xref: /openbmc/linux/fs/btrfs/scrub.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 
24 /*
25  * This is only the first step towards a full-features scrub. It reads all
26  * extent and super block and verifies the checksums. In case a bad checksum
27  * is found or the extent cannot be read, good data will be written back if
28  * any can be found.
29  *
30  * Future enhancements:
31  *  - In case an unrepairable extent is encountered, track which files are
32  *    affected and report them
33  *  - track and record media errors, throw out bad devices
34  *  - add a mode to also read unallocated space
35  */
36 
37 struct scrub_block;
38 struct scrub_ctx;
39 
40 /*
41  * the following three values only influence the performance.
42  * The last one configures the number of parallel and outstanding I/O
43  * operations. The first two values configure an upper limit for the number
44  * of (dynamically allocated) pages that are added to a bio.
45  */
46 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
47 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
48 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
49 
50 /*
51  * the following value times PAGE_SIZE needs to be large enough to match the
52  * largest node/leaf/sector size that shall be supported.
53  * Values larger than BTRFS_STRIPE_LEN are not supported.
54  */
55 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
56 
57 struct scrub_recover {
58 	refcount_t		refs;
59 	struct btrfs_bio	*bbio;
60 	u64			map_length;
61 };
62 
63 struct scrub_page {
64 	struct scrub_block	*sblock;
65 	struct page		*page;
66 	struct btrfs_device	*dev;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	u64			logical;
71 	u64			physical;
72 	u64			physical_for_dev_replace;
73 	atomic_t		refs;
74 	struct {
75 		unsigned int	mirror_num:8;
76 		unsigned int	have_csum:1;
77 		unsigned int	io_error:1;
78 	};
79 	u8			csum[BTRFS_CSUM_SIZE];
80 
81 	struct scrub_recover	*recover;
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	blk_status_t		status;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	refcount_t		refs; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct scrub_parity	*sparity;
109 	struct {
110 		unsigned int	header_error:1;
111 		unsigned int	checksum_error:1;
112 		unsigned int	no_io_error_seen:1;
113 		unsigned int	generation_error:1; /* also sets header_error */
114 
115 		/* The following is for the data used to check parity */
116 		/* It is for the data with checksum */
117 		unsigned int	data_corrected:1;
118 	};
119 	struct btrfs_work	work;
120 };
121 
122 /* Used for the chunks with parity stripe such RAID5/6 */
123 struct scrub_parity {
124 	struct scrub_ctx	*sctx;
125 
126 	struct btrfs_device	*scrub_dev;
127 
128 	u64			logic_start;
129 
130 	u64			logic_end;
131 
132 	int			nsectors;
133 
134 	u64			stripe_len;
135 
136 	refcount_t		refs;
137 
138 	struct list_head	spages;
139 
140 	/* Work of parity check and repair */
141 	struct btrfs_work	work;
142 
143 	/* Mark the parity blocks which have data */
144 	unsigned long		*dbitmap;
145 
146 	/*
147 	 * Mark the parity blocks which have data, but errors happen when
148 	 * read data or check data
149 	 */
150 	unsigned long		*ebitmap;
151 
152 	unsigned long		bitmap[];
153 };
154 
155 struct scrub_ctx {
156 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
157 	struct btrfs_fs_info	*fs_info;
158 	int			first_free;
159 	int			curr;
160 	atomic_t		bios_in_flight;
161 	atomic_t		workers_pending;
162 	spinlock_t		list_lock;
163 	wait_queue_head_t	list_wait;
164 	u16			csum_size;
165 	struct list_head	csum_list;
166 	atomic_t		cancel_req;
167 	int			readonly;
168 	int			pages_per_rd_bio;
169 
170 	int			is_dev_replace;
171 
172 	struct scrub_bio        *wr_curr_bio;
173 	struct mutex            wr_lock;
174 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
175 	struct btrfs_device     *wr_tgtdev;
176 	bool                    flush_all_writes;
177 
178 	/*
179 	 * statistics
180 	 */
181 	struct btrfs_scrub_progress stat;
182 	spinlock_t		stat_lock;
183 
184 	/*
185 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
186 	 * decrement bios_in_flight and workers_pending and then do a wakeup
187 	 * on the list_wait wait queue. We must ensure the main scrub task
188 	 * doesn't free the scrub context before or while the workers are
189 	 * doing the wakeup() call.
190 	 */
191 	refcount_t              refs;
192 };
193 
194 struct scrub_warning {
195 	struct btrfs_path	*path;
196 	u64			extent_item_size;
197 	const char		*errstr;
198 	u64			physical;
199 	u64			logical;
200 	struct btrfs_device	*dev;
201 };
202 
203 struct full_stripe_lock {
204 	struct rb_node node;
205 	u64 logical;
206 	u64 refs;
207 	struct mutex mutex;
208 };
209 
210 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
211 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
212 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214 				     struct scrub_block *sblocks_for_recheck);
215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 				struct scrub_block *sblock,
217 				int retry_failed_mirror);
218 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220 					     struct scrub_block *sblock_good);
221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
222 					    struct scrub_block *sblock_good,
223 					    int page_num, int force_write);
224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
226 					   int page_num);
227 static int scrub_checksum_data(struct scrub_block *sblock);
228 static int scrub_checksum_tree_block(struct scrub_block *sblock);
229 static int scrub_checksum_super(struct scrub_block *sblock);
230 static void scrub_block_get(struct scrub_block *sblock);
231 static void scrub_block_put(struct scrub_block *sblock);
232 static void scrub_page_get(struct scrub_page *spage);
233 static void scrub_page_put(struct scrub_page *spage);
234 static void scrub_parity_get(struct scrub_parity *sparity);
235 static void scrub_parity_put(struct scrub_parity *sparity);
236 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
237 				    struct scrub_page *spage);
238 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
239 		       u64 physical, struct btrfs_device *dev, u64 flags,
240 		       u64 gen, int mirror_num, u8 *csum, int force,
241 		       u64 physical_for_dev_replace);
242 static void scrub_bio_end_io(struct bio *bio);
243 static void scrub_bio_end_io_worker(struct btrfs_work *work);
244 static void scrub_block_complete(struct scrub_block *sblock);
245 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
246 			       u64 extent_logical, u64 extent_len,
247 			       u64 *extent_physical,
248 			       struct btrfs_device **extent_dev,
249 			       int *extent_mirror_num);
250 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
251 				    struct scrub_page *spage);
252 static void scrub_wr_submit(struct scrub_ctx *sctx);
253 static void scrub_wr_bio_end_io(struct bio *bio);
254 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
255 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
257 static void scrub_put_ctx(struct scrub_ctx *sctx);
258 
259 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
260 {
261 	return page->recover &&
262 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
263 }
264 
265 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
266 {
267 	refcount_inc(&sctx->refs);
268 	atomic_inc(&sctx->bios_in_flight);
269 }
270 
271 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
272 {
273 	atomic_dec(&sctx->bios_in_flight);
274 	wake_up(&sctx->list_wait);
275 	scrub_put_ctx(sctx);
276 }
277 
278 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279 {
280 	while (atomic_read(&fs_info->scrub_pause_req)) {
281 		mutex_unlock(&fs_info->scrub_lock);
282 		wait_event(fs_info->scrub_pause_wait,
283 		   atomic_read(&fs_info->scrub_pause_req) == 0);
284 		mutex_lock(&fs_info->scrub_lock);
285 	}
286 }
287 
288 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
289 {
290 	atomic_inc(&fs_info->scrubs_paused);
291 	wake_up(&fs_info->scrub_pause_wait);
292 }
293 
294 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
295 {
296 	mutex_lock(&fs_info->scrub_lock);
297 	__scrub_blocked_if_needed(fs_info);
298 	atomic_dec(&fs_info->scrubs_paused);
299 	mutex_unlock(&fs_info->scrub_lock);
300 
301 	wake_up(&fs_info->scrub_pause_wait);
302 }
303 
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
305 {
306 	scrub_pause_on(fs_info);
307 	scrub_pause_off(fs_info);
308 }
309 
310 /*
311  * Insert new full stripe lock into full stripe locks tree
312  *
313  * Return pointer to existing or newly inserted full_stripe_lock structure if
314  * everything works well.
315  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
316  *
317  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
318  * function
319  */
320 static struct full_stripe_lock *insert_full_stripe_lock(
321 		struct btrfs_full_stripe_locks_tree *locks_root,
322 		u64 fstripe_logical)
323 {
324 	struct rb_node **p;
325 	struct rb_node *parent = NULL;
326 	struct full_stripe_lock *entry;
327 	struct full_stripe_lock *ret;
328 
329 	lockdep_assert_held(&locks_root->lock);
330 
331 	p = &locks_root->root.rb_node;
332 	while (*p) {
333 		parent = *p;
334 		entry = rb_entry(parent, struct full_stripe_lock, node);
335 		if (fstripe_logical < entry->logical) {
336 			p = &(*p)->rb_left;
337 		} else if (fstripe_logical > entry->logical) {
338 			p = &(*p)->rb_right;
339 		} else {
340 			entry->refs++;
341 			return entry;
342 		}
343 	}
344 
345 	/*
346 	 * Insert new lock.
347 	 */
348 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
349 	if (!ret)
350 		return ERR_PTR(-ENOMEM);
351 	ret->logical = fstripe_logical;
352 	ret->refs = 1;
353 	mutex_init(&ret->mutex);
354 
355 	rb_link_node(&ret->node, parent, p);
356 	rb_insert_color(&ret->node, &locks_root->root);
357 	return ret;
358 }
359 
360 /*
361  * Search for a full stripe lock of a block group
362  *
363  * Return pointer to existing full stripe lock if found
364  * Return NULL if not found
365  */
366 static struct full_stripe_lock *search_full_stripe_lock(
367 		struct btrfs_full_stripe_locks_tree *locks_root,
368 		u64 fstripe_logical)
369 {
370 	struct rb_node *node;
371 	struct full_stripe_lock *entry;
372 
373 	lockdep_assert_held(&locks_root->lock);
374 
375 	node = locks_root->root.rb_node;
376 	while (node) {
377 		entry = rb_entry(node, struct full_stripe_lock, node);
378 		if (fstripe_logical < entry->logical)
379 			node = node->rb_left;
380 		else if (fstripe_logical > entry->logical)
381 			node = node->rb_right;
382 		else
383 			return entry;
384 	}
385 	return NULL;
386 }
387 
388 /*
389  * Helper to get full stripe logical from a normal bytenr.
390  *
391  * Caller must ensure @cache is a RAID56 block group.
392  */
393 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
394 {
395 	u64 ret;
396 
397 	/*
398 	 * Due to chunk item size limit, full stripe length should not be
399 	 * larger than U32_MAX. Just a sanity check here.
400 	 */
401 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
402 
403 	/*
404 	 * round_down() can only handle power of 2, while RAID56 full
405 	 * stripe length can be 64KiB * n, so we need to manually round down.
406 	 */
407 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
408 			cache->full_stripe_len + cache->start;
409 	return ret;
410 }
411 
412 /*
413  * Lock a full stripe to avoid concurrency of recovery and read
414  *
415  * It's only used for profiles with parities (RAID5/6), for other profiles it
416  * does nothing.
417  *
418  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
419  * So caller must call unlock_full_stripe() at the same context.
420  *
421  * Return <0 if encounters error.
422  */
423 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
424 			    bool *locked_ret)
425 {
426 	struct btrfs_block_group *bg_cache;
427 	struct btrfs_full_stripe_locks_tree *locks_root;
428 	struct full_stripe_lock *existing;
429 	u64 fstripe_start;
430 	int ret = 0;
431 
432 	*locked_ret = false;
433 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
434 	if (!bg_cache) {
435 		ASSERT(0);
436 		return -ENOENT;
437 	}
438 
439 	/* Profiles not based on parity don't need full stripe lock */
440 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
441 		goto out;
442 	locks_root = &bg_cache->full_stripe_locks_root;
443 
444 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
445 
446 	/* Now insert the full stripe lock */
447 	mutex_lock(&locks_root->lock);
448 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
449 	mutex_unlock(&locks_root->lock);
450 	if (IS_ERR(existing)) {
451 		ret = PTR_ERR(existing);
452 		goto out;
453 	}
454 	mutex_lock(&existing->mutex);
455 	*locked_ret = true;
456 out:
457 	btrfs_put_block_group(bg_cache);
458 	return ret;
459 }
460 
461 /*
462  * Unlock a full stripe.
463  *
464  * NOTE: Caller must ensure it's the same context calling corresponding
465  * lock_full_stripe().
466  *
467  * Return 0 if we unlock full stripe without problem.
468  * Return <0 for error
469  */
470 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 			      bool locked)
472 {
473 	struct btrfs_block_group *bg_cache;
474 	struct btrfs_full_stripe_locks_tree *locks_root;
475 	struct full_stripe_lock *fstripe_lock;
476 	u64 fstripe_start;
477 	bool freeit = false;
478 	int ret = 0;
479 
480 	/* If we didn't acquire full stripe lock, no need to continue */
481 	if (!locked)
482 		return 0;
483 
484 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
485 	if (!bg_cache) {
486 		ASSERT(0);
487 		return -ENOENT;
488 	}
489 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
490 		goto out;
491 
492 	locks_root = &bg_cache->full_stripe_locks_root;
493 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
494 
495 	mutex_lock(&locks_root->lock);
496 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
497 	/* Unpaired unlock_full_stripe() detected */
498 	if (!fstripe_lock) {
499 		WARN_ON(1);
500 		ret = -ENOENT;
501 		mutex_unlock(&locks_root->lock);
502 		goto out;
503 	}
504 
505 	if (fstripe_lock->refs == 0) {
506 		WARN_ON(1);
507 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
508 			fstripe_lock->logical);
509 	} else {
510 		fstripe_lock->refs--;
511 	}
512 
513 	if (fstripe_lock->refs == 0) {
514 		rb_erase(&fstripe_lock->node, &locks_root->root);
515 		freeit = true;
516 	}
517 	mutex_unlock(&locks_root->lock);
518 
519 	mutex_unlock(&fstripe_lock->mutex);
520 	if (freeit)
521 		kfree(fstripe_lock);
522 out:
523 	btrfs_put_block_group(bg_cache);
524 	return ret;
525 }
526 
527 static void scrub_free_csums(struct scrub_ctx *sctx)
528 {
529 	while (!list_empty(&sctx->csum_list)) {
530 		struct btrfs_ordered_sum *sum;
531 		sum = list_first_entry(&sctx->csum_list,
532 				       struct btrfs_ordered_sum, list);
533 		list_del(&sum->list);
534 		kfree(sum);
535 	}
536 }
537 
538 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
539 {
540 	int i;
541 
542 	if (!sctx)
543 		return;
544 
545 	/* this can happen when scrub is cancelled */
546 	if (sctx->curr != -1) {
547 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 
549 		for (i = 0; i < sbio->page_count; i++) {
550 			WARN_ON(!sbio->pagev[i]->page);
551 			scrub_block_put(sbio->pagev[i]->sblock);
552 		}
553 		bio_put(sbio->bio);
554 	}
555 
556 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557 		struct scrub_bio *sbio = sctx->bios[i];
558 
559 		if (!sbio)
560 			break;
561 		kfree(sbio);
562 	}
563 
564 	kfree(sctx->wr_curr_bio);
565 	scrub_free_csums(sctx);
566 	kfree(sctx);
567 }
568 
569 static void scrub_put_ctx(struct scrub_ctx *sctx)
570 {
571 	if (refcount_dec_and_test(&sctx->refs))
572 		scrub_free_ctx(sctx);
573 }
574 
575 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
576 		struct btrfs_fs_info *fs_info, int is_dev_replace)
577 {
578 	struct scrub_ctx *sctx;
579 	int		i;
580 
581 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582 	if (!sctx)
583 		goto nomem;
584 	refcount_set(&sctx->refs, 1);
585 	sctx->is_dev_replace = is_dev_replace;
586 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587 	sctx->curr = -1;
588 	sctx->fs_info = fs_info;
589 	INIT_LIST_HEAD(&sctx->csum_list);
590 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
591 		struct scrub_bio *sbio;
592 
593 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
594 		if (!sbio)
595 			goto nomem;
596 		sctx->bios[i] = sbio;
597 
598 		sbio->index = i;
599 		sbio->sctx = sctx;
600 		sbio->page_count = 0;
601 		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
602 				NULL);
603 
604 		if (i != SCRUB_BIOS_PER_SCTX - 1)
605 			sctx->bios[i]->next_free = i + 1;
606 		else
607 			sctx->bios[i]->next_free = -1;
608 	}
609 	sctx->first_free = 0;
610 	atomic_set(&sctx->bios_in_flight, 0);
611 	atomic_set(&sctx->workers_pending, 0);
612 	atomic_set(&sctx->cancel_req, 0);
613 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
614 
615 	spin_lock_init(&sctx->list_lock);
616 	spin_lock_init(&sctx->stat_lock);
617 	init_waitqueue_head(&sctx->list_wait);
618 
619 	WARN_ON(sctx->wr_curr_bio != NULL);
620 	mutex_init(&sctx->wr_lock);
621 	sctx->wr_curr_bio = NULL;
622 	if (is_dev_replace) {
623 		WARN_ON(!fs_info->dev_replace.tgtdev);
624 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626 		sctx->flush_all_writes = false;
627 	}
628 
629 	return sctx;
630 
631 nomem:
632 	scrub_free_ctx(sctx);
633 	return ERR_PTR(-ENOMEM);
634 }
635 
636 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
637 				     void *warn_ctx)
638 {
639 	u64 isize;
640 	u32 nlink;
641 	int ret;
642 	int i;
643 	unsigned nofs_flag;
644 	struct extent_buffer *eb;
645 	struct btrfs_inode_item *inode_item;
646 	struct scrub_warning *swarn = warn_ctx;
647 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 	struct inode_fs_paths *ipath = NULL;
649 	struct btrfs_root *local_root;
650 	struct btrfs_key root_key;
651 	struct btrfs_key key;
652 
653 	root_key.objectid = root;
654 	root_key.type = BTRFS_ROOT_ITEM_KEY;
655 	root_key.offset = (u64)-1;
656 	local_root = btrfs_get_fs_root(fs_info, &root_key, true);
657 	if (IS_ERR(local_root)) {
658 		ret = PTR_ERR(local_root);
659 		goto err;
660 	}
661 
662 	/*
663 	 * this makes the path point to (inum INODE_ITEM ioff)
664 	 */
665 	key.objectid = inum;
666 	key.type = BTRFS_INODE_ITEM_KEY;
667 	key.offset = 0;
668 
669 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
670 	if (ret) {
671 		btrfs_put_root(local_root);
672 		btrfs_release_path(swarn->path);
673 		goto err;
674 	}
675 
676 	eb = swarn->path->nodes[0];
677 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
678 					struct btrfs_inode_item);
679 	isize = btrfs_inode_size(eb, inode_item);
680 	nlink = btrfs_inode_nlink(eb, inode_item);
681 	btrfs_release_path(swarn->path);
682 
683 	/*
684 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
685 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
686 	 * not seem to be strictly necessary.
687 	 */
688 	nofs_flag = memalloc_nofs_save();
689 	ipath = init_ipath(4096, local_root, swarn->path);
690 	memalloc_nofs_restore(nofs_flag);
691 	if (IS_ERR(ipath)) {
692 		btrfs_put_root(local_root);
693 		ret = PTR_ERR(ipath);
694 		ipath = NULL;
695 		goto err;
696 	}
697 	ret = paths_from_inode(inum, ipath);
698 
699 	if (ret < 0)
700 		goto err;
701 
702 	/*
703 	 * we deliberately ignore the bit ipath might have been too small to
704 	 * hold all of the paths here
705 	 */
706 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
707 		btrfs_warn_in_rcu(fs_info,
708 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
709 				  swarn->errstr, swarn->logical,
710 				  rcu_str_deref(swarn->dev->name),
711 				  swarn->physical,
712 				  root, inum, offset,
713 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
714 				  (char *)(unsigned long)ipath->fspath->val[i]);
715 
716 	btrfs_put_root(local_root);
717 	free_ipath(ipath);
718 	return 0;
719 
720 err:
721 	btrfs_warn_in_rcu(fs_info,
722 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
723 			  swarn->errstr, swarn->logical,
724 			  rcu_str_deref(swarn->dev->name),
725 			  swarn->physical,
726 			  root, inum, offset, ret);
727 
728 	free_ipath(ipath);
729 	return 0;
730 }
731 
732 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
733 {
734 	struct btrfs_device *dev;
735 	struct btrfs_fs_info *fs_info;
736 	struct btrfs_path *path;
737 	struct btrfs_key found_key;
738 	struct extent_buffer *eb;
739 	struct btrfs_extent_item *ei;
740 	struct scrub_warning swarn;
741 	unsigned long ptr = 0;
742 	u64 extent_item_pos;
743 	u64 flags = 0;
744 	u64 ref_root;
745 	u32 item_size;
746 	u8 ref_level = 0;
747 	int ret;
748 
749 	WARN_ON(sblock->page_count < 1);
750 	dev = sblock->pagev[0]->dev;
751 	fs_info = sblock->sctx->fs_info;
752 
753 	path = btrfs_alloc_path();
754 	if (!path)
755 		return;
756 
757 	swarn.physical = sblock->pagev[0]->physical;
758 	swarn.logical = sblock->pagev[0]->logical;
759 	swarn.errstr = errstr;
760 	swarn.dev = NULL;
761 
762 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
763 				  &flags);
764 	if (ret < 0)
765 		goto out;
766 
767 	extent_item_pos = swarn.logical - found_key.objectid;
768 	swarn.extent_item_size = found_key.offset;
769 
770 	eb = path->nodes[0];
771 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
772 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
773 
774 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
775 		do {
776 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
777 						      item_size, &ref_root,
778 						      &ref_level);
779 			btrfs_warn_in_rcu(fs_info,
780 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
781 				errstr, swarn.logical,
782 				rcu_str_deref(dev->name),
783 				swarn.physical,
784 				ref_level ? "node" : "leaf",
785 				ret < 0 ? -1 : ref_level,
786 				ret < 0 ? -1 : ref_root);
787 		} while (ret != 1);
788 		btrfs_release_path(path);
789 	} else {
790 		btrfs_release_path(path);
791 		swarn.path = path;
792 		swarn.dev = dev;
793 		iterate_extent_inodes(fs_info, found_key.objectid,
794 					extent_item_pos, 1,
795 					scrub_print_warning_inode, &swarn, false);
796 	}
797 
798 out:
799 	btrfs_free_path(path);
800 }
801 
802 static inline void scrub_get_recover(struct scrub_recover *recover)
803 {
804 	refcount_inc(&recover->refs);
805 }
806 
807 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
808 				     struct scrub_recover *recover)
809 {
810 	if (refcount_dec_and_test(&recover->refs)) {
811 		btrfs_bio_counter_dec(fs_info);
812 		btrfs_put_bbio(recover->bbio);
813 		kfree(recover);
814 	}
815 }
816 
817 /*
818  * scrub_handle_errored_block gets called when either verification of the
819  * pages failed or the bio failed to read, e.g. with EIO. In the latter
820  * case, this function handles all pages in the bio, even though only one
821  * may be bad.
822  * The goal of this function is to repair the errored block by using the
823  * contents of one of the mirrors.
824  */
825 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
826 {
827 	struct scrub_ctx *sctx = sblock_to_check->sctx;
828 	struct btrfs_device *dev;
829 	struct btrfs_fs_info *fs_info;
830 	u64 logical;
831 	unsigned int failed_mirror_index;
832 	unsigned int is_metadata;
833 	unsigned int have_csum;
834 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
835 	struct scrub_block *sblock_bad;
836 	int ret;
837 	int mirror_index;
838 	int page_num;
839 	int success;
840 	bool full_stripe_locked;
841 	unsigned int nofs_flag;
842 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
843 				      DEFAULT_RATELIMIT_BURST);
844 
845 	BUG_ON(sblock_to_check->page_count < 1);
846 	fs_info = sctx->fs_info;
847 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
848 		/*
849 		 * if we find an error in a super block, we just report it.
850 		 * They will get written with the next transaction commit
851 		 * anyway
852 		 */
853 		spin_lock(&sctx->stat_lock);
854 		++sctx->stat.super_errors;
855 		spin_unlock(&sctx->stat_lock);
856 		return 0;
857 	}
858 	logical = sblock_to_check->pagev[0]->logical;
859 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
860 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
861 	is_metadata = !(sblock_to_check->pagev[0]->flags &
862 			BTRFS_EXTENT_FLAG_DATA);
863 	have_csum = sblock_to_check->pagev[0]->have_csum;
864 	dev = sblock_to_check->pagev[0]->dev;
865 
866 	/*
867 	 * We must use GFP_NOFS because the scrub task might be waiting for a
868 	 * worker task executing this function and in turn a transaction commit
869 	 * might be waiting the scrub task to pause (which needs to wait for all
870 	 * the worker tasks to complete before pausing).
871 	 * We do allocations in the workers through insert_full_stripe_lock()
872 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
873 	 * this function.
874 	 */
875 	nofs_flag = memalloc_nofs_save();
876 	/*
877 	 * For RAID5/6, race can happen for a different device scrub thread.
878 	 * For data corruption, Parity and Data threads will both try
879 	 * to recovery the data.
880 	 * Race can lead to doubly added csum error, or even unrecoverable
881 	 * error.
882 	 */
883 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
884 	if (ret < 0) {
885 		memalloc_nofs_restore(nofs_flag);
886 		spin_lock(&sctx->stat_lock);
887 		if (ret == -ENOMEM)
888 			sctx->stat.malloc_errors++;
889 		sctx->stat.read_errors++;
890 		sctx->stat.uncorrectable_errors++;
891 		spin_unlock(&sctx->stat_lock);
892 		return ret;
893 	}
894 
895 	/*
896 	 * read all mirrors one after the other. This includes to
897 	 * re-read the extent or metadata block that failed (that was
898 	 * the cause that this fixup code is called) another time,
899 	 * page by page this time in order to know which pages
900 	 * caused I/O errors and which ones are good (for all mirrors).
901 	 * It is the goal to handle the situation when more than one
902 	 * mirror contains I/O errors, but the errors do not
903 	 * overlap, i.e. the data can be repaired by selecting the
904 	 * pages from those mirrors without I/O error on the
905 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
906 	 * would be that mirror #1 has an I/O error on the first page,
907 	 * the second page is good, and mirror #2 has an I/O error on
908 	 * the second page, but the first page is good.
909 	 * Then the first page of the first mirror can be repaired by
910 	 * taking the first page of the second mirror, and the
911 	 * second page of the second mirror can be repaired by
912 	 * copying the contents of the 2nd page of the 1st mirror.
913 	 * One more note: if the pages of one mirror contain I/O
914 	 * errors, the checksum cannot be verified. In order to get
915 	 * the best data for repairing, the first attempt is to find
916 	 * a mirror without I/O errors and with a validated checksum.
917 	 * Only if this is not possible, the pages are picked from
918 	 * mirrors with I/O errors without considering the checksum.
919 	 * If the latter is the case, at the end, the checksum of the
920 	 * repaired area is verified in order to correctly maintain
921 	 * the statistics.
922 	 */
923 
924 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
925 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
926 	if (!sblocks_for_recheck) {
927 		spin_lock(&sctx->stat_lock);
928 		sctx->stat.malloc_errors++;
929 		sctx->stat.read_errors++;
930 		sctx->stat.uncorrectable_errors++;
931 		spin_unlock(&sctx->stat_lock);
932 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
933 		goto out;
934 	}
935 
936 	/* setup the context, map the logical blocks and alloc the pages */
937 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
938 	if (ret) {
939 		spin_lock(&sctx->stat_lock);
940 		sctx->stat.read_errors++;
941 		sctx->stat.uncorrectable_errors++;
942 		spin_unlock(&sctx->stat_lock);
943 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
944 		goto out;
945 	}
946 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
947 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
948 
949 	/* build and submit the bios for the failed mirror, check checksums */
950 	scrub_recheck_block(fs_info, sblock_bad, 1);
951 
952 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
953 	    sblock_bad->no_io_error_seen) {
954 		/*
955 		 * the error disappeared after reading page by page, or
956 		 * the area was part of a huge bio and other parts of the
957 		 * bio caused I/O errors, or the block layer merged several
958 		 * read requests into one and the error is caused by a
959 		 * different bio (usually one of the two latter cases is
960 		 * the cause)
961 		 */
962 		spin_lock(&sctx->stat_lock);
963 		sctx->stat.unverified_errors++;
964 		sblock_to_check->data_corrected = 1;
965 		spin_unlock(&sctx->stat_lock);
966 
967 		if (sctx->is_dev_replace)
968 			scrub_write_block_to_dev_replace(sblock_bad);
969 		goto out;
970 	}
971 
972 	if (!sblock_bad->no_io_error_seen) {
973 		spin_lock(&sctx->stat_lock);
974 		sctx->stat.read_errors++;
975 		spin_unlock(&sctx->stat_lock);
976 		if (__ratelimit(&_rs))
977 			scrub_print_warning("i/o error", sblock_to_check);
978 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
979 	} else if (sblock_bad->checksum_error) {
980 		spin_lock(&sctx->stat_lock);
981 		sctx->stat.csum_errors++;
982 		spin_unlock(&sctx->stat_lock);
983 		if (__ratelimit(&_rs))
984 			scrub_print_warning("checksum error", sblock_to_check);
985 		btrfs_dev_stat_inc_and_print(dev,
986 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
987 	} else if (sblock_bad->header_error) {
988 		spin_lock(&sctx->stat_lock);
989 		sctx->stat.verify_errors++;
990 		spin_unlock(&sctx->stat_lock);
991 		if (__ratelimit(&_rs))
992 			scrub_print_warning("checksum/header error",
993 					    sblock_to_check);
994 		if (sblock_bad->generation_error)
995 			btrfs_dev_stat_inc_and_print(dev,
996 				BTRFS_DEV_STAT_GENERATION_ERRS);
997 		else
998 			btrfs_dev_stat_inc_and_print(dev,
999 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1000 	}
1001 
1002 	if (sctx->readonly) {
1003 		ASSERT(!sctx->is_dev_replace);
1004 		goto out;
1005 	}
1006 
1007 	/*
1008 	 * now build and submit the bios for the other mirrors, check
1009 	 * checksums.
1010 	 * First try to pick the mirror which is completely without I/O
1011 	 * errors and also does not have a checksum error.
1012 	 * If one is found, and if a checksum is present, the full block
1013 	 * that is known to contain an error is rewritten. Afterwards
1014 	 * the block is known to be corrected.
1015 	 * If a mirror is found which is completely correct, and no
1016 	 * checksum is present, only those pages are rewritten that had
1017 	 * an I/O error in the block to be repaired, since it cannot be
1018 	 * determined, which copy of the other pages is better (and it
1019 	 * could happen otherwise that a correct page would be
1020 	 * overwritten by a bad one).
1021 	 */
1022 	for (mirror_index = 0; ;mirror_index++) {
1023 		struct scrub_block *sblock_other;
1024 
1025 		if (mirror_index == failed_mirror_index)
1026 			continue;
1027 
1028 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1029 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1030 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1031 				break;
1032 			if (!sblocks_for_recheck[mirror_index].page_count)
1033 				break;
1034 
1035 			sblock_other = sblocks_for_recheck + mirror_index;
1036 		} else {
1037 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1038 			int max_allowed = r->bbio->num_stripes -
1039 						r->bbio->num_tgtdevs;
1040 
1041 			if (mirror_index >= max_allowed)
1042 				break;
1043 			if (!sblocks_for_recheck[1].page_count)
1044 				break;
1045 
1046 			ASSERT(failed_mirror_index == 0);
1047 			sblock_other = sblocks_for_recheck + 1;
1048 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1049 		}
1050 
1051 		/* build and submit the bios, check checksums */
1052 		scrub_recheck_block(fs_info, sblock_other, 0);
1053 
1054 		if (!sblock_other->header_error &&
1055 		    !sblock_other->checksum_error &&
1056 		    sblock_other->no_io_error_seen) {
1057 			if (sctx->is_dev_replace) {
1058 				scrub_write_block_to_dev_replace(sblock_other);
1059 				goto corrected_error;
1060 			} else {
1061 				ret = scrub_repair_block_from_good_copy(
1062 						sblock_bad, sblock_other);
1063 				if (!ret)
1064 					goto corrected_error;
1065 			}
1066 		}
1067 	}
1068 
1069 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1070 		goto did_not_correct_error;
1071 
1072 	/*
1073 	 * In case of I/O errors in the area that is supposed to be
1074 	 * repaired, continue by picking good copies of those pages.
1075 	 * Select the good pages from mirrors to rewrite bad pages from
1076 	 * the area to fix. Afterwards verify the checksum of the block
1077 	 * that is supposed to be repaired. This verification step is
1078 	 * only done for the purpose of statistic counting and for the
1079 	 * final scrub report, whether errors remain.
1080 	 * A perfect algorithm could make use of the checksum and try
1081 	 * all possible combinations of pages from the different mirrors
1082 	 * until the checksum verification succeeds. For example, when
1083 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1084 	 * of mirror #2 is readable but the final checksum test fails,
1085 	 * then the 2nd page of mirror #3 could be tried, whether now
1086 	 * the final checksum succeeds. But this would be a rare
1087 	 * exception and is therefore not implemented. At least it is
1088 	 * avoided that the good copy is overwritten.
1089 	 * A more useful improvement would be to pick the sectors
1090 	 * without I/O error based on sector sizes (512 bytes on legacy
1091 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1092 	 * mirror could be repaired by taking 512 byte of a different
1093 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1094 	 * area are unreadable.
1095 	 */
1096 	success = 1;
1097 	for (page_num = 0; page_num < sblock_bad->page_count;
1098 	     page_num++) {
1099 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1100 		struct scrub_block *sblock_other = NULL;
1101 
1102 		/* skip no-io-error page in scrub */
1103 		if (!page_bad->io_error && !sctx->is_dev_replace)
1104 			continue;
1105 
1106 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1107 			/*
1108 			 * In case of dev replace, if raid56 rebuild process
1109 			 * didn't work out correct data, then copy the content
1110 			 * in sblock_bad to make sure target device is identical
1111 			 * to source device, instead of writing garbage data in
1112 			 * sblock_for_recheck array to target device.
1113 			 */
1114 			sblock_other = NULL;
1115 		} else if (page_bad->io_error) {
1116 			/* try to find no-io-error page in mirrors */
1117 			for (mirror_index = 0;
1118 			     mirror_index < BTRFS_MAX_MIRRORS &&
1119 			     sblocks_for_recheck[mirror_index].page_count > 0;
1120 			     mirror_index++) {
1121 				if (!sblocks_for_recheck[mirror_index].
1122 				    pagev[page_num]->io_error) {
1123 					sblock_other = sblocks_for_recheck +
1124 						       mirror_index;
1125 					break;
1126 				}
1127 			}
1128 			if (!sblock_other)
1129 				success = 0;
1130 		}
1131 
1132 		if (sctx->is_dev_replace) {
1133 			/*
1134 			 * did not find a mirror to fetch the page
1135 			 * from. scrub_write_page_to_dev_replace()
1136 			 * handles this case (page->io_error), by
1137 			 * filling the block with zeros before
1138 			 * submitting the write request
1139 			 */
1140 			if (!sblock_other)
1141 				sblock_other = sblock_bad;
1142 
1143 			if (scrub_write_page_to_dev_replace(sblock_other,
1144 							    page_num) != 0) {
1145 				atomic64_inc(
1146 					&fs_info->dev_replace.num_write_errors);
1147 				success = 0;
1148 			}
1149 		} else if (sblock_other) {
1150 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1151 							       sblock_other,
1152 							       page_num, 0);
1153 			if (0 == ret)
1154 				page_bad->io_error = 0;
1155 			else
1156 				success = 0;
1157 		}
1158 	}
1159 
1160 	if (success && !sctx->is_dev_replace) {
1161 		if (is_metadata || have_csum) {
1162 			/*
1163 			 * need to verify the checksum now that all
1164 			 * sectors on disk are repaired (the write
1165 			 * request for data to be repaired is on its way).
1166 			 * Just be lazy and use scrub_recheck_block()
1167 			 * which re-reads the data before the checksum
1168 			 * is verified, but most likely the data comes out
1169 			 * of the page cache.
1170 			 */
1171 			scrub_recheck_block(fs_info, sblock_bad, 1);
1172 			if (!sblock_bad->header_error &&
1173 			    !sblock_bad->checksum_error &&
1174 			    sblock_bad->no_io_error_seen)
1175 				goto corrected_error;
1176 			else
1177 				goto did_not_correct_error;
1178 		} else {
1179 corrected_error:
1180 			spin_lock(&sctx->stat_lock);
1181 			sctx->stat.corrected_errors++;
1182 			sblock_to_check->data_corrected = 1;
1183 			spin_unlock(&sctx->stat_lock);
1184 			btrfs_err_rl_in_rcu(fs_info,
1185 				"fixed up error at logical %llu on dev %s",
1186 				logical, rcu_str_deref(dev->name));
1187 		}
1188 	} else {
1189 did_not_correct_error:
1190 		spin_lock(&sctx->stat_lock);
1191 		sctx->stat.uncorrectable_errors++;
1192 		spin_unlock(&sctx->stat_lock);
1193 		btrfs_err_rl_in_rcu(fs_info,
1194 			"unable to fixup (regular) error at logical %llu on dev %s",
1195 			logical, rcu_str_deref(dev->name));
1196 	}
1197 
1198 out:
1199 	if (sblocks_for_recheck) {
1200 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1201 		     mirror_index++) {
1202 			struct scrub_block *sblock = sblocks_for_recheck +
1203 						     mirror_index;
1204 			struct scrub_recover *recover;
1205 			int page_index;
1206 
1207 			for (page_index = 0; page_index < sblock->page_count;
1208 			     page_index++) {
1209 				sblock->pagev[page_index]->sblock = NULL;
1210 				recover = sblock->pagev[page_index]->recover;
1211 				if (recover) {
1212 					scrub_put_recover(fs_info, recover);
1213 					sblock->pagev[page_index]->recover =
1214 									NULL;
1215 				}
1216 				scrub_page_put(sblock->pagev[page_index]);
1217 			}
1218 		}
1219 		kfree(sblocks_for_recheck);
1220 	}
1221 
1222 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1223 	memalloc_nofs_restore(nofs_flag);
1224 	if (ret < 0)
1225 		return ret;
1226 	return 0;
1227 }
1228 
1229 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1230 {
1231 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1232 		return 2;
1233 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1234 		return 3;
1235 	else
1236 		return (int)bbio->num_stripes;
1237 }
1238 
1239 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1240 						 u64 *raid_map,
1241 						 u64 mapped_length,
1242 						 int nstripes, int mirror,
1243 						 int *stripe_index,
1244 						 u64 *stripe_offset)
1245 {
1246 	int i;
1247 
1248 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1249 		/* RAID5/6 */
1250 		for (i = 0; i < nstripes; i++) {
1251 			if (raid_map[i] == RAID6_Q_STRIPE ||
1252 			    raid_map[i] == RAID5_P_STRIPE)
1253 				continue;
1254 
1255 			if (logical >= raid_map[i] &&
1256 			    logical < raid_map[i] + mapped_length)
1257 				break;
1258 		}
1259 
1260 		*stripe_index = i;
1261 		*stripe_offset = logical - raid_map[i];
1262 	} else {
1263 		/* The other RAID type */
1264 		*stripe_index = mirror;
1265 		*stripe_offset = 0;
1266 	}
1267 }
1268 
1269 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1270 				     struct scrub_block *sblocks_for_recheck)
1271 {
1272 	struct scrub_ctx *sctx = original_sblock->sctx;
1273 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1274 	u64 length = original_sblock->page_count * PAGE_SIZE;
1275 	u64 logical = original_sblock->pagev[0]->logical;
1276 	u64 generation = original_sblock->pagev[0]->generation;
1277 	u64 flags = original_sblock->pagev[0]->flags;
1278 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1279 	struct scrub_recover *recover;
1280 	struct btrfs_bio *bbio;
1281 	u64 sublen;
1282 	u64 mapped_length;
1283 	u64 stripe_offset;
1284 	int stripe_index;
1285 	int page_index = 0;
1286 	int mirror_index;
1287 	int nmirrors;
1288 	int ret;
1289 
1290 	/*
1291 	 * note: the two members refs and outstanding_pages
1292 	 * are not used (and not set) in the blocks that are used for
1293 	 * the recheck procedure
1294 	 */
1295 
1296 	while (length > 0) {
1297 		sublen = min_t(u64, length, PAGE_SIZE);
1298 		mapped_length = sublen;
1299 		bbio = NULL;
1300 
1301 		/*
1302 		 * with a length of PAGE_SIZE, each returned stripe
1303 		 * represents one mirror
1304 		 */
1305 		btrfs_bio_counter_inc_blocked(fs_info);
1306 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1307 				logical, &mapped_length, &bbio);
1308 		if (ret || !bbio || mapped_length < sublen) {
1309 			btrfs_put_bbio(bbio);
1310 			btrfs_bio_counter_dec(fs_info);
1311 			return -EIO;
1312 		}
1313 
1314 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1315 		if (!recover) {
1316 			btrfs_put_bbio(bbio);
1317 			btrfs_bio_counter_dec(fs_info);
1318 			return -ENOMEM;
1319 		}
1320 
1321 		refcount_set(&recover->refs, 1);
1322 		recover->bbio = bbio;
1323 		recover->map_length = mapped_length;
1324 
1325 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1326 
1327 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1328 
1329 		for (mirror_index = 0; mirror_index < nmirrors;
1330 		     mirror_index++) {
1331 			struct scrub_block *sblock;
1332 			struct scrub_page *page;
1333 
1334 			sblock = sblocks_for_recheck + mirror_index;
1335 			sblock->sctx = sctx;
1336 
1337 			page = kzalloc(sizeof(*page), GFP_NOFS);
1338 			if (!page) {
1339 leave_nomem:
1340 				spin_lock(&sctx->stat_lock);
1341 				sctx->stat.malloc_errors++;
1342 				spin_unlock(&sctx->stat_lock);
1343 				scrub_put_recover(fs_info, recover);
1344 				return -ENOMEM;
1345 			}
1346 			scrub_page_get(page);
1347 			sblock->pagev[page_index] = page;
1348 			page->sblock = sblock;
1349 			page->flags = flags;
1350 			page->generation = generation;
1351 			page->logical = logical;
1352 			page->have_csum = have_csum;
1353 			if (have_csum)
1354 				memcpy(page->csum,
1355 				       original_sblock->pagev[0]->csum,
1356 				       sctx->csum_size);
1357 
1358 			scrub_stripe_index_and_offset(logical,
1359 						      bbio->map_type,
1360 						      bbio->raid_map,
1361 						      mapped_length,
1362 						      bbio->num_stripes -
1363 						      bbio->num_tgtdevs,
1364 						      mirror_index,
1365 						      &stripe_index,
1366 						      &stripe_offset);
1367 			page->physical = bbio->stripes[stripe_index].physical +
1368 					 stripe_offset;
1369 			page->dev = bbio->stripes[stripe_index].dev;
1370 
1371 			BUG_ON(page_index >= original_sblock->page_count);
1372 			page->physical_for_dev_replace =
1373 				original_sblock->pagev[page_index]->
1374 				physical_for_dev_replace;
1375 			/* for missing devices, dev->bdev is NULL */
1376 			page->mirror_num = mirror_index + 1;
1377 			sblock->page_count++;
1378 			page->page = alloc_page(GFP_NOFS);
1379 			if (!page->page)
1380 				goto leave_nomem;
1381 
1382 			scrub_get_recover(recover);
1383 			page->recover = recover;
1384 		}
1385 		scrub_put_recover(fs_info, recover);
1386 		length -= sublen;
1387 		logical += sublen;
1388 		page_index++;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static void scrub_bio_wait_endio(struct bio *bio)
1395 {
1396 	complete(bio->bi_private);
1397 }
1398 
1399 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1400 					struct bio *bio,
1401 					struct scrub_page *page)
1402 {
1403 	DECLARE_COMPLETION_ONSTACK(done);
1404 	int ret;
1405 	int mirror_num;
1406 
1407 	bio->bi_iter.bi_sector = page->logical >> 9;
1408 	bio->bi_private = &done;
1409 	bio->bi_end_io = scrub_bio_wait_endio;
1410 
1411 	mirror_num = page->sblock->pagev[0]->mirror_num;
1412 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1413 				    page->recover->map_length,
1414 				    mirror_num, 0);
1415 	if (ret)
1416 		return ret;
1417 
1418 	wait_for_completion_io(&done);
1419 	return blk_status_to_errno(bio->bi_status);
1420 }
1421 
1422 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1423 					  struct scrub_block *sblock)
1424 {
1425 	struct scrub_page *first_page = sblock->pagev[0];
1426 	struct bio *bio;
1427 	int page_num;
1428 
1429 	/* All pages in sblock belong to the same stripe on the same device. */
1430 	ASSERT(first_page->dev);
1431 	if (!first_page->dev->bdev)
1432 		goto out;
1433 
1434 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1435 	bio_set_dev(bio, first_page->dev->bdev);
1436 
1437 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1438 		struct scrub_page *page = sblock->pagev[page_num];
1439 
1440 		WARN_ON(!page->page);
1441 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1442 	}
1443 
1444 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1445 		bio_put(bio);
1446 		goto out;
1447 	}
1448 
1449 	bio_put(bio);
1450 
1451 	scrub_recheck_block_checksum(sblock);
1452 
1453 	return;
1454 out:
1455 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1456 		sblock->pagev[page_num]->io_error = 1;
1457 
1458 	sblock->no_io_error_seen = 0;
1459 }
1460 
1461 /*
1462  * this function will check the on disk data for checksum errors, header
1463  * errors and read I/O errors. If any I/O errors happen, the exact pages
1464  * which are errored are marked as being bad. The goal is to enable scrub
1465  * to take those pages that are not errored from all the mirrors so that
1466  * the pages that are errored in the just handled mirror can be repaired.
1467  */
1468 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1469 				struct scrub_block *sblock,
1470 				int retry_failed_mirror)
1471 {
1472 	int page_num;
1473 
1474 	sblock->no_io_error_seen = 1;
1475 
1476 	/* short cut for raid56 */
1477 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1478 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1479 
1480 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1481 		struct bio *bio;
1482 		struct scrub_page *page = sblock->pagev[page_num];
1483 
1484 		if (page->dev->bdev == NULL) {
1485 			page->io_error = 1;
1486 			sblock->no_io_error_seen = 0;
1487 			continue;
1488 		}
1489 
1490 		WARN_ON(!page->page);
1491 		bio = btrfs_io_bio_alloc(1);
1492 		bio_set_dev(bio, page->dev->bdev);
1493 
1494 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1495 		bio->bi_iter.bi_sector = page->physical >> 9;
1496 		bio->bi_opf = REQ_OP_READ;
1497 
1498 		if (btrfsic_submit_bio_wait(bio)) {
1499 			page->io_error = 1;
1500 			sblock->no_io_error_seen = 0;
1501 		}
1502 
1503 		bio_put(bio);
1504 	}
1505 
1506 	if (sblock->no_io_error_seen)
1507 		scrub_recheck_block_checksum(sblock);
1508 }
1509 
1510 static inline int scrub_check_fsid(u8 fsid[],
1511 				   struct scrub_page *spage)
1512 {
1513 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1514 	int ret;
1515 
1516 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1517 	return !ret;
1518 }
1519 
1520 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1521 {
1522 	sblock->header_error = 0;
1523 	sblock->checksum_error = 0;
1524 	sblock->generation_error = 0;
1525 
1526 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1527 		scrub_checksum_data(sblock);
1528 	else
1529 		scrub_checksum_tree_block(sblock);
1530 }
1531 
1532 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1533 					     struct scrub_block *sblock_good)
1534 {
1535 	int page_num;
1536 	int ret = 0;
1537 
1538 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1539 		int ret_sub;
1540 
1541 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1542 							   sblock_good,
1543 							   page_num, 1);
1544 		if (ret_sub)
1545 			ret = ret_sub;
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1552 					    struct scrub_block *sblock_good,
1553 					    int page_num, int force_write)
1554 {
1555 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1556 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1557 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1558 
1559 	BUG_ON(page_bad->page == NULL);
1560 	BUG_ON(page_good->page == NULL);
1561 	if (force_write || sblock_bad->header_error ||
1562 	    sblock_bad->checksum_error || page_bad->io_error) {
1563 		struct bio *bio;
1564 		int ret;
1565 
1566 		if (!page_bad->dev->bdev) {
1567 			btrfs_warn_rl(fs_info,
1568 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1569 			return -EIO;
1570 		}
1571 
1572 		bio = btrfs_io_bio_alloc(1);
1573 		bio_set_dev(bio, page_bad->dev->bdev);
1574 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1575 		bio->bi_opf = REQ_OP_WRITE;
1576 
1577 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1578 		if (PAGE_SIZE != ret) {
1579 			bio_put(bio);
1580 			return -EIO;
1581 		}
1582 
1583 		if (btrfsic_submit_bio_wait(bio)) {
1584 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1585 				BTRFS_DEV_STAT_WRITE_ERRS);
1586 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1587 			bio_put(bio);
1588 			return -EIO;
1589 		}
1590 		bio_put(bio);
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1597 {
1598 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1599 	int page_num;
1600 
1601 	/*
1602 	 * This block is used for the check of the parity on the source device,
1603 	 * so the data needn't be written into the destination device.
1604 	 */
1605 	if (sblock->sparity)
1606 		return;
1607 
1608 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1609 		int ret;
1610 
1611 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1612 		if (ret)
1613 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1614 	}
1615 }
1616 
1617 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1618 					   int page_num)
1619 {
1620 	struct scrub_page *spage = sblock->pagev[page_num];
1621 
1622 	BUG_ON(spage->page == NULL);
1623 	if (spage->io_error) {
1624 		void *mapped_buffer = kmap_atomic(spage->page);
1625 
1626 		clear_page(mapped_buffer);
1627 		flush_dcache_page(spage->page);
1628 		kunmap_atomic(mapped_buffer);
1629 	}
1630 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1631 }
1632 
1633 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1634 				    struct scrub_page *spage)
1635 {
1636 	struct scrub_bio *sbio;
1637 	int ret;
1638 
1639 	mutex_lock(&sctx->wr_lock);
1640 again:
1641 	if (!sctx->wr_curr_bio) {
1642 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1643 					      GFP_KERNEL);
1644 		if (!sctx->wr_curr_bio) {
1645 			mutex_unlock(&sctx->wr_lock);
1646 			return -ENOMEM;
1647 		}
1648 		sctx->wr_curr_bio->sctx = sctx;
1649 		sctx->wr_curr_bio->page_count = 0;
1650 	}
1651 	sbio = sctx->wr_curr_bio;
1652 	if (sbio->page_count == 0) {
1653 		struct bio *bio;
1654 
1655 		sbio->physical = spage->physical_for_dev_replace;
1656 		sbio->logical = spage->logical;
1657 		sbio->dev = sctx->wr_tgtdev;
1658 		bio = sbio->bio;
1659 		if (!bio) {
1660 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1661 			sbio->bio = bio;
1662 		}
1663 
1664 		bio->bi_private = sbio;
1665 		bio->bi_end_io = scrub_wr_bio_end_io;
1666 		bio_set_dev(bio, sbio->dev->bdev);
1667 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1668 		bio->bi_opf = REQ_OP_WRITE;
1669 		sbio->status = 0;
1670 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1671 		   spage->physical_for_dev_replace ||
1672 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1673 		   spage->logical) {
1674 		scrub_wr_submit(sctx);
1675 		goto again;
1676 	}
1677 
1678 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1679 	if (ret != PAGE_SIZE) {
1680 		if (sbio->page_count < 1) {
1681 			bio_put(sbio->bio);
1682 			sbio->bio = NULL;
1683 			mutex_unlock(&sctx->wr_lock);
1684 			return -EIO;
1685 		}
1686 		scrub_wr_submit(sctx);
1687 		goto again;
1688 	}
1689 
1690 	sbio->pagev[sbio->page_count] = spage;
1691 	scrub_page_get(spage);
1692 	sbio->page_count++;
1693 	if (sbio->page_count == sctx->pages_per_wr_bio)
1694 		scrub_wr_submit(sctx);
1695 	mutex_unlock(&sctx->wr_lock);
1696 
1697 	return 0;
1698 }
1699 
1700 static void scrub_wr_submit(struct scrub_ctx *sctx)
1701 {
1702 	struct scrub_bio *sbio;
1703 
1704 	if (!sctx->wr_curr_bio)
1705 		return;
1706 
1707 	sbio = sctx->wr_curr_bio;
1708 	sctx->wr_curr_bio = NULL;
1709 	WARN_ON(!sbio->bio->bi_disk);
1710 	scrub_pending_bio_inc(sctx);
1711 	/* process all writes in a single worker thread. Then the block layer
1712 	 * orders the requests before sending them to the driver which
1713 	 * doubled the write performance on spinning disks when measured
1714 	 * with Linux 3.5 */
1715 	btrfsic_submit_bio(sbio->bio);
1716 }
1717 
1718 static void scrub_wr_bio_end_io(struct bio *bio)
1719 {
1720 	struct scrub_bio *sbio = bio->bi_private;
1721 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1722 
1723 	sbio->status = bio->bi_status;
1724 	sbio->bio = bio;
1725 
1726 	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1727 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1728 }
1729 
1730 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1731 {
1732 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1733 	struct scrub_ctx *sctx = sbio->sctx;
1734 	int i;
1735 
1736 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1737 	if (sbio->status) {
1738 		struct btrfs_dev_replace *dev_replace =
1739 			&sbio->sctx->fs_info->dev_replace;
1740 
1741 		for (i = 0; i < sbio->page_count; i++) {
1742 			struct scrub_page *spage = sbio->pagev[i];
1743 
1744 			spage->io_error = 1;
1745 			atomic64_inc(&dev_replace->num_write_errors);
1746 		}
1747 	}
1748 
1749 	for (i = 0; i < sbio->page_count; i++)
1750 		scrub_page_put(sbio->pagev[i]);
1751 
1752 	bio_put(sbio->bio);
1753 	kfree(sbio);
1754 	scrub_pending_bio_dec(sctx);
1755 }
1756 
1757 static int scrub_checksum(struct scrub_block *sblock)
1758 {
1759 	u64 flags;
1760 	int ret;
1761 
1762 	/*
1763 	 * No need to initialize these stats currently,
1764 	 * because this function only use return value
1765 	 * instead of these stats value.
1766 	 *
1767 	 * Todo:
1768 	 * always use stats
1769 	 */
1770 	sblock->header_error = 0;
1771 	sblock->generation_error = 0;
1772 	sblock->checksum_error = 0;
1773 
1774 	WARN_ON(sblock->page_count < 1);
1775 	flags = sblock->pagev[0]->flags;
1776 	ret = 0;
1777 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1778 		ret = scrub_checksum_data(sblock);
1779 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1780 		ret = scrub_checksum_tree_block(sblock);
1781 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1782 		(void)scrub_checksum_super(sblock);
1783 	else
1784 		WARN_ON(1);
1785 	if (ret)
1786 		scrub_handle_errored_block(sblock);
1787 
1788 	return ret;
1789 }
1790 
1791 static int scrub_checksum_data(struct scrub_block *sblock)
1792 {
1793 	struct scrub_ctx *sctx = sblock->sctx;
1794 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1795 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1796 	u8 csum[BTRFS_CSUM_SIZE];
1797 	u8 *on_disk_csum;
1798 	struct page *page;
1799 	void *buffer;
1800 	u64 len;
1801 	int index;
1802 
1803 	BUG_ON(sblock->page_count < 1);
1804 	if (!sblock->pagev[0]->have_csum)
1805 		return 0;
1806 
1807 	shash->tfm = fs_info->csum_shash;
1808 	crypto_shash_init(shash);
1809 
1810 	on_disk_csum = sblock->pagev[0]->csum;
1811 	page = sblock->pagev[0]->page;
1812 	buffer = kmap_atomic(page);
1813 
1814 	len = sctx->fs_info->sectorsize;
1815 	index = 0;
1816 	for (;;) {
1817 		u64 l = min_t(u64, len, PAGE_SIZE);
1818 
1819 		crypto_shash_update(shash, buffer, l);
1820 		kunmap_atomic(buffer);
1821 		len -= l;
1822 		if (len == 0)
1823 			break;
1824 		index++;
1825 		BUG_ON(index >= sblock->page_count);
1826 		BUG_ON(!sblock->pagev[index]->page);
1827 		page = sblock->pagev[index]->page;
1828 		buffer = kmap_atomic(page);
1829 	}
1830 
1831 	crypto_shash_final(shash, csum);
1832 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1833 		sblock->checksum_error = 1;
1834 
1835 	return sblock->checksum_error;
1836 }
1837 
1838 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1839 {
1840 	struct scrub_ctx *sctx = sblock->sctx;
1841 	struct btrfs_header *h;
1842 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1843 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1844 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1845 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1846 	struct page *page;
1847 	void *mapped_buffer;
1848 	u64 mapped_size;
1849 	void *p;
1850 	u64 len;
1851 	int index;
1852 
1853 	shash->tfm = fs_info->csum_shash;
1854 	crypto_shash_init(shash);
1855 
1856 	BUG_ON(sblock->page_count < 1);
1857 	page = sblock->pagev[0]->page;
1858 	mapped_buffer = kmap_atomic(page);
1859 	h = (struct btrfs_header *)mapped_buffer;
1860 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1861 
1862 	/*
1863 	 * we don't use the getter functions here, as we
1864 	 * a) don't have an extent buffer and
1865 	 * b) the page is already kmapped
1866 	 */
1867 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1868 		sblock->header_error = 1;
1869 
1870 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1871 		sblock->header_error = 1;
1872 		sblock->generation_error = 1;
1873 	}
1874 
1875 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1876 		sblock->header_error = 1;
1877 
1878 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1879 		   BTRFS_UUID_SIZE))
1880 		sblock->header_error = 1;
1881 
1882 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1883 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1884 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1885 	index = 0;
1886 	for (;;) {
1887 		u64 l = min_t(u64, len, mapped_size);
1888 
1889 		crypto_shash_update(shash, p, l);
1890 		kunmap_atomic(mapped_buffer);
1891 		len -= l;
1892 		if (len == 0)
1893 			break;
1894 		index++;
1895 		BUG_ON(index >= sblock->page_count);
1896 		BUG_ON(!sblock->pagev[index]->page);
1897 		page = sblock->pagev[index]->page;
1898 		mapped_buffer = kmap_atomic(page);
1899 		mapped_size = PAGE_SIZE;
1900 		p = mapped_buffer;
1901 	}
1902 
1903 	crypto_shash_final(shash, calculated_csum);
1904 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1905 		sblock->checksum_error = 1;
1906 
1907 	return sblock->header_error || sblock->checksum_error;
1908 }
1909 
1910 static int scrub_checksum_super(struct scrub_block *sblock)
1911 {
1912 	struct btrfs_super_block *s;
1913 	struct scrub_ctx *sctx = sblock->sctx;
1914 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1915 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1916 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1917 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1918 	struct page *page;
1919 	void *mapped_buffer;
1920 	u64 mapped_size;
1921 	void *p;
1922 	int fail_gen = 0;
1923 	int fail_cor = 0;
1924 	u64 len;
1925 	int index;
1926 
1927 	shash->tfm = fs_info->csum_shash;
1928 	crypto_shash_init(shash);
1929 
1930 	BUG_ON(sblock->page_count < 1);
1931 	page = sblock->pagev[0]->page;
1932 	mapped_buffer = kmap_atomic(page);
1933 	s = (struct btrfs_super_block *)mapped_buffer;
1934 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1935 
1936 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1937 		++fail_cor;
1938 
1939 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1940 		++fail_gen;
1941 
1942 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1943 		++fail_cor;
1944 
1945 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1946 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1947 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1948 	index = 0;
1949 	for (;;) {
1950 		u64 l = min_t(u64, len, mapped_size);
1951 
1952 		crypto_shash_update(shash, p, l);
1953 		kunmap_atomic(mapped_buffer);
1954 		len -= l;
1955 		if (len == 0)
1956 			break;
1957 		index++;
1958 		BUG_ON(index >= sblock->page_count);
1959 		BUG_ON(!sblock->pagev[index]->page);
1960 		page = sblock->pagev[index]->page;
1961 		mapped_buffer = kmap_atomic(page);
1962 		mapped_size = PAGE_SIZE;
1963 		p = mapped_buffer;
1964 	}
1965 
1966 	crypto_shash_final(shash, calculated_csum);
1967 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1968 		++fail_cor;
1969 
1970 	if (fail_cor + fail_gen) {
1971 		/*
1972 		 * if we find an error in a super block, we just report it.
1973 		 * They will get written with the next transaction commit
1974 		 * anyway
1975 		 */
1976 		spin_lock(&sctx->stat_lock);
1977 		++sctx->stat.super_errors;
1978 		spin_unlock(&sctx->stat_lock);
1979 		if (fail_cor)
1980 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1981 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1982 		else
1983 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1984 				BTRFS_DEV_STAT_GENERATION_ERRS);
1985 	}
1986 
1987 	return fail_cor + fail_gen;
1988 }
1989 
1990 static void scrub_block_get(struct scrub_block *sblock)
1991 {
1992 	refcount_inc(&sblock->refs);
1993 }
1994 
1995 static void scrub_block_put(struct scrub_block *sblock)
1996 {
1997 	if (refcount_dec_and_test(&sblock->refs)) {
1998 		int i;
1999 
2000 		if (sblock->sparity)
2001 			scrub_parity_put(sblock->sparity);
2002 
2003 		for (i = 0; i < sblock->page_count; i++)
2004 			scrub_page_put(sblock->pagev[i]);
2005 		kfree(sblock);
2006 	}
2007 }
2008 
2009 static void scrub_page_get(struct scrub_page *spage)
2010 {
2011 	atomic_inc(&spage->refs);
2012 }
2013 
2014 static void scrub_page_put(struct scrub_page *spage)
2015 {
2016 	if (atomic_dec_and_test(&spage->refs)) {
2017 		if (spage->page)
2018 			__free_page(spage->page);
2019 		kfree(spage);
2020 	}
2021 }
2022 
2023 static void scrub_submit(struct scrub_ctx *sctx)
2024 {
2025 	struct scrub_bio *sbio;
2026 
2027 	if (sctx->curr == -1)
2028 		return;
2029 
2030 	sbio = sctx->bios[sctx->curr];
2031 	sctx->curr = -1;
2032 	scrub_pending_bio_inc(sctx);
2033 	btrfsic_submit_bio(sbio->bio);
2034 }
2035 
2036 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2037 				    struct scrub_page *spage)
2038 {
2039 	struct scrub_block *sblock = spage->sblock;
2040 	struct scrub_bio *sbio;
2041 	int ret;
2042 
2043 again:
2044 	/*
2045 	 * grab a fresh bio or wait for one to become available
2046 	 */
2047 	while (sctx->curr == -1) {
2048 		spin_lock(&sctx->list_lock);
2049 		sctx->curr = sctx->first_free;
2050 		if (sctx->curr != -1) {
2051 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2052 			sctx->bios[sctx->curr]->next_free = -1;
2053 			sctx->bios[sctx->curr]->page_count = 0;
2054 			spin_unlock(&sctx->list_lock);
2055 		} else {
2056 			spin_unlock(&sctx->list_lock);
2057 			wait_event(sctx->list_wait, sctx->first_free != -1);
2058 		}
2059 	}
2060 	sbio = sctx->bios[sctx->curr];
2061 	if (sbio->page_count == 0) {
2062 		struct bio *bio;
2063 
2064 		sbio->physical = spage->physical;
2065 		sbio->logical = spage->logical;
2066 		sbio->dev = spage->dev;
2067 		bio = sbio->bio;
2068 		if (!bio) {
2069 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2070 			sbio->bio = bio;
2071 		}
2072 
2073 		bio->bi_private = sbio;
2074 		bio->bi_end_io = scrub_bio_end_io;
2075 		bio_set_dev(bio, sbio->dev->bdev);
2076 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2077 		bio->bi_opf = REQ_OP_READ;
2078 		sbio->status = 0;
2079 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2080 		   spage->physical ||
2081 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2082 		   spage->logical ||
2083 		   sbio->dev != spage->dev) {
2084 		scrub_submit(sctx);
2085 		goto again;
2086 	}
2087 
2088 	sbio->pagev[sbio->page_count] = spage;
2089 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2090 	if (ret != PAGE_SIZE) {
2091 		if (sbio->page_count < 1) {
2092 			bio_put(sbio->bio);
2093 			sbio->bio = NULL;
2094 			return -EIO;
2095 		}
2096 		scrub_submit(sctx);
2097 		goto again;
2098 	}
2099 
2100 	scrub_block_get(sblock); /* one for the page added to the bio */
2101 	atomic_inc(&sblock->outstanding_pages);
2102 	sbio->page_count++;
2103 	if (sbio->page_count == sctx->pages_per_rd_bio)
2104 		scrub_submit(sctx);
2105 
2106 	return 0;
2107 }
2108 
2109 static void scrub_missing_raid56_end_io(struct bio *bio)
2110 {
2111 	struct scrub_block *sblock = bio->bi_private;
2112 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2113 
2114 	if (bio->bi_status)
2115 		sblock->no_io_error_seen = 0;
2116 
2117 	bio_put(bio);
2118 
2119 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2120 }
2121 
2122 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2123 {
2124 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2125 	struct scrub_ctx *sctx = sblock->sctx;
2126 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2127 	u64 logical;
2128 	struct btrfs_device *dev;
2129 
2130 	logical = sblock->pagev[0]->logical;
2131 	dev = sblock->pagev[0]->dev;
2132 
2133 	if (sblock->no_io_error_seen)
2134 		scrub_recheck_block_checksum(sblock);
2135 
2136 	if (!sblock->no_io_error_seen) {
2137 		spin_lock(&sctx->stat_lock);
2138 		sctx->stat.read_errors++;
2139 		spin_unlock(&sctx->stat_lock);
2140 		btrfs_err_rl_in_rcu(fs_info,
2141 			"IO error rebuilding logical %llu for dev %s",
2142 			logical, rcu_str_deref(dev->name));
2143 	} else if (sblock->header_error || sblock->checksum_error) {
2144 		spin_lock(&sctx->stat_lock);
2145 		sctx->stat.uncorrectable_errors++;
2146 		spin_unlock(&sctx->stat_lock);
2147 		btrfs_err_rl_in_rcu(fs_info,
2148 			"failed to rebuild valid logical %llu for dev %s",
2149 			logical, rcu_str_deref(dev->name));
2150 	} else {
2151 		scrub_write_block_to_dev_replace(sblock);
2152 	}
2153 
2154 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155 		mutex_lock(&sctx->wr_lock);
2156 		scrub_wr_submit(sctx);
2157 		mutex_unlock(&sctx->wr_lock);
2158 	}
2159 
2160 	scrub_block_put(sblock);
2161 	scrub_pending_bio_dec(sctx);
2162 }
2163 
2164 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2165 {
2166 	struct scrub_ctx *sctx = sblock->sctx;
2167 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2168 	u64 length = sblock->page_count * PAGE_SIZE;
2169 	u64 logical = sblock->pagev[0]->logical;
2170 	struct btrfs_bio *bbio = NULL;
2171 	struct bio *bio;
2172 	struct btrfs_raid_bio *rbio;
2173 	int ret;
2174 	int i;
2175 
2176 	btrfs_bio_counter_inc_blocked(fs_info);
2177 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2178 			&length, &bbio);
2179 	if (ret || !bbio || !bbio->raid_map)
2180 		goto bbio_out;
2181 
2182 	if (WARN_ON(!sctx->is_dev_replace ||
2183 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2184 		/*
2185 		 * We shouldn't be scrubbing a missing device. Even for dev
2186 		 * replace, we should only get here for RAID 5/6. We either
2187 		 * managed to mount something with no mirrors remaining or
2188 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2189 		 */
2190 		goto bbio_out;
2191 	}
2192 
2193 	bio = btrfs_io_bio_alloc(0);
2194 	bio->bi_iter.bi_sector = logical >> 9;
2195 	bio->bi_private = sblock;
2196 	bio->bi_end_io = scrub_missing_raid56_end_io;
2197 
2198 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2199 	if (!rbio)
2200 		goto rbio_out;
2201 
2202 	for (i = 0; i < sblock->page_count; i++) {
2203 		struct scrub_page *spage = sblock->pagev[i];
2204 
2205 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2206 	}
2207 
2208 	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2209 	scrub_block_get(sblock);
2210 	scrub_pending_bio_inc(sctx);
2211 	raid56_submit_missing_rbio(rbio);
2212 	return;
2213 
2214 rbio_out:
2215 	bio_put(bio);
2216 bbio_out:
2217 	btrfs_bio_counter_dec(fs_info);
2218 	btrfs_put_bbio(bbio);
2219 	spin_lock(&sctx->stat_lock);
2220 	sctx->stat.malloc_errors++;
2221 	spin_unlock(&sctx->stat_lock);
2222 }
2223 
2224 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225 		       u64 physical, struct btrfs_device *dev, u64 flags,
2226 		       u64 gen, int mirror_num, u8 *csum, int force,
2227 		       u64 physical_for_dev_replace)
2228 {
2229 	struct scrub_block *sblock;
2230 	int index;
2231 
2232 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2233 	if (!sblock) {
2234 		spin_lock(&sctx->stat_lock);
2235 		sctx->stat.malloc_errors++;
2236 		spin_unlock(&sctx->stat_lock);
2237 		return -ENOMEM;
2238 	}
2239 
2240 	/* one ref inside this function, plus one for each page added to
2241 	 * a bio later on */
2242 	refcount_set(&sblock->refs, 1);
2243 	sblock->sctx = sctx;
2244 	sblock->no_io_error_seen = 1;
2245 
2246 	for (index = 0; len > 0; index++) {
2247 		struct scrub_page *spage;
2248 		u64 l = min_t(u64, len, PAGE_SIZE);
2249 
2250 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251 		if (!spage) {
2252 leave_nomem:
2253 			spin_lock(&sctx->stat_lock);
2254 			sctx->stat.malloc_errors++;
2255 			spin_unlock(&sctx->stat_lock);
2256 			scrub_block_put(sblock);
2257 			return -ENOMEM;
2258 		}
2259 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2260 		scrub_page_get(spage);
2261 		sblock->pagev[index] = spage;
2262 		spage->sblock = sblock;
2263 		spage->dev = dev;
2264 		spage->flags = flags;
2265 		spage->generation = gen;
2266 		spage->logical = logical;
2267 		spage->physical = physical;
2268 		spage->physical_for_dev_replace = physical_for_dev_replace;
2269 		spage->mirror_num = mirror_num;
2270 		if (csum) {
2271 			spage->have_csum = 1;
2272 			memcpy(spage->csum, csum, sctx->csum_size);
2273 		} else {
2274 			spage->have_csum = 0;
2275 		}
2276 		sblock->page_count++;
2277 		spage->page = alloc_page(GFP_KERNEL);
2278 		if (!spage->page)
2279 			goto leave_nomem;
2280 		len -= l;
2281 		logical += l;
2282 		physical += l;
2283 		physical_for_dev_replace += l;
2284 	}
2285 
2286 	WARN_ON(sblock->page_count == 0);
2287 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288 		/*
2289 		 * This case should only be hit for RAID 5/6 device replace. See
2290 		 * the comment in scrub_missing_raid56_pages() for details.
2291 		 */
2292 		scrub_missing_raid56_pages(sblock);
2293 	} else {
2294 		for (index = 0; index < sblock->page_count; index++) {
2295 			struct scrub_page *spage = sblock->pagev[index];
2296 			int ret;
2297 
2298 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2299 			if (ret) {
2300 				scrub_block_put(sblock);
2301 				return ret;
2302 			}
2303 		}
2304 
2305 		if (force)
2306 			scrub_submit(sctx);
2307 	}
2308 
2309 	/* last one frees, either here or in bio completion for last page */
2310 	scrub_block_put(sblock);
2311 	return 0;
2312 }
2313 
2314 static void scrub_bio_end_io(struct bio *bio)
2315 {
2316 	struct scrub_bio *sbio = bio->bi_private;
2317 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318 
2319 	sbio->status = bio->bi_status;
2320 	sbio->bio = bio;
2321 
2322 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323 }
2324 
2325 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2326 {
2327 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328 	struct scrub_ctx *sctx = sbio->sctx;
2329 	int i;
2330 
2331 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332 	if (sbio->status) {
2333 		for (i = 0; i < sbio->page_count; i++) {
2334 			struct scrub_page *spage = sbio->pagev[i];
2335 
2336 			spage->io_error = 1;
2337 			spage->sblock->no_io_error_seen = 0;
2338 		}
2339 	}
2340 
2341 	/* now complete the scrub_block items that have all pages completed */
2342 	for (i = 0; i < sbio->page_count; i++) {
2343 		struct scrub_page *spage = sbio->pagev[i];
2344 		struct scrub_block *sblock = spage->sblock;
2345 
2346 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2347 			scrub_block_complete(sblock);
2348 		scrub_block_put(sblock);
2349 	}
2350 
2351 	bio_put(sbio->bio);
2352 	sbio->bio = NULL;
2353 	spin_lock(&sctx->list_lock);
2354 	sbio->next_free = sctx->first_free;
2355 	sctx->first_free = sbio->index;
2356 	spin_unlock(&sctx->list_lock);
2357 
2358 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359 		mutex_lock(&sctx->wr_lock);
2360 		scrub_wr_submit(sctx);
2361 		mutex_unlock(&sctx->wr_lock);
2362 	}
2363 
2364 	scrub_pending_bio_dec(sctx);
2365 }
2366 
2367 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2368 				       unsigned long *bitmap,
2369 				       u64 start, u64 len)
2370 {
2371 	u64 offset;
2372 	u64 nsectors64;
2373 	u32 nsectors;
2374 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2375 
2376 	if (len >= sparity->stripe_len) {
2377 		bitmap_set(bitmap, 0, sparity->nsectors);
2378 		return;
2379 	}
2380 
2381 	start -= sparity->logic_start;
2382 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383 	offset = div_u64(offset, sectorsize);
2384 	nsectors64 = div_u64(len, sectorsize);
2385 
2386 	ASSERT(nsectors64 < UINT_MAX);
2387 	nsectors = (u32)nsectors64;
2388 
2389 	if (offset + nsectors <= sparity->nsectors) {
2390 		bitmap_set(bitmap, offset, nsectors);
2391 		return;
2392 	}
2393 
2394 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2395 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2396 }
2397 
2398 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2399 						   u64 start, u64 len)
2400 {
2401 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2402 }
2403 
2404 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2405 						  u64 start, u64 len)
2406 {
2407 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2408 }
2409 
2410 static void scrub_block_complete(struct scrub_block *sblock)
2411 {
2412 	int corrupted = 0;
2413 
2414 	if (!sblock->no_io_error_seen) {
2415 		corrupted = 1;
2416 		scrub_handle_errored_block(sblock);
2417 	} else {
2418 		/*
2419 		 * if has checksum error, write via repair mechanism in
2420 		 * dev replace case, otherwise write here in dev replace
2421 		 * case.
2422 		 */
2423 		corrupted = scrub_checksum(sblock);
2424 		if (!corrupted && sblock->sctx->is_dev_replace)
2425 			scrub_write_block_to_dev_replace(sblock);
2426 	}
2427 
2428 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2429 		u64 start = sblock->pagev[0]->logical;
2430 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2431 			  PAGE_SIZE;
2432 
2433 		scrub_parity_mark_sectors_error(sblock->sparity,
2434 						start, end - start);
2435 	}
2436 }
2437 
2438 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2439 {
2440 	struct btrfs_ordered_sum *sum = NULL;
2441 	unsigned long index;
2442 	unsigned long num_sectors;
2443 
2444 	while (!list_empty(&sctx->csum_list)) {
2445 		sum = list_first_entry(&sctx->csum_list,
2446 				       struct btrfs_ordered_sum, list);
2447 		if (sum->bytenr > logical)
2448 			return 0;
2449 		if (sum->bytenr + sum->len > logical)
2450 			break;
2451 
2452 		++sctx->stat.csum_discards;
2453 		list_del(&sum->list);
2454 		kfree(sum);
2455 		sum = NULL;
2456 	}
2457 	if (!sum)
2458 		return 0;
2459 
2460 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2461 	ASSERT(index < UINT_MAX);
2462 
2463 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2464 	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465 	if (index == num_sectors - 1) {
2466 		list_del(&sum->list);
2467 		kfree(sum);
2468 	}
2469 	return 1;
2470 }
2471 
2472 /* scrub extent tries to collect up to 64 kB for each bio */
2473 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2474 			u64 logical, u64 len,
2475 			u64 physical, struct btrfs_device *dev, u64 flags,
2476 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2477 {
2478 	int ret;
2479 	u8 csum[BTRFS_CSUM_SIZE];
2480 	u32 blocksize;
2481 
2482 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2484 			blocksize = map->stripe_len;
2485 		else
2486 			blocksize = sctx->fs_info->sectorsize;
2487 		spin_lock(&sctx->stat_lock);
2488 		sctx->stat.data_extents_scrubbed++;
2489 		sctx->stat.data_bytes_scrubbed += len;
2490 		spin_unlock(&sctx->stat_lock);
2491 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2492 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2493 			blocksize = map->stripe_len;
2494 		else
2495 			blocksize = sctx->fs_info->nodesize;
2496 		spin_lock(&sctx->stat_lock);
2497 		sctx->stat.tree_extents_scrubbed++;
2498 		sctx->stat.tree_bytes_scrubbed += len;
2499 		spin_unlock(&sctx->stat_lock);
2500 	} else {
2501 		blocksize = sctx->fs_info->sectorsize;
2502 		WARN_ON(1);
2503 	}
2504 
2505 	while (len) {
2506 		u64 l = min_t(u64, len, blocksize);
2507 		int have_csum = 0;
2508 
2509 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2510 			/* push csums to sbio */
2511 			have_csum = scrub_find_csum(sctx, logical, csum);
2512 			if (have_csum == 0)
2513 				++sctx->stat.no_csum;
2514 		}
2515 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516 				  mirror_num, have_csum ? csum : NULL, 0,
2517 				  physical_for_dev_replace);
2518 		if (ret)
2519 			return ret;
2520 		len -= l;
2521 		logical += l;
2522 		physical += l;
2523 		physical_for_dev_replace += l;
2524 	}
2525 	return 0;
2526 }
2527 
2528 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2529 				  u64 logical, u64 len,
2530 				  u64 physical, struct btrfs_device *dev,
2531 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2532 {
2533 	struct scrub_ctx *sctx = sparity->sctx;
2534 	struct scrub_block *sblock;
2535 	int index;
2536 
2537 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2538 	if (!sblock) {
2539 		spin_lock(&sctx->stat_lock);
2540 		sctx->stat.malloc_errors++;
2541 		spin_unlock(&sctx->stat_lock);
2542 		return -ENOMEM;
2543 	}
2544 
2545 	/* one ref inside this function, plus one for each page added to
2546 	 * a bio later on */
2547 	refcount_set(&sblock->refs, 1);
2548 	sblock->sctx = sctx;
2549 	sblock->no_io_error_seen = 1;
2550 	sblock->sparity = sparity;
2551 	scrub_parity_get(sparity);
2552 
2553 	for (index = 0; len > 0; index++) {
2554 		struct scrub_page *spage;
2555 		u64 l = min_t(u64, len, PAGE_SIZE);
2556 
2557 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558 		if (!spage) {
2559 leave_nomem:
2560 			spin_lock(&sctx->stat_lock);
2561 			sctx->stat.malloc_errors++;
2562 			spin_unlock(&sctx->stat_lock);
2563 			scrub_block_put(sblock);
2564 			return -ENOMEM;
2565 		}
2566 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2567 		/* For scrub block */
2568 		scrub_page_get(spage);
2569 		sblock->pagev[index] = spage;
2570 		/* For scrub parity */
2571 		scrub_page_get(spage);
2572 		list_add_tail(&spage->list, &sparity->spages);
2573 		spage->sblock = sblock;
2574 		spage->dev = dev;
2575 		spage->flags = flags;
2576 		spage->generation = gen;
2577 		spage->logical = logical;
2578 		spage->physical = physical;
2579 		spage->mirror_num = mirror_num;
2580 		if (csum) {
2581 			spage->have_csum = 1;
2582 			memcpy(spage->csum, csum, sctx->csum_size);
2583 		} else {
2584 			spage->have_csum = 0;
2585 		}
2586 		sblock->page_count++;
2587 		spage->page = alloc_page(GFP_KERNEL);
2588 		if (!spage->page)
2589 			goto leave_nomem;
2590 		len -= l;
2591 		logical += l;
2592 		physical += l;
2593 	}
2594 
2595 	WARN_ON(sblock->page_count == 0);
2596 	for (index = 0; index < sblock->page_count; index++) {
2597 		struct scrub_page *spage = sblock->pagev[index];
2598 		int ret;
2599 
2600 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2601 		if (ret) {
2602 			scrub_block_put(sblock);
2603 			return ret;
2604 		}
2605 	}
2606 
2607 	/* last one frees, either here or in bio completion for last page */
2608 	scrub_block_put(sblock);
2609 	return 0;
2610 }
2611 
2612 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2613 				   u64 logical, u64 len,
2614 				   u64 physical, struct btrfs_device *dev,
2615 				   u64 flags, u64 gen, int mirror_num)
2616 {
2617 	struct scrub_ctx *sctx = sparity->sctx;
2618 	int ret;
2619 	u8 csum[BTRFS_CSUM_SIZE];
2620 	u32 blocksize;
2621 
2622 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623 		scrub_parity_mark_sectors_error(sparity, logical, len);
2624 		return 0;
2625 	}
2626 
2627 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628 		blocksize = sparity->stripe_len;
2629 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2630 		blocksize = sparity->stripe_len;
2631 	} else {
2632 		blocksize = sctx->fs_info->sectorsize;
2633 		WARN_ON(1);
2634 	}
2635 
2636 	while (len) {
2637 		u64 l = min_t(u64, len, blocksize);
2638 		int have_csum = 0;
2639 
2640 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641 			/* push csums to sbio */
2642 			have_csum = scrub_find_csum(sctx, logical, csum);
2643 			if (have_csum == 0)
2644 				goto skip;
2645 		}
2646 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2647 					     flags, gen, mirror_num,
2648 					     have_csum ? csum : NULL);
2649 		if (ret)
2650 			return ret;
2651 skip:
2652 		len -= l;
2653 		logical += l;
2654 		physical += l;
2655 	}
2656 	return 0;
2657 }
2658 
2659 /*
2660  * Given a physical address, this will calculate it's
2661  * logical offset. if this is a parity stripe, it will return
2662  * the most left data stripe's logical offset.
2663  *
2664  * return 0 if it is a data stripe, 1 means parity stripe.
2665  */
2666 static int get_raid56_logic_offset(u64 physical, int num,
2667 				   struct map_lookup *map, u64 *offset,
2668 				   u64 *stripe_start)
2669 {
2670 	int i;
2671 	int j = 0;
2672 	u64 stripe_nr;
2673 	u64 last_offset;
2674 	u32 stripe_index;
2675 	u32 rot;
2676 	const int data_stripes = nr_data_stripes(map);
2677 
2678 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679 	if (stripe_start)
2680 		*stripe_start = last_offset;
2681 
2682 	*offset = last_offset;
2683 	for (i = 0; i < data_stripes; i++) {
2684 		*offset = last_offset + i * map->stripe_len;
2685 
2686 		stripe_nr = div64_u64(*offset, map->stripe_len);
2687 		stripe_nr = div_u64(stripe_nr, data_stripes);
2688 
2689 		/* Work out the disk rotation on this stripe-set */
2690 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691 		/* calculate which stripe this data locates */
2692 		rot += i;
2693 		stripe_index = rot % map->num_stripes;
2694 		if (stripe_index == num)
2695 			return 0;
2696 		if (stripe_index < num)
2697 			j++;
2698 	}
2699 	*offset = last_offset + j * map->stripe_len;
2700 	return 1;
2701 }
2702 
2703 static void scrub_free_parity(struct scrub_parity *sparity)
2704 {
2705 	struct scrub_ctx *sctx = sparity->sctx;
2706 	struct scrub_page *curr, *next;
2707 	int nbits;
2708 
2709 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2710 	if (nbits) {
2711 		spin_lock(&sctx->stat_lock);
2712 		sctx->stat.read_errors += nbits;
2713 		sctx->stat.uncorrectable_errors += nbits;
2714 		spin_unlock(&sctx->stat_lock);
2715 	}
2716 
2717 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2718 		list_del_init(&curr->list);
2719 		scrub_page_put(curr);
2720 	}
2721 
2722 	kfree(sparity);
2723 }
2724 
2725 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2726 {
2727 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2728 						    work);
2729 	struct scrub_ctx *sctx = sparity->sctx;
2730 
2731 	scrub_free_parity(sparity);
2732 	scrub_pending_bio_dec(sctx);
2733 }
2734 
2735 static void scrub_parity_bio_endio(struct bio *bio)
2736 {
2737 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739 
2740 	if (bio->bi_status)
2741 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2742 			  sparity->nsectors);
2743 
2744 	bio_put(bio);
2745 
2746 	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2747 			NULL);
2748 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2749 }
2750 
2751 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2752 {
2753 	struct scrub_ctx *sctx = sparity->sctx;
2754 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2755 	struct bio *bio;
2756 	struct btrfs_raid_bio *rbio;
2757 	struct btrfs_bio *bbio = NULL;
2758 	u64 length;
2759 	int ret;
2760 
2761 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2762 			   sparity->nsectors))
2763 		goto out;
2764 
2765 	length = sparity->logic_end - sparity->logic_start;
2766 
2767 	btrfs_bio_counter_inc_blocked(fs_info);
2768 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769 			       &length, &bbio);
2770 	if (ret || !bbio || !bbio->raid_map)
2771 		goto bbio_out;
2772 
2773 	bio = btrfs_io_bio_alloc(0);
2774 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2775 	bio->bi_private = sparity;
2776 	bio->bi_end_io = scrub_parity_bio_endio;
2777 
2778 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779 					      length, sparity->scrub_dev,
2780 					      sparity->dbitmap,
2781 					      sparity->nsectors);
2782 	if (!rbio)
2783 		goto rbio_out;
2784 
2785 	scrub_pending_bio_inc(sctx);
2786 	raid56_parity_submit_scrub_rbio(rbio);
2787 	return;
2788 
2789 rbio_out:
2790 	bio_put(bio);
2791 bbio_out:
2792 	btrfs_bio_counter_dec(fs_info);
2793 	btrfs_put_bbio(bbio);
2794 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2795 		  sparity->nsectors);
2796 	spin_lock(&sctx->stat_lock);
2797 	sctx->stat.malloc_errors++;
2798 	spin_unlock(&sctx->stat_lock);
2799 out:
2800 	scrub_free_parity(sparity);
2801 }
2802 
2803 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2804 {
2805 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2806 }
2807 
2808 static void scrub_parity_get(struct scrub_parity *sparity)
2809 {
2810 	refcount_inc(&sparity->refs);
2811 }
2812 
2813 static void scrub_parity_put(struct scrub_parity *sparity)
2814 {
2815 	if (!refcount_dec_and_test(&sparity->refs))
2816 		return;
2817 
2818 	scrub_parity_check_and_repair(sparity);
2819 }
2820 
2821 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2822 						  struct map_lookup *map,
2823 						  struct btrfs_device *sdev,
2824 						  struct btrfs_path *path,
2825 						  u64 logic_start,
2826 						  u64 logic_end)
2827 {
2828 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2829 	struct btrfs_root *root = fs_info->extent_root;
2830 	struct btrfs_root *csum_root = fs_info->csum_root;
2831 	struct btrfs_extent_item *extent;
2832 	struct btrfs_bio *bbio = NULL;
2833 	u64 flags;
2834 	int ret;
2835 	int slot;
2836 	struct extent_buffer *l;
2837 	struct btrfs_key key;
2838 	u64 generation;
2839 	u64 extent_logical;
2840 	u64 extent_physical;
2841 	u64 extent_len;
2842 	u64 mapped_length;
2843 	struct btrfs_device *extent_dev;
2844 	struct scrub_parity *sparity;
2845 	int nsectors;
2846 	int bitmap_len;
2847 	int extent_mirror_num;
2848 	int stop_loop = 0;
2849 
2850 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2852 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2853 			  GFP_NOFS);
2854 	if (!sparity) {
2855 		spin_lock(&sctx->stat_lock);
2856 		sctx->stat.malloc_errors++;
2857 		spin_unlock(&sctx->stat_lock);
2858 		return -ENOMEM;
2859 	}
2860 
2861 	sparity->stripe_len = map->stripe_len;
2862 	sparity->nsectors = nsectors;
2863 	sparity->sctx = sctx;
2864 	sparity->scrub_dev = sdev;
2865 	sparity->logic_start = logic_start;
2866 	sparity->logic_end = logic_end;
2867 	refcount_set(&sparity->refs, 1);
2868 	INIT_LIST_HEAD(&sparity->spages);
2869 	sparity->dbitmap = sparity->bitmap;
2870 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2871 
2872 	ret = 0;
2873 	while (logic_start < logic_end) {
2874 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875 			key.type = BTRFS_METADATA_ITEM_KEY;
2876 		else
2877 			key.type = BTRFS_EXTENT_ITEM_KEY;
2878 		key.objectid = logic_start;
2879 		key.offset = (u64)-1;
2880 
2881 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882 		if (ret < 0)
2883 			goto out;
2884 
2885 		if (ret > 0) {
2886 			ret = btrfs_previous_extent_item(root, path, 0);
2887 			if (ret < 0)
2888 				goto out;
2889 			if (ret > 0) {
2890 				btrfs_release_path(path);
2891 				ret = btrfs_search_slot(NULL, root, &key,
2892 							path, 0, 0);
2893 				if (ret < 0)
2894 					goto out;
2895 			}
2896 		}
2897 
2898 		stop_loop = 0;
2899 		while (1) {
2900 			u64 bytes;
2901 
2902 			l = path->nodes[0];
2903 			slot = path->slots[0];
2904 			if (slot >= btrfs_header_nritems(l)) {
2905 				ret = btrfs_next_leaf(root, path);
2906 				if (ret == 0)
2907 					continue;
2908 				if (ret < 0)
2909 					goto out;
2910 
2911 				stop_loop = 1;
2912 				break;
2913 			}
2914 			btrfs_item_key_to_cpu(l, &key, slot);
2915 
2916 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2917 			    key.type != BTRFS_METADATA_ITEM_KEY)
2918 				goto next;
2919 
2920 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2921 				bytes = fs_info->nodesize;
2922 			else
2923 				bytes = key.offset;
2924 
2925 			if (key.objectid + bytes <= logic_start)
2926 				goto next;
2927 
2928 			if (key.objectid >= logic_end) {
2929 				stop_loop = 1;
2930 				break;
2931 			}
2932 
2933 			while (key.objectid >= logic_start + map->stripe_len)
2934 				logic_start += map->stripe_len;
2935 
2936 			extent = btrfs_item_ptr(l, slot,
2937 						struct btrfs_extent_item);
2938 			flags = btrfs_extent_flags(l, extent);
2939 			generation = btrfs_extent_generation(l, extent);
2940 
2941 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2942 			    (key.objectid < logic_start ||
2943 			     key.objectid + bytes >
2944 			     logic_start + map->stripe_len)) {
2945 				btrfs_err(fs_info,
2946 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947 					  key.objectid, logic_start);
2948 				spin_lock(&sctx->stat_lock);
2949 				sctx->stat.uncorrectable_errors++;
2950 				spin_unlock(&sctx->stat_lock);
2951 				goto next;
2952 			}
2953 again:
2954 			extent_logical = key.objectid;
2955 			extent_len = bytes;
2956 
2957 			if (extent_logical < logic_start) {
2958 				extent_len -= logic_start - extent_logical;
2959 				extent_logical = logic_start;
2960 			}
2961 
2962 			if (extent_logical + extent_len >
2963 			    logic_start + map->stripe_len)
2964 				extent_len = logic_start + map->stripe_len -
2965 					     extent_logical;
2966 
2967 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2968 						       extent_len);
2969 
2970 			mapped_length = extent_len;
2971 			bbio = NULL;
2972 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2973 					extent_logical, &mapped_length, &bbio,
2974 					0);
2975 			if (!ret) {
2976 				if (!bbio || mapped_length < extent_len)
2977 					ret = -EIO;
2978 			}
2979 			if (ret) {
2980 				btrfs_put_bbio(bbio);
2981 				goto out;
2982 			}
2983 			extent_physical = bbio->stripes[0].physical;
2984 			extent_mirror_num = bbio->mirror_num;
2985 			extent_dev = bbio->stripes[0].dev;
2986 			btrfs_put_bbio(bbio);
2987 
2988 			ret = btrfs_lookup_csums_range(csum_root,
2989 						extent_logical,
2990 						extent_logical + extent_len - 1,
2991 						&sctx->csum_list, 1);
2992 			if (ret)
2993 				goto out;
2994 
2995 			ret = scrub_extent_for_parity(sparity, extent_logical,
2996 						      extent_len,
2997 						      extent_physical,
2998 						      extent_dev, flags,
2999 						      generation,
3000 						      extent_mirror_num);
3001 
3002 			scrub_free_csums(sctx);
3003 
3004 			if (ret)
3005 				goto out;
3006 
3007 			if (extent_logical + extent_len <
3008 			    key.objectid + bytes) {
3009 				logic_start += map->stripe_len;
3010 
3011 				if (logic_start >= logic_end) {
3012 					stop_loop = 1;
3013 					break;
3014 				}
3015 
3016 				if (logic_start < key.objectid + bytes) {
3017 					cond_resched();
3018 					goto again;
3019 				}
3020 			}
3021 next:
3022 			path->slots[0]++;
3023 		}
3024 
3025 		btrfs_release_path(path);
3026 
3027 		if (stop_loop)
3028 			break;
3029 
3030 		logic_start += map->stripe_len;
3031 	}
3032 out:
3033 	if (ret < 0)
3034 		scrub_parity_mark_sectors_error(sparity, logic_start,
3035 						logic_end - logic_start);
3036 	scrub_parity_put(sparity);
3037 	scrub_submit(sctx);
3038 	mutex_lock(&sctx->wr_lock);
3039 	scrub_wr_submit(sctx);
3040 	mutex_unlock(&sctx->wr_lock);
3041 
3042 	btrfs_release_path(path);
3043 	return ret < 0 ? ret : 0;
3044 }
3045 
3046 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047 					   struct map_lookup *map,
3048 					   struct btrfs_device *scrub_dev,
3049 					   int num, u64 base, u64 length)
3050 {
3051 	struct btrfs_path *path, *ppath;
3052 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3053 	struct btrfs_root *root = fs_info->extent_root;
3054 	struct btrfs_root *csum_root = fs_info->csum_root;
3055 	struct btrfs_extent_item *extent;
3056 	struct blk_plug plug;
3057 	u64 flags;
3058 	int ret;
3059 	int slot;
3060 	u64 nstripes;
3061 	struct extent_buffer *l;
3062 	u64 physical;
3063 	u64 logical;
3064 	u64 logic_end;
3065 	u64 physical_end;
3066 	u64 generation;
3067 	int mirror_num;
3068 	struct reada_control *reada1;
3069 	struct reada_control *reada2;
3070 	struct btrfs_key key;
3071 	struct btrfs_key key_end;
3072 	u64 increment = map->stripe_len;
3073 	u64 offset;
3074 	u64 extent_logical;
3075 	u64 extent_physical;
3076 	u64 extent_len;
3077 	u64 stripe_logical;
3078 	u64 stripe_end;
3079 	struct btrfs_device *extent_dev;
3080 	int extent_mirror_num;
3081 	int stop_loop = 0;
3082 
3083 	physical = map->stripes[num].physical;
3084 	offset = 0;
3085 	nstripes = div64_u64(length, map->stripe_len);
3086 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3087 		offset = map->stripe_len * num;
3088 		increment = map->stripe_len * map->num_stripes;
3089 		mirror_num = 1;
3090 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3091 		int factor = map->num_stripes / map->sub_stripes;
3092 		offset = map->stripe_len * (num / map->sub_stripes);
3093 		increment = map->stripe_len * factor;
3094 		mirror_num = num % map->sub_stripes + 1;
3095 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3096 		increment = map->stripe_len;
3097 		mirror_num = num % map->num_stripes + 1;
3098 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3099 		increment = map->stripe_len;
3100 		mirror_num = num % map->num_stripes + 1;
3101 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3102 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3103 		increment = map->stripe_len * nr_data_stripes(map);
3104 		mirror_num = 1;
3105 	} else {
3106 		increment = map->stripe_len;
3107 		mirror_num = 1;
3108 	}
3109 
3110 	path = btrfs_alloc_path();
3111 	if (!path)
3112 		return -ENOMEM;
3113 
3114 	ppath = btrfs_alloc_path();
3115 	if (!ppath) {
3116 		btrfs_free_path(path);
3117 		return -ENOMEM;
3118 	}
3119 
3120 	/*
3121 	 * work on commit root. The related disk blocks are static as
3122 	 * long as COW is applied. This means, it is save to rewrite
3123 	 * them to repair disk errors without any race conditions
3124 	 */
3125 	path->search_commit_root = 1;
3126 	path->skip_locking = 1;
3127 
3128 	ppath->search_commit_root = 1;
3129 	ppath->skip_locking = 1;
3130 	/*
3131 	 * trigger the readahead for extent tree csum tree and wait for
3132 	 * completion. During readahead, the scrub is officially paused
3133 	 * to not hold off transaction commits
3134 	 */
3135 	logical = base + offset;
3136 	physical_end = physical + nstripes * map->stripe_len;
3137 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3138 		get_raid56_logic_offset(physical_end, num,
3139 					map, &logic_end, NULL);
3140 		logic_end += base;
3141 	} else {
3142 		logic_end = logical + increment * nstripes;
3143 	}
3144 	wait_event(sctx->list_wait,
3145 		   atomic_read(&sctx->bios_in_flight) == 0);
3146 	scrub_blocked_if_needed(fs_info);
3147 
3148 	/* FIXME it might be better to start readahead at commit root */
3149 	key.objectid = logical;
3150 	key.type = BTRFS_EXTENT_ITEM_KEY;
3151 	key.offset = (u64)0;
3152 	key_end.objectid = logic_end;
3153 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3154 	key_end.offset = (u64)-1;
3155 	reada1 = btrfs_reada_add(root, &key, &key_end);
3156 
3157 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158 	key.type = BTRFS_EXTENT_CSUM_KEY;
3159 	key.offset = logical;
3160 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3161 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3162 	key_end.offset = logic_end;
3163 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3164 
3165 	if (!IS_ERR(reada1))
3166 		btrfs_reada_wait(reada1);
3167 	if (!IS_ERR(reada2))
3168 		btrfs_reada_wait(reada2);
3169 
3170 
3171 	/*
3172 	 * collect all data csums for the stripe to avoid seeking during
3173 	 * the scrub. This might currently (crc32) end up to be about 1MB
3174 	 */
3175 	blk_start_plug(&plug);
3176 
3177 	/*
3178 	 * now find all extents for each stripe and scrub them
3179 	 */
3180 	ret = 0;
3181 	while (physical < physical_end) {
3182 		/*
3183 		 * canceled?
3184 		 */
3185 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3186 		    atomic_read(&sctx->cancel_req)) {
3187 			ret = -ECANCELED;
3188 			goto out;
3189 		}
3190 		/*
3191 		 * check to see if we have to pause
3192 		 */
3193 		if (atomic_read(&fs_info->scrub_pause_req)) {
3194 			/* push queued extents */
3195 			sctx->flush_all_writes = true;
3196 			scrub_submit(sctx);
3197 			mutex_lock(&sctx->wr_lock);
3198 			scrub_wr_submit(sctx);
3199 			mutex_unlock(&sctx->wr_lock);
3200 			wait_event(sctx->list_wait,
3201 				   atomic_read(&sctx->bios_in_flight) == 0);
3202 			sctx->flush_all_writes = false;
3203 			scrub_blocked_if_needed(fs_info);
3204 		}
3205 
3206 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3207 			ret = get_raid56_logic_offset(physical, num, map,
3208 						      &logical,
3209 						      &stripe_logical);
3210 			logical += base;
3211 			if (ret) {
3212 				/* it is parity strip */
3213 				stripe_logical += base;
3214 				stripe_end = stripe_logical + increment;
3215 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3216 							  ppath, stripe_logical,
3217 							  stripe_end);
3218 				if (ret)
3219 					goto out;
3220 				goto skip;
3221 			}
3222 		}
3223 
3224 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3225 			key.type = BTRFS_METADATA_ITEM_KEY;
3226 		else
3227 			key.type = BTRFS_EXTENT_ITEM_KEY;
3228 		key.objectid = logical;
3229 		key.offset = (u64)-1;
3230 
3231 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3232 		if (ret < 0)
3233 			goto out;
3234 
3235 		if (ret > 0) {
3236 			ret = btrfs_previous_extent_item(root, path, 0);
3237 			if (ret < 0)
3238 				goto out;
3239 			if (ret > 0) {
3240 				/* there's no smaller item, so stick with the
3241 				 * larger one */
3242 				btrfs_release_path(path);
3243 				ret = btrfs_search_slot(NULL, root, &key,
3244 							path, 0, 0);
3245 				if (ret < 0)
3246 					goto out;
3247 			}
3248 		}
3249 
3250 		stop_loop = 0;
3251 		while (1) {
3252 			u64 bytes;
3253 
3254 			l = path->nodes[0];
3255 			slot = path->slots[0];
3256 			if (slot >= btrfs_header_nritems(l)) {
3257 				ret = btrfs_next_leaf(root, path);
3258 				if (ret == 0)
3259 					continue;
3260 				if (ret < 0)
3261 					goto out;
3262 
3263 				stop_loop = 1;
3264 				break;
3265 			}
3266 			btrfs_item_key_to_cpu(l, &key, slot);
3267 
3268 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3269 			    key.type != BTRFS_METADATA_ITEM_KEY)
3270 				goto next;
3271 
3272 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3273 				bytes = fs_info->nodesize;
3274 			else
3275 				bytes = key.offset;
3276 
3277 			if (key.objectid + bytes <= logical)
3278 				goto next;
3279 
3280 			if (key.objectid >= logical + map->stripe_len) {
3281 				/* out of this device extent */
3282 				if (key.objectid >= logic_end)
3283 					stop_loop = 1;
3284 				break;
3285 			}
3286 
3287 			extent = btrfs_item_ptr(l, slot,
3288 						struct btrfs_extent_item);
3289 			flags = btrfs_extent_flags(l, extent);
3290 			generation = btrfs_extent_generation(l, extent);
3291 
3292 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3293 			    (key.objectid < logical ||
3294 			     key.objectid + bytes >
3295 			     logical + map->stripe_len)) {
3296 				btrfs_err(fs_info,
3297 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3298 				       key.objectid, logical);
3299 				spin_lock(&sctx->stat_lock);
3300 				sctx->stat.uncorrectable_errors++;
3301 				spin_unlock(&sctx->stat_lock);
3302 				goto next;
3303 			}
3304 
3305 again:
3306 			extent_logical = key.objectid;
3307 			extent_len = bytes;
3308 
3309 			/*
3310 			 * trim extent to this stripe
3311 			 */
3312 			if (extent_logical < logical) {
3313 				extent_len -= logical - extent_logical;
3314 				extent_logical = logical;
3315 			}
3316 			if (extent_logical + extent_len >
3317 			    logical + map->stripe_len) {
3318 				extent_len = logical + map->stripe_len -
3319 					     extent_logical;
3320 			}
3321 
3322 			extent_physical = extent_logical - logical + physical;
3323 			extent_dev = scrub_dev;
3324 			extent_mirror_num = mirror_num;
3325 			if (sctx->is_dev_replace)
3326 				scrub_remap_extent(fs_info, extent_logical,
3327 						   extent_len, &extent_physical,
3328 						   &extent_dev,
3329 						   &extent_mirror_num);
3330 
3331 			ret = btrfs_lookup_csums_range(csum_root,
3332 						       extent_logical,
3333 						       extent_logical +
3334 						       extent_len - 1,
3335 						       &sctx->csum_list, 1);
3336 			if (ret)
3337 				goto out;
3338 
3339 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3340 					   extent_physical, extent_dev, flags,
3341 					   generation, extent_mirror_num,
3342 					   extent_logical - logical + physical);
3343 
3344 			scrub_free_csums(sctx);
3345 
3346 			if (ret)
3347 				goto out;
3348 
3349 			if (extent_logical + extent_len <
3350 			    key.objectid + bytes) {
3351 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3352 					/*
3353 					 * loop until we find next data stripe
3354 					 * or we have finished all stripes.
3355 					 */
3356 loop:
3357 					physical += map->stripe_len;
3358 					ret = get_raid56_logic_offset(physical,
3359 							num, map, &logical,
3360 							&stripe_logical);
3361 					logical += base;
3362 
3363 					if (ret && physical < physical_end) {
3364 						stripe_logical += base;
3365 						stripe_end = stripe_logical +
3366 								increment;
3367 						ret = scrub_raid56_parity(sctx,
3368 							map, scrub_dev, ppath,
3369 							stripe_logical,
3370 							stripe_end);
3371 						if (ret)
3372 							goto out;
3373 						goto loop;
3374 					}
3375 				} else {
3376 					physical += map->stripe_len;
3377 					logical += increment;
3378 				}
3379 				if (logical < key.objectid + bytes) {
3380 					cond_resched();
3381 					goto again;
3382 				}
3383 
3384 				if (physical >= physical_end) {
3385 					stop_loop = 1;
3386 					break;
3387 				}
3388 			}
3389 next:
3390 			path->slots[0]++;
3391 		}
3392 		btrfs_release_path(path);
3393 skip:
3394 		logical += increment;
3395 		physical += map->stripe_len;
3396 		spin_lock(&sctx->stat_lock);
3397 		if (stop_loop)
3398 			sctx->stat.last_physical = map->stripes[num].physical +
3399 						   length;
3400 		else
3401 			sctx->stat.last_physical = physical;
3402 		spin_unlock(&sctx->stat_lock);
3403 		if (stop_loop)
3404 			break;
3405 	}
3406 out:
3407 	/* push queued extents */
3408 	scrub_submit(sctx);
3409 	mutex_lock(&sctx->wr_lock);
3410 	scrub_wr_submit(sctx);
3411 	mutex_unlock(&sctx->wr_lock);
3412 
3413 	blk_finish_plug(&plug);
3414 	btrfs_free_path(path);
3415 	btrfs_free_path(ppath);
3416 	return ret < 0 ? ret : 0;
3417 }
3418 
3419 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3420 					  struct btrfs_device *scrub_dev,
3421 					  u64 chunk_offset, u64 length,
3422 					  u64 dev_offset,
3423 					  struct btrfs_block_group *cache)
3424 {
3425 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3426 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3427 	struct map_lookup *map;
3428 	struct extent_map *em;
3429 	int i;
3430 	int ret = 0;
3431 
3432 	read_lock(&map_tree->lock);
3433 	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3434 	read_unlock(&map_tree->lock);
3435 
3436 	if (!em) {
3437 		/*
3438 		 * Might have been an unused block group deleted by the cleaner
3439 		 * kthread or relocation.
3440 		 */
3441 		spin_lock(&cache->lock);
3442 		if (!cache->removed)
3443 			ret = -EINVAL;
3444 		spin_unlock(&cache->lock);
3445 
3446 		return ret;
3447 	}
3448 
3449 	map = em->map_lookup;
3450 	if (em->start != chunk_offset)
3451 		goto out;
3452 
3453 	if (em->len < length)
3454 		goto out;
3455 
3456 	for (i = 0; i < map->num_stripes; ++i) {
3457 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3458 		    map->stripes[i].physical == dev_offset) {
3459 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3460 					   chunk_offset, length);
3461 			if (ret)
3462 				goto out;
3463 		}
3464 	}
3465 out:
3466 	free_extent_map(em);
3467 
3468 	return ret;
3469 }
3470 
3471 static noinline_for_stack
3472 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3473 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3474 {
3475 	struct btrfs_dev_extent *dev_extent = NULL;
3476 	struct btrfs_path *path;
3477 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3478 	struct btrfs_root *root = fs_info->dev_root;
3479 	u64 length;
3480 	u64 chunk_offset;
3481 	int ret = 0;
3482 	int ro_set;
3483 	int slot;
3484 	struct extent_buffer *l;
3485 	struct btrfs_key key;
3486 	struct btrfs_key found_key;
3487 	struct btrfs_block_group *cache;
3488 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3489 
3490 	path = btrfs_alloc_path();
3491 	if (!path)
3492 		return -ENOMEM;
3493 
3494 	path->reada = READA_FORWARD;
3495 	path->search_commit_root = 1;
3496 	path->skip_locking = 1;
3497 
3498 	key.objectid = scrub_dev->devid;
3499 	key.offset = 0ull;
3500 	key.type = BTRFS_DEV_EXTENT_KEY;
3501 
3502 	while (1) {
3503 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504 		if (ret < 0)
3505 			break;
3506 		if (ret > 0) {
3507 			if (path->slots[0] >=
3508 			    btrfs_header_nritems(path->nodes[0])) {
3509 				ret = btrfs_next_leaf(root, path);
3510 				if (ret < 0)
3511 					break;
3512 				if (ret > 0) {
3513 					ret = 0;
3514 					break;
3515 				}
3516 			} else {
3517 				ret = 0;
3518 			}
3519 		}
3520 
3521 		l = path->nodes[0];
3522 		slot = path->slots[0];
3523 
3524 		btrfs_item_key_to_cpu(l, &found_key, slot);
3525 
3526 		if (found_key.objectid != scrub_dev->devid)
3527 			break;
3528 
3529 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3530 			break;
3531 
3532 		if (found_key.offset >= end)
3533 			break;
3534 
3535 		if (found_key.offset < key.offset)
3536 			break;
3537 
3538 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3539 		length = btrfs_dev_extent_length(l, dev_extent);
3540 
3541 		if (found_key.offset + length <= start)
3542 			goto skip;
3543 
3544 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3545 
3546 		/*
3547 		 * get a reference on the corresponding block group to prevent
3548 		 * the chunk from going away while we scrub it
3549 		 */
3550 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3551 
3552 		/* some chunks are removed but not committed to disk yet,
3553 		 * continue scrubbing */
3554 		if (!cache)
3555 			goto skip;
3556 
3557 		/*
3558 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3559 		 * to avoid deadlock caused by:
3560 		 * btrfs_inc_block_group_ro()
3561 		 * -> btrfs_wait_for_commit()
3562 		 * -> btrfs_commit_transaction()
3563 		 * -> btrfs_scrub_pause()
3564 		 */
3565 		scrub_pause_on(fs_info);
3566 
3567 		/*
3568 		 * Don't do chunk preallocation for scrub.
3569 		 *
3570 		 * This is especially important for SYSTEM bgs, or we can hit
3571 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3572 		 * 1. The only SYSTEM bg is marked RO.
3573 		 *    Since SYSTEM bg is small, that's pretty common.
3574 		 * 2. New SYSTEM bg will be allocated
3575 		 *    Due to regular version will allocate new chunk.
3576 		 * 3. New SYSTEM bg is empty and will get cleaned up
3577 		 *    Before cleanup really happens, it's marked RO again.
3578 		 * 4. Empty SYSTEM bg get scrubbed
3579 		 *    We go back to 2.
3580 		 *
3581 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3582 		 * thread can't be triggered fast enough, and use up all space
3583 		 * of btrfs_super_block::sys_chunk_array
3584 		 *
3585 		 * While for dev replace, we need to try our best to mark block
3586 		 * group RO, to prevent race between:
3587 		 * - Write duplication
3588 		 *   Contains latest data
3589 		 * - Scrub copy
3590 		 *   Contains data from commit tree
3591 		 *
3592 		 * If target block group is not marked RO, nocow writes can
3593 		 * be overwritten by scrub copy, causing data corruption.
3594 		 * So for dev-replace, it's not allowed to continue if a block
3595 		 * group is not RO.
3596 		 */
3597 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3598 		if (ret == 0) {
3599 			ro_set = 1;
3600 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3601 			/*
3602 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3603 			 * failed in creating new chunk for metadata.
3604 			 * It is not a problem for scrub, because
3605 			 * metadata are always cowed, and our scrub paused
3606 			 * commit_transactions.
3607 			 */
3608 			ro_set = 0;
3609 		} else {
3610 			btrfs_warn(fs_info,
3611 				   "failed setting block group ro: %d", ret);
3612 			btrfs_put_block_group(cache);
3613 			scrub_pause_off(fs_info);
3614 			break;
3615 		}
3616 
3617 		/*
3618 		 * Now the target block is marked RO, wait for nocow writes to
3619 		 * finish before dev-replace.
3620 		 * COW is fine, as COW never overwrites extents in commit tree.
3621 		 */
3622 		if (sctx->is_dev_replace) {
3623 			btrfs_wait_nocow_writers(cache);
3624 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3625 					cache->length);
3626 		}
3627 
3628 		scrub_pause_off(fs_info);
3629 		down_write(&dev_replace->rwsem);
3630 		dev_replace->cursor_right = found_key.offset + length;
3631 		dev_replace->cursor_left = found_key.offset;
3632 		dev_replace->item_needs_writeback = 1;
3633 		up_write(&dev_replace->rwsem);
3634 
3635 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3636 				  found_key.offset, cache);
3637 
3638 		/*
3639 		 * flush, submit all pending read and write bios, afterwards
3640 		 * wait for them.
3641 		 * Note that in the dev replace case, a read request causes
3642 		 * write requests that are submitted in the read completion
3643 		 * worker. Therefore in the current situation, it is required
3644 		 * that all write requests are flushed, so that all read and
3645 		 * write requests are really completed when bios_in_flight
3646 		 * changes to 0.
3647 		 */
3648 		sctx->flush_all_writes = true;
3649 		scrub_submit(sctx);
3650 		mutex_lock(&sctx->wr_lock);
3651 		scrub_wr_submit(sctx);
3652 		mutex_unlock(&sctx->wr_lock);
3653 
3654 		wait_event(sctx->list_wait,
3655 			   atomic_read(&sctx->bios_in_flight) == 0);
3656 
3657 		scrub_pause_on(fs_info);
3658 
3659 		/*
3660 		 * must be called before we decrease @scrub_paused.
3661 		 * make sure we don't block transaction commit while
3662 		 * we are waiting pending workers finished.
3663 		 */
3664 		wait_event(sctx->list_wait,
3665 			   atomic_read(&sctx->workers_pending) == 0);
3666 		sctx->flush_all_writes = false;
3667 
3668 		scrub_pause_off(fs_info);
3669 
3670 		down_write(&dev_replace->rwsem);
3671 		dev_replace->cursor_left = dev_replace->cursor_right;
3672 		dev_replace->item_needs_writeback = 1;
3673 		up_write(&dev_replace->rwsem);
3674 
3675 		if (ro_set)
3676 			btrfs_dec_block_group_ro(cache);
3677 
3678 		/*
3679 		 * We might have prevented the cleaner kthread from deleting
3680 		 * this block group if it was already unused because we raced
3681 		 * and set it to RO mode first. So add it back to the unused
3682 		 * list, otherwise it might not ever be deleted unless a manual
3683 		 * balance is triggered or it becomes used and unused again.
3684 		 */
3685 		spin_lock(&cache->lock);
3686 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3687 		    cache->used == 0) {
3688 			spin_unlock(&cache->lock);
3689 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3690 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3691 							 cache);
3692 			else
3693 				btrfs_mark_bg_unused(cache);
3694 		} else {
3695 			spin_unlock(&cache->lock);
3696 		}
3697 
3698 		btrfs_put_block_group(cache);
3699 		if (ret)
3700 			break;
3701 		if (sctx->is_dev_replace &&
3702 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3703 			ret = -EIO;
3704 			break;
3705 		}
3706 		if (sctx->stat.malloc_errors > 0) {
3707 			ret = -ENOMEM;
3708 			break;
3709 		}
3710 skip:
3711 		key.offset = found_key.offset + length;
3712 		btrfs_release_path(path);
3713 	}
3714 
3715 	btrfs_free_path(path);
3716 
3717 	return ret;
3718 }
3719 
3720 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3721 					   struct btrfs_device *scrub_dev)
3722 {
3723 	int	i;
3724 	u64	bytenr;
3725 	u64	gen;
3726 	int	ret;
3727 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3728 
3729 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3730 		return -EIO;
3731 
3732 	/* Seed devices of a new filesystem has their own generation. */
3733 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3734 		gen = scrub_dev->generation;
3735 	else
3736 		gen = fs_info->last_trans_committed;
3737 
3738 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3739 		bytenr = btrfs_sb_offset(i);
3740 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3741 		    scrub_dev->commit_total_bytes)
3742 			break;
3743 
3744 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3745 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3746 				  NULL, 1, bytenr);
3747 		if (ret)
3748 			return ret;
3749 	}
3750 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3751 
3752 	return 0;
3753 }
3754 
3755 /*
3756  * get a reference count on fs_info->scrub_workers. start worker if necessary
3757  */
3758 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3759 						int is_dev_replace)
3760 {
3761 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3762 	int max_active = fs_info->thread_pool_size;
3763 
3764 	lockdep_assert_held(&fs_info->scrub_lock);
3765 
3766 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3767 		ASSERT(fs_info->scrub_workers == NULL);
3768 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3769 				flags, is_dev_replace ? 1 : max_active, 4);
3770 		if (!fs_info->scrub_workers)
3771 			goto fail_scrub_workers;
3772 
3773 		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3774 		fs_info->scrub_wr_completion_workers =
3775 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3776 					      max_active, 2);
3777 		if (!fs_info->scrub_wr_completion_workers)
3778 			goto fail_scrub_wr_completion_workers;
3779 
3780 		ASSERT(fs_info->scrub_parity_workers == NULL);
3781 		fs_info->scrub_parity_workers =
3782 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3783 					      max_active, 2);
3784 		if (!fs_info->scrub_parity_workers)
3785 			goto fail_scrub_parity_workers;
3786 
3787 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3788 	} else {
3789 		refcount_inc(&fs_info->scrub_workers_refcnt);
3790 	}
3791 	return 0;
3792 
3793 fail_scrub_parity_workers:
3794 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3795 fail_scrub_wr_completion_workers:
3796 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3797 fail_scrub_workers:
3798 	return -ENOMEM;
3799 }
3800 
3801 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3802 		    u64 end, struct btrfs_scrub_progress *progress,
3803 		    int readonly, int is_dev_replace)
3804 {
3805 	struct scrub_ctx *sctx;
3806 	int ret;
3807 	struct btrfs_device *dev;
3808 	unsigned int nofs_flag;
3809 	struct btrfs_workqueue *scrub_workers = NULL;
3810 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3811 	struct btrfs_workqueue *scrub_parity = NULL;
3812 
3813 	if (btrfs_fs_closing(fs_info))
3814 		return -EAGAIN;
3815 
3816 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3817 		/*
3818 		 * in this case scrub is unable to calculate the checksum
3819 		 * the way scrub is implemented. Do not handle this
3820 		 * situation at all because it won't ever happen.
3821 		 */
3822 		btrfs_err(fs_info,
3823 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3824 		       fs_info->nodesize,
3825 		       BTRFS_STRIPE_LEN);
3826 		return -EINVAL;
3827 	}
3828 
3829 	if (fs_info->sectorsize != PAGE_SIZE) {
3830 		/* not supported for data w/o checksums */
3831 		btrfs_err_rl(fs_info,
3832 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3833 		       fs_info->sectorsize, PAGE_SIZE);
3834 		return -EINVAL;
3835 	}
3836 
3837 	if (fs_info->nodesize >
3838 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3839 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3840 		/*
3841 		 * would exhaust the array bounds of pagev member in
3842 		 * struct scrub_block
3843 		 */
3844 		btrfs_err(fs_info,
3845 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3846 		       fs_info->nodesize,
3847 		       SCRUB_MAX_PAGES_PER_BLOCK,
3848 		       fs_info->sectorsize,
3849 		       SCRUB_MAX_PAGES_PER_BLOCK);
3850 		return -EINVAL;
3851 	}
3852 
3853 	/* Allocate outside of device_list_mutex */
3854 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3855 	if (IS_ERR(sctx))
3856 		return PTR_ERR(sctx);
3857 
3858 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3859 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3860 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3861 		     !is_dev_replace)) {
3862 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863 		ret = -ENODEV;
3864 		goto out_free_ctx;
3865 	}
3866 
3867 	if (!is_dev_replace && !readonly &&
3868 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3869 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3870 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3871 				rcu_str_deref(dev->name));
3872 		ret = -EROFS;
3873 		goto out_free_ctx;
3874 	}
3875 
3876 	mutex_lock(&fs_info->scrub_lock);
3877 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3878 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3879 		mutex_unlock(&fs_info->scrub_lock);
3880 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3881 		ret = -EIO;
3882 		goto out_free_ctx;
3883 	}
3884 
3885 	down_read(&fs_info->dev_replace.rwsem);
3886 	if (dev->scrub_ctx ||
3887 	    (!is_dev_replace &&
3888 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3889 		up_read(&fs_info->dev_replace.rwsem);
3890 		mutex_unlock(&fs_info->scrub_lock);
3891 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3892 		ret = -EINPROGRESS;
3893 		goto out_free_ctx;
3894 	}
3895 	up_read(&fs_info->dev_replace.rwsem);
3896 
3897 	ret = scrub_workers_get(fs_info, is_dev_replace);
3898 	if (ret) {
3899 		mutex_unlock(&fs_info->scrub_lock);
3900 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3901 		goto out_free_ctx;
3902 	}
3903 
3904 	sctx->readonly = readonly;
3905 	dev->scrub_ctx = sctx;
3906 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907 
3908 	/*
3909 	 * checking @scrub_pause_req here, we can avoid
3910 	 * race between committing transaction and scrubbing.
3911 	 */
3912 	__scrub_blocked_if_needed(fs_info);
3913 	atomic_inc(&fs_info->scrubs_running);
3914 	mutex_unlock(&fs_info->scrub_lock);
3915 
3916 	/*
3917 	 * In order to avoid deadlock with reclaim when there is a transaction
3918 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3919 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3920 	 * invoked by our callees. The pausing request is done when the
3921 	 * transaction commit starts, and it blocks the transaction until scrub
3922 	 * is paused (done at specific points at scrub_stripe() or right above
3923 	 * before incrementing fs_info->scrubs_running).
3924 	 */
3925 	nofs_flag = memalloc_nofs_save();
3926 	if (!is_dev_replace) {
3927 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3928 		/*
3929 		 * by holding device list mutex, we can
3930 		 * kick off writing super in log tree sync.
3931 		 */
3932 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3933 		ret = scrub_supers(sctx, dev);
3934 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3935 	}
3936 
3937 	if (!ret)
3938 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3939 	memalloc_nofs_restore(nofs_flag);
3940 
3941 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3942 	atomic_dec(&fs_info->scrubs_running);
3943 	wake_up(&fs_info->scrub_pause_wait);
3944 
3945 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3946 
3947 	if (progress)
3948 		memcpy(progress, &sctx->stat, sizeof(*progress));
3949 
3950 	if (!is_dev_replace)
3951 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3952 			ret ? "not finished" : "finished", devid, ret);
3953 
3954 	mutex_lock(&fs_info->scrub_lock);
3955 	dev->scrub_ctx = NULL;
3956 	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3957 		scrub_workers = fs_info->scrub_workers;
3958 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3959 		scrub_parity = fs_info->scrub_parity_workers;
3960 
3961 		fs_info->scrub_workers = NULL;
3962 		fs_info->scrub_wr_completion_workers = NULL;
3963 		fs_info->scrub_parity_workers = NULL;
3964 	}
3965 	mutex_unlock(&fs_info->scrub_lock);
3966 
3967 	btrfs_destroy_workqueue(scrub_workers);
3968 	btrfs_destroy_workqueue(scrub_wr_comp);
3969 	btrfs_destroy_workqueue(scrub_parity);
3970 	scrub_put_ctx(sctx);
3971 
3972 	return ret;
3973 
3974 out_free_ctx:
3975 	scrub_free_ctx(sctx);
3976 
3977 	return ret;
3978 }
3979 
3980 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3981 {
3982 	mutex_lock(&fs_info->scrub_lock);
3983 	atomic_inc(&fs_info->scrub_pause_req);
3984 	while (atomic_read(&fs_info->scrubs_paused) !=
3985 	       atomic_read(&fs_info->scrubs_running)) {
3986 		mutex_unlock(&fs_info->scrub_lock);
3987 		wait_event(fs_info->scrub_pause_wait,
3988 			   atomic_read(&fs_info->scrubs_paused) ==
3989 			   atomic_read(&fs_info->scrubs_running));
3990 		mutex_lock(&fs_info->scrub_lock);
3991 	}
3992 	mutex_unlock(&fs_info->scrub_lock);
3993 }
3994 
3995 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3996 {
3997 	atomic_dec(&fs_info->scrub_pause_req);
3998 	wake_up(&fs_info->scrub_pause_wait);
3999 }
4000 
4001 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4002 {
4003 	mutex_lock(&fs_info->scrub_lock);
4004 	if (!atomic_read(&fs_info->scrubs_running)) {
4005 		mutex_unlock(&fs_info->scrub_lock);
4006 		return -ENOTCONN;
4007 	}
4008 
4009 	atomic_inc(&fs_info->scrub_cancel_req);
4010 	while (atomic_read(&fs_info->scrubs_running)) {
4011 		mutex_unlock(&fs_info->scrub_lock);
4012 		wait_event(fs_info->scrub_pause_wait,
4013 			   atomic_read(&fs_info->scrubs_running) == 0);
4014 		mutex_lock(&fs_info->scrub_lock);
4015 	}
4016 	atomic_dec(&fs_info->scrub_cancel_req);
4017 	mutex_unlock(&fs_info->scrub_lock);
4018 
4019 	return 0;
4020 }
4021 
4022 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4023 {
4024 	struct btrfs_fs_info *fs_info = dev->fs_info;
4025 	struct scrub_ctx *sctx;
4026 
4027 	mutex_lock(&fs_info->scrub_lock);
4028 	sctx = dev->scrub_ctx;
4029 	if (!sctx) {
4030 		mutex_unlock(&fs_info->scrub_lock);
4031 		return -ENOTCONN;
4032 	}
4033 	atomic_inc(&sctx->cancel_req);
4034 	while (dev->scrub_ctx) {
4035 		mutex_unlock(&fs_info->scrub_lock);
4036 		wait_event(fs_info->scrub_pause_wait,
4037 			   dev->scrub_ctx == NULL);
4038 		mutex_lock(&fs_info->scrub_lock);
4039 	}
4040 	mutex_unlock(&fs_info->scrub_lock);
4041 
4042 	return 0;
4043 }
4044 
4045 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046 			 struct btrfs_scrub_progress *progress)
4047 {
4048 	struct btrfs_device *dev;
4049 	struct scrub_ctx *sctx = NULL;
4050 
4051 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4052 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4053 	if (dev)
4054 		sctx = dev->scrub_ctx;
4055 	if (sctx)
4056 		memcpy(progress, &sctx->stat, sizeof(*progress));
4057 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058 
4059 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4060 }
4061 
4062 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4063 			       u64 extent_logical, u64 extent_len,
4064 			       u64 *extent_physical,
4065 			       struct btrfs_device **extent_dev,
4066 			       int *extent_mirror_num)
4067 {
4068 	u64 mapped_length;
4069 	struct btrfs_bio *bbio = NULL;
4070 	int ret;
4071 
4072 	mapped_length = extent_len;
4073 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4074 			      &mapped_length, &bbio, 0);
4075 	if (ret || !bbio || mapped_length < extent_len ||
4076 	    !bbio->stripes[0].dev->bdev) {
4077 		btrfs_put_bbio(bbio);
4078 		return;
4079 	}
4080 
4081 	*extent_physical = bbio->stripes[0].physical;
4082 	*extent_mirror_num = bbio->mirror_num;
4083 	*extent_dev = bbio->stripes[0].dev;
4084 	btrfs_put_bbio(bbio);
4085 }
4086