum->bytenr > logical) 2514 return 0; 2515 if (sum->bytenr + sum->len > logical) 2516 break; 2517 2518 ++sctx->stat.csum_discards; 2519 list_del(&sum->list); 2520 kfree(sum); 2521 sum = NULL; 2522 } 2523 if (!sum) 2524 return 0; 2525 2526 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2527 num_sectors = sum->len / sctx->sectorsize; 2528 memcpy(csum, sum->sums + index, sctx->csum_size); 2529 if (index == num_sectors - 1) { 2530 list_del(&sum->list); 2531 kfree(sum); 2532 } 2533 return 1; 2534 } 2535 2536 /* scrub extent tries to collect up to 64 kB for each bio */ 2537 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2538 u64 physical, struct btrfs_device *dev, u64 flags, 2539 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2540 { 2541 int ret; 2542 u8 csum[BTRFS_CSUM_SIZE]; 2543 u32 blocksize; 2544 2545 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2546 blocksize = sctx->sectorsize; 2547 spin_lock(&sctx->stat_lock); 2548 sctx->stat.data_extents_scrubbed++; 2549 sctx->stat.data_bytes_scrubbed += len; 2550 spin_unlock(&sctx->stat_lock); 2551 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2552 blocksize = sctx->nodesize; 2553 spin_lock(&sctx->stat_lock); 2554 sctx->stat.tree_extents_scrubbed++; 2555 sctx->stat.tree_bytes_scrubbed += len; 2556 spin_unlock(&sctx->stat_lock); 2557 } else { 2558 blocksize = sctx->sectorsize; 2559 WARN_ON(1); 2560 } 2561 2562 while (len) { 2563 u64 l = min_t(u64, len, blocksize); 2564 int have_csum = 0; 2565 2566 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2567 /* push csums to sbio */ 2568 have_csum = scrub_find_csum(sctx, logical, l, csum); 2569 if (have_csum == 0) 2570 ++sctx->stat.no_csum; 2571 if (sctx->is_dev_replace && !have_csum) { 2572 ret = copy_nocow_pages(sctx, logical, l, 2573 mirror_num, 2574 physical_for_dev_replace); 2575 goto behind_scrub_pages; 2576 } 2577 } 2578 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2579 mirror_num, have_csum ? csum : NULL, 0, 2580 physical_for_dev_replace); 2581 behind_scrub_pages: 2582 if (ret) 2583 return ret; 2584 len -= l; 2585 logical += l; 2586 physical += l; 2587 physical_for_dev_replace += l; 2588 } 2589 return 0; 2590 } 2591 2592 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2593 u64 logical, u64 len, 2594 u64 physical, struct btrfs_device *dev, 2595 u64 flags, u64 gen, int mirror_num, u8 *csum) 2596 { 2597 struct scrub_ctx *sctx = sparity->sctx; 2598 struct scrub_block *sblock; 2599 int index; 2600 2601 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2602 if (!sblock) { 2603 spin_lock(&sctx->stat_lock); 2604 sctx->stat.malloc_errors++; 2605 spin_unlock(&sctx->stat_lock); 2606 return -ENOMEM; 2607 } 2608 2609 /* one ref inside this function, plus one for each page added to 2610 * a bio later on */ 2611 atomic_set(&sblock->refs, 1); 2612 sblock->sctx = sctx; 2613 sblock->no_io_error_seen = 1; 2614 sblock->sparity = sparity; 2615 scrub_parity_get(sparity); 2616 2617 for (index = 0; len > 0; index++) { 2618 struct scrub_page *spage; 2619 u64 l = min_t(u64, len, PAGE_SIZE); 2620 2621 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2622 if (!spage) { 2623 leave_nomem: 2624 spin_lock(&sctx->stat_lock); 2625 sctx->stat.malloc_errors++; 2626 spin_unlock(&sctx->stat_lock); 2627 scrub_block_put(sblock); 2628 return -ENOMEM; 2629 } 2630 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2631 /* For scrub block */ 2632 scrub_page_get(spage); 2633 sblock->pagev[index] = spage; 2634 /* For scrub parity */ 2635 scrub_page_get(spage); 2636 list_add_tail(&spage->list, &sparity->spages); 2637 spage->sblock = sblock; 2638 spage->dev = dev; 2639 spage->flags = flags; 2640 spage->generation = gen; 2641 spage->logical = logical; 2642 spage->physical = physical; 2643 spage->mirror_num = mirror_num; 2644 if (csum) { 2645 spage->have_csum = 1; 2646 memcpy(spage->csum, csum, sctx->csum_size); 2647 } else { 2648 spage->have_csum = 0; 2649 } 2650 sblock->page_count++; 2651 spage->page = alloc_page(GFP_NOFS); 2652 if (!spage->page) 2653 goto leave_nomem; 2654 len -= l; 2655 logical += l; 2656 physical += l; 2657 } 2658 2659 WARN_ON(sblock->page_count == 0); 2660 for (index = 0; index < sblock->page_count; index++) { 2661 struct scrub_page *spage = sblock->pagev[index]; 2662 int ret; 2663 2664 ret = scrub_add_page_to_rd_bio(sctx, spage); 2665 if (ret) { 2666 scrub_block_put(sblock); 2667 return ret; 2668 } 2669 } 2670 2671 /* last one frees, either here or in bio completion for last page */ 2672 scrub_block_put(sblock); 2673 return 0; 2674 } 2675 2676 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2677 u64 logical, u64 len, 2678 u64 physical, struct btrfs_device *dev, 2679 u64 flags, u64 gen, int mirror_num) 2680 { 2681 struct scrub_ctx *sctx = sparity->sctx; 2682 int ret; 2683 u8 csum[BTRFS_CSUM_SIZE]; 2684 u32 blocksize; 2685 2686 if (dev->missing) { 2687 scrub_parity_mark_sectors_error(sparity, logical, len); 2688 return 0; 2689 } 2690 2691 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2692 blocksize = sctx->sectorsize; 2693 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2694 blocksize = sctx->nodesize; 2695 } else { 2696 blocksize = sctx->sectorsize; 2697 WARN_ON(1); 2698 } 2699 2700 while (len) { 2701 u64 l = min_t(u64, len, blocksize); 2702 int have_csum = 0; 2703 2704 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2705 /* push csums to sbio */ 2706 have_csum = scrub_find_csum(sctx, logical, l, csum); 2707 if (have_csum == 0) 2708 goto skip; 2709 } 2710 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2711 flags, gen, mirror_num, 2712 have_csum ? csum : NULL); 2713 if (ret) 2714 return ret; 2715 skip: 2716 len -= l; 2717 logical += l; 2718 physical += l; 2719 } 2720 return 0; 2721 } 2722 2723 /* 2724 * Given a physical address, this will calculate it's 2725 * logical offset. if this is a parity stripe, it will return 2726 * the most left data stripe's logical offset. 2727 * 2728 * return 0 if it is a data stripe, 1 means parity stripe. 2729 */ 2730 static int get_raid56_logic_offset(u64 physical, int num, 2731 struct map_lookup *map, u64 *offset, 2732 u64 *stripe_start) 2733 { 2734 int i; 2735 int j = 0; 2736 u64 stripe_nr; 2737 u64 last_offset; 2738 u32 stripe_index; 2739 u32 rot; 2740 2741 last_offset = (physical - map->stripes[num].physical) * 2742 nr_data_stripes(map); 2743 if (stripe_start) 2744 *stripe_start = last_offset; 2745 2746 *offset = last_offset; 2747 for (i = 0; i < nr_data_stripes(map); i++) { 2748 *offset = last_offset + i * map->stripe_len; 2749 2750 stripe_nr = div_u64(*offset, map->stripe_len); 2751 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2752 2753 /* Work out the disk rotation on this stripe-set */ 2754 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2755 /* calculate which stripe this data locates */ 2756 rot += i; 2757 stripe_index = rot % map->num_stripes; 2758 if (stripe_index == num) 2759 return 0; 2760 if (stripe_index < num) 2761 j++; 2762 } 2763 *offset = last_offset + j * map->stripe_len; 2764 return 1; 2765 } 2766 2767 static void scrub_free_parity(struct scrub_parity *sparity) 2768 { 2769 struct scrub_ctx *sctx = sparity->sctx; 2770 struct scrub_page *curr, *next; 2771 int nbits; 2772 2773 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2774 if (nbits) { 2775 spin_lock(&sctx->stat_lock); 2776 sctx->stat.read_errors += nbits; 2777 sctx->stat.uncorrectable_errors += nbits; 2778 spin_unlock(&sctx->stat_lock); 2779 } 2780 2781 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2782 list_del_init(&curr->list); 2783 scrub_page_put(curr); 2784 } 2785 2786 kfree(sparity); 2787 } 2788 2789 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2790 { 2791 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2792 work); 2793 struct scrub_ctx *sctx = sparity->sctx; 2794 2795 scrub_free_parity(sparity); 2796 scrub_pending_bio_dec(sctx); 2797 } 2798 2799 static void scrub_parity_bio_endio(struct bio *bio) 2800 { 2801 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2802 2803 if (bio->bi_error) 2804 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2805 sparity->nsectors); 2806 2807 bio_put(bio); 2808 2809 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2810 scrub_parity_bio_endio_worker, NULL, NULL); 2811 btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers, 2812 &sparity->work); 2813 } 2814 2815 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2816 { 2817 struct scrub_ctx *sctx = sparity->sctx; 2818 struct bio *bio; 2819 struct btrfs_raid_bio *rbio; 2820 struct scrub_page *spage; 2821 struct btrfs_bio *bbio = NULL; 2822 u64 length; 2823 int ret; 2824 2825 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2826 sparity->nsectors)) 2827 goto out; 2828 2829 length = sparity->logic_end - sparity->logic_start; 2830 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE, 2831 sparity->logic_start, 2832 &length, &bbio, 0, 1); 2833 if (ret || !bbio || !bbio->raid_map) 2834 goto bbio_out; 2835 2836 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 2837 if (!bio) 2838 goto bbio_out; 2839 2840 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2841 bio->bi_private = sparity; 2842 bio->bi_end_io = scrub_parity_bio_endio; 2843 2844 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio, 2845 length, sparity->scrub_dev, 2846 sparity->dbitmap, 2847 sparity->nsectors); 2848 if (!rbio) 2849 goto rbio_out; 2850 2851 list_for_each_entry(spage, &sparity->spages, list) 2852 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2853 2854 scrub_pending_bio_inc(sctx); 2855 raid56_parity_submit_scrub_rbio(rbio); 2856 return; 2857 2858 rbio_out: 2859 bio_put(bio); 2860 bbio_out: 2861 btrfs_put_bbio(bbio); 2862 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2863 sparity->nsectors); 2864 spin_lock(&sctx->stat_lock); 2865 sctx->stat.malloc_errors++; 2866 spin_unlock(&sctx->stat_lock); 2867 out: 2868 scrub_free_parity(sparity); 2869 } 2870 2871 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2872 { 2873 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8); 2874 } 2875 2876 static void scrub_parity_get(struct scrub_parity *sparity) 2877 { 2878 atomic_inc(&sparity->refs); 2879 } 2880 2881 static void scrub_parity_put(struct scrub_parity *sparity) 2882 { 2883 if (!atomic_dec_and_test(&sparity->refs)) 2884 return; 2885 2886 scrub_parity_check_and_repair(sparity); 2887 } 2888 2889 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2890 struct map_lookup *map, 2891 struct btrfs_device *sdev, 2892 struct btrfs_path *path, 2893 u64 logic_start, 2894 u64 logic_end) 2895 { 2896 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2897 struct btrfs_root *root = fs_info->extent_root; 2898 struct btrfs_root *csum_root = fs_info->csum_root; 2899 struct btrfs_extent_item *extent; 2900 struct btrfs_bio *bbio = NULL; 2901 u64 flags; 2902 int ret; 2903 int slot; 2904 struct extent_buffer *l; 2905 struct btrfs_key key; 2906 u64 generation; 2907 u64 extent_logical; 2908 u64 extent_physical; 2909 u64 extent_len; 2910 u64 mapped_length; 2911 struct btrfs_device *extent_dev; 2912 struct scrub_parity *sparity; 2913 int nsectors; 2914 int bitmap_len; 2915 int extent_mirror_num; 2916 int stop_loop = 0; 2917 2918 nsectors = map->stripe_len / root->sectorsize; 2919 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2920 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2921 GFP_NOFS); 2922 if (!sparity) { 2923 spin_lock(&sctx->stat_lock); 2924 sctx->stat.malloc_errors++; 2925 spin_unlock(&sctx->stat_lock); 2926 return -ENOMEM; 2927 } 2928 2929 sparity->stripe_len = map->stripe_len; 2930 sparity->nsectors = nsectors; 2931 sparity->sctx = sctx; 2932 sparity->scrub_dev = sdev; 2933 sparity->logic_start = logic_start; 2934 sparity->logic_end = logic_end; 2935 atomic_set(&sparity->refs, 1); 2936 INIT_LIST_HEAD(&sparity->spages); 2937 sparity->dbitmap = sparity->bitmap; 2938 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2939 2940 ret = 0; 2941 while (logic_start < logic_end) { 2942 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2943 key.type = BTRFS_METADATA_ITEM_KEY; 2944 else 2945 key.type = BTRFS_EXTENT_ITEM_KEY; 2946 key.objectid = logic_start; 2947 key.offset = (u64)-1; 2948 2949 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2950 if (ret < 0) 2951 goto out; 2952 2953 if (ret > 0) { 2954 ret = btrfs_previous_extent_item(root, path, 0); 2955 if (ret < 0) 2956 goto out; 2957 if (ret > 0) { 2958 btrfs_release_path(path); 2959 ret = btrfs_search_slot(NULL, root, &key, 2960 path, 0, 0); 2961 if (ret < 0) 2962 goto out; 2963 } 2964 } 2965 2966 stop_loop = 0; 2967 while (1) { 2968 u64 bytes; 2969 2970 l = path->nodes[0]; 2971 slot = path->slots[0]; 2972 if (slot >= btrfs_header_nritems(l)) { 2973 ret = btrfs_next_leaf(root, path); 2974 if (ret == 0) 2975 continue; 2976 if (ret < 0) 2977 goto out; 2978 2979 stop_loop = 1; 2980 break; 2981 } 2982 btrfs_item_key_to_cpu(l, &key, slot); 2983 2984 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2985 key.type != BTRFS_METADATA_ITEM_KEY) 2986 goto next; 2987 2988 if (key.type == BTRFS_METADATA_ITEM_KEY) 2989 bytes = root->nodesize; 2990 else 2991 bytes = key.offset; 2992 2993 if (key.objectid + bytes <= logic_start) 2994 goto next; 2995 2996 if (key.objectid >= logic_end) { 2997 stop_loop = 1; 2998 break; 2999 } 3000 3001 while (key.objectid >= logic_start + map->stripe_len) 3002 logic_start += map->stripe_len; 3003 3004 extent = btrfs_item_ptr(l, slot, 3005 struct btrfs_extent_item); 3006 flags = btrfs_extent_flags(l, extent); 3007 generation = btrfs_extent_generation(l, extent); 3008 3009 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3010 (key.objectid < logic_start || 3011 key.objectid + bytes > 3012 logic_start + map->stripe_len)) { 3013 btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3014 key.objectid, logic_start); 3015 goto next; 3016 } 3017 again: 3018 extent_logical = key.objectid; 3019 extent_len = bytes; 3020 3021 if (extent_logical < logic_start) { 3022 extent_len -= logic_start - extent_logical; 3023 extent_logical = logic_start; 3024 } 3025 3026 if (extent_logical + extent_len > 3027 logic_start + map->stripe_len) 3028 extent_len = logic_start + map->stripe_len - 3029 extent_logical; 3030 3031 scrub_parity_mark_sectors_data(sparity, extent_logical, 3032 extent_len); 3033 3034 mapped_length = extent_len; 3035 ret = btrfs_map_block(fs_info, READ, extent_logical, 3036 &mapped_length, &bbio, 0); 3037 if (!ret) { 3038 if (!bbio || mapped_length < extent_len) 3039 ret = -EIO; 3040 } 3041 if (ret) { 3042 btrfs_put_bbio(bbio); 3043 goto out; 3044 } 3045 extent_physical = bbio->stripes[0].physical; 3046 extent_mirror_num = bbio->mirror_num; 3047 extent_dev = bbio->stripes[0].dev; 3048 btrfs_put_bbio(bbio); 3049 3050 ret = btrfs_lookup_csums_range(csum_root, 3051 extent_logical, 3052 extent_logical + extent_len - 1, 3053 &sctx->csum_list, 1); 3054 if (ret) 3055 goto out; 3056 3057 ret = scrub_extent_for_parity(sparity, extent_logical, 3058 extent_len, 3059 extent_physical, 3060 extent_dev, flags, 3061 generation, 3062 extent_mirror_num); 3063 3064 scrub_free_csums(sctx); 3065 3066 if (ret) 3067 goto out; 3068 3069 if (extent_logical + extent_len < 3070 key.objectid + bytes) { 3071 logic_start += map->stripe_len; 3072 3073 if (logic_start >= logic_end) { 3074 stop_loop = 1; 3075 break; 3076 } 3077 3078 if (logic_start < key.objectid + bytes) { 3079 cond_resched(); 3080 goto again; 3081 } 3082 } 3083 next: 3084 path->slots[0]++; 3085 } 3086 3087 btrfs_release_path(path); 3088 3089 if (stop_loop) 3090 break; 3091 3092 logic_start += map->stripe_len; 3093 } 3094 out: 3095 if (ret < 0) 3096 scrub_parity_mark_sectors_error(sparity, logic_start, 3097 logic_end - logic_start); 3098 scrub_parity_put(sparity); 3099 scrub_submit(sctx); 3100 mutex_lock(&sctx->wr_ctx.wr_lock); 3101 scrub_wr_submit(sctx); 3102 mutex_unlock(&sctx->wr_ctx.wr_lock); 3103 3104 btrfs_release_path(path); 3105 return ret < 0 ? ret : 0; 3106 } 3107 3108 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3109 struct map_lookup *map, 3110 struct btrfs_device *scrub_dev, 3111 int num, u64 base, u64 length, 3112 int is_dev_replace) 3113 { 3114 struct btrfs_path *path, *ppath; 3115 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3116 struct btrfs_root *root = fs_info->extent_root; 3117 struct btrfs_root *csum_root = fs_info->csum_root; 3118 struct btrfs_extent_item *extent; 3119 struct blk_plug plug; 3120 u64 flags; 3121 int ret; 3122 int slot; 3123 u64 nstripes; 3124 struct extent_buffer *l; 3125 struct btrfs_key key; 3126 u64 physical; 3127 u64 logical; 3128 u64 logic_end; 3129 u64 physical_end; 3130 u64 generation; 3131 int mirror_num; 3132 struct reada_control *reada1; 3133 struct reada_control *reada2; 3134 struct btrfs_key key_start; 3135 struct btrfs_key key_end; 3136 u64 increment = map->stripe_len; 3137 u64 offset; 3138 u64 extent_logical; 3139 u64 extent_physical; 3140 u64 extent_len; 3141 u64 stripe_logical; 3142 u64 stripe_end; 3143 struct btrfs_device *extent_dev; 3144 int extent_mirror_num; 3145 int stop_loop = 0; 3146 3147 physical = map->stripes[num].physical; 3148 offset = 0; 3149 nstripes = div_u64(length, map->stripe_len); 3150 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3151 offset = map->stripe_len * num; 3152 increment = map->stripe_len * map->num_stripes; 3153 mirror_num = 1; 3154 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3155 int factor = map->num_stripes / map->sub_stripes; 3156 offset = map->stripe_len * (num / map->sub_stripes); 3157 increment = map->stripe_len * factor; 3158 mirror_num = num % map->sub_stripes + 1; 3159 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3160 increment = map->stripe_len; 3161 mirror_num = num % map->num_stripes + 1; 3162 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3163 increment = map->stripe_len; 3164 mirror_num = num % map->num_stripes + 1; 3165 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3166 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3167 increment = map->stripe_len * nr_data_stripes(map); 3168 mirror_num = 1; 3169 } else { 3170 increment = map->stripe_len; 3171 mirror_num = 1; 3172 } 3173 3174 path = btrfs_alloc_path(); 3175 if (!path) 3176 return -ENOMEM; 3177 3178 ppath = btrfs_alloc_path(); 3179 if (!ppath) { 3180 btrfs_free_path(path); 3181 return -ENOMEM; 3182 } 3183 3184 /* 3185 * work on commit root. The related disk blocks are static as 3186 * long as COW is applied. This means, it is save to rewrite 3187 * them to repair disk errors without any race conditions 3188 */ 3189 path->search_commit_root = 1; 3190 path->skip_locking = 1; 3191 3192 ppath->search_commit_root = 1; 3193 ppath->skip_locking = 1; 3194 /* 3195 * trigger the readahead for extent tree csum tree and wait for 3196 * completion. During readahead, the scrub is officially paused 3197 * to not hold off transaction commits 3198 */ 3199 logical = base + offset; 3200 physical_end = physical + nstripes * map->stripe_len; 3201 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3202 get_raid56_logic_offset(physical_end, num, 3203 map, &logic_end, NULL); 3204 logic_end += base; 3205 } else { 3206 logic_end = logical + increment * nstripes; 3207 } 3208 wait_event(sctx->list_wait, 3209 atomic_read(&sctx->bios_in_flight) == 0); 3210 scrub_blocked_if_needed(fs_info); 3211 3212 /* FIXME it might be better to start readahead at commit root */ 3213 key_start.objectid = logical; 3214 key_start.type = BTRFS_EXTENT_ITEM_KEY; 3215 key_start.offset = (u64)0; 3216 key_end.objectid = logic_end; 3217 key_end.type = BTRFS_METADATA_ITEM_KEY; 3218 key_end.offset = (u64)-1; 3219 reada1 = btrfs_reada_add(root, &key_start, &key_end); 3220 3221 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3222 key_start.type = BTRFS_EXTENT_CSUM_KEY; 3223 key_start.offset = logical; 3224 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3225 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3226 key_end.offset = logic_end; 3227 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 3228 3229 if (!IS_ERR(reada1)) 3230 btrfs_reada_wait(reada1); 3231 if (!IS_ERR(reada2)) 3232 btrfs_reada_wait(reada2); 3233 3234 3235 /* 3236 * collect all data csums for the stripe to avoid seeking during 3237 * the scrub. This might currently (crc32) end up to be about 1MB 3238 */ 3239 blk_start_plug(&plug); 3240 3241 /* 3242 * now find all extents for each stripe and scrub them 3243 */ 3244 ret = 0; 3245 while (physical < physical_end) { 3246 /* 3247 * canceled? 3248 */ 3249 if (atomic_read(&fs_info->scrub_cancel_req) || 3250 atomic_read(&sctx->cancel_req)) { 3251 ret = -ECANCELED; 3252 goto out; 3253 } 3254 /* 3255 * check to see if we have to pause 3256 */ 3257 if (atomic_read(&fs_info->scrub_pause_req)) { 3258 /* push queued extents */ 3259 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3260 scrub_submit(sctx); 3261 mutex_lock(&sctx->wr_ctx.wr_lock); 3262 scrub_wr_submit(sctx); 3263 mutex_unlock(&sctx->wr_ctx.wr_lock); 3264 wait_event(sctx->list_wait, 3265 atomic_read(&sctx->bios_in_flight) == 0); 3266 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3267 scrub_blocked_if_needed(fs_info); 3268 } 3269 3270 /* for raid56, we skip parity stripe */ 3271 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3272 ret = get_raid56_logic_offset(physical, num, map, 3273 &logical, 3274 &stripe_logical); 3275 logical += base; 3276 if (ret) { 3277 stripe_logical += base; 3278 stripe_end = stripe_logical + increment; 3279 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3280 ppath, stripe_logical, 3281 stripe_end); 3282 if (ret) 3283 goto out; 3284 goto skip; 3285 } 3286 } 3287 3288 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3289 key.type = BTRFS_METADATA_ITEM_KEY; 3290 else 3291 key.type = BTRFS_EXTENT_ITEM_KEY; 3292 key.objectid = logical; 3293 key.offset = (u64)-1; 3294 3295 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3296 if (ret < 0) 3297 goto out; 3298 3299 if (ret > 0) { 3300 ret = btrfs_previous_extent_item(root, path, 0); 3301 if (ret < 0) 3302 goto out; 3303 if (ret > 0) { 3304 /* there's no smaller item, so stick with the 3305 * larger one */ 3306 btrfs_release_path(path); 3307 ret = btrfs_search_slot(NULL, root, &key, 3308 path, 0, 0); 3309 if (ret < 0) 3310 goto out; 3311 } 3312 } 3313 3314 stop_loop = 0; 3315 while (1) { 3316 u64 bytes; 3317 3318 l = path->nodes[0]; 3319 slot = path->slots[0]; 3320 if (slot >= btrfs_header_nritems(l)) { 3321 ret = btrfs_next_leaf(root, path); 3322 if (ret == 0) 3323 continue; 3324 if (ret < 0) 3325 goto out; 3326 3327 stop_loop = 1; 3328 break; 3329 } 3330 btrfs_item_key_to_cpu(l, &key, slot); 3331 3332 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3333 key.type != BTRFS_METADATA_ITEM_KEY) 3334 goto next; 3335 3336 if (key.type == BTRFS_METADATA_ITEM_KEY) 3337 bytes = root->nodesize; 3338 else 3339 bytes = key.offset; 3340 3341 if (key.objectid + bytes <= logical) 3342 goto next; 3343 3344 if (key.objectid >= logical + map->stripe_len) { 3345 /* out of this device extent */ 3346 if (key.objectid >= logic_end) 3347 stop_loop = 1; 3348 break; 3349 } 3350 3351 extent = btrfs_item_ptr(l, slot, 3352 struct btrfs_extent_item); 3353 flags = btrfs_extent_flags(l, extent); 3354 generation = btrfs_extent_generation(l, extent); 3355 3356 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3357 (key.objectid < logical || 3358 key.objectid + bytes > 3359 logical + map->stripe_len)) { 3360 btrfs_err(fs_info, 3361 "scrub: tree block %llu spanning " 3362 "stripes, ignored. logical=%llu", 3363 key.objectid, logical); 3364 goto next; 3365 } 3366 3367 again: 3368 extent_logical = key.objectid; 3369 extent_len = bytes; 3370 3371 /* 3372 * trim extent to this stripe 3373 */ 3374 if (extent_logical < logical) { 3375 extent_len -= logical - extent_logical; 3376 extent_logical = logical; 3377 } 3378 if (extent_logical + extent_len > 3379 logical + map->stripe_len) { 3380 extent_len = logical + map->stripe_len - 3381 extent_logical; 3382 } 3383 3384 extent_physical = extent_logical - logical + physical; 3385 extent_dev = scrub_dev; 3386 extent_mirror_num = mirror_num; 3387 if (is_dev_replace) 3388 scrub_remap_extent(fs_info, extent_logical, 3389 extent_len, &extent_physical, 3390 &extent_dev, 3391 &extent_mirror_num); 3392 3393 ret = btrfs_lookup_csums_range(csum_root, 3394 extent_logical, 3395 extent_logical + 3396 extent_len - 1, 3397 &sctx->csum_list, 1); 3398 if (ret) 3399 goto out; 3400 3401 ret = scrub_extent(sctx, extent_logical, extent_len, 3402 extent_physical, extent_dev, flags, 3403 generation, extent_mirror_num, 3404 extent_logical - logical + physical); 3405 3406 scrub_free_csums(sctx); 3407 3408 if (ret) 3409 goto out; 3410 3411 if (extent_logical + extent_len < 3412 key.objectid + bytes) { 3413 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3414 /* 3415 * loop until we find next data stripe 3416 * or we have finished all stripes. 3417 */ 3418 loop: 3419 physical += map->stripe_len; 3420 ret = get_raid56_logic_offset(physical, 3421 num, map, &logical, 3422 &stripe_logical); 3423 logical += base; 3424 3425 if (ret && physical < physical_end) { 3426 stripe_logical += base; 3427 stripe_end = stripe_logical + 3428 increment; 3429 ret = scrub_raid56_parity(sctx, 3430 map, scrub_dev, ppath, 3431 stripe_logical, 3432 stripe_end); 3433 if (ret) 3434 goto out; 3435 goto loop; 3436 } 3437 } else { 3438 physical += map->stripe_len; 3439 logical += increment; 3440 } 3441 if (logical < key.objectid + bytes) { 3442 cond_resched(); 3443 goto again; 3444 } 3445 3446 if (physical >= physical_end) { 3447 stop_loop = 1; 3448 break; 3449 } 3450 } 3451 next: 3452 path->slots[0]++; 3453 } 3454 btrfs_release_path(path); 3455 skip: 3456 logical += increment; 3457 physical += map->stripe_len; 3458 spin_lock(&sctx->stat_lock); 3459 if (stop_loop) 3460 sctx->stat.last_physical = map->stripes[num].physical + 3461 length; 3462 else 3463 sctx->stat.last_physical = physical; 3464 spin_unlock(&sctx->stat_lock); 3465 if (stop_loop) 3466 break; 3467 } 3468 out: 3469 /* push queued extents */ 3470 scrub_submit(sctx); 3471 mutex_lock(&sctx->wr_ctx.wr_lock); 3472 scrub_wr_submit(sctx); 3473 mutex_unlock(&sctx->wr_ctx.wr_lock); 3474 3475 blk_finish_plug(&plug); 3476 btrfs_free_path(path); 3477 btrfs_free_path(ppath); 3478 return ret < 0 ? ret : 0; 3479 } 3480 3481 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3482 struct btrfs_device *scrub_dev, 3483 u64 chunk_tree, u64 chunk_objectid, 3484 u64 chunk_offset, u64 length, 3485 u64 dev_offset, int is_dev_replace) 3486 { 3487 struct btrfs_mapping_tree *map_tree = 3488 &sctx->dev_root->fs_info->mapping_tree; 3489 struct map_lookup *map; 3490 struct extent_map *em; 3491 int i; 3492 int ret = 0; 3493 3494 read_lock(&map_tree->map_tree.lock); 3495 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3496 read_unlock(&map_tree->map_tree.lock); 3497 3498 if (!em) 3499 return -EINVAL; 3500 3501 map = (struct map_lookup *)em->bdev; 3502 if (em->start != chunk_offset) 3503 goto out; 3504 3505 if (em->len < length) 3506 goto out; 3507 3508 for (i = 0; i < map->num_stripes; ++i) { 3509 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3510 map->stripes[i].physical == dev_offset) { 3511 ret = scrub_stripe(sctx, map, scrub_dev, i, 3512 chunk_offset, length, 3513 is_dev_replace); 3514 if (ret) 3515 goto out; 3516 } 3517 } 3518 out: 3519 free_extent_map(em); 3520 3521 return ret; 3522 } 3523 3524 static noinline_for_stack 3525 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3526 struct btrfs_device *scrub_dev, u64 start, u64 end, 3527 int is_dev_replace) 3528 { 3529 struct btrfs_dev_extent *dev_extent = NULL; 3530 struct btrfs_path *path; 3531 struct btrfs_root *root = sctx->dev_root; 3532 struct btrfs_fs_info *fs_info = root->fs_info; 3533 u64 length; 3534 u64 chunk_tree; 3535 u64 chunk_objectid; 3536 u64 chunk_offset; 3537 int ret = 0; 3538 int slot; 3539 struct extent_buffer *l; 3540 struct btrfs_key key; 3541 struct btrfs_key found_key; 3542 struct btrfs_block_group_cache *cache; 3543 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3544 3545 path = btrfs_alloc_path(); 3546 if (!path) 3547 return -ENOMEM; 3548 3549 path->reada = 2; 3550 path->search_commit_root = 1; 3551 path->skip_locking = 1; 3552 3553 key.objectid = scrub_dev->devid; 3554 key.offset = 0ull; 3555 key.type = BTRFS_DEV_EXTENT_KEY; 3556 3557 while (1) { 3558 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3559 if (ret < 0) 3560 break; 3561 if (ret > 0) { 3562 if (path->slots[0] >= 3563 btrfs_header_nritems(path->nodes[0])) { 3564 ret = btrfs_next_leaf(root, path); 3565 if (ret < 0) 3566 break; 3567 if (ret > 0) { 3568 ret = 0; 3569 break; 3570 } 3571 } else { 3572 ret = 0; 3573 } 3574 } 3575 3576 l = path->nodes[0]; 3577 slot = path->slots[0]; 3578 3579 btrfs_item_key_to_cpu(l, &found_key, slot); 3580 3581 if (found_key.objectid != scrub_dev->devid) 3582 break; 3583 3584 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3585 break; 3586 3587 if (found_key.offset >= end) 3588 break; 3589 3590 if (found_key.offset < key.offset) 3591 break; 3592 3593 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3594 length = btrfs_dev_extent_length(l, dev_extent); 3595 3596 if (found_key.offset + length <= start) 3597 goto skip; 3598 3599 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3600 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3601 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3602 3603 /* 3604 * get a reference on the corresponding block group to prevent 3605 * the chunk from going away while we scrub it 3606 */ 3607 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3608 3609 /* some chunks are removed but not committed to disk yet, 3610 * continue scrubbing */ 3611 if (!cache) 3612 goto skip; 3613 3614 /* 3615 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3616 * to avoid deadlock caused by: 3617 * btrfs_inc_block_group_ro() 3618 * -> btrfs_wait_for_commit() 3619 * -> btrfs_commit_transaction() 3620 * -> btrfs_scrub_pause() 3621 */ 3622 scrub_pause_on(fs_info); 3623 ret = btrfs_inc_block_group_ro(root, cache); 3624 scrub_pause_off(fs_info); 3625 if (ret) { 3626 btrfs_put_block_group(cache); 3627 break; 3628 } 3629 3630 dev_replace->cursor_right = found_key.offset + length; 3631 dev_replace->cursor_left = found_key.offset; 3632 dev_replace->item_needs_writeback = 1; 3633 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 3634 chunk_offset, length, found_key.offset, 3635 is_dev_replace); 3636 3637 /* 3638 * flush, submit all pending read and write bios, afterwards 3639 * wait for them. 3640 * Note that in the dev replace case, a read request causes 3641 * write requests that are submitted in the read completion 3642 * worker. Therefore in the current situation, it is required 3643 * that all write requests are flushed, so that all read and 3644 * write requests are really completed when bios_in_flight 3645 * changes to 0. 3646 */ 3647 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 3648 scrub_submit(sctx); 3649 mutex_lock(&sctx->wr_ctx.wr_lock); 3650 scrub_wr_submit(sctx); 3651 mutex_unlock(&sctx->wr_ctx.wr_lock); 3652 3653 wait_event(sctx->list_wait, 3654 atomic_read(&sctx->bios_in_flight) == 0); 3655 3656 scrub_pause_on(fs_info); 3657 3658 /* 3659 * must be called before we decrease @scrub_paused. 3660 * make sure we don't block transaction commit while 3661 * we are waiting pending workers finished. 3662 */ 3663 wait_event(sctx->list_wait, 3664 atomic_read(&sctx->workers_pending) == 0); 3665 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 3666 3667 scrub_pause_off(fs_info); 3668 3669 btrfs_dec_block_group_ro(root, cache); 3670 3671 btrfs_put_block_group(cache); 3672 if (ret) 3673 break; 3674 if (is_dev_replace && 3675 atomic64_read(&dev_replace->num_write_errors) > 0) { 3676 ret = -EIO; 3677 break; 3678 } 3679 if (sctx->stat.malloc_errors > 0) { 3680 ret = -ENOMEM; 3681 break; 3682 } 3683 3684 dev_replace->cursor_left = dev_replace->cursor_right; 3685 dev_replace->item_needs_writeback = 1; 3686 skip: 3687 key.offset = found_key.offset + length; 3688 btrfs_release_path(path); 3689 } 3690 3691 btrfs_free_path(path); 3692 3693 return ret; 3694 } 3695 3696 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3697 struct btrfs_device *scrub_dev) 3698 { 3699 int i; 3700 u64 bytenr; 3701 u64 gen; 3702 int ret; 3703 struct btrfs_root *root = sctx->dev_root; 3704 3705 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 3706 return -EIO; 3707 3708 /* Seed devices of a new filesystem has their own generation. */ 3709 if (scrub_dev->fs_devices != root->fs_info->fs_devices) 3710 gen = scrub_dev->generation; 3711 else 3712 gen = root->fs_info->last_trans_committed; 3713 3714 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3715 bytenr = btrfs_sb_offset(i); 3716 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3717 scrub_dev->commit_total_bytes) 3718 break; 3719 3720 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3721 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3722 NULL, 1, bytenr); 3723 if (ret) 3724 return ret; 3725 } 3726 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3727 3728 return 0; 3729 } 3730 3731 /* 3732 * get a reference count on fs_info->scrub_workers. start worker if necessary 3733 */ 3734 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3735 int is_dev_replace) 3736 { 3737 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3738 int max_active = fs_info->thread_pool_size; 3739 3740 if (fs_info->scrub_workers_refcnt == 0) { 3741 if (is_dev_replace) 3742 fs_info->scrub_workers = 3743 btrfs_alloc_workqueue("btrfs-scrub", flags, 3744 1, 4); 3745 else 3746 fs_info->scrub_workers = 3747 btrfs_alloc_workqueue("btrfs-scrub", flags, 3748 max_active, 4); 3749 if (!fs_info->scrub_workers) 3750 goto fail_scrub_workers; 3751 3752 fs_info->scrub_wr_completion_workers = 3753 btrfs_alloc_workqueue("btrfs-scrubwrc", flags, 3754 max_active, 2); 3755 if (!fs_info->scrub_wr_completion_workers) 3756 goto fail_scrub_wr_completion_workers; 3757 3758 fs_info->scrub_nocow_workers = 3759 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0); 3760 if (!fs_info->scrub_nocow_workers) 3761 goto fail_scrub_nocow_workers; 3762 fs_info->scrub_parity_workers = 3763 btrfs_alloc_workqueue("btrfs-scrubparity", flags, 3764 max_active, 2); 3765 if (!fs_info->scrub_parity_workers) 3766 goto fail_scrub_parity_workers; 3767 } 3768 ++fs_info->scrub_workers_refcnt; 3769 return 0; 3770 3771 fail_scrub_parity_workers: 3772 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3773 fail_scrub_nocow_workers: 3774 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3775 fail_scrub_wr_completion_workers: 3776 btrfs_destroy_workqueue(fs_info->scrub_workers); 3777 fail_scrub_workers: 3778 return -ENOMEM; 3779 } 3780 3781 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 3782 { 3783 if (--fs_info->scrub_workers_refcnt == 0) { 3784 btrfs_destroy_workqueue(fs_info->scrub_workers); 3785 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3786 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 3787 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 3788 } 3789 WARN_ON(fs_info->scrub_workers_refcnt < 0); 3790 } 3791 3792 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3793 u64 end, struct btrfs_scrub_progress *progress, 3794 int readonly, int is_dev_replace) 3795 { 3796 struct scrub_ctx *sctx; 3797 int ret; 3798 struct btrfs_device *dev; 3799 struct rcu_string *name; 3800 3801 if (btrfs_fs_closing(fs_info)) 3802 return -EINVAL; 3803 3804 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 3805 /* 3806 * in this case scrub is unable to calculate the checksum 3807 * the way scrub is implemented. Do not handle this 3808 * situation at all because it won't ever happen. 3809 */ 3810 btrfs_err(fs_info, 3811 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3812 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 3813 return -EINVAL; 3814 } 3815 3816 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 3817 /* not supported for data w/o checksums */ 3818 btrfs_err(fs_info, 3819 "scrub: size assumption sectorsize != PAGE_SIZE " 3820 "(%d != %lu) fails", 3821 fs_info->chunk_root->sectorsize, PAGE_SIZE); 3822 return -EINVAL; 3823 } 3824 3825 if (fs_info->chunk_root->nodesize > 3826 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3827 fs_info->chunk_root->sectorsize > 3828 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3829 /* 3830 * would exhaust the array bounds of pagev member in 3831 * struct scrub_block 3832 */ 3833 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize " 3834 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3835 fs_info->chunk_root->nodesize, 3836 SCRUB_MAX_PAGES_PER_BLOCK, 3837 fs_info->chunk_root->sectorsize, 3838 SCRUB_MAX_PAGES_PER_BLOCK); 3839 return -EINVAL; 3840 } 3841 3842 3843 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3844 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3845 if (!dev || (dev->missing && !is_dev_replace)) { 3846 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3847 return -ENODEV; 3848 } 3849 3850 if (!is_dev_replace && !readonly && !dev->writeable) { 3851 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3852 rcu_read_lock(); 3853 name = rcu_dereference(dev->name); 3854 btrfs_err(fs_info, "scrub: device %s is not writable", 3855 name->str); 3856 rcu_read_unlock(); 3857 return -EROFS; 3858 } 3859 3860 mutex_lock(&fs_info->scrub_lock); 3861 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 3862 mutex_unlock(&fs_info->scrub_lock); 3863 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3864 return -EIO; 3865 } 3866 3867 btrfs_dev_replace_lock(&fs_info->dev_replace); 3868 if (dev->scrub_device || 3869 (!is_dev_replace && 3870 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3871 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3872 mutex_unlock(&fs_info->scrub_lock); 3873 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3874 return -EINPROGRESS; 3875 } 3876 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3877 3878 ret = scrub_workers_get(fs_info, is_dev_replace); 3879 if (ret) { 3880 mutex_unlock(&fs_info->scrub_lock); 3881 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3882 return ret; 3883 } 3884 3885 sctx = scrub_setup_ctx(dev, is_dev_replace); 3886 if (IS_ERR(sctx)) { 3887 mutex_unlock(&fs_info->scrub_lock); 3888 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3889 scrub_workers_put(fs_info); 3890 return PTR_ERR(sctx); 3891 } 3892 sctx->readonly = readonly; 3893 dev->scrub_device = sctx; 3894 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3895 3896 /* 3897 * checking @scrub_pause_req here, we can avoid 3898 * race between committing transaction and scrubbing. 3899 */ 3900 __scrub_blocked_if_needed(fs_info); 3901 atomic_inc(&fs_info->scrubs_running); 3902 mutex_unlock(&fs_info->scrub_lock); 3903 3904 if (!is_dev_replace) { 3905 /* 3906 * by holding device list mutex, we can 3907 * kick off writing super in log tree sync. 3908 */ 3909 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3910 ret = scrub_supers(sctx, dev); 3911 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3912 } 3913 3914 if (!ret) 3915 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3916 is_dev_replace); 3917 3918 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3919 atomic_dec(&fs_info->scrubs_running); 3920 wake_up(&fs_info->scrub_pause_wait); 3921 3922 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3923 3924 if (progress) 3925 memcpy(progress, &sctx->stat, sizeof(*progress)); 3926 3927 mutex_lock(&fs_info->scrub_lock); 3928 dev->scrub_device = NULL; 3929 scrub_workers_put(fs_info); 3930 mutex_unlock(&fs_info->scrub_lock); 3931 3932 scrub_put_ctx(sctx); 3933 3934 return ret; 3935 } 3936 3937 void btrfs_scrub_pause(struct btrfs_root *root) 3938 { 3939 struct btrfs_fs_info *fs_info = root->fs_info; 3940 3941 mutex_lock(&fs_info->scrub_lock); 3942 atomic_inc(&fs_info->scrub_pause_req); 3943 while (atomic_read(&fs_info->scrubs_paused) != 3944 atomic_read(&fs_info->scrubs_running)) { 3945 mutex_unlock(&fs_info->scrub_lock); 3946 wait_event(fs_info->scrub_pause_wait, 3947 atomic_read(&fs_info->scrubs_paused) == 3948 atomic_read(&fs_info->scrubs_running)); 3949 mutex_lock(&fs_info->scrub_lock); 3950 } 3951 mutex_unlock(&fs_info->scrub_lock); 3952 } 3953 3954 void btrfs_scrub_continue(struct btrfs_root *root) 3955 { 3956 struct btrfs_fs_info *fs_info = root->fs_info; 3957 3958 atomic_dec(&fs_info->scrub_pause_req); 3959 wake_up(&fs_info->scrub_pause_wait); 3960 } 3961 3962 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3963 { 3964 mutex_lock(&fs_info->scrub_lock); 3965 if (!atomic_read(&fs_info->scrubs_running)) { 3966 mutex_unlock(&fs_info->scrub_lock); 3967 return -ENOTCONN; 3968 } 3969 3970 atomic_inc(&fs_info->scrub_cancel_req); 3971 while (atomic_read(&fs_info->scrubs_running)) { 3972 mutex_unlock(&fs_info->scrub_lock); 3973 wait_event(fs_info->scrub_pause_wait, 3974 atomic_read(&fs_info->scrubs_running) == 0); 3975 mutex_lock(&fs_info->scrub_lock); 3976 } 3977 atomic_dec(&fs_info->scrub_cancel_req); 3978 mutex_unlock(&fs_info->scrub_lock); 3979 3980 return 0; 3981 } 3982 3983 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3984 struct btrfs_device *dev) 3985 { 3986 struct scrub_ctx *sctx; 3987 3988 mutex_lock(&fs_info->scrub_lock); 3989 sctx = dev->scrub_device; 3990 if (!sctx) { 3991 mutex_unlock(&fs_info->scrub_lock); 3992 return -ENOTCONN; 3993 } 3994 atomic_inc(&sctx->cancel_req); 3995 while (dev->scrub_device) { 3996 mutex_unlock(&fs_info->scrub_lock); 3997 wait_event(fs_info->scrub_pause_wait, 3998 dev->scrub_device == NULL); 3999 mutex_lock(&fs_info->scrub_lock); 4000 } 4001 mutex_unlock(&fs_info->scrub_lock); 4002 4003 return 0; 4004 } 4005 4006 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 4007 struct btrfs_scrub_progress *progress) 4008 { 4009 struct btrfs_device *dev; 4010 struct scrub_ctx *sctx = NULL; 4011 4012 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 4013 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 4014 if (dev) 4015 sctx = dev->scrub_device; 4016 if (sctx) 4017 memcpy(progress, &sctx->stat, sizeof(*progress)); 4018 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 4019 4020 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4021 } 4022 4023 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4024 u64 extent_logical, u64 extent_len, 4025 u64 *extent_physical, 4026 struct btrfs_device **extent_dev, 4027 int *extent_mirror_num) 4028 { 4029 u64 mapped_length; 4030 struct btrfs_bio *bbio = NULL; 4031 int ret; 4032 4033 mapped_length = extent_len; 4034 ret = btrfs_map_block(fs_info, READ, extent_logical, 4035 &mapped_length, &bbio, 0); 4036 if (ret || !bbio || mapped_length < extent_len || 4037 !bbio->stripes[0].dev->bdev) { 4038 btrfs_put_bbio(bbio); 4039 return; 4040 } 4041 4042 *extent_physical = bbio->stripes[0].physical; 4043 *extent_mirror_num = bbio->mirror_num; 4044 *extent_dev = bbio->stripes[0].dev; 4045 btrfs_put_bbio(bbio); 4046 } 4047 4048 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 4049 struct scrub_wr_ctx *wr_ctx, 4050 struct btrfs_fs_info *fs_info, 4051 struct btrfs_device *dev, 4052 int is_dev_replace) 4053 { 4054 WARN_ON(wr_ctx->wr_curr_bio != NULL); 4055 4056 mutex_init(&wr_ctx->wr_lock); 4057 wr_ctx->wr_curr_bio = NULL; 4058 if (!is_dev_replace) 4059 return 0; 4060 4061 WARN_ON(!dev->bdev); 4062 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 4063 wr_ctx->tgtdev = dev; 4064 atomic_set(&wr_ctx->flush_all_writes, 0); 4065 return 0; 4066 } 4067 4068 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 4069 { 4070 mutex_lock(&wr_ctx->wr_lock); 4071 kfree(wr_ctx->wr_curr_bio); 4072 wr_ctx->wr_curr_bio = NULL; 4073 mutex_unlock(&wr_ctx->wr_lock); 4074 } 4075 4076 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4077 int mirror_num, u64 physical_for_dev_replace) 4078 { 4079 struct scrub_copy_nocow_ctx *nocow_ctx; 4080 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 4081 4082 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4083 if (!nocow_ctx) { 4084 spin_lock(&sctx->stat_lock); 4085 sctx->stat.malloc_errors++; 4086 spin_unlock(&sctx->stat_lock); 4087 return -ENOMEM; 4088 } 4089 4090 scrub_pending_trans_workers_inc(sctx); 4091 4092 nocow_ctx->sctx = sctx; 4093 nocow_ctx->logical = logical; 4094 nocow_ctx->len = len; 4095 nocow_ctx->mirror_num = mirror_num; 4096 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4097 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4098 copy_nocow_pages_worker, NULL, NULL); 4099 INIT_LIST_HEAD(&nocow_ctx->inodes); 4100 btrfs_queue_work(fs_info->scrub_nocow_workers, 4101 &nocow_ctx->work); 4102 4103 return 0; 4104 } 4105 4106 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4107 { 4108 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4109 struct scrub_nocow_inode *nocow_inode; 4110 4111 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4112 if (!nocow_inode) 4113 return -ENOMEM; 4114 nocow_inode->inum = inum; 4115 nocow_inode->offset = offset; 4116 nocow_inode->root = root; 4117 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4118 return 0; 4119 } 4120 4121 #define COPY_COMPLETE 1 4122 4123 static void copy_nocow_pages_worker(struct btrfs_work *work) 4124 { 4125 struct scrub_copy_nocow_ctx *nocow_ctx = 4126 container_of(work, struct scrub_copy_nocow_ctx, work); 4127 struct scrub_ctx *sctx = nocow_ctx->sctx; 4128 u64 logical = nocow_ctx->logical; 4129 u64 len = nocow_ctx->len; 4130 int mirror_num = nocow_ctx->mirror_num; 4131 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4132 int ret; 4133 struct btrfs_trans_handle *trans = NULL; 4134 struct btrfs_fs_info *fs_info; 4135 struct btrfs_path *path; 4136 struct btrfs_root *root; 4137 int not_written = 0; 4138 4139 fs_info = sctx->dev_root->fs_info; 4140 root = fs_info->extent_root; 4141 4142 path = btrfs_alloc_path(); 4143 if (!path) { 4144 spin_lock(&sctx->stat_lock); 4145 sctx->stat.malloc_errors++; 4146 spin_unlock(&sctx->stat_lock); 4147 not_written = 1; 4148 goto out; 4149 } 4150 4151 trans = btrfs_join_transaction(root); 4152 if (IS_ERR(trans)) { 4153 not_written = 1; 4154 goto out; 4155 } 4156 4157 ret = iterate_inodes_from_logical(logical, fs_info, path, 4158 record_inode_for_nocow, nocow_ctx); 4159 if (ret != 0 && ret != -ENOENT) { 4160 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, " 4161 "phys %llu, len %llu, mir %u, ret %d", 4162 logical, physical_for_dev_replace, len, mirror_num, 4163 ret); 4164 not_written = 1; 4165 goto out; 4166 } 4167 4168 btrfs_end_transaction(trans, root); 4169 trans = NULL; 4170 while (!list_empty(&nocow_ctx->inodes)) { 4171 struct scrub_nocow_inode *entry; 4172 entry = list_first_entry(&nocow_ctx->inodes, 4173 struct scrub_nocow_inode, 4174 list); 4175 list_del_init(&entry->list); 4176 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4177 entry->root, nocow_ctx); 4178 kfree(entry); 4179 if (ret == COPY_COMPLETE) { 4180 ret = 0; 4181 break; 4182 } else if (ret) { 4183 break; 4184 } 4185 } 4186 out: 4187 while (!list_empty(&nocow_ctx->inodes)) { 4188 struct scrub_nocow_inode *entry; 4189 entry = list_first_entry(&nocow_ctx->inodes, 4190 struct scrub_nocow_inode, 4191 list); 4192 list_del_init(&entry->list); 4193 kfree(entry); 4194 } 4195 if (trans && !IS_ERR(trans)) 4196 btrfs_end_transaction(trans, root); 4197 if (not_written) 4198 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4199 num_uncorrectable_read_errors); 4200 4201 btrfs_free_path(path); 4202 kfree(nocow_ctx); 4203 4204 scrub_pending_trans_workers_dec(sctx); 4205 } 4206 4207 static int check_extent_to_block(struct inode *inode, u64 start, u64 len, 4208 u64 logical) 4209 { 4210 struct extent_state *cached_state = NULL; 4211 struct btrfs_ordered_extent *ordered; 4212 struct extent_io_tree *io_tree; 4213 struct extent_map *em; 4214 u64 lockstart = start, lockend = start + len - 1; 4215 int ret = 0; 4216 4217 io_tree = &BTRFS_I(inode)->io_tree; 4218 4219 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state); 4220 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4221 if (ordered) { 4222 btrfs_put_ordered_extent(ordered); 4223 ret = 1; 4224 goto out_unlock; 4225 } 4226 4227 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4228 if (IS_ERR(em)) { 4229 ret = PTR_ERR(em); 4230 goto out_unlock; 4231 } 4232 4233 /* 4234 * This extent does not actually cover the logical extent anymore, 4235 * move on to the next inode. 4236 */ 4237 if (em->block_start > logical || 4238 em->block_start + em->block_len < logical + len) { 4239 free_extent_map(em); 4240 ret = 1; 4241 goto out_unlock; 4242 } 4243 free_extent_map(em); 4244 4245 out_unlock: 4246 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4247 GFP_NOFS); 4248 return ret; 4249 } 4250 4251 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4252 struct scrub_copy_nocow_ctx *nocow_ctx) 4253 { 4254 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 4255 struct btrfs_key key; 4256 struct inode *inode; 4257 struct page *page; 4258 struct btrfs_root *local_root; 4259 struct extent_io_tree *io_tree; 4260 u64 physical_for_dev_replace; 4261 u64 nocow_ctx_logical; 4262 u64 len = nocow_ctx->len; 4263 unsigned long index; 4264 int srcu_index; 4265 int ret = 0; 4266 int err = 0; 4267 4268 key.objectid = root; 4269 key.type = BTRFS_ROOT_ITEM_KEY; 4270 key.offset = (u64)-1; 4271 4272 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4273 4274 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4275 if (IS_ERR(local_root)) { 4276 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4277 return PTR_ERR(local_root); 4278 } 4279 4280 key.type = BTRFS_INODE_ITEM_KEY; 4281 key.objectid = inum; 4282 key.offset = 0; 4283 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4284 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4285 if (IS_ERR(inode)) 4286 return PTR_ERR(inode); 4287 4288 /* Avoid truncate/dio/punch hole.. */ 4289 mutex_lock(&inode->i_mutex); 4290 inode_dio_wait(inode); 4291 4292 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4293 io_tree = &BTRFS_I(inode)->io_tree; 4294 nocow_ctx_logical = nocow_ctx->logical; 4295 4296 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical); 4297 if (ret) { 4298 ret = ret > 0 ? 0 : ret; 4299 goto out; 4300 } 4301 4302 while (len >= PAGE_CACHE_SIZE) { 4303 index = offset >> PAGE_CACHE_SHIFT; 4304 again: 4305 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4306 if (!page) { 4307 btrfs_err(fs_info, "find_or_create_page() failed"); 4308 ret = -ENOMEM; 4309 goto out; 4310 } 4311 4312 if (PageUptodate(page)) { 4313 if (PageDirty(page)) 4314 goto next_page; 4315 } else { 4316 ClearPageError(page); 4317 err = extent_read_full_page(io_tree, page, 4318 btrfs_get_extent, 4319 nocow_ctx->mirror_num); 4320 if (err) { 4321 ret = err; 4322 goto next_page; 4323 } 4324 4325 lock_page(page); 4326 /* 4327 * If the page has been remove from the page cache, 4328 * the data on it is meaningless, because it may be 4329 * old one, the new data may be written into the new 4330 * page in the page cache. 4331 */ 4332 if (page->mapping != inode->i_mapping) { 4333 unlock_page(page); 4334 page_cache_release(page); 4335 goto again; 4336 } 4337 if (!PageUptodate(page)) { 4338 ret = -EIO; 4339 goto next_page; 4340 } 4341 } 4342 4343 ret = check_extent_to_block(inode, offset, len, 4344 nocow_ctx_logical); 4345 if (ret) { 4346 ret = ret > 0 ? 0 : ret; 4347 goto next_page; 4348 } 4349 4350 err = write_page_nocow(nocow_ctx->sctx, 4351 physical_for_dev_replace, page); 4352 if (err) 4353 ret = err; 4354 next_page: 4355 unlock_page(page); 4356 page_cache_release(page); 4357 4358 if (ret) 4359 break; 4360 4361 offset += PAGE_CACHE_SIZE; 4362 physical_for_dev_replace += PAGE_CACHE_SIZE; 4363 nocow_ctx_logical += PAGE_CACHE_SIZE; 4364 len -= PAGE_CACHE_SIZE; 4365 } 4366 ret = COPY_COMPLETE; 4367 out: 4368 mutex_unlock(&inode->i_mutex); 4369 iput(inode); 4370 return ret; 4371 } 4372 4373 static int write_page_nocow(struct scrub_ctx *sctx, 4374 u64 physical_for_dev_replace, struct page *page) 4375 { 4376 struct bio *bio; 4377 struct btrfs_device *dev; 4378 int ret; 4379 4380 dev = sctx->wr_ctx.tgtdev; 4381 if (!dev) 4382 return -EIO; 4383 if (!dev->bdev) { 4384 printk_ratelimited(KERN_WARNING 4385 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 4386 return -EIO; 4387 } 4388 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 4389 if (!bio) { 4390 spin_lock(&sctx->stat_lock); 4391 sctx->stat.malloc_errors++; 4392 spin_unlock(&sctx->stat_lock); 4393 return -ENOMEM; 4394 } 4395 bio->bi_iter.bi_size = 0; 4396 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4397 bio->bi_bdev = dev->bdev; 4398 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 4399 if (ret != PAGE_CACHE_SIZE) { 4400 leave_with_eio: 4401 bio_put(bio); 4402 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4403 return -EIO; 4404 } 4405 4406 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 4407 goto leave_with_eio; 4408 4409 bio_put(bio); 4410 return 0; 4411 } 4412