xref: /openbmc/linux/fs/btrfs/scrub.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	int			stripe_len;
144 
145 	atomic_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_root	*dev_root;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	atomic_t                refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 				     struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 				struct scrub_block *sblock,
252 				int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255 					     struct scrub_block *sblock_good);
256 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 					    struct scrub_block *sblock_good,
258 					    int page_num, int force_write);
259 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 					   int page_num);
262 static int scrub_checksum_data(struct scrub_block *sblock);
263 static int scrub_checksum_tree_block(struct scrub_block *sblock);
264 static int scrub_checksum_super(struct scrub_block *sblock);
265 static void scrub_block_get(struct scrub_block *sblock);
266 static void scrub_block_put(struct scrub_block *sblock);
267 static void scrub_page_get(struct scrub_page *spage);
268 static void scrub_page_put(struct scrub_page *spage);
269 static void scrub_parity_get(struct scrub_parity *sparity);
270 static void scrub_parity_put(struct scrub_parity *sparity);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 				    struct scrub_page *spage);
273 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274 		       u64 physical, struct btrfs_device *dev, u64 flags,
275 		       u64 gen, int mirror_num, u8 *csum, int force,
276 		       u64 physical_for_dev_replace);
277 static void scrub_bio_end_io(struct bio *bio);
278 static void scrub_bio_end_io_worker(struct btrfs_work *work);
279 static void scrub_block_complete(struct scrub_block *sblock);
280 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 			       u64 extent_logical, u64 extent_len,
282 			       u64 *extent_physical,
283 			       struct btrfs_device **extent_dev,
284 			       int *extent_mirror_num);
285 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 			      struct scrub_wr_ctx *wr_ctx,
287 			      struct btrfs_fs_info *fs_info,
288 			      struct btrfs_device *dev,
289 			      int is_dev_replace);
290 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 				    struct scrub_page *spage);
293 static void scrub_wr_submit(struct scrub_ctx *sctx);
294 static void scrub_wr_bio_end_io(struct bio *bio);
295 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296 static int write_page_nocow(struct scrub_ctx *sctx,
297 			    u64 physical_for_dev_replace, struct page *page);
298 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299 				      struct scrub_copy_nocow_ctx *ctx);
300 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 			    int mirror_num, u64 physical_for_dev_replace);
302 static void copy_nocow_pages_worker(struct btrfs_work *work);
303 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305 static void scrub_put_ctx(struct scrub_ctx *sctx);
306 
307 
308 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309 {
310 	atomic_inc(&sctx->refs);
311 	atomic_inc(&sctx->bios_in_flight);
312 }
313 
314 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315 {
316 	atomic_dec(&sctx->bios_in_flight);
317 	wake_up(&sctx->list_wait);
318 	scrub_put_ctx(sctx);
319 }
320 
321 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 {
323 	while (atomic_read(&fs_info->scrub_pause_req)) {
324 		mutex_unlock(&fs_info->scrub_lock);
325 		wait_event(fs_info->scrub_pause_wait,
326 		   atomic_read(&fs_info->scrub_pause_req) == 0);
327 		mutex_lock(&fs_info->scrub_lock);
328 	}
329 }
330 
331 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 {
333 	atomic_inc(&fs_info->scrubs_paused);
334 	wake_up(&fs_info->scrub_pause_wait);
335 }
336 
337 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338 {
339 	mutex_lock(&fs_info->scrub_lock);
340 	__scrub_blocked_if_needed(fs_info);
341 	atomic_dec(&fs_info->scrubs_paused);
342 	mutex_unlock(&fs_info->scrub_lock);
343 
344 	wake_up(&fs_info->scrub_pause_wait);
345 }
346 
347 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348 {
349 	scrub_pause_on(fs_info);
350 	scrub_pause_off(fs_info);
351 }
352 
353 /*
354  * used for workers that require transaction commits (i.e., for the
355  * NOCOW case)
356  */
357 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358 {
359 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
360 
361 	atomic_inc(&sctx->refs);
362 	/*
363 	 * increment scrubs_running to prevent cancel requests from
364 	 * completing as long as a worker is running. we must also
365 	 * increment scrubs_paused to prevent deadlocking on pause
366 	 * requests used for transactions commits (as the worker uses a
367 	 * transaction context). it is safe to regard the worker
368 	 * as paused for all matters practical. effectively, we only
369 	 * avoid cancellation requests from completing.
370 	 */
371 	mutex_lock(&fs_info->scrub_lock);
372 	atomic_inc(&fs_info->scrubs_running);
373 	atomic_inc(&fs_info->scrubs_paused);
374 	mutex_unlock(&fs_info->scrub_lock);
375 
376 	/*
377 	 * check if @scrubs_running=@scrubs_paused condition
378 	 * inside wait_event() is not an atomic operation.
379 	 * which means we may inc/dec @scrub_running/paused
380 	 * at any time. Let's wake up @scrub_pause_wait as
381 	 * much as we can to let commit transaction blocked less.
382 	 */
383 	wake_up(&fs_info->scrub_pause_wait);
384 
385 	atomic_inc(&sctx->workers_pending);
386 }
387 
388 /* used for workers that require transaction commits */
389 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390 {
391 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
392 
393 	/*
394 	 * see scrub_pending_trans_workers_inc() why we're pretending
395 	 * to be paused in the scrub counters
396 	 */
397 	mutex_lock(&fs_info->scrub_lock);
398 	atomic_dec(&fs_info->scrubs_running);
399 	atomic_dec(&fs_info->scrubs_paused);
400 	mutex_unlock(&fs_info->scrub_lock);
401 	atomic_dec(&sctx->workers_pending);
402 	wake_up(&fs_info->scrub_pause_wait);
403 	wake_up(&sctx->list_wait);
404 	scrub_put_ctx(sctx);
405 }
406 
407 static void scrub_free_csums(struct scrub_ctx *sctx)
408 {
409 	while (!list_empty(&sctx->csum_list)) {
410 		struct btrfs_ordered_sum *sum;
411 		sum = list_first_entry(&sctx->csum_list,
412 				       struct btrfs_ordered_sum, list);
413 		list_del(&sum->list);
414 		kfree(sum);
415 	}
416 }
417 
418 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
419 {
420 	int i;
421 
422 	if (!sctx)
423 		return;
424 
425 	scrub_free_wr_ctx(&sctx->wr_ctx);
426 
427 	/* this can happen when scrub is cancelled */
428 	if (sctx->curr != -1) {
429 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 
431 		for (i = 0; i < sbio->page_count; i++) {
432 			WARN_ON(!sbio->pagev[i]->page);
433 			scrub_block_put(sbio->pagev[i]->sblock);
434 		}
435 		bio_put(sbio->bio);
436 	}
437 
438 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439 		struct scrub_bio *sbio = sctx->bios[i];
440 
441 		if (!sbio)
442 			break;
443 		kfree(sbio);
444 	}
445 
446 	scrub_free_csums(sctx);
447 	kfree(sctx);
448 }
449 
450 static void scrub_put_ctx(struct scrub_ctx *sctx)
451 {
452 	if (atomic_dec_and_test(&sctx->refs))
453 		scrub_free_ctx(sctx);
454 }
455 
456 static noinline_for_stack
457 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
458 {
459 	struct scrub_ctx *sctx;
460 	int		i;
461 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
462 	int ret;
463 
464 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465 	if (!sctx)
466 		goto nomem;
467 	atomic_set(&sctx->refs, 1);
468 	sctx->is_dev_replace = is_dev_replace;
469 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470 	sctx->curr = -1;
471 	sctx->dev_root = dev->dev_root;
472 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
473 		struct scrub_bio *sbio;
474 
475 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
476 		if (!sbio)
477 			goto nomem;
478 		sctx->bios[i] = sbio;
479 
480 		sbio->index = i;
481 		sbio->sctx = sctx;
482 		sbio->page_count = 0;
483 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 				scrub_bio_end_io_worker, NULL, NULL);
485 
486 		if (i != SCRUB_BIOS_PER_SCTX - 1)
487 			sctx->bios[i]->next_free = i + 1;
488 		else
489 			sctx->bios[i]->next_free = -1;
490 	}
491 	sctx->first_free = 0;
492 	sctx->nodesize = dev->dev_root->nodesize;
493 	sctx->sectorsize = dev->dev_root->sectorsize;
494 	atomic_set(&sctx->bios_in_flight, 0);
495 	atomic_set(&sctx->workers_pending, 0);
496 	atomic_set(&sctx->cancel_req, 0);
497 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 	INIT_LIST_HEAD(&sctx->csum_list);
499 
500 	spin_lock_init(&sctx->list_lock);
501 	spin_lock_init(&sctx->stat_lock);
502 	init_waitqueue_head(&sctx->list_wait);
503 
504 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 				 fs_info->dev_replace.tgtdev, is_dev_replace);
506 	if (ret) {
507 		scrub_free_ctx(sctx);
508 		return ERR_PTR(ret);
509 	}
510 	return sctx;
511 
512 nomem:
513 	scrub_free_ctx(sctx);
514 	return ERR_PTR(-ENOMEM);
515 }
516 
517 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 				     void *warn_ctx)
519 {
520 	u64 isize;
521 	u32 nlink;
522 	int ret;
523 	int i;
524 	struct extent_buffer *eb;
525 	struct btrfs_inode_item *inode_item;
526 	struct scrub_warning *swarn = warn_ctx;
527 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
528 	struct inode_fs_paths *ipath = NULL;
529 	struct btrfs_root *local_root;
530 	struct btrfs_key root_key;
531 	struct btrfs_key key;
532 
533 	root_key.objectid = root;
534 	root_key.type = BTRFS_ROOT_ITEM_KEY;
535 	root_key.offset = (u64)-1;
536 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 	if (IS_ERR(local_root)) {
538 		ret = PTR_ERR(local_root);
539 		goto err;
540 	}
541 
542 	/*
543 	 * this makes the path point to (inum INODE_ITEM ioff)
544 	 */
545 	key.objectid = inum;
546 	key.type = BTRFS_INODE_ITEM_KEY;
547 	key.offset = 0;
548 
549 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 	if (ret) {
551 		btrfs_release_path(swarn->path);
552 		goto err;
553 	}
554 
555 	eb = swarn->path->nodes[0];
556 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 					struct btrfs_inode_item);
558 	isize = btrfs_inode_size(eb, inode_item);
559 	nlink = btrfs_inode_nlink(eb, inode_item);
560 	btrfs_release_path(swarn->path);
561 
562 	ipath = init_ipath(4096, local_root, swarn->path);
563 	if (IS_ERR(ipath)) {
564 		ret = PTR_ERR(ipath);
565 		ipath = NULL;
566 		goto err;
567 	}
568 	ret = paths_from_inode(inum, ipath);
569 
570 	if (ret < 0)
571 		goto err;
572 
573 	/*
574 	 * we deliberately ignore the bit ipath might have been too small to
575 	 * hold all of the paths here
576 	 */
577 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578 		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
579 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
580 			"length %llu, links %u (path: %s)", swarn->errstr,
581 			swarn->logical, rcu_str_deref(swarn->dev->name),
582 			(unsigned long long)swarn->sector, root, inum, offset,
583 			min(isize - offset, (u64)PAGE_SIZE), nlink,
584 			(char *)(unsigned long)ipath->fspath->val[i]);
585 
586 	free_ipath(ipath);
587 	return 0;
588 
589 err:
590 	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
591 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
592 		"resolving failed with ret=%d", swarn->errstr,
593 		swarn->logical, rcu_str_deref(swarn->dev->name),
594 		(unsigned long long)swarn->sector, root, inum, offset, ret);
595 
596 	free_ipath(ipath);
597 	return 0;
598 }
599 
600 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601 {
602 	struct btrfs_device *dev;
603 	struct btrfs_fs_info *fs_info;
604 	struct btrfs_path *path;
605 	struct btrfs_key found_key;
606 	struct extent_buffer *eb;
607 	struct btrfs_extent_item *ei;
608 	struct scrub_warning swarn;
609 	unsigned long ptr = 0;
610 	u64 extent_item_pos;
611 	u64 flags = 0;
612 	u64 ref_root;
613 	u32 item_size;
614 	u8 ref_level = 0;
615 	int ret;
616 
617 	WARN_ON(sblock->page_count < 1);
618 	dev = sblock->pagev[0]->dev;
619 	fs_info = sblock->sctx->dev_root->fs_info;
620 
621 	path = btrfs_alloc_path();
622 	if (!path)
623 		return;
624 
625 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 	swarn.logical = sblock->pagev[0]->logical;
627 	swarn.errstr = errstr;
628 	swarn.dev = NULL;
629 
630 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 				  &flags);
632 	if (ret < 0)
633 		goto out;
634 
635 	extent_item_pos = swarn.logical - found_key.objectid;
636 	swarn.extent_item_size = found_key.offset;
637 
638 	eb = path->nodes[0];
639 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
641 
642 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643 		do {
644 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 						      item_size, &ref_root,
646 						      &ref_level);
647 			btrfs_warn_in_rcu(fs_info,
648 				"%s at logical %llu on dev %s, "
649 				"sector %llu: metadata %s (level %d) in tree "
650 				"%llu", errstr, swarn.logical,
651 				rcu_str_deref(dev->name),
652 				(unsigned long long)swarn.sector,
653 				ref_level ? "node" : "leaf",
654 				ret < 0 ? -1 : ref_level,
655 				ret < 0 ? -1 : ref_root);
656 		} while (ret != 1);
657 		btrfs_release_path(path);
658 	} else {
659 		btrfs_release_path(path);
660 		swarn.path = path;
661 		swarn.dev = dev;
662 		iterate_extent_inodes(fs_info, found_key.objectid,
663 					extent_item_pos, 1,
664 					scrub_print_warning_inode, &swarn);
665 	}
666 
667 out:
668 	btrfs_free_path(path);
669 }
670 
671 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
672 {
673 	struct page *page = NULL;
674 	unsigned long index;
675 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
676 	int ret;
677 	int corrected = 0;
678 	struct btrfs_key key;
679 	struct inode *inode = NULL;
680 	struct btrfs_fs_info *fs_info;
681 	u64 end = offset + PAGE_SIZE - 1;
682 	struct btrfs_root *local_root;
683 	int srcu_index;
684 
685 	key.objectid = root;
686 	key.type = BTRFS_ROOT_ITEM_KEY;
687 	key.offset = (u64)-1;
688 
689 	fs_info = fixup->root->fs_info;
690 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
691 
692 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
693 	if (IS_ERR(local_root)) {
694 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
695 		return PTR_ERR(local_root);
696 	}
697 
698 	key.type = BTRFS_INODE_ITEM_KEY;
699 	key.objectid = inum;
700 	key.offset = 0;
701 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
702 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 	if (IS_ERR(inode))
704 		return PTR_ERR(inode);
705 
706 	index = offset >> PAGE_SHIFT;
707 
708 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
709 	if (!page) {
710 		ret = -ENOMEM;
711 		goto out;
712 	}
713 
714 	if (PageUptodate(page)) {
715 		if (PageDirty(page)) {
716 			/*
717 			 * we need to write the data to the defect sector. the
718 			 * data that was in that sector is not in memory,
719 			 * because the page was modified. we must not write the
720 			 * modified page to that sector.
721 			 *
722 			 * TODO: what could be done here: wait for the delalloc
723 			 *       runner to write out that page (might involve
724 			 *       COW) and see whether the sector is still
725 			 *       referenced afterwards.
726 			 *
727 			 * For the meantime, we'll treat this error
728 			 * incorrectable, although there is a chance that a
729 			 * later scrub will find the bad sector again and that
730 			 * there's no dirty page in memory, then.
731 			 */
732 			ret = -EIO;
733 			goto out;
734 		}
735 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
736 					fixup->logical, page,
737 					offset - page_offset(page),
738 					fixup->mirror_num);
739 		unlock_page(page);
740 		corrected = !ret;
741 	} else {
742 		/*
743 		 * we need to get good data first. the general readpage path
744 		 * will call repair_io_failure for us, we just have to make
745 		 * sure we read the bad mirror.
746 		 */
747 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
748 					EXTENT_DAMAGED, GFP_NOFS);
749 		if (ret) {
750 			/* set_extent_bits should give proper error */
751 			WARN_ON(ret > 0);
752 			if (ret > 0)
753 				ret = -EFAULT;
754 			goto out;
755 		}
756 
757 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
758 						btrfs_get_extent,
759 						fixup->mirror_num);
760 		wait_on_page_locked(page);
761 
762 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
763 						end, EXTENT_DAMAGED, 0, NULL);
764 		if (!corrected)
765 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
766 						EXTENT_DAMAGED, GFP_NOFS);
767 	}
768 
769 out:
770 	if (page)
771 		put_page(page);
772 
773 	iput(inode);
774 
775 	if (ret < 0)
776 		return ret;
777 
778 	if (ret == 0 && corrected) {
779 		/*
780 		 * we only need to call readpage for one of the inodes belonging
781 		 * to this extent. so make iterate_extent_inodes stop
782 		 */
783 		return 1;
784 	}
785 
786 	return -EIO;
787 }
788 
789 static void scrub_fixup_nodatasum(struct btrfs_work *work)
790 {
791 	int ret;
792 	struct scrub_fixup_nodatasum *fixup;
793 	struct scrub_ctx *sctx;
794 	struct btrfs_trans_handle *trans = NULL;
795 	struct btrfs_path *path;
796 	int uncorrectable = 0;
797 
798 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799 	sctx = fixup->sctx;
800 
801 	path = btrfs_alloc_path();
802 	if (!path) {
803 		spin_lock(&sctx->stat_lock);
804 		++sctx->stat.malloc_errors;
805 		spin_unlock(&sctx->stat_lock);
806 		uncorrectable = 1;
807 		goto out;
808 	}
809 
810 	trans = btrfs_join_transaction(fixup->root);
811 	if (IS_ERR(trans)) {
812 		uncorrectable = 1;
813 		goto out;
814 	}
815 
816 	/*
817 	 * the idea is to trigger a regular read through the standard path. we
818 	 * read a page from the (failed) logical address by specifying the
819 	 * corresponding copynum of the failed sector. thus, that readpage is
820 	 * expected to fail.
821 	 * that is the point where on-the-fly error correction will kick in
822 	 * (once it's finished) and rewrite the failed sector if a good copy
823 	 * can be found.
824 	 */
825 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
826 						path, scrub_fixup_readpage,
827 						fixup);
828 	if (ret < 0) {
829 		uncorrectable = 1;
830 		goto out;
831 	}
832 	WARN_ON(ret != 1);
833 
834 	spin_lock(&sctx->stat_lock);
835 	++sctx->stat.corrected_errors;
836 	spin_unlock(&sctx->stat_lock);
837 
838 out:
839 	if (trans && !IS_ERR(trans))
840 		btrfs_end_transaction(trans, fixup->root);
841 	if (uncorrectable) {
842 		spin_lock(&sctx->stat_lock);
843 		++sctx->stat.uncorrectable_errors;
844 		spin_unlock(&sctx->stat_lock);
845 		btrfs_dev_replace_stats_inc(
846 			&sctx->dev_root->fs_info->dev_replace.
847 			num_uncorrectable_read_errors);
848 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
849 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
850 			fixup->logical, rcu_str_deref(fixup->dev->name));
851 	}
852 
853 	btrfs_free_path(path);
854 	kfree(fixup);
855 
856 	scrub_pending_trans_workers_dec(sctx);
857 }
858 
859 static inline void scrub_get_recover(struct scrub_recover *recover)
860 {
861 	atomic_inc(&recover->refs);
862 }
863 
864 static inline void scrub_put_recover(struct scrub_recover *recover)
865 {
866 	if (atomic_dec_and_test(&recover->refs)) {
867 		btrfs_put_bbio(recover->bbio);
868 		kfree(recover);
869 	}
870 }
871 
872 /*
873  * scrub_handle_errored_block gets called when either verification of the
874  * pages failed or the bio failed to read, e.g. with EIO. In the latter
875  * case, this function handles all pages in the bio, even though only one
876  * may be bad.
877  * The goal of this function is to repair the errored block by using the
878  * contents of one of the mirrors.
879  */
880 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
881 {
882 	struct scrub_ctx *sctx = sblock_to_check->sctx;
883 	struct btrfs_device *dev;
884 	struct btrfs_fs_info *fs_info;
885 	u64 length;
886 	u64 logical;
887 	unsigned int failed_mirror_index;
888 	unsigned int is_metadata;
889 	unsigned int have_csum;
890 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
891 	struct scrub_block *sblock_bad;
892 	int ret;
893 	int mirror_index;
894 	int page_num;
895 	int success;
896 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
897 				      DEFAULT_RATELIMIT_BURST);
898 
899 	BUG_ON(sblock_to_check->page_count < 1);
900 	fs_info = sctx->dev_root->fs_info;
901 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
902 		/*
903 		 * if we find an error in a super block, we just report it.
904 		 * They will get written with the next transaction commit
905 		 * anyway
906 		 */
907 		spin_lock(&sctx->stat_lock);
908 		++sctx->stat.super_errors;
909 		spin_unlock(&sctx->stat_lock);
910 		return 0;
911 	}
912 	length = sblock_to_check->page_count * PAGE_SIZE;
913 	logical = sblock_to_check->pagev[0]->logical;
914 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
915 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
916 	is_metadata = !(sblock_to_check->pagev[0]->flags &
917 			BTRFS_EXTENT_FLAG_DATA);
918 	have_csum = sblock_to_check->pagev[0]->have_csum;
919 	dev = sblock_to_check->pagev[0]->dev;
920 
921 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
922 		sblocks_for_recheck = NULL;
923 		goto nodatasum_case;
924 	}
925 
926 	/*
927 	 * read all mirrors one after the other. This includes to
928 	 * re-read the extent or metadata block that failed (that was
929 	 * the cause that this fixup code is called) another time,
930 	 * page by page this time in order to know which pages
931 	 * caused I/O errors and which ones are good (for all mirrors).
932 	 * It is the goal to handle the situation when more than one
933 	 * mirror contains I/O errors, but the errors do not
934 	 * overlap, i.e. the data can be repaired by selecting the
935 	 * pages from those mirrors without I/O error on the
936 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
937 	 * would be that mirror #1 has an I/O error on the first page,
938 	 * the second page is good, and mirror #2 has an I/O error on
939 	 * the second page, but the first page is good.
940 	 * Then the first page of the first mirror can be repaired by
941 	 * taking the first page of the second mirror, and the
942 	 * second page of the second mirror can be repaired by
943 	 * copying the contents of the 2nd page of the 1st mirror.
944 	 * One more note: if the pages of one mirror contain I/O
945 	 * errors, the checksum cannot be verified. In order to get
946 	 * the best data for repairing, the first attempt is to find
947 	 * a mirror without I/O errors and with a validated checksum.
948 	 * Only if this is not possible, the pages are picked from
949 	 * mirrors with I/O errors without considering the checksum.
950 	 * If the latter is the case, at the end, the checksum of the
951 	 * repaired area is verified in order to correctly maintain
952 	 * the statistics.
953 	 */
954 
955 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
956 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
957 	if (!sblocks_for_recheck) {
958 		spin_lock(&sctx->stat_lock);
959 		sctx->stat.malloc_errors++;
960 		sctx->stat.read_errors++;
961 		sctx->stat.uncorrectable_errors++;
962 		spin_unlock(&sctx->stat_lock);
963 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964 		goto out;
965 	}
966 
967 	/* setup the context, map the logical blocks and alloc the pages */
968 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
969 	if (ret) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.read_errors++;
972 		sctx->stat.uncorrectable_errors++;
973 		spin_unlock(&sctx->stat_lock);
974 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975 		goto out;
976 	}
977 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
978 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
979 
980 	/* build and submit the bios for the failed mirror, check checksums */
981 	scrub_recheck_block(fs_info, sblock_bad, 1);
982 
983 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
984 	    sblock_bad->no_io_error_seen) {
985 		/*
986 		 * the error disappeared after reading page by page, or
987 		 * the area was part of a huge bio and other parts of the
988 		 * bio caused I/O errors, or the block layer merged several
989 		 * read requests into one and the error is caused by a
990 		 * different bio (usually one of the two latter cases is
991 		 * the cause)
992 		 */
993 		spin_lock(&sctx->stat_lock);
994 		sctx->stat.unverified_errors++;
995 		sblock_to_check->data_corrected = 1;
996 		spin_unlock(&sctx->stat_lock);
997 
998 		if (sctx->is_dev_replace)
999 			scrub_write_block_to_dev_replace(sblock_bad);
1000 		goto out;
1001 	}
1002 
1003 	if (!sblock_bad->no_io_error_seen) {
1004 		spin_lock(&sctx->stat_lock);
1005 		sctx->stat.read_errors++;
1006 		spin_unlock(&sctx->stat_lock);
1007 		if (__ratelimit(&_rs))
1008 			scrub_print_warning("i/o error", sblock_to_check);
1009 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1010 	} else if (sblock_bad->checksum_error) {
1011 		spin_lock(&sctx->stat_lock);
1012 		sctx->stat.csum_errors++;
1013 		spin_unlock(&sctx->stat_lock);
1014 		if (__ratelimit(&_rs))
1015 			scrub_print_warning("checksum error", sblock_to_check);
1016 		btrfs_dev_stat_inc_and_print(dev,
1017 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1018 	} else if (sblock_bad->header_error) {
1019 		spin_lock(&sctx->stat_lock);
1020 		sctx->stat.verify_errors++;
1021 		spin_unlock(&sctx->stat_lock);
1022 		if (__ratelimit(&_rs))
1023 			scrub_print_warning("checksum/header error",
1024 					    sblock_to_check);
1025 		if (sblock_bad->generation_error)
1026 			btrfs_dev_stat_inc_and_print(dev,
1027 				BTRFS_DEV_STAT_GENERATION_ERRS);
1028 		else
1029 			btrfs_dev_stat_inc_and_print(dev,
1030 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031 	}
1032 
1033 	if (sctx->readonly) {
1034 		ASSERT(!sctx->is_dev_replace);
1035 		goto out;
1036 	}
1037 
1038 	if (!is_metadata && !have_csum) {
1039 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1040 
1041 		WARN_ON(sctx->is_dev_replace);
1042 
1043 nodatasum_case:
1044 
1045 		/*
1046 		 * !is_metadata and !have_csum, this means that the data
1047 		 * might not be COW'ed, that it might be modified
1048 		 * concurrently. The general strategy to work on the
1049 		 * commit root does not help in the case when COW is not
1050 		 * used.
1051 		 */
1052 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1053 		if (!fixup_nodatasum)
1054 			goto did_not_correct_error;
1055 		fixup_nodatasum->sctx = sctx;
1056 		fixup_nodatasum->dev = dev;
1057 		fixup_nodatasum->logical = logical;
1058 		fixup_nodatasum->root = fs_info->extent_root;
1059 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1060 		scrub_pending_trans_workers_inc(sctx);
1061 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1062 				scrub_fixup_nodatasum, NULL, NULL);
1063 		btrfs_queue_work(fs_info->scrub_workers,
1064 				 &fixup_nodatasum->work);
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * now build and submit the bios for the other mirrors, check
1070 	 * checksums.
1071 	 * First try to pick the mirror which is completely without I/O
1072 	 * errors and also does not have a checksum error.
1073 	 * If one is found, and if a checksum is present, the full block
1074 	 * that is known to contain an error is rewritten. Afterwards
1075 	 * the block is known to be corrected.
1076 	 * If a mirror is found which is completely correct, and no
1077 	 * checksum is present, only those pages are rewritten that had
1078 	 * an I/O error in the block to be repaired, since it cannot be
1079 	 * determined, which copy of the other pages is better (and it
1080 	 * could happen otherwise that a correct page would be
1081 	 * overwritten by a bad one).
1082 	 */
1083 	for (mirror_index = 0;
1084 	     mirror_index < BTRFS_MAX_MIRRORS &&
1085 	     sblocks_for_recheck[mirror_index].page_count > 0;
1086 	     mirror_index++) {
1087 		struct scrub_block *sblock_other;
1088 
1089 		if (mirror_index == failed_mirror_index)
1090 			continue;
1091 		sblock_other = sblocks_for_recheck + mirror_index;
1092 
1093 		/* build and submit the bios, check checksums */
1094 		scrub_recheck_block(fs_info, sblock_other, 0);
1095 
1096 		if (!sblock_other->header_error &&
1097 		    !sblock_other->checksum_error &&
1098 		    sblock_other->no_io_error_seen) {
1099 			if (sctx->is_dev_replace) {
1100 				scrub_write_block_to_dev_replace(sblock_other);
1101 				goto corrected_error;
1102 			} else {
1103 				ret = scrub_repair_block_from_good_copy(
1104 						sblock_bad, sblock_other);
1105 				if (!ret)
1106 					goto corrected_error;
1107 			}
1108 		}
1109 	}
1110 
1111 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1112 		goto did_not_correct_error;
1113 
1114 	/*
1115 	 * In case of I/O errors in the area that is supposed to be
1116 	 * repaired, continue by picking good copies of those pages.
1117 	 * Select the good pages from mirrors to rewrite bad pages from
1118 	 * the area to fix. Afterwards verify the checksum of the block
1119 	 * that is supposed to be repaired. This verification step is
1120 	 * only done for the purpose of statistic counting and for the
1121 	 * final scrub report, whether errors remain.
1122 	 * A perfect algorithm could make use of the checksum and try
1123 	 * all possible combinations of pages from the different mirrors
1124 	 * until the checksum verification succeeds. For example, when
1125 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1126 	 * of mirror #2 is readable but the final checksum test fails,
1127 	 * then the 2nd page of mirror #3 could be tried, whether now
1128 	 * the final checksum succeedes. But this would be a rare
1129 	 * exception and is therefore not implemented. At least it is
1130 	 * avoided that the good copy is overwritten.
1131 	 * A more useful improvement would be to pick the sectors
1132 	 * without I/O error based on sector sizes (512 bytes on legacy
1133 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1134 	 * mirror could be repaired by taking 512 byte of a different
1135 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1136 	 * area are unreadable.
1137 	 */
1138 	success = 1;
1139 	for (page_num = 0; page_num < sblock_bad->page_count;
1140 	     page_num++) {
1141 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1142 		struct scrub_block *sblock_other = NULL;
1143 
1144 		/* skip no-io-error page in scrub */
1145 		if (!page_bad->io_error && !sctx->is_dev_replace)
1146 			continue;
1147 
1148 		/* try to find no-io-error page in mirrors */
1149 		if (page_bad->io_error) {
1150 			for (mirror_index = 0;
1151 			     mirror_index < BTRFS_MAX_MIRRORS &&
1152 			     sblocks_for_recheck[mirror_index].page_count > 0;
1153 			     mirror_index++) {
1154 				if (!sblocks_for_recheck[mirror_index].
1155 				    pagev[page_num]->io_error) {
1156 					sblock_other = sblocks_for_recheck +
1157 						       mirror_index;
1158 					break;
1159 				}
1160 			}
1161 			if (!sblock_other)
1162 				success = 0;
1163 		}
1164 
1165 		if (sctx->is_dev_replace) {
1166 			/*
1167 			 * did not find a mirror to fetch the page
1168 			 * from. scrub_write_page_to_dev_replace()
1169 			 * handles this case (page->io_error), by
1170 			 * filling the block with zeros before
1171 			 * submitting the write request
1172 			 */
1173 			if (!sblock_other)
1174 				sblock_other = sblock_bad;
1175 
1176 			if (scrub_write_page_to_dev_replace(sblock_other,
1177 							    page_num) != 0) {
1178 				btrfs_dev_replace_stats_inc(
1179 					&sctx->dev_root->
1180 					fs_info->dev_replace.
1181 					num_write_errors);
1182 				success = 0;
1183 			}
1184 		} else if (sblock_other) {
1185 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1186 							       sblock_other,
1187 							       page_num, 0);
1188 			if (0 == ret)
1189 				page_bad->io_error = 0;
1190 			else
1191 				success = 0;
1192 		}
1193 	}
1194 
1195 	if (success && !sctx->is_dev_replace) {
1196 		if (is_metadata || have_csum) {
1197 			/*
1198 			 * need to verify the checksum now that all
1199 			 * sectors on disk are repaired (the write
1200 			 * request for data to be repaired is on its way).
1201 			 * Just be lazy and use scrub_recheck_block()
1202 			 * which re-reads the data before the checksum
1203 			 * is verified, but most likely the data comes out
1204 			 * of the page cache.
1205 			 */
1206 			scrub_recheck_block(fs_info, sblock_bad, 1);
1207 			if (!sblock_bad->header_error &&
1208 			    !sblock_bad->checksum_error &&
1209 			    sblock_bad->no_io_error_seen)
1210 				goto corrected_error;
1211 			else
1212 				goto did_not_correct_error;
1213 		} else {
1214 corrected_error:
1215 			spin_lock(&sctx->stat_lock);
1216 			sctx->stat.corrected_errors++;
1217 			sblock_to_check->data_corrected = 1;
1218 			spin_unlock(&sctx->stat_lock);
1219 			btrfs_err_rl_in_rcu(fs_info,
1220 				"fixed up error at logical %llu on dev %s",
1221 				logical, rcu_str_deref(dev->name));
1222 		}
1223 	} else {
1224 did_not_correct_error:
1225 		spin_lock(&sctx->stat_lock);
1226 		sctx->stat.uncorrectable_errors++;
1227 		spin_unlock(&sctx->stat_lock);
1228 		btrfs_err_rl_in_rcu(fs_info,
1229 			"unable to fixup (regular) error at logical %llu on dev %s",
1230 			logical, rcu_str_deref(dev->name));
1231 	}
1232 
1233 out:
1234 	if (sblocks_for_recheck) {
1235 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1236 		     mirror_index++) {
1237 			struct scrub_block *sblock = sblocks_for_recheck +
1238 						     mirror_index;
1239 			struct scrub_recover *recover;
1240 			int page_index;
1241 
1242 			for (page_index = 0; page_index < sblock->page_count;
1243 			     page_index++) {
1244 				sblock->pagev[page_index]->sblock = NULL;
1245 				recover = sblock->pagev[page_index]->recover;
1246 				if (recover) {
1247 					scrub_put_recover(recover);
1248 					sblock->pagev[page_index]->recover =
1249 									NULL;
1250 				}
1251 				scrub_page_put(sblock->pagev[page_index]);
1252 			}
1253 		}
1254 		kfree(sblocks_for_recheck);
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1261 {
1262 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1263 		return 2;
1264 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1265 		return 3;
1266 	else
1267 		return (int)bbio->num_stripes;
1268 }
1269 
1270 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1271 						 u64 *raid_map,
1272 						 u64 mapped_length,
1273 						 int nstripes, int mirror,
1274 						 int *stripe_index,
1275 						 u64 *stripe_offset)
1276 {
1277 	int i;
1278 
1279 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1280 		/* RAID5/6 */
1281 		for (i = 0; i < nstripes; i++) {
1282 			if (raid_map[i] == RAID6_Q_STRIPE ||
1283 			    raid_map[i] == RAID5_P_STRIPE)
1284 				continue;
1285 
1286 			if (logical >= raid_map[i] &&
1287 			    logical < raid_map[i] + mapped_length)
1288 				break;
1289 		}
1290 
1291 		*stripe_index = i;
1292 		*stripe_offset = logical - raid_map[i];
1293 	} else {
1294 		/* The other RAID type */
1295 		*stripe_index = mirror;
1296 		*stripe_offset = 0;
1297 	}
1298 }
1299 
1300 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1301 				     struct scrub_block *sblocks_for_recheck)
1302 {
1303 	struct scrub_ctx *sctx = original_sblock->sctx;
1304 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1305 	u64 length = original_sblock->page_count * PAGE_SIZE;
1306 	u64 logical = original_sblock->pagev[0]->logical;
1307 	u64 generation = original_sblock->pagev[0]->generation;
1308 	u64 flags = original_sblock->pagev[0]->flags;
1309 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1310 	struct scrub_recover *recover;
1311 	struct btrfs_bio *bbio;
1312 	u64 sublen;
1313 	u64 mapped_length;
1314 	u64 stripe_offset;
1315 	int stripe_index;
1316 	int page_index = 0;
1317 	int mirror_index;
1318 	int nmirrors;
1319 	int ret;
1320 
1321 	/*
1322 	 * note: the two members refs and outstanding_pages
1323 	 * are not used (and not set) in the blocks that are used for
1324 	 * the recheck procedure
1325 	 */
1326 
1327 	while (length > 0) {
1328 		sublen = min_t(u64, length, PAGE_SIZE);
1329 		mapped_length = sublen;
1330 		bbio = NULL;
1331 
1332 		/*
1333 		 * with a length of PAGE_SIZE, each returned stripe
1334 		 * represents one mirror
1335 		 */
1336 		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1337 				       &mapped_length, &bbio, 0, 1);
1338 		if (ret || !bbio || mapped_length < sublen) {
1339 			btrfs_put_bbio(bbio);
1340 			return -EIO;
1341 		}
1342 
1343 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1344 		if (!recover) {
1345 			btrfs_put_bbio(bbio);
1346 			return -ENOMEM;
1347 		}
1348 
1349 		atomic_set(&recover->refs, 1);
1350 		recover->bbio = bbio;
1351 		recover->map_length = mapped_length;
1352 
1353 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1354 
1355 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1356 
1357 		for (mirror_index = 0; mirror_index < nmirrors;
1358 		     mirror_index++) {
1359 			struct scrub_block *sblock;
1360 			struct scrub_page *page;
1361 
1362 			sblock = sblocks_for_recheck + mirror_index;
1363 			sblock->sctx = sctx;
1364 
1365 			page = kzalloc(sizeof(*page), GFP_NOFS);
1366 			if (!page) {
1367 leave_nomem:
1368 				spin_lock(&sctx->stat_lock);
1369 				sctx->stat.malloc_errors++;
1370 				spin_unlock(&sctx->stat_lock);
1371 				scrub_put_recover(recover);
1372 				return -ENOMEM;
1373 			}
1374 			scrub_page_get(page);
1375 			sblock->pagev[page_index] = page;
1376 			page->sblock = sblock;
1377 			page->flags = flags;
1378 			page->generation = generation;
1379 			page->logical = logical;
1380 			page->have_csum = have_csum;
1381 			if (have_csum)
1382 				memcpy(page->csum,
1383 				       original_sblock->pagev[0]->csum,
1384 				       sctx->csum_size);
1385 
1386 			scrub_stripe_index_and_offset(logical,
1387 						      bbio->map_type,
1388 						      bbio->raid_map,
1389 						      mapped_length,
1390 						      bbio->num_stripes -
1391 						      bbio->num_tgtdevs,
1392 						      mirror_index,
1393 						      &stripe_index,
1394 						      &stripe_offset);
1395 			page->physical = bbio->stripes[stripe_index].physical +
1396 					 stripe_offset;
1397 			page->dev = bbio->stripes[stripe_index].dev;
1398 
1399 			BUG_ON(page_index >= original_sblock->page_count);
1400 			page->physical_for_dev_replace =
1401 				original_sblock->pagev[page_index]->
1402 				physical_for_dev_replace;
1403 			/* for missing devices, dev->bdev is NULL */
1404 			page->mirror_num = mirror_index + 1;
1405 			sblock->page_count++;
1406 			page->page = alloc_page(GFP_NOFS);
1407 			if (!page->page)
1408 				goto leave_nomem;
1409 
1410 			scrub_get_recover(recover);
1411 			page->recover = recover;
1412 		}
1413 		scrub_put_recover(recover);
1414 		length -= sublen;
1415 		logical += sublen;
1416 		page_index++;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 struct scrub_bio_ret {
1423 	struct completion event;
1424 	int error;
1425 };
1426 
1427 static void scrub_bio_wait_endio(struct bio *bio)
1428 {
1429 	struct scrub_bio_ret *ret = bio->bi_private;
1430 
1431 	ret->error = bio->bi_error;
1432 	complete(&ret->event);
1433 }
1434 
1435 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1436 {
1437 	return page->recover &&
1438 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1439 }
1440 
1441 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1442 					struct bio *bio,
1443 					struct scrub_page *page)
1444 {
1445 	struct scrub_bio_ret done;
1446 	int ret;
1447 
1448 	init_completion(&done.event);
1449 	done.error = 0;
1450 	bio->bi_iter.bi_sector = page->logical >> 9;
1451 	bio->bi_private = &done;
1452 	bio->bi_end_io = scrub_bio_wait_endio;
1453 
1454 	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1455 				    page->recover->map_length,
1456 				    page->mirror_num, 0);
1457 	if (ret)
1458 		return ret;
1459 
1460 	wait_for_completion(&done.event);
1461 	if (done.error)
1462 		return -EIO;
1463 
1464 	return 0;
1465 }
1466 
1467 /*
1468  * this function will check the on disk data for checksum errors, header
1469  * errors and read I/O errors. If any I/O errors happen, the exact pages
1470  * which are errored are marked as being bad. The goal is to enable scrub
1471  * to take those pages that are not errored from all the mirrors so that
1472  * the pages that are errored in the just handled mirror can be repaired.
1473  */
1474 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1475 				struct scrub_block *sblock,
1476 				int retry_failed_mirror)
1477 {
1478 	int page_num;
1479 
1480 	sblock->no_io_error_seen = 1;
1481 
1482 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1483 		struct bio *bio;
1484 		struct scrub_page *page = sblock->pagev[page_num];
1485 
1486 		if (page->dev->bdev == NULL) {
1487 			page->io_error = 1;
1488 			sblock->no_io_error_seen = 0;
1489 			continue;
1490 		}
1491 
1492 		WARN_ON(!page->page);
1493 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1494 		if (!bio) {
1495 			page->io_error = 1;
1496 			sblock->no_io_error_seen = 0;
1497 			continue;
1498 		}
1499 		bio->bi_bdev = page->dev->bdev;
1500 
1501 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1502 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1503 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1504 				sblock->no_io_error_seen = 0;
1505 		} else {
1506 			bio->bi_iter.bi_sector = page->physical >> 9;
1507 
1508 			if (btrfsic_submit_bio_wait(READ, bio))
1509 				sblock->no_io_error_seen = 0;
1510 		}
1511 
1512 		bio_put(bio);
1513 	}
1514 
1515 	if (sblock->no_io_error_seen)
1516 		scrub_recheck_block_checksum(sblock);
1517 }
1518 
1519 static inline int scrub_check_fsid(u8 fsid[],
1520 				   struct scrub_page *spage)
1521 {
1522 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523 	int ret;
1524 
1525 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526 	return !ret;
1527 }
1528 
1529 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530 {
1531 	sblock->header_error = 0;
1532 	sblock->checksum_error = 0;
1533 	sblock->generation_error = 0;
1534 
1535 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536 		scrub_checksum_data(sblock);
1537 	else
1538 		scrub_checksum_tree_block(sblock);
1539 }
1540 
1541 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542 					     struct scrub_block *sblock_good)
1543 {
1544 	int page_num;
1545 	int ret = 0;
1546 
1547 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548 		int ret_sub;
1549 
1550 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551 							   sblock_good,
1552 							   page_num, 1);
1553 		if (ret_sub)
1554 			ret = ret_sub;
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561 					    struct scrub_block *sblock_good,
1562 					    int page_num, int force_write)
1563 {
1564 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566 
1567 	BUG_ON(page_bad->page == NULL);
1568 	BUG_ON(page_good->page == NULL);
1569 	if (force_write || sblock_bad->header_error ||
1570 	    sblock_bad->checksum_error || page_bad->io_error) {
1571 		struct bio *bio;
1572 		int ret;
1573 
1574 		if (!page_bad->dev->bdev) {
1575 			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1576 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1577 				"is unexpected");
1578 			return -EIO;
1579 		}
1580 
1581 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 		if (!bio)
1583 			return -EIO;
1584 		bio->bi_bdev = page_bad->dev->bdev;
1585 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 
1587 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1588 		if (PAGE_SIZE != ret) {
1589 			bio_put(bio);
1590 			return -EIO;
1591 		}
1592 
1593 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1594 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1595 				BTRFS_DEV_STAT_WRITE_ERRS);
1596 			btrfs_dev_replace_stats_inc(
1597 				&sblock_bad->sctx->dev_root->fs_info->
1598 				dev_replace.num_write_errors);
1599 			bio_put(bio);
1600 			return -EIO;
1601 		}
1602 		bio_put(bio);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609 {
1610 	int page_num;
1611 
1612 	/*
1613 	 * This block is used for the check of the parity on the source device,
1614 	 * so the data needn't be written into the destination device.
1615 	 */
1616 	if (sblock->sparity)
1617 		return;
1618 
1619 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1620 		int ret;
1621 
1622 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1623 		if (ret)
1624 			btrfs_dev_replace_stats_inc(
1625 				&sblock->sctx->dev_root->fs_info->dev_replace.
1626 				num_write_errors);
1627 	}
1628 }
1629 
1630 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631 					   int page_num)
1632 {
1633 	struct scrub_page *spage = sblock->pagev[page_num];
1634 
1635 	BUG_ON(spage->page == NULL);
1636 	if (spage->io_error) {
1637 		void *mapped_buffer = kmap_atomic(spage->page);
1638 
1639 		memset(mapped_buffer, 0, PAGE_SIZE);
1640 		flush_dcache_page(spage->page);
1641 		kunmap_atomic(mapped_buffer);
1642 	}
1643 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644 }
1645 
1646 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647 				    struct scrub_page *spage)
1648 {
1649 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650 	struct scrub_bio *sbio;
1651 	int ret;
1652 
1653 	mutex_lock(&wr_ctx->wr_lock);
1654 again:
1655 	if (!wr_ctx->wr_curr_bio) {
1656 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657 					      GFP_KERNEL);
1658 		if (!wr_ctx->wr_curr_bio) {
1659 			mutex_unlock(&wr_ctx->wr_lock);
1660 			return -ENOMEM;
1661 		}
1662 		wr_ctx->wr_curr_bio->sctx = sctx;
1663 		wr_ctx->wr_curr_bio->page_count = 0;
1664 	}
1665 	sbio = wr_ctx->wr_curr_bio;
1666 	if (sbio->page_count == 0) {
1667 		struct bio *bio;
1668 
1669 		sbio->physical = spage->physical_for_dev_replace;
1670 		sbio->logical = spage->logical;
1671 		sbio->dev = wr_ctx->tgtdev;
1672 		bio = sbio->bio;
1673 		if (!bio) {
1674 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675 					wr_ctx->pages_per_wr_bio);
1676 			if (!bio) {
1677 				mutex_unlock(&wr_ctx->wr_lock);
1678 				return -ENOMEM;
1679 			}
1680 			sbio->bio = bio;
1681 		}
1682 
1683 		bio->bi_private = sbio;
1684 		bio->bi_end_io = scrub_wr_bio_end_io;
1685 		bio->bi_bdev = sbio->dev->bdev;
1686 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 		sbio->err = 0;
1688 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1689 		   spage->physical_for_dev_replace ||
1690 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1691 		   spage->logical) {
1692 		scrub_wr_submit(sctx);
1693 		goto again;
1694 	}
1695 
1696 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1697 	if (ret != PAGE_SIZE) {
1698 		if (sbio->page_count < 1) {
1699 			bio_put(sbio->bio);
1700 			sbio->bio = NULL;
1701 			mutex_unlock(&wr_ctx->wr_lock);
1702 			return -EIO;
1703 		}
1704 		scrub_wr_submit(sctx);
1705 		goto again;
1706 	}
1707 
1708 	sbio->pagev[sbio->page_count] = spage;
1709 	scrub_page_get(spage);
1710 	sbio->page_count++;
1711 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1712 		scrub_wr_submit(sctx);
1713 	mutex_unlock(&wr_ctx->wr_lock);
1714 
1715 	return 0;
1716 }
1717 
1718 static void scrub_wr_submit(struct scrub_ctx *sctx)
1719 {
1720 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1721 	struct scrub_bio *sbio;
1722 
1723 	if (!wr_ctx->wr_curr_bio)
1724 		return;
1725 
1726 	sbio = wr_ctx->wr_curr_bio;
1727 	wr_ctx->wr_curr_bio = NULL;
1728 	WARN_ON(!sbio->bio->bi_bdev);
1729 	scrub_pending_bio_inc(sctx);
1730 	/* process all writes in a single worker thread. Then the block layer
1731 	 * orders the requests before sending them to the driver which
1732 	 * doubled the write performance on spinning disks when measured
1733 	 * with Linux 3.5 */
1734 	btrfsic_submit_bio(WRITE, sbio->bio);
1735 }
1736 
1737 static void scrub_wr_bio_end_io(struct bio *bio)
1738 {
1739 	struct scrub_bio *sbio = bio->bi_private;
1740 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1741 
1742 	sbio->err = bio->bi_error;
1743 	sbio->bio = bio;
1744 
1745 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1746 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1747 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1748 }
1749 
1750 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1751 {
1752 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1753 	struct scrub_ctx *sctx = sbio->sctx;
1754 	int i;
1755 
1756 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1757 	if (sbio->err) {
1758 		struct btrfs_dev_replace *dev_replace =
1759 			&sbio->sctx->dev_root->fs_info->dev_replace;
1760 
1761 		for (i = 0; i < sbio->page_count; i++) {
1762 			struct scrub_page *spage = sbio->pagev[i];
1763 
1764 			spage->io_error = 1;
1765 			btrfs_dev_replace_stats_inc(&dev_replace->
1766 						    num_write_errors);
1767 		}
1768 	}
1769 
1770 	for (i = 0; i < sbio->page_count; i++)
1771 		scrub_page_put(sbio->pagev[i]);
1772 
1773 	bio_put(sbio->bio);
1774 	kfree(sbio);
1775 	scrub_pending_bio_dec(sctx);
1776 }
1777 
1778 static int scrub_checksum(struct scrub_block *sblock)
1779 {
1780 	u64 flags;
1781 	int ret;
1782 
1783 	/*
1784 	 * No need to initialize these stats currently,
1785 	 * because this function only use return value
1786 	 * instead of these stats value.
1787 	 *
1788 	 * Todo:
1789 	 * always use stats
1790 	 */
1791 	sblock->header_error = 0;
1792 	sblock->generation_error = 0;
1793 	sblock->checksum_error = 0;
1794 
1795 	WARN_ON(sblock->page_count < 1);
1796 	flags = sblock->pagev[0]->flags;
1797 	ret = 0;
1798 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1799 		ret = scrub_checksum_data(sblock);
1800 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1801 		ret = scrub_checksum_tree_block(sblock);
1802 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1803 		(void)scrub_checksum_super(sblock);
1804 	else
1805 		WARN_ON(1);
1806 	if (ret)
1807 		scrub_handle_errored_block(sblock);
1808 
1809 	return ret;
1810 }
1811 
1812 static int scrub_checksum_data(struct scrub_block *sblock)
1813 {
1814 	struct scrub_ctx *sctx = sblock->sctx;
1815 	u8 csum[BTRFS_CSUM_SIZE];
1816 	u8 *on_disk_csum;
1817 	struct page *page;
1818 	void *buffer;
1819 	u32 crc = ~(u32)0;
1820 	u64 len;
1821 	int index;
1822 
1823 	BUG_ON(sblock->page_count < 1);
1824 	if (!sblock->pagev[0]->have_csum)
1825 		return 0;
1826 
1827 	on_disk_csum = sblock->pagev[0]->csum;
1828 	page = sblock->pagev[0]->page;
1829 	buffer = kmap_atomic(page);
1830 
1831 	len = sctx->sectorsize;
1832 	index = 0;
1833 	for (;;) {
1834 		u64 l = min_t(u64, len, PAGE_SIZE);
1835 
1836 		crc = btrfs_csum_data(buffer, crc, l);
1837 		kunmap_atomic(buffer);
1838 		len -= l;
1839 		if (len == 0)
1840 			break;
1841 		index++;
1842 		BUG_ON(index >= sblock->page_count);
1843 		BUG_ON(!sblock->pagev[index]->page);
1844 		page = sblock->pagev[index]->page;
1845 		buffer = kmap_atomic(page);
1846 	}
1847 
1848 	btrfs_csum_final(crc, csum);
1849 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1850 		sblock->checksum_error = 1;
1851 
1852 	return sblock->checksum_error;
1853 }
1854 
1855 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1856 {
1857 	struct scrub_ctx *sctx = sblock->sctx;
1858 	struct btrfs_header *h;
1859 	struct btrfs_root *root = sctx->dev_root;
1860 	struct btrfs_fs_info *fs_info = root->fs_info;
1861 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1862 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863 	struct page *page;
1864 	void *mapped_buffer;
1865 	u64 mapped_size;
1866 	void *p;
1867 	u32 crc = ~(u32)0;
1868 	u64 len;
1869 	int index;
1870 
1871 	BUG_ON(sblock->page_count < 1);
1872 	page = sblock->pagev[0]->page;
1873 	mapped_buffer = kmap_atomic(page);
1874 	h = (struct btrfs_header *)mapped_buffer;
1875 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876 
1877 	/*
1878 	 * we don't use the getter functions here, as we
1879 	 * a) don't have an extent buffer and
1880 	 * b) the page is already kmapped
1881 	 */
1882 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883 		sblock->header_error = 1;
1884 
1885 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886 		sblock->header_error = 1;
1887 		sblock->generation_error = 1;
1888 	}
1889 
1890 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891 		sblock->header_error = 1;
1892 
1893 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894 		   BTRFS_UUID_SIZE))
1895 		sblock->header_error = 1;
1896 
1897 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900 	index = 0;
1901 	for (;;) {
1902 		u64 l = min_t(u64, len, mapped_size);
1903 
1904 		crc = btrfs_csum_data(p, crc, l);
1905 		kunmap_atomic(mapped_buffer);
1906 		len -= l;
1907 		if (len == 0)
1908 			break;
1909 		index++;
1910 		BUG_ON(index >= sblock->page_count);
1911 		BUG_ON(!sblock->pagev[index]->page);
1912 		page = sblock->pagev[index]->page;
1913 		mapped_buffer = kmap_atomic(page);
1914 		mapped_size = PAGE_SIZE;
1915 		p = mapped_buffer;
1916 	}
1917 
1918 	btrfs_csum_final(crc, calculated_csum);
1919 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920 		sblock->checksum_error = 1;
1921 
1922 	return sblock->header_error || sblock->checksum_error;
1923 }
1924 
1925 static int scrub_checksum_super(struct scrub_block *sblock)
1926 {
1927 	struct btrfs_super_block *s;
1928 	struct scrub_ctx *sctx = sblock->sctx;
1929 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1930 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931 	struct page *page;
1932 	void *mapped_buffer;
1933 	u64 mapped_size;
1934 	void *p;
1935 	u32 crc = ~(u32)0;
1936 	int fail_gen = 0;
1937 	int fail_cor = 0;
1938 	u64 len;
1939 	int index;
1940 
1941 	BUG_ON(sblock->page_count < 1);
1942 	page = sblock->pagev[0]->page;
1943 	mapped_buffer = kmap_atomic(page);
1944 	s = (struct btrfs_super_block *)mapped_buffer;
1945 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946 
1947 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948 		++fail_cor;
1949 
1950 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951 		++fail_gen;
1952 
1953 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954 		++fail_cor;
1955 
1956 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959 	index = 0;
1960 	for (;;) {
1961 		u64 l = min_t(u64, len, mapped_size);
1962 
1963 		crc = btrfs_csum_data(p, crc, l);
1964 		kunmap_atomic(mapped_buffer);
1965 		len -= l;
1966 		if (len == 0)
1967 			break;
1968 		index++;
1969 		BUG_ON(index >= sblock->page_count);
1970 		BUG_ON(!sblock->pagev[index]->page);
1971 		page = sblock->pagev[index]->page;
1972 		mapped_buffer = kmap_atomic(page);
1973 		mapped_size = PAGE_SIZE;
1974 		p = mapped_buffer;
1975 	}
1976 
1977 	btrfs_csum_final(crc, calculated_csum);
1978 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979 		++fail_cor;
1980 
1981 	if (fail_cor + fail_gen) {
1982 		/*
1983 		 * if we find an error in a super block, we just report it.
1984 		 * They will get written with the next transaction commit
1985 		 * anyway
1986 		 */
1987 		spin_lock(&sctx->stat_lock);
1988 		++sctx->stat.super_errors;
1989 		spin_unlock(&sctx->stat_lock);
1990 		if (fail_cor)
1991 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993 		else
1994 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995 				BTRFS_DEV_STAT_GENERATION_ERRS);
1996 	}
1997 
1998 	return fail_cor + fail_gen;
1999 }
2000 
2001 static void scrub_block_get(struct scrub_block *sblock)
2002 {
2003 	atomic_inc(&sblock->refs);
2004 }
2005 
2006 static void scrub_block_put(struct scrub_block *sblock)
2007 {
2008 	if (atomic_dec_and_test(&sblock->refs)) {
2009 		int i;
2010 
2011 		if (sblock->sparity)
2012 			scrub_parity_put(sblock->sparity);
2013 
2014 		for (i = 0; i < sblock->page_count; i++)
2015 			scrub_page_put(sblock->pagev[i]);
2016 		kfree(sblock);
2017 	}
2018 }
2019 
2020 static void scrub_page_get(struct scrub_page *spage)
2021 {
2022 	atomic_inc(&spage->refs);
2023 }
2024 
2025 static void scrub_page_put(struct scrub_page *spage)
2026 {
2027 	if (atomic_dec_and_test(&spage->refs)) {
2028 		if (spage->page)
2029 			__free_page(spage->page);
2030 		kfree(spage);
2031 	}
2032 }
2033 
2034 static void scrub_submit(struct scrub_ctx *sctx)
2035 {
2036 	struct scrub_bio *sbio;
2037 
2038 	if (sctx->curr == -1)
2039 		return;
2040 
2041 	sbio = sctx->bios[sctx->curr];
2042 	sctx->curr = -1;
2043 	scrub_pending_bio_inc(sctx);
2044 	btrfsic_submit_bio(READ, sbio->bio);
2045 }
2046 
2047 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048 				    struct scrub_page *spage)
2049 {
2050 	struct scrub_block *sblock = spage->sblock;
2051 	struct scrub_bio *sbio;
2052 	int ret;
2053 
2054 again:
2055 	/*
2056 	 * grab a fresh bio or wait for one to become available
2057 	 */
2058 	while (sctx->curr == -1) {
2059 		spin_lock(&sctx->list_lock);
2060 		sctx->curr = sctx->first_free;
2061 		if (sctx->curr != -1) {
2062 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063 			sctx->bios[sctx->curr]->next_free = -1;
2064 			sctx->bios[sctx->curr]->page_count = 0;
2065 			spin_unlock(&sctx->list_lock);
2066 		} else {
2067 			spin_unlock(&sctx->list_lock);
2068 			wait_event(sctx->list_wait, sctx->first_free != -1);
2069 		}
2070 	}
2071 	sbio = sctx->bios[sctx->curr];
2072 	if (sbio->page_count == 0) {
2073 		struct bio *bio;
2074 
2075 		sbio->physical = spage->physical;
2076 		sbio->logical = spage->logical;
2077 		sbio->dev = spage->dev;
2078 		bio = sbio->bio;
2079 		if (!bio) {
2080 			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081 					sctx->pages_per_rd_bio);
2082 			if (!bio)
2083 				return -ENOMEM;
2084 			sbio->bio = bio;
2085 		}
2086 
2087 		bio->bi_private = sbio;
2088 		bio->bi_end_io = scrub_bio_end_io;
2089 		bio->bi_bdev = sbio->dev->bdev;
2090 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091 		sbio->err = 0;
2092 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2093 		   spage->physical ||
2094 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2095 		   spage->logical ||
2096 		   sbio->dev != spage->dev) {
2097 		scrub_submit(sctx);
2098 		goto again;
2099 	}
2100 
2101 	sbio->pagev[sbio->page_count] = spage;
2102 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2103 	if (ret != PAGE_SIZE) {
2104 		if (sbio->page_count < 1) {
2105 			bio_put(sbio->bio);
2106 			sbio->bio = NULL;
2107 			return -EIO;
2108 		}
2109 		scrub_submit(sctx);
2110 		goto again;
2111 	}
2112 
2113 	scrub_block_get(sblock); /* one for the page added to the bio */
2114 	atomic_inc(&sblock->outstanding_pages);
2115 	sbio->page_count++;
2116 	if (sbio->page_count == sctx->pages_per_rd_bio)
2117 		scrub_submit(sctx);
2118 
2119 	return 0;
2120 }
2121 
2122 static void scrub_missing_raid56_end_io(struct bio *bio)
2123 {
2124 	struct scrub_block *sblock = bio->bi_private;
2125 	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2126 
2127 	if (bio->bi_error)
2128 		sblock->no_io_error_seen = 0;
2129 
2130 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2131 }
2132 
2133 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2134 {
2135 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2136 	struct scrub_ctx *sctx = sblock->sctx;
2137 	u64 logical;
2138 	struct btrfs_device *dev;
2139 
2140 	logical = sblock->pagev[0]->logical;
2141 	dev = sblock->pagev[0]->dev;
2142 
2143 	if (sblock->no_io_error_seen)
2144 		scrub_recheck_block_checksum(sblock);
2145 
2146 	if (!sblock->no_io_error_seen) {
2147 		spin_lock(&sctx->stat_lock);
2148 		sctx->stat.read_errors++;
2149 		spin_unlock(&sctx->stat_lock);
2150 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2151 			"IO error rebuilding logical %llu for dev %s",
2152 			logical, rcu_str_deref(dev->name));
2153 	} else if (sblock->header_error || sblock->checksum_error) {
2154 		spin_lock(&sctx->stat_lock);
2155 		sctx->stat.uncorrectable_errors++;
2156 		spin_unlock(&sctx->stat_lock);
2157 		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2158 			"failed to rebuild valid logical %llu for dev %s",
2159 			logical, rcu_str_deref(dev->name));
2160 	} else {
2161 		scrub_write_block_to_dev_replace(sblock);
2162 	}
2163 
2164 	scrub_block_put(sblock);
2165 
2166 	if (sctx->is_dev_replace &&
2167 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2168 		mutex_lock(&sctx->wr_ctx.wr_lock);
2169 		scrub_wr_submit(sctx);
2170 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2171 	}
2172 
2173 	scrub_pending_bio_dec(sctx);
2174 }
2175 
2176 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2177 {
2178 	struct scrub_ctx *sctx = sblock->sctx;
2179 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2180 	u64 length = sblock->page_count * PAGE_SIZE;
2181 	u64 logical = sblock->pagev[0]->logical;
2182 	struct btrfs_bio *bbio;
2183 	struct bio *bio;
2184 	struct btrfs_raid_bio *rbio;
2185 	int ret;
2186 	int i;
2187 
2188 	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2189 			       &bbio, 0, 1);
2190 	if (ret || !bbio || !bbio->raid_map)
2191 		goto bbio_out;
2192 
2193 	if (WARN_ON(!sctx->is_dev_replace ||
2194 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2195 		/*
2196 		 * We shouldn't be scrubbing a missing device. Even for dev
2197 		 * replace, we should only get here for RAID 5/6. We either
2198 		 * managed to mount something with no mirrors remaining or
2199 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2200 		 */
2201 		goto bbio_out;
2202 	}
2203 
2204 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2205 	if (!bio)
2206 		goto bbio_out;
2207 
2208 	bio->bi_iter.bi_sector = logical >> 9;
2209 	bio->bi_private = sblock;
2210 	bio->bi_end_io = scrub_missing_raid56_end_io;
2211 
2212 	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2213 	if (!rbio)
2214 		goto rbio_out;
2215 
2216 	for (i = 0; i < sblock->page_count; i++) {
2217 		struct scrub_page *spage = sblock->pagev[i];
2218 
2219 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2220 	}
2221 
2222 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2223 			scrub_missing_raid56_worker, NULL, NULL);
2224 	scrub_block_get(sblock);
2225 	scrub_pending_bio_inc(sctx);
2226 	raid56_submit_missing_rbio(rbio);
2227 	return;
2228 
2229 rbio_out:
2230 	bio_put(bio);
2231 bbio_out:
2232 	btrfs_put_bbio(bbio);
2233 	spin_lock(&sctx->stat_lock);
2234 	sctx->stat.malloc_errors++;
2235 	spin_unlock(&sctx->stat_lock);
2236 }
2237 
2238 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2239 		       u64 physical, struct btrfs_device *dev, u64 flags,
2240 		       u64 gen, int mirror_num, u8 *csum, int force,
2241 		       u64 physical_for_dev_replace)
2242 {
2243 	struct scrub_block *sblock;
2244 	int index;
2245 
2246 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2247 	if (!sblock) {
2248 		spin_lock(&sctx->stat_lock);
2249 		sctx->stat.malloc_errors++;
2250 		spin_unlock(&sctx->stat_lock);
2251 		return -ENOMEM;
2252 	}
2253 
2254 	/* one ref inside this function, plus one for each page added to
2255 	 * a bio later on */
2256 	atomic_set(&sblock->refs, 1);
2257 	sblock->sctx = sctx;
2258 	sblock->no_io_error_seen = 1;
2259 
2260 	for (index = 0; len > 0; index++) {
2261 		struct scrub_page *spage;
2262 		u64 l = min_t(u64, len, PAGE_SIZE);
2263 
2264 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2265 		if (!spage) {
2266 leave_nomem:
2267 			spin_lock(&sctx->stat_lock);
2268 			sctx->stat.malloc_errors++;
2269 			spin_unlock(&sctx->stat_lock);
2270 			scrub_block_put(sblock);
2271 			return -ENOMEM;
2272 		}
2273 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2274 		scrub_page_get(spage);
2275 		sblock->pagev[index] = spage;
2276 		spage->sblock = sblock;
2277 		spage->dev = dev;
2278 		spage->flags = flags;
2279 		spage->generation = gen;
2280 		spage->logical = logical;
2281 		spage->physical = physical;
2282 		spage->physical_for_dev_replace = physical_for_dev_replace;
2283 		spage->mirror_num = mirror_num;
2284 		if (csum) {
2285 			spage->have_csum = 1;
2286 			memcpy(spage->csum, csum, sctx->csum_size);
2287 		} else {
2288 			spage->have_csum = 0;
2289 		}
2290 		sblock->page_count++;
2291 		spage->page = alloc_page(GFP_KERNEL);
2292 		if (!spage->page)
2293 			goto leave_nomem;
2294 		len -= l;
2295 		logical += l;
2296 		physical += l;
2297 		physical_for_dev_replace += l;
2298 	}
2299 
2300 	WARN_ON(sblock->page_count == 0);
2301 	if (dev->missing) {
2302 		/*
2303 		 * This case should only be hit for RAID 5/6 device replace. See
2304 		 * the comment in scrub_missing_raid56_pages() for details.
2305 		 */
2306 		scrub_missing_raid56_pages(sblock);
2307 	} else {
2308 		for (index = 0; index < sblock->page_count; index++) {
2309 			struct scrub_page *spage = sblock->pagev[index];
2310 			int ret;
2311 
2312 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2313 			if (ret) {
2314 				scrub_block_put(sblock);
2315 				return ret;
2316 			}
2317 		}
2318 
2319 		if (force)
2320 			scrub_submit(sctx);
2321 	}
2322 
2323 	/* last one frees, either here or in bio completion for last page */
2324 	scrub_block_put(sblock);
2325 	return 0;
2326 }
2327 
2328 static void scrub_bio_end_io(struct bio *bio)
2329 {
2330 	struct scrub_bio *sbio = bio->bi_private;
2331 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2332 
2333 	sbio->err = bio->bi_error;
2334 	sbio->bio = bio;
2335 
2336 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2337 }
2338 
2339 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2340 {
2341 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2342 	struct scrub_ctx *sctx = sbio->sctx;
2343 	int i;
2344 
2345 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2346 	if (sbio->err) {
2347 		for (i = 0; i < sbio->page_count; i++) {
2348 			struct scrub_page *spage = sbio->pagev[i];
2349 
2350 			spage->io_error = 1;
2351 			spage->sblock->no_io_error_seen = 0;
2352 		}
2353 	}
2354 
2355 	/* now complete the scrub_block items that have all pages completed */
2356 	for (i = 0; i < sbio->page_count; i++) {
2357 		struct scrub_page *spage = sbio->pagev[i];
2358 		struct scrub_block *sblock = spage->sblock;
2359 
2360 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2361 			scrub_block_complete(sblock);
2362 		scrub_block_put(sblock);
2363 	}
2364 
2365 	bio_put(sbio->bio);
2366 	sbio->bio = NULL;
2367 	spin_lock(&sctx->list_lock);
2368 	sbio->next_free = sctx->first_free;
2369 	sctx->first_free = sbio->index;
2370 	spin_unlock(&sctx->list_lock);
2371 
2372 	if (sctx->is_dev_replace &&
2373 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2374 		mutex_lock(&sctx->wr_ctx.wr_lock);
2375 		scrub_wr_submit(sctx);
2376 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2377 	}
2378 
2379 	scrub_pending_bio_dec(sctx);
2380 }
2381 
2382 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2383 				       unsigned long *bitmap,
2384 				       u64 start, u64 len)
2385 {
2386 	u32 offset;
2387 	int nsectors;
2388 	int sectorsize = sparity->sctx->dev_root->sectorsize;
2389 
2390 	if (len >= sparity->stripe_len) {
2391 		bitmap_set(bitmap, 0, sparity->nsectors);
2392 		return;
2393 	}
2394 
2395 	start -= sparity->logic_start;
2396 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2397 	offset /= sectorsize;
2398 	nsectors = (int)len / sectorsize;
2399 
2400 	if (offset + nsectors <= sparity->nsectors) {
2401 		bitmap_set(bitmap, offset, nsectors);
2402 		return;
2403 	}
2404 
2405 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2406 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2407 }
2408 
2409 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2410 						   u64 start, u64 len)
2411 {
2412 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2413 }
2414 
2415 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2416 						  u64 start, u64 len)
2417 {
2418 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2419 }
2420 
2421 static void scrub_block_complete(struct scrub_block *sblock)
2422 {
2423 	int corrupted = 0;
2424 
2425 	if (!sblock->no_io_error_seen) {
2426 		corrupted = 1;
2427 		scrub_handle_errored_block(sblock);
2428 	} else {
2429 		/*
2430 		 * if has checksum error, write via repair mechanism in
2431 		 * dev replace case, otherwise write here in dev replace
2432 		 * case.
2433 		 */
2434 		corrupted = scrub_checksum(sblock);
2435 		if (!corrupted && sblock->sctx->is_dev_replace)
2436 			scrub_write_block_to_dev_replace(sblock);
2437 	}
2438 
2439 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2440 		u64 start = sblock->pagev[0]->logical;
2441 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2442 			  PAGE_SIZE;
2443 
2444 		scrub_parity_mark_sectors_error(sblock->sparity,
2445 						start, end - start);
2446 	}
2447 }
2448 
2449 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2450 {
2451 	struct btrfs_ordered_sum *sum = NULL;
2452 	unsigned long index;
2453 	unsigned long num_sectors;
2454 
2455 	while (!list_empty(&sctx->csum_list)) {
2456 		sum = list_first_entry(&sctx->csum_list,
2457 				       struct btrfs_ordered_sum, list);
2458 		if (sum->bytenr > logical)
2459 			return 0;
2460 		if (sum->bytenr + sum->len > logical)
2461 			break;
2462 
2463 		++sctx->stat.csum_discards;
2464 		list_del(&sum->list);
2465 		kfree(sum);
2466 		sum = NULL;
2467 	}
2468 	if (!sum)
2469 		return 0;
2470 
2471 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2472 	num_sectors = sum->len / sctx->sectorsize;
2473 	memcpy(csum, sum->sums + index, sctx->csum_size);
2474 	if (index == num_sectors - 1) {
2475 		list_del(&sum->list);
2476 		kfree(sum);
2477 	}
2478 	return 1;
2479 }
2480 
2481 /* scrub extent tries to collect up to 64 kB for each bio */
2482 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2483 			u64 physical, struct btrfs_device *dev, u64 flags,
2484 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2485 {
2486 	int ret;
2487 	u8 csum[BTRFS_CSUM_SIZE];
2488 	u32 blocksize;
2489 
2490 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2491 		blocksize = sctx->sectorsize;
2492 		spin_lock(&sctx->stat_lock);
2493 		sctx->stat.data_extents_scrubbed++;
2494 		sctx->stat.data_bytes_scrubbed += len;
2495 		spin_unlock(&sctx->stat_lock);
2496 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2497 		blocksize = sctx->nodesize;
2498 		spin_lock(&sctx->stat_lock);
2499 		sctx->stat.tree_extents_scrubbed++;
2500 		sctx->stat.tree_bytes_scrubbed += len;
2501 		spin_unlock(&sctx->stat_lock);
2502 	} else {
2503 		blocksize = sctx->sectorsize;
2504 		WARN_ON(1);
2505 	}
2506 
2507 	while (len) {
2508 		u64 l = min_t(u64, len, blocksize);
2509 		int have_csum = 0;
2510 
2511 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2512 			/* push csums to sbio */
2513 			have_csum = scrub_find_csum(sctx, logical, csum);
2514 			if (have_csum == 0)
2515 				++sctx->stat.no_csum;
2516 			if (sctx->is_dev_replace && !have_csum) {
2517 				ret = copy_nocow_pages(sctx, logical, l,
2518 						       mirror_num,
2519 						      physical_for_dev_replace);
2520 				goto behind_scrub_pages;
2521 			}
2522 		}
2523 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2524 				  mirror_num, have_csum ? csum : NULL, 0,
2525 				  physical_for_dev_replace);
2526 behind_scrub_pages:
2527 		if (ret)
2528 			return ret;
2529 		len -= l;
2530 		logical += l;
2531 		physical += l;
2532 		physical_for_dev_replace += l;
2533 	}
2534 	return 0;
2535 }
2536 
2537 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2538 				  u64 logical, u64 len,
2539 				  u64 physical, struct btrfs_device *dev,
2540 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2541 {
2542 	struct scrub_ctx *sctx = sparity->sctx;
2543 	struct scrub_block *sblock;
2544 	int index;
2545 
2546 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2547 	if (!sblock) {
2548 		spin_lock(&sctx->stat_lock);
2549 		sctx->stat.malloc_errors++;
2550 		spin_unlock(&sctx->stat_lock);
2551 		return -ENOMEM;
2552 	}
2553 
2554 	/* one ref inside this function, plus one for each page added to
2555 	 * a bio later on */
2556 	atomic_set(&sblock->refs, 1);
2557 	sblock->sctx = sctx;
2558 	sblock->no_io_error_seen = 1;
2559 	sblock->sparity = sparity;
2560 	scrub_parity_get(sparity);
2561 
2562 	for (index = 0; len > 0; index++) {
2563 		struct scrub_page *spage;
2564 		u64 l = min_t(u64, len, PAGE_SIZE);
2565 
2566 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2567 		if (!spage) {
2568 leave_nomem:
2569 			spin_lock(&sctx->stat_lock);
2570 			sctx->stat.malloc_errors++;
2571 			spin_unlock(&sctx->stat_lock);
2572 			scrub_block_put(sblock);
2573 			return -ENOMEM;
2574 		}
2575 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2576 		/* For scrub block */
2577 		scrub_page_get(spage);
2578 		sblock->pagev[index] = spage;
2579 		/* For scrub parity */
2580 		scrub_page_get(spage);
2581 		list_add_tail(&spage->list, &sparity->spages);
2582 		spage->sblock = sblock;
2583 		spage->dev = dev;
2584 		spage->flags = flags;
2585 		spage->generation = gen;
2586 		spage->logical = logical;
2587 		spage->physical = physical;
2588 		spage->mirror_num = mirror_num;
2589 		if (csum) {
2590 			spage->have_csum = 1;
2591 			memcpy(spage->csum, csum, sctx->csum_size);
2592 		} else {
2593 			spage->have_csum = 0;
2594 		}
2595 		sblock->page_count++;
2596 		spage->page = alloc_page(GFP_KERNEL);
2597 		if (!spage->page)
2598 			goto leave_nomem;
2599 		len -= l;
2600 		logical += l;
2601 		physical += l;
2602 	}
2603 
2604 	WARN_ON(sblock->page_count == 0);
2605 	for (index = 0; index < sblock->page_count; index++) {
2606 		struct scrub_page *spage = sblock->pagev[index];
2607 		int ret;
2608 
2609 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2610 		if (ret) {
2611 			scrub_block_put(sblock);
2612 			return ret;
2613 		}
2614 	}
2615 
2616 	/* last one frees, either here or in bio completion for last page */
2617 	scrub_block_put(sblock);
2618 	return 0;
2619 }
2620 
2621 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2622 				   u64 logical, u64 len,
2623 				   u64 physical, struct btrfs_device *dev,
2624 				   u64 flags, u64 gen, int mirror_num)
2625 {
2626 	struct scrub_ctx *sctx = sparity->sctx;
2627 	int ret;
2628 	u8 csum[BTRFS_CSUM_SIZE];
2629 	u32 blocksize;
2630 
2631 	if (dev->missing) {
2632 		scrub_parity_mark_sectors_error(sparity, logical, len);
2633 		return 0;
2634 	}
2635 
2636 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2637 		blocksize = sctx->sectorsize;
2638 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2639 		blocksize = sctx->nodesize;
2640 	} else {
2641 		blocksize = sctx->sectorsize;
2642 		WARN_ON(1);
2643 	}
2644 
2645 	while (len) {
2646 		u64 l = min_t(u64, len, blocksize);
2647 		int have_csum = 0;
2648 
2649 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2650 			/* push csums to sbio */
2651 			have_csum = scrub_find_csum(sctx, logical, csum);
2652 			if (have_csum == 0)
2653 				goto skip;
2654 		}
2655 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2656 					     flags, gen, mirror_num,
2657 					     have_csum ? csum : NULL);
2658 		if (ret)
2659 			return ret;
2660 skip:
2661 		len -= l;
2662 		logical += l;
2663 		physical += l;
2664 	}
2665 	return 0;
2666 }
2667 
2668 /*
2669  * Given a physical address, this will calculate it's
2670  * logical offset. if this is a parity stripe, it will return
2671  * the most left data stripe's logical offset.
2672  *
2673  * return 0 if it is a data stripe, 1 means parity stripe.
2674  */
2675 static int get_raid56_logic_offset(u64 physical, int num,
2676 				   struct map_lookup *map, u64 *offset,
2677 				   u64 *stripe_start)
2678 {
2679 	int i;
2680 	int j = 0;
2681 	u64 stripe_nr;
2682 	u64 last_offset;
2683 	u32 stripe_index;
2684 	u32 rot;
2685 
2686 	last_offset = (physical - map->stripes[num].physical) *
2687 		      nr_data_stripes(map);
2688 	if (stripe_start)
2689 		*stripe_start = last_offset;
2690 
2691 	*offset = last_offset;
2692 	for (i = 0; i < nr_data_stripes(map); i++) {
2693 		*offset = last_offset + i * map->stripe_len;
2694 
2695 		stripe_nr = div_u64(*offset, map->stripe_len);
2696 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2697 
2698 		/* Work out the disk rotation on this stripe-set */
2699 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2700 		/* calculate which stripe this data locates */
2701 		rot += i;
2702 		stripe_index = rot % map->num_stripes;
2703 		if (stripe_index == num)
2704 			return 0;
2705 		if (stripe_index < num)
2706 			j++;
2707 	}
2708 	*offset = last_offset + j * map->stripe_len;
2709 	return 1;
2710 }
2711 
2712 static void scrub_free_parity(struct scrub_parity *sparity)
2713 {
2714 	struct scrub_ctx *sctx = sparity->sctx;
2715 	struct scrub_page *curr, *next;
2716 	int nbits;
2717 
2718 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2719 	if (nbits) {
2720 		spin_lock(&sctx->stat_lock);
2721 		sctx->stat.read_errors += nbits;
2722 		sctx->stat.uncorrectable_errors += nbits;
2723 		spin_unlock(&sctx->stat_lock);
2724 	}
2725 
2726 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2727 		list_del_init(&curr->list);
2728 		scrub_page_put(curr);
2729 	}
2730 
2731 	kfree(sparity);
2732 }
2733 
2734 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2735 {
2736 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2737 						    work);
2738 	struct scrub_ctx *sctx = sparity->sctx;
2739 
2740 	scrub_free_parity(sparity);
2741 	scrub_pending_bio_dec(sctx);
2742 }
2743 
2744 static void scrub_parity_bio_endio(struct bio *bio)
2745 {
2746 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2747 
2748 	if (bio->bi_error)
2749 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2750 			  sparity->nsectors);
2751 
2752 	bio_put(bio);
2753 
2754 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2755 			scrub_parity_bio_endio_worker, NULL, NULL);
2756 	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2757 			 &sparity->work);
2758 }
2759 
2760 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2761 {
2762 	struct scrub_ctx *sctx = sparity->sctx;
2763 	struct bio *bio;
2764 	struct btrfs_raid_bio *rbio;
2765 	struct scrub_page *spage;
2766 	struct btrfs_bio *bbio = NULL;
2767 	u64 length;
2768 	int ret;
2769 
2770 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2771 			   sparity->nsectors))
2772 		goto out;
2773 
2774 	length = sparity->logic_end - sparity->logic_start;
2775 	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2776 			       sparity->logic_start,
2777 			       &length, &bbio, 0, 1);
2778 	if (ret || !bbio || !bbio->raid_map)
2779 		goto bbio_out;
2780 
2781 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2782 	if (!bio)
2783 		goto bbio_out;
2784 
2785 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2786 	bio->bi_private = sparity;
2787 	bio->bi_end_io = scrub_parity_bio_endio;
2788 
2789 	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2790 					      length, sparity->scrub_dev,
2791 					      sparity->dbitmap,
2792 					      sparity->nsectors);
2793 	if (!rbio)
2794 		goto rbio_out;
2795 
2796 	list_for_each_entry(spage, &sparity->spages, list)
2797 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2798 
2799 	scrub_pending_bio_inc(sctx);
2800 	raid56_parity_submit_scrub_rbio(rbio);
2801 	return;
2802 
2803 rbio_out:
2804 	bio_put(bio);
2805 bbio_out:
2806 	btrfs_put_bbio(bbio);
2807 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2808 		  sparity->nsectors);
2809 	spin_lock(&sctx->stat_lock);
2810 	sctx->stat.malloc_errors++;
2811 	spin_unlock(&sctx->stat_lock);
2812 out:
2813 	scrub_free_parity(sparity);
2814 }
2815 
2816 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2817 {
2818 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2819 }
2820 
2821 static void scrub_parity_get(struct scrub_parity *sparity)
2822 {
2823 	atomic_inc(&sparity->refs);
2824 }
2825 
2826 static void scrub_parity_put(struct scrub_parity *sparity)
2827 {
2828 	if (!atomic_dec_and_test(&sparity->refs))
2829 		return;
2830 
2831 	scrub_parity_check_and_repair(sparity);
2832 }
2833 
2834 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2835 						  struct map_lookup *map,
2836 						  struct btrfs_device *sdev,
2837 						  struct btrfs_path *path,
2838 						  u64 logic_start,
2839 						  u64 logic_end)
2840 {
2841 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2842 	struct btrfs_root *root = fs_info->extent_root;
2843 	struct btrfs_root *csum_root = fs_info->csum_root;
2844 	struct btrfs_extent_item *extent;
2845 	struct btrfs_bio *bbio = NULL;
2846 	u64 flags;
2847 	int ret;
2848 	int slot;
2849 	struct extent_buffer *l;
2850 	struct btrfs_key key;
2851 	u64 generation;
2852 	u64 extent_logical;
2853 	u64 extent_physical;
2854 	u64 extent_len;
2855 	u64 mapped_length;
2856 	struct btrfs_device *extent_dev;
2857 	struct scrub_parity *sparity;
2858 	int nsectors;
2859 	int bitmap_len;
2860 	int extent_mirror_num;
2861 	int stop_loop = 0;
2862 
2863 	nsectors = map->stripe_len / root->sectorsize;
2864 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2865 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2866 			  GFP_NOFS);
2867 	if (!sparity) {
2868 		spin_lock(&sctx->stat_lock);
2869 		sctx->stat.malloc_errors++;
2870 		spin_unlock(&sctx->stat_lock);
2871 		return -ENOMEM;
2872 	}
2873 
2874 	sparity->stripe_len = map->stripe_len;
2875 	sparity->nsectors = nsectors;
2876 	sparity->sctx = sctx;
2877 	sparity->scrub_dev = sdev;
2878 	sparity->logic_start = logic_start;
2879 	sparity->logic_end = logic_end;
2880 	atomic_set(&sparity->refs, 1);
2881 	INIT_LIST_HEAD(&sparity->spages);
2882 	sparity->dbitmap = sparity->bitmap;
2883 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2884 
2885 	ret = 0;
2886 	while (logic_start < logic_end) {
2887 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2888 			key.type = BTRFS_METADATA_ITEM_KEY;
2889 		else
2890 			key.type = BTRFS_EXTENT_ITEM_KEY;
2891 		key.objectid = logic_start;
2892 		key.offset = (u64)-1;
2893 
2894 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2895 		if (ret < 0)
2896 			goto out;
2897 
2898 		if (ret > 0) {
2899 			ret = btrfs_previous_extent_item(root, path, 0);
2900 			if (ret < 0)
2901 				goto out;
2902 			if (ret > 0) {
2903 				btrfs_release_path(path);
2904 				ret = btrfs_search_slot(NULL, root, &key,
2905 							path, 0, 0);
2906 				if (ret < 0)
2907 					goto out;
2908 			}
2909 		}
2910 
2911 		stop_loop = 0;
2912 		while (1) {
2913 			u64 bytes;
2914 
2915 			l = path->nodes[0];
2916 			slot = path->slots[0];
2917 			if (slot >= btrfs_header_nritems(l)) {
2918 				ret = btrfs_next_leaf(root, path);
2919 				if (ret == 0)
2920 					continue;
2921 				if (ret < 0)
2922 					goto out;
2923 
2924 				stop_loop = 1;
2925 				break;
2926 			}
2927 			btrfs_item_key_to_cpu(l, &key, slot);
2928 
2929 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2930 			    key.type != BTRFS_METADATA_ITEM_KEY)
2931 				goto next;
2932 
2933 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2934 				bytes = root->nodesize;
2935 			else
2936 				bytes = key.offset;
2937 
2938 			if (key.objectid + bytes <= logic_start)
2939 				goto next;
2940 
2941 			if (key.objectid >= logic_end) {
2942 				stop_loop = 1;
2943 				break;
2944 			}
2945 
2946 			while (key.objectid >= logic_start + map->stripe_len)
2947 				logic_start += map->stripe_len;
2948 
2949 			extent = btrfs_item_ptr(l, slot,
2950 						struct btrfs_extent_item);
2951 			flags = btrfs_extent_flags(l, extent);
2952 			generation = btrfs_extent_generation(l, extent);
2953 
2954 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2955 			    (key.objectid < logic_start ||
2956 			     key.objectid + bytes >
2957 			     logic_start + map->stripe_len)) {
2958 				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2959 					  key.objectid, logic_start);
2960 				spin_lock(&sctx->stat_lock);
2961 				sctx->stat.uncorrectable_errors++;
2962 				spin_unlock(&sctx->stat_lock);
2963 				goto next;
2964 			}
2965 again:
2966 			extent_logical = key.objectid;
2967 			extent_len = bytes;
2968 
2969 			if (extent_logical < logic_start) {
2970 				extent_len -= logic_start - extent_logical;
2971 				extent_logical = logic_start;
2972 			}
2973 
2974 			if (extent_logical + extent_len >
2975 			    logic_start + map->stripe_len)
2976 				extent_len = logic_start + map->stripe_len -
2977 					     extent_logical;
2978 
2979 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2980 						       extent_len);
2981 
2982 			mapped_length = extent_len;
2983 			ret = btrfs_map_block(fs_info, READ, extent_logical,
2984 					      &mapped_length, &bbio, 0);
2985 			if (!ret) {
2986 				if (!bbio || mapped_length < extent_len)
2987 					ret = -EIO;
2988 			}
2989 			if (ret) {
2990 				btrfs_put_bbio(bbio);
2991 				goto out;
2992 			}
2993 			extent_physical = bbio->stripes[0].physical;
2994 			extent_mirror_num = bbio->mirror_num;
2995 			extent_dev = bbio->stripes[0].dev;
2996 			btrfs_put_bbio(bbio);
2997 
2998 			ret = btrfs_lookup_csums_range(csum_root,
2999 						extent_logical,
3000 						extent_logical + extent_len - 1,
3001 						&sctx->csum_list, 1);
3002 			if (ret)
3003 				goto out;
3004 
3005 			ret = scrub_extent_for_parity(sparity, extent_logical,
3006 						      extent_len,
3007 						      extent_physical,
3008 						      extent_dev, flags,
3009 						      generation,
3010 						      extent_mirror_num);
3011 
3012 			scrub_free_csums(sctx);
3013 
3014 			if (ret)
3015 				goto out;
3016 
3017 			if (extent_logical + extent_len <
3018 			    key.objectid + bytes) {
3019 				logic_start += map->stripe_len;
3020 
3021 				if (logic_start >= logic_end) {
3022 					stop_loop = 1;
3023 					break;
3024 				}
3025 
3026 				if (logic_start < key.objectid + bytes) {
3027 					cond_resched();
3028 					goto again;
3029 				}
3030 			}
3031 next:
3032 			path->slots[0]++;
3033 		}
3034 
3035 		btrfs_release_path(path);
3036 
3037 		if (stop_loop)
3038 			break;
3039 
3040 		logic_start += map->stripe_len;
3041 	}
3042 out:
3043 	if (ret < 0)
3044 		scrub_parity_mark_sectors_error(sparity, logic_start,
3045 						logic_end - logic_start);
3046 	scrub_parity_put(sparity);
3047 	scrub_submit(sctx);
3048 	mutex_lock(&sctx->wr_ctx.wr_lock);
3049 	scrub_wr_submit(sctx);
3050 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3051 
3052 	btrfs_release_path(path);
3053 	return ret < 0 ? ret : 0;
3054 }
3055 
3056 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3057 					   struct map_lookup *map,
3058 					   struct btrfs_device *scrub_dev,
3059 					   int num, u64 base, u64 length,
3060 					   int is_dev_replace)
3061 {
3062 	struct btrfs_path *path, *ppath;
3063 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3064 	struct btrfs_root *root = fs_info->extent_root;
3065 	struct btrfs_root *csum_root = fs_info->csum_root;
3066 	struct btrfs_extent_item *extent;
3067 	struct blk_plug plug;
3068 	u64 flags;
3069 	int ret;
3070 	int slot;
3071 	u64 nstripes;
3072 	struct extent_buffer *l;
3073 	struct btrfs_key key;
3074 	u64 physical;
3075 	u64 logical;
3076 	u64 logic_end;
3077 	u64 physical_end;
3078 	u64 generation;
3079 	int mirror_num;
3080 	struct reada_control *reada1;
3081 	struct reada_control *reada2;
3082 	struct btrfs_key key_start;
3083 	struct btrfs_key key_end;
3084 	u64 increment = map->stripe_len;
3085 	u64 offset;
3086 	u64 extent_logical;
3087 	u64 extent_physical;
3088 	u64 extent_len;
3089 	u64 stripe_logical;
3090 	u64 stripe_end;
3091 	struct btrfs_device *extent_dev;
3092 	int extent_mirror_num;
3093 	int stop_loop = 0;
3094 
3095 	physical = map->stripes[num].physical;
3096 	offset = 0;
3097 	nstripes = div_u64(length, map->stripe_len);
3098 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3099 		offset = map->stripe_len * num;
3100 		increment = map->stripe_len * map->num_stripes;
3101 		mirror_num = 1;
3102 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3103 		int factor = map->num_stripes / map->sub_stripes;
3104 		offset = map->stripe_len * (num / map->sub_stripes);
3105 		increment = map->stripe_len * factor;
3106 		mirror_num = num % map->sub_stripes + 1;
3107 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3108 		increment = map->stripe_len;
3109 		mirror_num = num % map->num_stripes + 1;
3110 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3111 		increment = map->stripe_len;
3112 		mirror_num = num % map->num_stripes + 1;
3113 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3114 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3115 		increment = map->stripe_len * nr_data_stripes(map);
3116 		mirror_num = 1;
3117 	} else {
3118 		increment = map->stripe_len;
3119 		mirror_num = 1;
3120 	}
3121 
3122 	path = btrfs_alloc_path();
3123 	if (!path)
3124 		return -ENOMEM;
3125 
3126 	ppath = btrfs_alloc_path();
3127 	if (!ppath) {
3128 		btrfs_free_path(path);
3129 		return -ENOMEM;
3130 	}
3131 
3132 	/*
3133 	 * work on commit root. The related disk blocks are static as
3134 	 * long as COW is applied. This means, it is save to rewrite
3135 	 * them to repair disk errors without any race conditions
3136 	 */
3137 	path->search_commit_root = 1;
3138 	path->skip_locking = 1;
3139 
3140 	ppath->search_commit_root = 1;
3141 	ppath->skip_locking = 1;
3142 	/*
3143 	 * trigger the readahead for extent tree csum tree and wait for
3144 	 * completion. During readahead, the scrub is officially paused
3145 	 * to not hold off transaction commits
3146 	 */
3147 	logical = base + offset;
3148 	physical_end = physical + nstripes * map->stripe_len;
3149 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3150 		get_raid56_logic_offset(physical_end, num,
3151 					map, &logic_end, NULL);
3152 		logic_end += base;
3153 	} else {
3154 		logic_end = logical + increment * nstripes;
3155 	}
3156 	wait_event(sctx->list_wait,
3157 		   atomic_read(&sctx->bios_in_flight) == 0);
3158 	scrub_blocked_if_needed(fs_info);
3159 
3160 	/* FIXME it might be better to start readahead at commit root */
3161 	key_start.objectid = logical;
3162 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
3163 	key_start.offset = (u64)0;
3164 	key_end.objectid = logic_end;
3165 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3166 	key_end.offset = (u64)-1;
3167 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
3168 
3169 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3170 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
3171 	key_start.offset = logical;
3172 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3173 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3174 	key_end.offset = logic_end;
3175 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3176 
3177 	if (!IS_ERR(reada1))
3178 		btrfs_reada_wait(reada1);
3179 	if (!IS_ERR(reada2))
3180 		btrfs_reada_wait(reada2);
3181 
3182 
3183 	/*
3184 	 * collect all data csums for the stripe to avoid seeking during
3185 	 * the scrub. This might currently (crc32) end up to be about 1MB
3186 	 */
3187 	blk_start_plug(&plug);
3188 
3189 	/*
3190 	 * now find all extents for each stripe and scrub them
3191 	 */
3192 	ret = 0;
3193 	while (physical < physical_end) {
3194 		/*
3195 		 * canceled?
3196 		 */
3197 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3198 		    atomic_read(&sctx->cancel_req)) {
3199 			ret = -ECANCELED;
3200 			goto out;
3201 		}
3202 		/*
3203 		 * check to see if we have to pause
3204 		 */
3205 		if (atomic_read(&fs_info->scrub_pause_req)) {
3206 			/* push queued extents */
3207 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3208 			scrub_submit(sctx);
3209 			mutex_lock(&sctx->wr_ctx.wr_lock);
3210 			scrub_wr_submit(sctx);
3211 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3212 			wait_event(sctx->list_wait,
3213 				   atomic_read(&sctx->bios_in_flight) == 0);
3214 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3215 			scrub_blocked_if_needed(fs_info);
3216 		}
3217 
3218 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3219 			ret = get_raid56_logic_offset(physical, num, map,
3220 						      &logical,
3221 						      &stripe_logical);
3222 			logical += base;
3223 			if (ret) {
3224 				/* it is parity strip */
3225 				stripe_logical += base;
3226 				stripe_end = stripe_logical + increment;
3227 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3228 							  ppath, stripe_logical,
3229 							  stripe_end);
3230 				if (ret)
3231 					goto out;
3232 				goto skip;
3233 			}
3234 		}
3235 
3236 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3237 			key.type = BTRFS_METADATA_ITEM_KEY;
3238 		else
3239 			key.type = BTRFS_EXTENT_ITEM_KEY;
3240 		key.objectid = logical;
3241 		key.offset = (u64)-1;
3242 
3243 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3244 		if (ret < 0)
3245 			goto out;
3246 
3247 		if (ret > 0) {
3248 			ret = btrfs_previous_extent_item(root, path, 0);
3249 			if (ret < 0)
3250 				goto out;
3251 			if (ret > 0) {
3252 				/* there's no smaller item, so stick with the
3253 				 * larger one */
3254 				btrfs_release_path(path);
3255 				ret = btrfs_search_slot(NULL, root, &key,
3256 							path, 0, 0);
3257 				if (ret < 0)
3258 					goto out;
3259 			}
3260 		}
3261 
3262 		stop_loop = 0;
3263 		while (1) {
3264 			u64 bytes;
3265 
3266 			l = path->nodes[0];
3267 			slot = path->slots[0];
3268 			if (slot >= btrfs_header_nritems(l)) {
3269 				ret = btrfs_next_leaf(root, path);
3270 				if (ret == 0)
3271 					continue;
3272 				if (ret < 0)
3273 					goto out;
3274 
3275 				stop_loop = 1;
3276 				break;
3277 			}
3278 			btrfs_item_key_to_cpu(l, &key, slot);
3279 
3280 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3281 			    key.type != BTRFS_METADATA_ITEM_KEY)
3282 				goto next;
3283 
3284 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3285 				bytes = root->nodesize;
3286 			else
3287 				bytes = key.offset;
3288 
3289 			if (key.objectid + bytes <= logical)
3290 				goto next;
3291 
3292 			if (key.objectid >= logical + map->stripe_len) {
3293 				/* out of this device extent */
3294 				if (key.objectid >= logic_end)
3295 					stop_loop = 1;
3296 				break;
3297 			}
3298 
3299 			extent = btrfs_item_ptr(l, slot,
3300 						struct btrfs_extent_item);
3301 			flags = btrfs_extent_flags(l, extent);
3302 			generation = btrfs_extent_generation(l, extent);
3303 
3304 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3305 			    (key.objectid < logical ||
3306 			     key.objectid + bytes >
3307 			     logical + map->stripe_len)) {
3308 				btrfs_err(fs_info,
3309 					   "scrub: tree block %llu spanning "
3310 					   "stripes, ignored. logical=%llu",
3311 				       key.objectid, logical);
3312 				spin_lock(&sctx->stat_lock);
3313 				sctx->stat.uncorrectable_errors++;
3314 				spin_unlock(&sctx->stat_lock);
3315 				goto next;
3316 			}
3317 
3318 again:
3319 			extent_logical = key.objectid;
3320 			extent_len = bytes;
3321 
3322 			/*
3323 			 * trim extent to this stripe
3324 			 */
3325 			if (extent_logical < logical) {
3326 				extent_len -= logical - extent_logical;
3327 				extent_logical = logical;
3328 			}
3329 			if (extent_logical + extent_len >
3330 			    logical + map->stripe_len) {
3331 				extent_len = logical + map->stripe_len -
3332 					     extent_logical;
3333 			}
3334 
3335 			extent_physical = extent_logical - logical + physical;
3336 			extent_dev = scrub_dev;
3337 			extent_mirror_num = mirror_num;
3338 			if (is_dev_replace)
3339 				scrub_remap_extent(fs_info, extent_logical,
3340 						   extent_len, &extent_physical,
3341 						   &extent_dev,
3342 						   &extent_mirror_num);
3343 
3344 			ret = btrfs_lookup_csums_range(csum_root,
3345 						       extent_logical,
3346 						       extent_logical +
3347 						       extent_len - 1,
3348 						       &sctx->csum_list, 1);
3349 			if (ret)
3350 				goto out;
3351 
3352 			ret = scrub_extent(sctx, extent_logical, extent_len,
3353 					   extent_physical, extent_dev, flags,
3354 					   generation, extent_mirror_num,
3355 					   extent_logical - logical + physical);
3356 
3357 			scrub_free_csums(sctx);
3358 
3359 			if (ret)
3360 				goto out;
3361 
3362 			if (extent_logical + extent_len <
3363 			    key.objectid + bytes) {
3364 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3365 					/*
3366 					 * loop until we find next data stripe
3367 					 * or we have finished all stripes.
3368 					 */
3369 loop:
3370 					physical += map->stripe_len;
3371 					ret = get_raid56_logic_offset(physical,
3372 							num, map, &logical,
3373 							&stripe_logical);
3374 					logical += base;
3375 
3376 					if (ret && physical < physical_end) {
3377 						stripe_logical += base;
3378 						stripe_end = stripe_logical +
3379 								increment;
3380 						ret = scrub_raid56_parity(sctx,
3381 							map, scrub_dev, ppath,
3382 							stripe_logical,
3383 							stripe_end);
3384 						if (ret)
3385 							goto out;
3386 						goto loop;
3387 					}
3388 				} else {
3389 					physical += map->stripe_len;
3390 					logical += increment;
3391 				}
3392 				if (logical < key.objectid + bytes) {
3393 					cond_resched();
3394 					goto again;
3395 				}
3396 
3397 				if (physical >= physical_end) {
3398 					stop_loop = 1;
3399 					break;
3400 				}
3401 			}
3402 next:
3403 			path->slots[0]++;
3404 		}
3405 		btrfs_release_path(path);
3406 skip:
3407 		logical += increment;
3408 		physical += map->stripe_len;
3409 		spin_lock(&sctx->stat_lock);
3410 		if (stop_loop)
3411 			sctx->stat.last_physical = map->stripes[num].physical +
3412 						   length;
3413 		else
3414 			sctx->stat.last_physical = physical;
3415 		spin_unlock(&sctx->stat_lock);
3416 		if (stop_loop)
3417 			break;
3418 	}
3419 out:
3420 	/* push queued extents */
3421 	scrub_submit(sctx);
3422 	mutex_lock(&sctx->wr_ctx.wr_lock);
3423 	scrub_wr_submit(sctx);
3424 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3425 
3426 	blk_finish_plug(&plug);
3427 	btrfs_free_path(path);
3428 	btrfs_free_path(ppath);
3429 	return ret < 0 ? ret : 0;
3430 }
3431 
3432 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3433 					  struct btrfs_device *scrub_dev,
3434 					  u64 chunk_offset, u64 length,
3435 					  u64 dev_offset,
3436 					  struct btrfs_block_group_cache *cache,
3437 					  int is_dev_replace)
3438 {
3439 	struct btrfs_mapping_tree *map_tree =
3440 		&sctx->dev_root->fs_info->mapping_tree;
3441 	struct map_lookup *map;
3442 	struct extent_map *em;
3443 	int i;
3444 	int ret = 0;
3445 
3446 	read_lock(&map_tree->map_tree.lock);
3447 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3448 	read_unlock(&map_tree->map_tree.lock);
3449 
3450 	if (!em) {
3451 		/*
3452 		 * Might have been an unused block group deleted by the cleaner
3453 		 * kthread or relocation.
3454 		 */
3455 		spin_lock(&cache->lock);
3456 		if (!cache->removed)
3457 			ret = -EINVAL;
3458 		spin_unlock(&cache->lock);
3459 
3460 		return ret;
3461 	}
3462 
3463 	map = em->map_lookup;
3464 	if (em->start != chunk_offset)
3465 		goto out;
3466 
3467 	if (em->len < length)
3468 		goto out;
3469 
3470 	for (i = 0; i < map->num_stripes; ++i) {
3471 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3472 		    map->stripes[i].physical == dev_offset) {
3473 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3474 					   chunk_offset, length,
3475 					   is_dev_replace);
3476 			if (ret)
3477 				goto out;
3478 		}
3479 	}
3480 out:
3481 	free_extent_map(em);
3482 
3483 	return ret;
3484 }
3485 
3486 static noinline_for_stack
3487 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3488 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3489 			   int is_dev_replace)
3490 {
3491 	struct btrfs_dev_extent *dev_extent = NULL;
3492 	struct btrfs_path *path;
3493 	struct btrfs_root *root = sctx->dev_root;
3494 	struct btrfs_fs_info *fs_info = root->fs_info;
3495 	u64 length;
3496 	u64 chunk_offset;
3497 	int ret = 0;
3498 	int ro_set;
3499 	int slot;
3500 	struct extent_buffer *l;
3501 	struct btrfs_key key;
3502 	struct btrfs_key found_key;
3503 	struct btrfs_block_group_cache *cache;
3504 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3505 
3506 	path = btrfs_alloc_path();
3507 	if (!path)
3508 		return -ENOMEM;
3509 
3510 	path->reada = READA_FORWARD;
3511 	path->search_commit_root = 1;
3512 	path->skip_locking = 1;
3513 
3514 	key.objectid = scrub_dev->devid;
3515 	key.offset = 0ull;
3516 	key.type = BTRFS_DEV_EXTENT_KEY;
3517 
3518 	while (1) {
3519 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3520 		if (ret < 0)
3521 			break;
3522 		if (ret > 0) {
3523 			if (path->slots[0] >=
3524 			    btrfs_header_nritems(path->nodes[0])) {
3525 				ret = btrfs_next_leaf(root, path);
3526 				if (ret < 0)
3527 					break;
3528 				if (ret > 0) {
3529 					ret = 0;
3530 					break;
3531 				}
3532 			} else {
3533 				ret = 0;
3534 			}
3535 		}
3536 
3537 		l = path->nodes[0];
3538 		slot = path->slots[0];
3539 
3540 		btrfs_item_key_to_cpu(l, &found_key, slot);
3541 
3542 		if (found_key.objectid != scrub_dev->devid)
3543 			break;
3544 
3545 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3546 			break;
3547 
3548 		if (found_key.offset >= end)
3549 			break;
3550 
3551 		if (found_key.offset < key.offset)
3552 			break;
3553 
3554 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3555 		length = btrfs_dev_extent_length(l, dev_extent);
3556 
3557 		if (found_key.offset + length <= start)
3558 			goto skip;
3559 
3560 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3561 
3562 		/*
3563 		 * get a reference on the corresponding block group to prevent
3564 		 * the chunk from going away while we scrub it
3565 		 */
3566 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3567 
3568 		/* some chunks are removed but not committed to disk yet,
3569 		 * continue scrubbing */
3570 		if (!cache)
3571 			goto skip;
3572 
3573 		/*
3574 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3575 		 * to avoid deadlock caused by:
3576 		 * btrfs_inc_block_group_ro()
3577 		 * -> btrfs_wait_for_commit()
3578 		 * -> btrfs_commit_transaction()
3579 		 * -> btrfs_scrub_pause()
3580 		 */
3581 		scrub_pause_on(fs_info);
3582 		ret = btrfs_inc_block_group_ro(root, cache);
3583 		scrub_pause_off(fs_info);
3584 
3585 		if (ret == 0) {
3586 			ro_set = 1;
3587 		} else if (ret == -ENOSPC) {
3588 			/*
3589 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3590 			 * failed in creating new chunk for metadata.
3591 			 * It is not a problem for scrub/replace, because
3592 			 * metadata are always cowed, and our scrub paused
3593 			 * commit_transactions.
3594 			 */
3595 			ro_set = 0;
3596 		} else {
3597 			btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
3598 				   ret);
3599 			btrfs_put_block_group(cache);
3600 			break;
3601 		}
3602 
3603 		dev_replace->cursor_right = found_key.offset + length;
3604 		dev_replace->cursor_left = found_key.offset;
3605 		dev_replace->item_needs_writeback = 1;
3606 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3607 				  found_key.offset, cache, is_dev_replace);
3608 
3609 		/*
3610 		 * flush, submit all pending read and write bios, afterwards
3611 		 * wait for them.
3612 		 * Note that in the dev replace case, a read request causes
3613 		 * write requests that are submitted in the read completion
3614 		 * worker. Therefore in the current situation, it is required
3615 		 * that all write requests are flushed, so that all read and
3616 		 * write requests are really completed when bios_in_flight
3617 		 * changes to 0.
3618 		 */
3619 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3620 		scrub_submit(sctx);
3621 		mutex_lock(&sctx->wr_ctx.wr_lock);
3622 		scrub_wr_submit(sctx);
3623 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3624 
3625 		wait_event(sctx->list_wait,
3626 			   atomic_read(&sctx->bios_in_flight) == 0);
3627 
3628 		scrub_pause_on(fs_info);
3629 
3630 		/*
3631 		 * must be called before we decrease @scrub_paused.
3632 		 * make sure we don't block transaction commit while
3633 		 * we are waiting pending workers finished.
3634 		 */
3635 		wait_event(sctx->list_wait,
3636 			   atomic_read(&sctx->workers_pending) == 0);
3637 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3638 
3639 		scrub_pause_off(fs_info);
3640 
3641 		if (ro_set)
3642 			btrfs_dec_block_group_ro(root, cache);
3643 
3644 		/*
3645 		 * We might have prevented the cleaner kthread from deleting
3646 		 * this block group if it was already unused because we raced
3647 		 * and set it to RO mode first. So add it back to the unused
3648 		 * list, otherwise it might not ever be deleted unless a manual
3649 		 * balance is triggered or it becomes used and unused again.
3650 		 */
3651 		spin_lock(&cache->lock);
3652 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3653 		    btrfs_block_group_used(&cache->item) == 0) {
3654 			spin_unlock(&cache->lock);
3655 			spin_lock(&fs_info->unused_bgs_lock);
3656 			if (list_empty(&cache->bg_list)) {
3657 				btrfs_get_block_group(cache);
3658 				list_add_tail(&cache->bg_list,
3659 					      &fs_info->unused_bgs);
3660 			}
3661 			spin_unlock(&fs_info->unused_bgs_lock);
3662 		} else {
3663 			spin_unlock(&cache->lock);
3664 		}
3665 
3666 		btrfs_put_block_group(cache);
3667 		if (ret)
3668 			break;
3669 		if (is_dev_replace &&
3670 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3671 			ret = -EIO;
3672 			break;
3673 		}
3674 		if (sctx->stat.malloc_errors > 0) {
3675 			ret = -ENOMEM;
3676 			break;
3677 		}
3678 
3679 		dev_replace->cursor_left = dev_replace->cursor_right;
3680 		dev_replace->item_needs_writeback = 1;
3681 skip:
3682 		key.offset = found_key.offset + length;
3683 		btrfs_release_path(path);
3684 	}
3685 
3686 	btrfs_free_path(path);
3687 
3688 	return ret;
3689 }
3690 
3691 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3692 					   struct btrfs_device *scrub_dev)
3693 {
3694 	int	i;
3695 	u64	bytenr;
3696 	u64	gen;
3697 	int	ret;
3698 	struct btrfs_root *root = sctx->dev_root;
3699 
3700 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3701 		return -EIO;
3702 
3703 	/* Seed devices of a new filesystem has their own generation. */
3704 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3705 		gen = scrub_dev->generation;
3706 	else
3707 		gen = root->fs_info->last_trans_committed;
3708 
3709 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3710 		bytenr = btrfs_sb_offset(i);
3711 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3712 		    scrub_dev->commit_total_bytes)
3713 			break;
3714 
3715 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3716 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3717 				  NULL, 1, bytenr);
3718 		if (ret)
3719 			return ret;
3720 	}
3721 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3722 
3723 	return 0;
3724 }
3725 
3726 /*
3727  * get a reference count on fs_info->scrub_workers. start worker if necessary
3728  */
3729 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3730 						int is_dev_replace)
3731 {
3732 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3733 	int max_active = fs_info->thread_pool_size;
3734 
3735 	if (fs_info->scrub_workers_refcnt == 0) {
3736 		if (is_dev_replace)
3737 			fs_info->scrub_workers =
3738 				btrfs_alloc_workqueue("scrub", flags,
3739 						      1, 4);
3740 		else
3741 			fs_info->scrub_workers =
3742 				btrfs_alloc_workqueue("scrub", flags,
3743 						      max_active, 4);
3744 		if (!fs_info->scrub_workers)
3745 			goto fail_scrub_workers;
3746 
3747 		fs_info->scrub_wr_completion_workers =
3748 			btrfs_alloc_workqueue("scrubwrc", flags,
3749 					      max_active, 2);
3750 		if (!fs_info->scrub_wr_completion_workers)
3751 			goto fail_scrub_wr_completion_workers;
3752 
3753 		fs_info->scrub_nocow_workers =
3754 			btrfs_alloc_workqueue("scrubnc", flags, 1, 0);
3755 		if (!fs_info->scrub_nocow_workers)
3756 			goto fail_scrub_nocow_workers;
3757 		fs_info->scrub_parity_workers =
3758 			btrfs_alloc_workqueue("scrubparity", flags,
3759 					      max_active, 2);
3760 		if (!fs_info->scrub_parity_workers)
3761 			goto fail_scrub_parity_workers;
3762 	}
3763 	++fs_info->scrub_workers_refcnt;
3764 	return 0;
3765 
3766 fail_scrub_parity_workers:
3767 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3768 fail_scrub_nocow_workers:
3769 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3770 fail_scrub_wr_completion_workers:
3771 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3772 fail_scrub_workers:
3773 	return -ENOMEM;
3774 }
3775 
3776 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3777 {
3778 	if (--fs_info->scrub_workers_refcnt == 0) {
3779 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3780 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3781 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3782 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3783 	}
3784 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3785 }
3786 
3787 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3788 		    u64 end, struct btrfs_scrub_progress *progress,
3789 		    int readonly, int is_dev_replace)
3790 {
3791 	struct scrub_ctx *sctx;
3792 	int ret;
3793 	struct btrfs_device *dev;
3794 	struct rcu_string *name;
3795 
3796 	if (btrfs_fs_closing(fs_info))
3797 		return -EINVAL;
3798 
3799 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3800 		/*
3801 		 * in this case scrub is unable to calculate the checksum
3802 		 * the way scrub is implemented. Do not handle this
3803 		 * situation at all because it won't ever happen.
3804 		 */
3805 		btrfs_err(fs_info,
3806 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3807 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3808 		return -EINVAL;
3809 	}
3810 
3811 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3812 		/* not supported for data w/o checksums */
3813 		btrfs_err(fs_info,
3814 			   "scrub: size assumption sectorsize != PAGE_SIZE "
3815 			   "(%d != %lu) fails",
3816 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3817 		return -EINVAL;
3818 	}
3819 
3820 	if (fs_info->chunk_root->nodesize >
3821 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3822 	    fs_info->chunk_root->sectorsize >
3823 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3824 		/*
3825 		 * would exhaust the array bounds of pagev member in
3826 		 * struct scrub_block
3827 		 */
3828 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3829 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3830 		       fs_info->chunk_root->nodesize,
3831 		       SCRUB_MAX_PAGES_PER_BLOCK,
3832 		       fs_info->chunk_root->sectorsize,
3833 		       SCRUB_MAX_PAGES_PER_BLOCK);
3834 		return -EINVAL;
3835 	}
3836 
3837 
3838 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3839 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3840 	if (!dev || (dev->missing && !is_dev_replace)) {
3841 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3842 		return -ENODEV;
3843 	}
3844 
3845 	if (!is_dev_replace && !readonly && !dev->writeable) {
3846 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3847 		rcu_read_lock();
3848 		name = rcu_dereference(dev->name);
3849 		btrfs_err(fs_info, "scrub: device %s is not writable",
3850 			  name->str);
3851 		rcu_read_unlock();
3852 		return -EROFS;
3853 	}
3854 
3855 	mutex_lock(&fs_info->scrub_lock);
3856 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3857 		mutex_unlock(&fs_info->scrub_lock);
3858 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3859 		return -EIO;
3860 	}
3861 
3862 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3863 	if (dev->scrub_device ||
3864 	    (!is_dev_replace &&
3865 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3866 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3867 		mutex_unlock(&fs_info->scrub_lock);
3868 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3869 		return -EINPROGRESS;
3870 	}
3871 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3872 
3873 	ret = scrub_workers_get(fs_info, is_dev_replace);
3874 	if (ret) {
3875 		mutex_unlock(&fs_info->scrub_lock);
3876 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877 		return ret;
3878 	}
3879 
3880 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3881 	if (IS_ERR(sctx)) {
3882 		mutex_unlock(&fs_info->scrub_lock);
3883 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3884 		scrub_workers_put(fs_info);
3885 		return PTR_ERR(sctx);
3886 	}
3887 	sctx->readonly = readonly;
3888 	dev->scrub_device = sctx;
3889 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890 
3891 	/*
3892 	 * checking @scrub_pause_req here, we can avoid
3893 	 * race between committing transaction and scrubbing.
3894 	 */
3895 	__scrub_blocked_if_needed(fs_info);
3896 	atomic_inc(&fs_info->scrubs_running);
3897 	mutex_unlock(&fs_info->scrub_lock);
3898 
3899 	if (!is_dev_replace) {
3900 		/*
3901 		 * by holding device list mutex, we can
3902 		 * kick off writing super in log tree sync.
3903 		 */
3904 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3905 		ret = scrub_supers(sctx, dev);
3906 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907 	}
3908 
3909 	if (!ret)
3910 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3911 					     is_dev_replace);
3912 
3913 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3914 	atomic_dec(&fs_info->scrubs_running);
3915 	wake_up(&fs_info->scrub_pause_wait);
3916 
3917 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3918 
3919 	if (progress)
3920 		memcpy(progress, &sctx->stat, sizeof(*progress));
3921 
3922 	mutex_lock(&fs_info->scrub_lock);
3923 	dev->scrub_device = NULL;
3924 	scrub_workers_put(fs_info);
3925 	mutex_unlock(&fs_info->scrub_lock);
3926 
3927 	scrub_put_ctx(sctx);
3928 
3929 	return ret;
3930 }
3931 
3932 void btrfs_scrub_pause(struct btrfs_root *root)
3933 {
3934 	struct btrfs_fs_info *fs_info = root->fs_info;
3935 
3936 	mutex_lock(&fs_info->scrub_lock);
3937 	atomic_inc(&fs_info->scrub_pause_req);
3938 	while (atomic_read(&fs_info->scrubs_paused) !=
3939 	       atomic_read(&fs_info->scrubs_running)) {
3940 		mutex_unlock(&fs_info->scrub_lock);
3941 		wait_event(fs_info->scrub_pause_wait,
3942 			   atomic_read(&fs_info->scrubs_paused) ==
3943 			   atomic_read(&fs_info->scrubs_running));
3944 		mutex_lock(&fs_info->scrub_lock);
3945 	}
3946 	mutex_unlock(&fs_info->scrub_lock);
3947 }
3948 
3949 void btrfs_scrub_continue(struct btrfs_root *root)
3950 {
3951 	struct btrfs_fs_info *fs_info = root->fs_info;
3952 
3953 	atomic_dec(&fs_info->scrub_pause_req);
3954 	wake_up(&fs_info->scrub_pause_wait);
3955 }
3956 
3957 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3958 {
3959 	mutex_lock(&fs_info->scrub_lock);
3960 	if (!atomic_read(&fs_info->scrubs_running)) {
3961 		mutex_unlock(&fs_info->scrub_lock);
3962 		return -ENOTCONN;
3963 	}
3964 
3965 	atomic_inc(&fs_info->scrub_cancel_req);
3966 	while (atomic_read(&fs_info->scrubs_running)) {
3967 		mutex_unlock(&fs_info->scrub_lock);
3968 		wait_event(fs_info->scrub_pause_wait,
3969 			   atomic_read(&fs_info->scrubs_running) == 0);
3970 		mutex_lock(&fs_info->scrub_lock);
3971 	}
3972 	atomic_dec(&fs_info->scrub_cancel_req);
3973 	mutex_unlock(&fs_info->scrub_lock);
3974 
3975 	return 0;
3976 }
3977 
3978 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3979 			   struct btrfs_device *dev)
3980 {
3981 	struct scrub_ctx *sctx;
3982 
3983 	mutex_lock(&fs_info->scrub_lock);
3984 	sctx = dev->scrub_device;
3985 	if (!sctx) {
3986 		mutex_unlock(&fs_info->scrub_lock);
3987 		return -ENOTCONN;
3988 	}
3989 	atomic_inc(&sctx->cancel_req);
3990 	while (dev->scrub_device) {
3991 		mutex_unlock(&fs_info->scrub_lock);
3992 		wait_event(fs_info->scrub_pause_wait,
3993 			   dev->scrub_device == NULL);
3994 		mutex_lock(&fs_info->scrub_lock);
3995 	}
3996 	mutex_unlock(&fs_info->scrub_lock);
3997 
3998 	return 0;
3999 }
4000 
4001 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4002 			 struct btrfs_scrub_progress *progress)
4003 {
4004 	struct btrfs_device *dev;
4005 	struct scrub_ctx *sctx = NULL;
4006 
4007 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4008 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
4009 	if (dev)
4010 		sctx = dev->scrub_device;
4011 	if (sctx)
4012 		memcpy(progress, &sctx->stat, sizeof(*progress));
4013 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4014 
4015 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4016 }
4017 
4018 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4019 			       u64 extent_logical, u64 extent_len,
4020 			       u64 *extent_physical,
4021 			       struct btrfs_device **extent_dev,
4022 			       int *extent_mirror_num)
4023 {
4024 	u64 mapped_length;
4025 	struct btrfs_bio *bbio = NULL;
4026 	int ret;
4027 
4028 	mapped_length = extent_len;
4029 	ret = btrfs_map_block(fs_info, READ, extent_logical,
4030 			      &mapped_length, &bbio, 0);
4031 	if (ret || !bbio || mapped_length < extent_len ||
4032 	    !bbio->stripes[0].dev->bdev) {
4033 		btrfs_put_bbio(bbio);
4034 		return;
4035 	}
4036 
4037 	*extent_physical = bbio->stripes[0].physical;
4038 	*extent_mirror_num = bbio->mirror_num;
4039 	*extent_dev = bbio->stripes[0].dev;
4040 	btrfs_put_bbio(bbio);
4041 }
4042 
4043 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4044 			      struct scrub_wr_ctx *wr_ctx,
4045 			      struct btrfs_fs_info *fs_info,
4046 			      struct btrfs_device *dev,
4047 			      int is_dev_replace)
4048 {
4049 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4050 
4051 	mutex_init(&wr_ctx->wr_lock);
4052 	wr_ctx->wr_curr_bio = NULL;
4053 	if (!is_dev_replace)
4054 		return 0;
4055 
4056 	WARN_ON(!dev->bdev);
4057 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4058 	wr_ctx->tgtdev = dev;
4059 	atomic_set(&wr_ctx->flush_all_writes, 0);
4060 	return 0;
4061 }
4062 
4063 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4064 {
4065 	mutex_lock(&wr_ctx->wr_lock);
4066 	kfree(wr_ctx->wr_curr_bio);
4067 	wr_ctx->wr_curr_bio = NULL;
4068 	mutex_unlock(&wr_ctx->wr_lock);
4069 }
4070 
4071 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4072 			    int mirror_num, u64 physical_for_dev_replace)
4073 {
4074 	struct scrub_copy_nocow_ctx *nocow_ctx;
4075 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4076 
4077 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4078 	if (!nocow_ctx) {
4079 		spin_lock(&sctx->stat_lock);
4080 		sctx->stat.malloc_errors++;
4081 		spin_unlock(&sctx->stat_lock);
4082 		return -ENOMEM;
4083 	}
4084 
4085 	scrub_pending_trans_workers_inc(sctx);
4086 
4087 	nocow_ctx->sctx = sctx;
4088 	nocow_ctx->logical = logical;
4089 	nocow_ctx->len = len;
4090 	nocow_ctx->mirror_num = mirror_num;
4091 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4092 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4093 			copy_nocow_pages_worker, NULL, NULL);
4094 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4095 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4096 			 &nocow_ctx->work);
4097 
4098 	return 0;
4099 }
4100 
4101 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4102 {
4103 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4104 	struct scrub_nocow_inode *nocow_inode;
4105 
4106 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4107 	if (!nocow_inode)
4108 		return -ENOMEM;
4109 	nocow_inode->inum = inum;
4110 	nocow_inode->offset = offset;
4111 	nocow_inode->root = root;
4112 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4113 	return 0;
4114 }
4115 
4116 #define COPY_COMPLETE 1
4117 
4118 static void copy_nocow_pages_worker(struct btrfs_work *work)
4119 {
4120 	struct scrub_copy_nocow_ctx *nocow_ctx =
4121 		container_of(work, struct scrub_copy_nocow_ctx, work);
4122 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4123 	u64 logical = nocow_ctx->logical;
4124 	u64 len = nocow_ctx->len;
4125 	int mirror_num = nocow_ctx->mirror_num;
4126 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4127 	int ret;
4128 	struct btrfs_trans_handle *trans = NULL;
4129 	struct btrfs_fs_info *fs_info;
4130 	struct btrfs_path *path;
4131 	struct btrfs_root *root;
4132 	int not_written = 0;
4133 
4134 	fs_info = sctx->dev_root->fs_info;
4135 	root = fs_info->extent_root;
4136 
4137 	path = btrfs_alloc_path();
4138 	if (!path) {
4139 		spin_lock(&sctx->stat_lock);
4140 		sctx->stat.malloc_errors++;
4141 		spin_unlock(&sctx->stat_lock);
4142 		not_written = 1;
4143 		goto out;
4144 	}
4145 
4146 	trans = btrfs_join_transaction(root);
4147 	if (IS_ERR(trans)) {
4148 		not_written = 1;
4149 		goto out;
4150 	}
4151 
4152 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4153 					  record_inode_for_nocow, nocow_ctx);
4154 	if (ret != 0 && ret != -ENOENT) {
4155 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4156 			"phys %llu, len %llu, mir %u, ret %d",
4157 			logical, physical_for_dev_replace, len, mirror_num,
4158 			ret);
4159 		not_written = 1;
4160 		goto out;
4161 	}
4162 
4163 	btrfs_end_transaction(trans, root);
4164 	trans = NULL;
4165 	while (!list_empty(&nocow_ctx->inodes)) {
4166 		struct scrub_nocow_inode *entry;
4167 		entry = list_first_entry(&nocow_ctx->inodes,
4168 					 struct scrub_nocow_inode,
4169 					 list);
4170 		list_del_init(&entry->list);
4171 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4172 						 entry->root, nocow_ctx);
4173 		kfree(entry);
4174 		if (ret == COPY_COMPLETE) {
4175 			ret = 0;
4176 			break;
4177 		} else if (ret) {
4178 			break;
4179 		}
4180 	}
4181 out:
4182 	while (!list_empty(&nocow_ctx->inodes)) {
4183 		struct scrub_nocow_inode *entry;
4184 		entry = list_first_entry(&nocow_ctx->inodes,
4185 					 struct scrub_nocow_inode,
4186 					 list);
4187 		list_del_init(&entry->list);
4188 		kfree(entry);
4189 	}
4190 	if (trans && !IS_ERR(trans))
4191 		btrfs_end_transaction(trans, root);
4192 	if (not_written)
4193 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4194 					    num_uncorrectable_read_errors);
4195 
4196 	btrfs_free_path(path);
4197 	kfree(nocow_ctx);
4198 
4199 	scrub_pending_trans_workers_dec(sctx);
4200 }
4201 
4202 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4203 				 u64 logical)
4204 {
4205 	struct extent_state *cached_state = NULL;
4206 	struct btrfs_ordered_extent *ordered;
4207 	struct extent_io_tree *io_tree;
4208 	struct extent_map *em;
4209 	u64 lockstart = start, lockend = start + len - 1;
4210 	int ret = 0;
4211 
4212 	io_tree = &BTRFS_I(inode)->io_tree;
4213 
4214 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4215 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4216 	if (ordered) {
4217 		btrfs_put_ordered_extent(ordered);
4218 		ret = 1;
4219 		goto out_unlock;
4220 	}
4221 
4222 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4223 	if (IS_ERR(em)) {
4224 		ret = PTR_ERR(em);
4225 		goto out_unlock;
4226 	}
4227 
4228 	/*
4229 	 * This extent does not actually cover the logical extent anymore,
4230 	 * move on to the next inode.
4231 	 */
4232 	if (em->block_start > logical ||
4233 	    em->block_start + em->block_len < logical + len) {
4234 		free_extent_map(em);
4235 		ret = 1;
4236 		goto out_unlock;
4237 	}
4238 	free_extent_map(em);
4239 
4240 out_unlock:
4241 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4242 			     GFP_NOFS);
4243 	return ret;
4244 }
4245 
4246 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4247 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4248 {
4249 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4250 	struct btrfs_key key;
4251 	struct inode *inode;
4252 	struct page *page;
4253 	struct btrfs_root *local_root;
4254 	struct extent_io_tree *io_tree;
4255 	u64 physical_for_dev_replace;
4256 	u64 nocow_ctx_logical;
4257 	u64 len = nocow_ctx->len;
4258 	unsigned long index;
4259 	int srcu_index;
4260 	int ret = 0;
4261 	int err = 0;
4262 
4263 	key.objectid = root;
4264 	key.type = BTRFS_ROOT_ITEM_KEY;
4265 	key.offset = (u64)-1;
4266 
4267 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4268 
4269 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4270 	if (IS_ERR(local_root)) {
4271 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4272 		return PTR_ERR(local_root);
4273 	}
4274 
4275 	key.type = BTRFS_INODE_ITEM_KEY;
4276 	key.objectid = inum;
4277 	key.offset = 0;
4278 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4279 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4280 	if (IS_ERR(inode))
4281 		return PTR_ERR(inode);
4282 
4283 	/* Avoid truncate/dio/punch hole.. */
4284 	inode_lock(inode);
4285 	inode_dio_wait(inode);
4286 
4287 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4288 	io_tree = &BTRFS_I(inode)->io_tree;
4289 	nocow_ctx_logical = nocow_ctx->logical;
4290 
4291 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4292 	if (ret) {
4293 		ret = ret > 0 ? 0 : ret;
4294 		goto out;
4295 	}
4296 
4297 	while (len >= PAGE_SIZE) {
4298 		index = offset >> PAGE_SHIFT;
4299 again:
4300 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4301 		if (!page) {
4302 			btrfs_err(fs_info, "find_or_create_page() failed");
4303 			ret = -ENOMEM;
4304 			goto out;
4305 		}
4306 
4307 		if (PageUptodate(page)) {
4308 			if (PageDirty(page))
4309 				goto next_page;
4310 		} else {
4311 			ClearPageError(page);
4312 			err = extent_read_full_page(io_tree, page,
4313 							   btrfs_get_extent,
4314 							   nocow_ctx->mirror_num);
4315 			if (err) {
4316 				ret = err;
4317 				goto next_page;
4318 			}
4319 
4320 			lock_page(page);
4321 			/*
4322 			 * If the page has been remove from the page cache,
4323 			 * the data on it is meaningless, because it may be
4324 			 * old one, the new data may be written into the new
4325 			 * page in the page cache.
4326 			 */
4327 			if (page->mapping != inode->i_mapping) {
4328 				unlock_page(page);
4329 				put_page(page);
4330 				goto again;
4331 			}
4332 			if (!PageUptodate(page)) {
4333 				ret = -EIO;
4334 				goto next_page;
4335 			}
4336 		}
4337 
4338 		ret = check_extent_to_block(inode, offset, len,
4339 					    nocow_ctx_logical);
4340 		if (ret) {
4341 			ret = ret > 0 ? 0 : ret;
4342 			goto next_page;
4343 		}
4344 
4345 		err = write_page_nocow(nocow_ctx->sctx,
4346 				       physical_for_dev_replace, page);
4347 		if (err)
4348 			ret = err;
4349 next_page:
4350 		unlock_page(page);
4351 		put_page(page);
4352 
4353 		if (ret)
4354 			break;
4355 
4356 		offset += PAGE_SIZE;
4357 		physical_for_dev_replace += PAGE_SIZE;
4358 		nocow_ctx_logical += PAGE_SIZE;
4359 		len -= PAGE_SIZE;
4360 	}
4361 	ret = COPY_COMPLETE;
4362 out:
4363 	inode_unlock(inode);
4364 	iput(inode);
4365 	return ret;
4366 }
4367 
4368 static int write_page_nocow(struct scrub_ctx *sctx,
4369 			    u64 physical_for_dev_replace, struct page *page)
4370 {
4371 	struct bio *bio;
4372 	struct btrfs_device *dev;
4373 	int ret;
4374 
4375 	dev = sctx->wr_ctx.tgtdev;
4376 	if (!dev)
4377 		return -EIO;
4378 	if (!dev->bdev) {
4379 		btrfs_warn_rl(dev->dev_root->fs_info,
4380 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4381 		return -EIO;
4382 	}
4383 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4384 	if (!bio) {
4385 		spin_lock(&sctx->stat_lock);
4386 		sctx->stat.malloc_errors++;
4387 		spin_unlock(&sctx->stat_lock);
4388 		return -ENOMEM;
4389 	}
4390 	bio->bi_iter.bi_size = 0;
4391 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4392 	bio->bi_bdev = dev->bdev;
4393 	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4394 	if (ret != PAGE_SIZE) {
4395 leave_with_eio:
4396 		bio_put(bio);
4397 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4398 		return -EIO;
4399 	}
4400 
4401 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4402 		goto leave_with_eio;
4403 
4404 	bio_put(bio);
4405 	return 0;
4406 }
4407