1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 #include "zoned.h" 24 25 /* 26 * This is only the first step towards a full-features scrub. It reads all 27 * extent and super block and verifies the checksums. In case a bad checksum 28 * is found or the extent cannot be read, good data will be written back if 29 * any can be found. 30 * 31 * Future enhancements: 32 * - In case an unrepairable extent is encountered, track which files are 33 * affected and report them 34 * - track and record media errors, throw out bad devices 35 * - add a mode to also read unallocated space 36 */ 37 38 struct scrub_block; 39 struct scrub_ctx; 40 41 /* 42 * the following three values only influence the performance. 43 * The last one configures the number of parallel and outstanding I/O 44 * operations. The first two values configure an upper limit for the number 45 * of (dynamically allocated) pages that are added to a bio. 46 */ 47 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 48 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 49 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 50 51 /* 52 * the following value times PAGE_SIZE needs to be large enough to match the 53 * largest node/leaf/sector size that shall be supported. 54 * Values larger than BTRFS_STRIPE_LEN are not supported. 55 */ 56 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 57 58 struct scrub_recover { 59 refcount_t refs; 60 struct btrfs_bio *bbio; 61 u64 map_length; 62 }; 63 64 struct scrub_page { 65 struct scrub_block *sblock; 66 struct page *page; 67 struct btrfs_device *dev; 68 struct list_head list; 69 u64 flags; /* extent flags */ 70 u64 generation; 71 u64 logical; 72 u64 physical; 73 u64 physical_for_dev_replace; 74 atomic_t refs; 75 u8 mirror_num; 76 int have_csum:1; 77 int io_error:1; 78 u8 csum[BTRFS_CSUM_SIZE]; 79 80 struct scrub_recover *recover; 81 }; 82 83 struct scrub_bio { 84 int index; 85 struct scrub_ctx *sctx; 86 struct btrfs_device *dev; 87 struct bio *bio; 88 blk_status_t status; 89 u64 logical; 90 u64 physical; 91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 93 #else 94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 95 #endif 96 int page_count; 97 int next_free; 98 struct btrfs_work work; 99 }; 100 101 struct scrub_block { 102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 103 int page_count; 104 atomic_t outstanding_pages; 105 refcount_t refs; /* free mem on transition to zero */ 106 struct scrub_ctx *sctx; 107 struct scrub_parity *sparity; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 114 /* The following is for the data used to check parity */ 115 /* It is for the data with checksum */ 116 unsigned int data_corrected:1; 117 }; 118 struct btrfs_work work; 119 }; 120 121 /* Used for the chunks with parity stripe such RAID5/6 */ 122 struct scrub_parity { 123 struct scrub_ctx *sctx; 124 125 struct btrfs_device *scrub_dev; 126 127 u64 logic_start; 128 129 u64 logic_end; 130 131 int nsectors; 132 133 u32 stripe_len; 134 135 refcount_t refs; 136 137 struct list_head spages; 138 139 /* Work of parity check and repair */ 140 struct btrfs_work work; 141 142 /* Mark the parity blocks which have data */ 143 unsigned long *dbitmap; 144 145 /* 146 * Mark the parity blocks which have data, but errors happen when 147 * read data or check data 148 */ 149 unsigned long *ebitmap; 150 151 unsigned long bitmap[]; 152 }; 153 154 struct scrub_ctx { 155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 156 struct btrfs_fs_info *fs_info; 157 int first_free; 158 int curr; 159 atomic_t bios_in_flight; 160 atomic_t workers_pending; 161 spinlock_t list_lock; 162 wait_queue_head_t list_wait; 163 struct list_head csum_list; 164 atomic_t cancel_req; 165 int readonly; 166 int pages_per_rd_bio; 167 168 /* State of IO submission throttling affecting the associated device */ 169 ktime_t throttle_deadline; 170 u64 throttle_sent; 171 172 int is_dev_replace; 173 u64 write_pointer; 174 175 struct scrub_bio *wr_curr_bio; 176 struct mutex wr_lock; 177 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 178 struct btrfs_device *wr_tgtdev; 179 bool flush_all_writes; 180 181 /* 182 * statistics 183 */ 184 struct btrfs_scrub_progress stat; 185 spinlock_t stat_lock; 186 187 /* 188 * Use a ref counter to avoid use-after-free issues. Scrub workers 189 * decrement bios_in_flight and workers_pending and then do a wakeup 190 * on the list_wait wait queue. We must ensure the main scrub task 191 * doesn't free the scrub context before or while the workers are 192 * doing the wakeup() call. 193 */ 194 refcount_t refs; 195 }; 196 197 struct scrub_warning { 198 struct btrfs_path *path; 199 u64 extent_item_size; 200 const char *errstr; 201 u64 physical; 202 u64 logical; 203 struct btrfs_device *dev; 204 }; 205 206 struct full_stripe_lock { 207 struct rb_node node; 208 u64 logical; 209 u64 refs; 210 struct mutex mutex; 211 }; 212 213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 214 struct scrub_block *sblocks_for_recheck); 215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 216 struct scrub_block *sblock, 217 int retry_failed_mirror); 218 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 220 struct scrub_block *sblock_good); 221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 222 struct scrub_block *sblock_good, 223 int page_num, int force_write); 224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 226 int page_num); 227 static int scrub_checksum_data(struct scrub_block *sblock); 228 static int scrub_checksum_tree_block(struct scrub_block *sblock); 229 static int scrub_checksum_super(struct scrub_block *sblock); 230 static void scrub_block_put(struct scrub_block *sblock); 231 static void scrub_page_get(struct scrub_page *spage); 232 static void scrub_page_put(struct scrub_page *spage); 233 static void scrub_parity_get(struct scrub_parity *sparity); 234 static void scrub_parity_put(struct scrub_parity *sparity); 235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 236 u64 physical, struct btrfs_device *dev, u64 flags, 237 u64 gen, int mirror_num, u8 *csum, 238 u64 physical_for_dev_replace); 239 static void scrub_bio_end_io(struct bio *bio); 240 static void scrub_bio_end_io_worker(struct btrfs_work *work); 241 static void scrub_block_complete(struct scrub_block *sblock); 242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 243 u64 extent_logical, u32 extent_len, 244 u64 *extent_physical, 245 struct btrfs_device **extent_dev, 246 int *extent_mirror_num); 247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 248 struct scrub_page *spage); 249 static void scrub_wr_submit(struct scrub_ctx *sctx); 250 static void scrub_wr_bio_end_io(struct bio *bio); 251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 252 static void scrub_put_ctx(struct scrub_ctx *sctx); 253 254 static inline int scrub_is_page_on_raid56(struct scrub_page *spage) 255 { 256 return spage->recover && 257 (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 258 } 259 260 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 261 { 262 refcount_inc(&sctx->refs); 263 atomic_inc(&sctx->bios_in_flight); 264 } 265 266 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 267 { 268 atomic_dec(&sctx->bios_in_flight); 269 wake_up(&sctx->list_wait); 270 scrub_put_ctx(sctx); 271 } 272 273 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 274 { 275 while (atomic_read(&fs_info->scrub_pause_req)) { 276 mutex_unlock(&fs_info->scrub_lock); 277 wait_event(fs_info->scrub_pause_wait, 278 atomic_read(&fs_info->scrub_pause_req) == 0); 279 mutex_lock(&fs_info->scrub_lock); 280 } 281 } 282 283 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 284 { 285 atomic_inc(&fs_info->scrubs_paused); 286 wake_up(&fs_info->scrub_pause_wait); 287 } 288 289 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 290 { 291 mutex_lock(&fs_info->scrub_lock); 292 __scrub_blocked_if_needed(fs_info); 293 atomic_dec(&fs_info->scrubs_paused); 294 mutex_unlock(&fs_info->scrub_lock); 295 296 wake_up(&fs_info->scrub_pause_wait); 297 } 298 299 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 300 { 301 scrub_pause_on(fs_info); 302 scrub_pause_off(fs_info); 303 } 304 305 /* 306 * Insert new full stripe lock into full stripe locks tree 307 * 308 * Return pointer to existing or newly inserted full_stripe_lock structure if 309 * everything works well. 310 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 311 * 312 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 313 * function 314 */ 315 static struct full_stripe_lock *insert_full_stripe_lock( 316 struct btrfs_full_stripe_locks_tree *locks_root, 317 u64 fstripe_logical) 318 { 319 struct rb_node **p; 320 struct rb_node *parent = NULL; 321 struct full_stripe_lock *entry; 322 struct full_stripe_lock *ret; 323 324 lockdep_assert_held(&locks_root->lock); 325 326 p = &locks_root->root.rb_node; 327 while (*p) { 328 parent = *p; 329 entry = rb_entry(parent, struct full_stripe_lock, node); 330 if (fstripe_logical < entry->logical) { 331 p = &(*p)->rb_left; 332 } else if (fstripe_logical > entry->logical) { 333 p = &(*p)->rb_right; 334 } else { 335 entry->refs++; 336 return entry; 337 } 338 } 339 340 /* 341 * Insert new lock. 342 */ 343 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 344 if (!ret) 345 return ERR_PTR(-ENOMEM); 346 ret->logical = fstripe_logical; 347 ret->refs = 1; 348 mutex_init(&ret->mutex); 349 350 rb_link_node(&ret->node, parent, p); 351 rb_insert_color(&ret->node, &locks_root->root); 352 return ret; 353 } 354 355 /* 356 * Search for a full stripe lock of a block group 357 * 358 * Return pointer to existing full stripe lock if found 359 * Return NULL if not found 360 */ 361 static struct full_stripe_lock *search_full_stripe_lock( 362 struct btrfs_full_stripe_locks_tree *locks_root, 363 u64 fstripe_logical) 364 { 365 struct rb_node *node; 366 struct full_stripe_lock *entry; 367 368 lockdep_assert_held(&locks_root->lock); 369 370 node = locks_root->root.rb_node; 371 while (node) { 372 entry = rb_entry(node, struct full_stripe_lock, node); 373 if (fstripe_logical < entry->logical) 374 node = node->rb_left; 375 else if (fstripe_logical > entry->logical) 376 node = node->rb_right; 377 else 378 return entry; 379 } 380 return NULL; 381 } 382 383 /* 384 * Helper to get full stripe logical from a normal bytenr. 385 * 386 * Caller must ensure @cache is a RAID56 block group. 387 */ 388 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 389 { 390 u64 ret; 391 392 /* 393 * Due to chunk item size limit, full stripe length should not be 394 * larger than U32_MAX. Just a sanity check here. 395 */ 396 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 397 398 /* 399 * round_down() can only handle power of 2, while RAID56 full 400 * stripe length can be 64KiB * n, so we need to manually round down. 401 */ 402 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 403 cache->full_stripe_len + cache->start; 404 return ret; 405 } 406 407 /* 408 * Lock a full stripe to avoid concurrency of recovery and read 409 * 410 * It's only used for profiles with parities (RAID5/6), for other profiles it 411 * does nothing. 412 * 413 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 414 * So caller must call unlock_full_stripe() at the same context. 415 * 416 * Return <0 if encounters error. 417 */ 418 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 419 bool *locked_ret) 420 { 421 struct btrfs_block_group *bg_cache; 422 struct btrfs_full_stripe_locks_tree *locks_root; 423 struct full_stripe_lock *existing; 424 u64 fstripe_start; 425 int ret = 0; 426 427 *locked_ret = false; 428 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 429 if (!bg_cache) { 430 ASSERT(0); 431 return -ENOENT; 432 } 433 434 /* Profiles not based on parity don't need full stripe lock */ 435 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 436 goto out; 437 locks_root = &bg_cache->full_stripe_locks_root; 438 439 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 440 441 /* Now insert the full stripe lock */ 442 mutex_lock(&locks_root->lock); 443 existing = insert_full_stripe_lock(locks_root, fstripe_start); 444 mutex_unlock(&locks_root->lock); 445 if (IS_ERR(existing)) { 446 ret = PTR_ERR(existing); 447 goto out; 448 } 449 mutex_lock(&existing->mutex); 450 *locked_ret = true; 451 out: 452 btrfs_put_block_group(bg_cache); 453 return ret; 454 } 455 456 /* 457 * Unlock a full stripe. 458 * 459 * NOTE: Caller must ensure it's the same context calling corresponding 460 * lock_full_stripe(). 461 * 462 * Return 0 if we unlock full stripe without problem. 463 * Return <0 for error 464 */ 465 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 466 bool locked) 467 { 468 struct btrfs_block_group *bg_cache; 469 struct btrfs_full_stripe_locks_tree *locks_root; 470 struct full_stripe_lock *fstripe_lock; 471 u64 fstripe_start; 472 bool freeit = false; 473 int ret = 0; 474 475 /* If we didn't acquire full stripe lock, no need to continue */ 476 if (!locked) 477 return 0; 478 479 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 480 if (!bg_cache) { 481 ASSERT(0); 482 return -ENOENT; 483 } 484 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 485 goto out; 486 487 locks_root = &bg_cache->full_stripe_locks_root; 488 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 489 490 mutex_lock(&locks_root->lock); 491 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 492 /* Unpaired unlock_full_stripe() detected */ 493 if (!fstripe_lock) { 494 WARN_ON(1); 495 ret = -ENOENT; 496 mutex_unlock(&locks_root->lock); 497 goto out; 498 } 499 500 if (fstripe_lock->refs == 0) { 501 WARN_ON(1); 502 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 503 fstripe_lock->logical); 504 } else { 505 fstripe_lock->refs--; 506 } 507 508 if (fstripe_lock->refs == 0) { 509 rb_erase(&fstripe_lock->node, &locks_root->root); 510 freeit = true; 511 } 512 mutex_unlock(&locks_root->lock); 513 514 mutex_unlock(&fstripe_lock->mutex); 515 if (freeit) 516 kfree(fstripe_lock); 517 out: 518 btrfs_put_block_group(bg_cache); 519 return ret; 520 } 521 522 static void scrub_free_csums(struct scrub_ctx *sctx) 523 { 524 while (!list_empty(&sctx->csum_list)) { 525 struct btrfs_ordered_sum *sum; 526 sum = list_first_entry(&sctx->csum_list, 527 struct btrfs_ordered_sum, list); 528 list_del(&sum->list); 529 kfree(sum); 530 } 531 } 532 533 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 534 { 535 int i; 536 537 if (!sctx) 538 return; 539 540 /* this can happen when scrub is cancelled */ 541 if (sctx->curr != -1) { 542 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 543 544 for (i = 0; i < sbio->page_count; i++) { 545 WARN_ON(!sbio->pagev[i]->page); 546 scrub_block_put(sbio->pagev[i]->sblock); 547 } 548 bio_put(sbio->bio); 549 } 550 551 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 552 struct scrub_bio *sbio = sctx->bios[i]; 553 554 if (!sbio) 555 break; 556 kfree(sbio); 557 } 558 559 kfree(sctx->wr_curr_bio); 560 scrub_free_csums(sctx); 561 kfree(sctx); 562 } 563 564 static void scrub_put_ctx(struct scrub_ctx *sctx) 565 { 566 if (refcount_dec_and_test(&sctx->refs)) 567 scrub_free_ctx(sctx); 568 } 569 570 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 571 struct btrfs_fs_info *fs_info, int is_dev_replace) 572 { 573 struct scrub_ctx *sctx; 574 int i; 575 576 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 577 if (!sctx) 578 goto nomem; 579 refcount_set(&sctx->refs, 1); 580 sctx->is_dev_replace = is_dev_replace; 581 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 582 sctx->curr = -1; 583 sctx->fs_info = fs_info; 584 INIT_LIST_HEAD(&sctx->csum_list); 585 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 586 struct scrub_bio *sbio; 587 588 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 589 if (!sbio) 590 goto nomem; 591 sctx->bios[i] = sbio; 592 593 sbio->index = i; 594 sbio->sctx = sctx; 595 sbio->page_count = 0; 596 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, 597 NULL); 598 599 if (i != SCRUB_BIOS_PER_SCTX - 1) 600 sctx->bios[i]->next_free = i + 1; 601 else 602 sctx->bios[i]->next_free = -1; 603 } 604 sctx->first_free = 0; 605 atomic_set(&sctx->bios_in_flight, 0); 606 atomic_set(&sctx->workers_pending, 0); 607 atomic_set(&sctx->cancel_req, 0); 608 609 spin_lock_init(&sctx->list_lock); 610 spin_lock_init(&sctx->stat_lock); 611 init_waitqueue_head(&sctx->list_wait); 612 sctx->throttle_deadline = 0; 613 614 WARN_ON(sctx->wr_curr_bio != NULL); 615 mutex_init(&sctx->wr_lock); 616 sctx->wr_curr_bio = NULL; 617 if (is_dev_replace) { 618 WARN_ON(!fs_info->dev_replace.tgtdev); 619 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 620 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 621 sctx->flush_all_writes = false; 622 } 623 624 return sctx; 625 626 nomem: 627 scrub_free_ctx(sctx); 628 return ERR_PTR(-ENOMEM); 629 } 630 631 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 632 void *warn_ctx) 633 { 634 u32 nlink; 635 int ret; 636 int i; 637 unsigned nofs_flag; 638 struct extent_buffer *eb; 639 struct btrfs_inode_item *inode_item; 640 struct scrub_warning *swarn = warn_ctx; 641 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 642 struct inode_fs_paths *ipath = NULL; 643 struct btrfs_root *local_root; 644 struct btrfs_key key; 645 646 local_root = btrfs_get_fs_root(fs_info, root, true); 647 if (IS_ERR(local_root)) { 648 ret = PTR_ERR(local_root); 649 goto err; 650 } 651 652 /* 653 * this makes the path point to (inum INODE_ITEM ioff) 654 */ 655 key.objectid = inum; 656 key.type = BTRFS_INODE_ITEM_KEY; 657 key.offset = 0; 658 659 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 660 if (ret) { 661 btrfs_put_root(local_root); 662 btrfs_release_path(swarn->path); 663 goto err; 664 } 665 666 eb = swarn->path->nodes[0]; 667 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 668 struct btrfs_inode_item); 669 nlink = btrfs_inode_nlink(eb, inode_item); 670 btrfs_release_path(swarn->path); 671 672 /* 673 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 674 * uses GFP_NOFS in this context, so we keep it consistent but it does 675 * not seem to be strictly necessary. 676 */ 677 nofs_flag = memalloc_nofs_save(); 678 ipath = init_ipath(4096, local_root, swarn->path); 679 memalloc_nofs_restore(nofs_flag); 680 if (IS_ERR(ipath)) { 681 btrfs_put_root(local_root); 682 ret = PTR_ERR(ipath); 683 ipath = NULL; 684 goto err; 685 } 686 ret = paths_from_inode(inum, ipath); 687 688 if (ret < 0) 689 goto err; 690 691 /* 692 * we deliberately ignore the bit ipath might have been too small to 693 * hold all of the paths here 694 */ 695 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 696 btrfs_warn_in_rcu(fs_info, 697 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 698 swarn->errstr, swarn->logical, 699 rcu_str_deref(swarn->dev->name), 700 swarn->physical, 701 root, inum, offset, 702 fs_info->sectorsize, nlink, 703 (char *)(unsigned long)ipath->fspath->val[i]); 704 705 btrfs_put_root(local_root); 706 free_ipath(ipath); 707 return 0; 708 709 err: 710 btrfs_warn_in_rcu(fs_info, 711 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 712 swarn->errstr, swarn->logical, 713 rcu_str_deref(swarn->dev->name), 714 swarn->physical, 715 root, inum, offset, ret); 716 717 free_ipath(ipath); 718 return 0; 719 } 720 721 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 722 { 723 struct btrfs_device *dev; 724 struct btrfs_fs_info *fs_info; 725 struct btrfs_path *path; 726 struct btrfs_key found_key; 727 struct extent_buffer *eb; 728 struct btrfs_extent_item *ei; 729 struct scrub_warning swarn; 730 unsigned long ptr = 0; 731 u64 extent_item_pos; 732 u64 flags = 0; 733 u64 ref_root; 734 u32 item_size; 735 u8 ref_level = 0; 736 int ret; 737 738 WARN_ON(sblock->page_count < 1); 739 dev = sblock->pagev[0]->dev; 740 fs_info = sblock->sctx->fs_info; 741 742 path = btrfs_alloc_path(); 743 if (!path) 744 return; 745 746 swarn.physical = sblock->pagev[0]->physical; 747 swarn.logical = sblock->pagev[0]->logical; 748 swarn.errstr = errstr; 749 swarn.dev = NULL; 750 751 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 752 &flags); 753 if (ret < 0) 754 goto out; 755 756 extent_item_pos = swarn.logical - found_key.objectid; 757 swarn.extent_item_size = found_key.offset; 758 759 eb = path->nodes[0]; 760 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 761 item_size = btrfs_item_size_nr(eb, path->slots[0]); 762 763 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 764 do { 765 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 766 item_size, &ref_root, 767 &ref_level); 768 btrfs_warn_in_rcu(fs_info, 769 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 770 errstr, swarn.logical, 771 rcu_str_deref(dev->name), 772 swarn.physical, 773 ref_level ? "node" : "leaf", 774 ret < 0 ? -1 : ref_level, 775 ret < 0 ? -1 : ref_root); 776 } while (ret != 1); 777 btrfs_release_path(path); 778 } else { 779 btrfs_release_path(path); 780 swarn.path = path; 781 swarn.dev = dev; 782 iterate_extent_inodes(fs_info, found_key.objectid, 783 extent_item_pos, 1, 784 scrub_print_warning_inode, &swarn, false); 785 } 786 787 out: 788 btrfs_free_path(path); 789 } 790 791 static inline void scrub_get_recover(struct scrub_recover *recover) 792 { 793 refcount_inc(&recover->refs); 794 } 795 796 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 797 struct scrub_recover *recover) 798 { 799 if (refcount_dec_and_test(&recover->refs)) { 800 btrfs_bio_counter_dec(fs_info); 801 btrfs_put_bbio(recover->bbio); 802 kfree(recover); 803 } 804 } 805 806 /* 807 * scrub_handle_errored_block gets called when either verification of the 808 * pages failed or the bio failed to read, e.g. with EIO. In the latter 809 * case, this function handles all pages in the bio, even though only one 810 * may be bad. 811 * The goal of this function is to repair the errored block by using the 812 * contents of one of the mirrors. 813 */ 814 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 815 { 816 struct scrub_ctx *sctx = sblock_to_check->sctx; 817 struct btrfs_device *dev; 818 struct btrfs_fs_info *fs_info; 819 u64 logical; 820 unsigned int failed_mirror_index; 821 unsigned int is_metadata; 822 unsigned int have_csum; 823 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 824 struct scrub_block *sblock_bad; 825 int ret; 826 int mirror_index; 827 int page_num; 828 int success; 829 bool full_stripe_locked; 830 unsigned int nofs_flag; 831 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 832 DEFAULT_RATELIMIT_BURST); 833 834 BUG_ON(sblock_to_check->page_count < 1); 835 fs_info = sctx->fs_info; 836 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 837 /* 838 * if we find an error in a super block, we just report it. 839 * They will get written with the next transaction commit 840 * anyway 841 */ 842 spin_lock(&sctx->stat_lock); 843 ++sctx->stat.super_errors; 844 spin_unlock(&sctx->stat_lock); 845 return 0; 846 } 847 logical = sblock_to_check->pagev[0]->logical; 848 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 849 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 850 is_metadata = !(sblock_to_check->pagev[0]->flags & 851 BTRFS_EXTENT_FLAG_DATA); 852 have_csum = sblock_to_check->pagev[0]->have_csum; 853 dev = sblock_to_check->pagev[0]->dev; 854 855 if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace) 856 return btrfs_repair_one_zone(fs_info, logical); 857 858 /* 859 * We must use GFP_NOFS because the scrub task might be waiting for a 860 * worker task executing this function and in turn a transaction commit 861 * might be waiting the scrub task to pause (which needs to wait for all 862 * the worker tasks to complete before pausing). 863 * We do allocations in the workers through insert_full_stripe_lock() 864 * and scrub_add_page_to_wr_bio(), which happens down the call chain of 865 * this function. 866 */ 867 nofs_flag = memalloc_nofs_save(); 868 /* 869 * For RAID5/6, race can happen for a different device scrub thread. 870 * For data corruption, Parity and Data threads will both try 871 * to recovery the data. 872 * Race can lead to doubly added csum error, or even unrecoverable 873 * error. 874 */ 875 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 876 if (ret < 0) { 877 memalloc_nofs_restore(nofs_flag); 878 spin_lock(&sctx->stat_lock); 879 if (ret == -ENOMEM) 880 sctx->stat.malloc_errors++; 881 sctx->stat.read_errors++; 882 sctx->stat.uncorrectable_errors++; 883 spin_unlock(&sctx->stat_lock); 884 return ret; 885 } 886 887 /* 888 * read all mirrors one after the other. This includes to 889 * re-read the extent or metadata block that failed (that was 890 * the cause that this fixup code is called) another time, 891 * sector by sector this time in order to know which sectors 892 * caused I/O errors and which ones are good (for all mirrors). 893 * It is the goal to handle the situation when more than one 894 * mirror contains I/O errors, but the errors do not 895 * overlap, i.e. the data can be repaired by selecting the 896 * sectors from those mirrors without I/O error on the 897 * particular sectors. One example (with blocks >= 2 * sectorsize) 898 * would be that mirror #1 has an I/O error on the first sector, 899 * the second sector is good, and mirror #2 has an I/O error on 900 * the second sector, but the first sector is good. 901 * Then the first sector of the first mirror can be repaired by 902 * taking the first sector of the second mirror, and the 903 * second sector of the second mirror can be repaired by 904 * copying the contents of the 2nd sector of the 1st mirror. 905 * One more note: if the sectors of one mirror contain I/O 906 * errors, the checksum cannot be verified. In order to get 907 * the best data for repairing, the first attempt is to find 908 * a mirror without I/O errors and with a validated checksum. 909 * Only if this is not possible, the sectors are picked from 910 * mirrors with I/O errors without considering the checksum. 911 * If the latter is the case, at the end, the checksum of the 912 * repaired area is verified in order to correctly maintain 913 * the statistics. 914 */ 915 916 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 917 sizeof(*sblocks_for_recheck), GFP_KERNEL); 918 if (!sblocks_for_recheck) { 919 spin_lock(&sctx->stat_lock); 920 sctx->stat.malloc_errors++; 921 sctx->stat.read_errors++; 922 sctx->stat.uncorrectable_errors++; 923 spin_unlock(&sctx->stat_lock); 924 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 925 goto out; 926 } 927 928 /* setup the context, map the logical blocks and alloc the pages */ 929 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 930 if (ret) { 931 spin_lock(&sctx->stat_lock); 932 sctx->stat.read_errors++; 933 sctx->stat.uncorrectable_errors++; 934 spin_unlock(&sctx->stat_lock); 935 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 936 goto out; 937 } 938 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 939 sblock_bad = sblocks_for_recheck + failed_mirror_index; 940 941 /* build and submit the bios for the failed mirror, check checksums */ 942 scrub_recheck_block(fs_info, sblock_bad, 1); 943 944 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 945 sblock_bad->no_io_error_seen) { 946 /* 947 * the error disappeared after reading page by page, or 948 * the area was part of a huge bio and other parts of the 949 * bio caused I/O errors, or the block layer merged several 950 * read requests into one and the error is caused by a 951 * different bio (usually one of the two latter cases is 952 * the cause) 953 */ 954 spin_lock(&sctx->stat_lock); 955 sctx->stat.unverified_errors++; 956 sblock_to_check->data_corrected = 1; 957 spin_unlock(&sctx->stat_lock); 958 959 if (sctx->is_dev_replace) 960 scrub_write_block_to_dev_replace(sblock_bad); 961 goto out; 962 } 963 964 if (!sblock_bad->no_io_error_seen) { 965 spin_lock(&sctx->stat_lock); 966 sctx->stat.read_errors++; 967 spin_unlock(&sctx->stat_lock); 968 if (__ratelimit(&rs)) 969 scrub_print_warning("i/o error", sblock_to_check); 970 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 971 } else if (sblock_bad->checksum_error) { 972 spin_lock(&sctx->stat_lock); 973 sctx->stat.csum_errors++; 974 spin_unlock(&sctx->stat_lock); 975 if (__ratelimit(&rs)) 976 scrub_print_warning("checksum error", sblock_to_check); 977 btrfs_dev_stat_inc_and_print(dev, 978 BTRFS_DEV_STAT_CORRUPTION_ERRS); 979 } else if (sblock_bad->header_error) { 980 spin_lock(&sctx->stat_lock); 981 sctx->stat.verify_errors++; 982 spin_unlock(&sctx->stat_lock); 983 if (__ratelimit(&rs)) 984 scrub_print_warning("checksum/header error", 985 sblock_to_check); 986 if (sblock_bad->generation_error) 987 btrfs_dev_stat_inc_and_print(dev, 988 BTRFS_DEV_STAT_GENERATION_ERRS); 989 else 990 btrfs_dev_stat_inc_and_print(dev, 991 BTRFS_DEV_STAT_CORRUPTION_ERRS); 992 } 993 994 if (sctx->readonly) { 995 ASSERT(!sctx->is_dev_replace); 996 goto out; 997 } 998 999 /* 1000 * now build and submit the bios for the other mirrors, check 1001 * checksums. 1002 * First try to pick the mirror which is completely without I/O 1003 * errors and also does not have a checksum error. 1004 * If one is found, and if a checksum is present, the full block 1005 * that is known to contain an error is rewritten. Afterwards 1006 * the block is known to be corrected. 1007 * If a mirror is found which is completely correct, and no 1008 * checksum is present, only those pages are rewritten that had 1009 * an I/O error in the block to be repaired, since it cannot be 1010 * determined, which copy of the other pages is better (and it 1011 * could happen otherwise that a correct page would be 1012 * overwritten by a bad one). 1013 */ 1014 for (mirror_index = 0; ;mirror_index++) { 1015 struct scrub_block *sblock_other; 1016 1017 if (mirror_index == failed_mirror_index) 1018 continue; 1019 1020 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1021 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1022 if (mirror_index >= BTRFS_MAX_MIRRORS) 1023 break; 1024 if (!sblocks_for_recheck[mirror_index].page_count) 1025 break; 1026 1027 sblock_other = sblocks_for_recheck + mirror_index; 1028 } else { 1029 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1030 int max_allowed = r->bbio->num_stripes - 1031 r->bbio->num_tgtdevs; 1032 1033 if (mirror_index >= max_allowed) 1034 break; 1035 if (!sblocks_for_recheck[1].page_count) 1036 break; 1037 1038 ASSERT(failed_mirror_index == 0); 1039 sblock_other = sblocks_for_recheck + 1; 1040 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1041 } 1042 1043 /* build and submit the bios, check checksums */ 1044 scrub_recheck_block(fs_info, sblock_other, 0); 1045 1046 if (!sblock_other->header_error && 1047 !sblock_other->checksum_error && 1048 sblock_other->no_io_error_seen) { 1049 if (sctx->is_dev_replace) { 1050 scrub_write_block_to_dev_replace(sblock_other); 1051 goto corrected_error; 1052 } else { 1053 ret = scrub_repair_block_from_good_copy( 1054 sblock_bad, sblock_other); 1055 if (!ret) 1056 goto corrected_error; 1057 } 1058 } 1059 } 1060 1061 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1062 goto did_not_correct_error; 1063 1064 /* 1065 * In case of I/O errors in the area that is supposed to be 1066 * repaired, continue by picking good copies of those sectors. 1067 * Select the good sectors from mirrors to rewrite bad sectors from 1068 * the area to fix. Afterwards verify the checksum of the block 1069 * that is supposed to be repaired. This verification step is 1070 * only done for the purpose of statistic counting and for the 1071 * final scrub report, whether errors remain. 1072 * A perfect algorithm could make use of the checksum and try 1073 * all possible combinations of sectors from the different mirrors 1074 * until the checksum verification succeeds. For example, when 1075 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector 1076 * of mirror #2 is readable but the final checksum test fails, 1077 * then the 2nd sector of mirror #3 could be tried, whether now 1078 * the final checksum succeeds. But this would be a rare 1079 * exception and is therefore not implemented. At least it is 1080 * avoided that the good copy is overwritten. 1081 * A more useful improvement would be to pick the sectors 1082 * without I/O error based on sector sizes (512 bytes on legacy 1083 * disks) instead of on sectorsize. Then maybe 512 byte of one 1084 * mirror could be repaired by taking 512 byte of a different 1085 * mirror, even if other 512 byte sectors in the same sectorsize 1086 * area are unreadable. 1087 */ 1088 success = 1; 1089 for (page_num = 0; page_num < sblock_bad->page_count; 1090 page_num++) { 1091 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1092 struct scrub_block *sblock_other = NULL; 1093 1094 /* skip no-io-error page in scrub */ 1095 if (!spage_bad->io_error && !sctx->is_dev_replace) 1096 continue; 1097 1098 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1099 /* 1100 * In case of dev replace, if raid56 rebuild process 1101 * didn't work out correct data, then copy the content 1102 * in sblock_bad to make sure target device is identical 1103 * to source device, instead of writing garbage data in 1104 * sblock_for_recheck array to target device. 1105 */ 1106 sblock_other = NULL; 1107 } else if (spage_bad->io_error) { 1108 /* try to find no-io-error page in mirrors */ 1109 for (mirror_index = 0; 1110 mirror_index < BTRFS_MAX_MIRRORS && 1111 sblocks_for_recheck[mirror_index].page_count > 0; 1112 mirror_index++) { 1113 if (!sblocks_for_recheck[mirror_index]. 1114 pagev[page_num]->io_error) { 1115 sblock_other = sblocks_for_recheck + 1116 mirror_index; 1117 break; 1118 } 1119 } 1120 if (!sblock_other) 1121 success = 0; 1122 } 1123 1124 if (sctx->is_dev_replace) { 1125 /* 1126 * did not find a mirror to fetch the page 1127 * from. scrub_write_page_to_dev_replace() 1128 * handles this case (page->io_error), by 1129 * filling the block with zeros before 1130 * submitting the write request 1131 */ 1132 if (!sblock_other) 1133 sblock_other = sblock_bad; 1134 1135 if (scrub_write_page_to_dev_replace(sblock_other, 1136 page_num) != 0) { 1137 atomic64_inc( 1138 &fs_info->dev_replace.num_write_errors); 1139 success = 0; 1140 } 1141 } else if (sblock_other) { 1142 ret = scrub_repair_page_from_good_copy(sblock_bad, 1143 sblock_other, 1144 page_num, 0); 1145 if (0 == ret) 1146 spage_bad->io_error = 0; 1147 else 1148 success = 0; 1149 } 1150 } 1151 1152 if (success && !sctx->is_dev_replace) { 1153 if (is_metadata || have_csum) { 1154 /* 1155 * need to verify the checksum now that all 1156 * sectors on disk are repaired (the write 1157 * request for data to be repaired is on its way). 1158 * Just be lazy and use scrub_recheck_block() 1159 * which re-reads the data before the checksum 1160 * is verified, but most likely the data comes out 1161 * of the page cache. 1162 */ 1163 scrub_recheck_block(fs_info, sblock_bad, 1); 1164 if (!sblock_bad->header_error && 1165 !sblock_bad->checksum_error && 1166 sblock_bad->no_io_error_seen) 1167 goto corrected_error; 1168 else 1169 goto did_not_correct_error; 1170 } else { 1171 corrected_error: 1172 spin_lock(&sctx->stat_lock); 1173 sctx->stat.corrected_errors++; 1174 sblock_to_check->data_corrected = 1; 1175 spin_unlock(&sctx->stat_lock); 1176 btrfs_err_rl_in_rcu(fs_info, 1177 "fixed up error at logical %llu on dev %s", 1178 logical, rcu_str_deref(dev->name)); 1179 } 1180 } else { 1181 did_not_correct_error: 1182 spin_lock(&sctx->stat_lock); 1183 sctx->stat.uncorrectable_errors++; 1184 spin_unlock(&sctx->stat_lock); 1185 btrfs_err_rl_in_rcu(fs_info, 1186 "unable to fixup (regular) error at logical %llu on dev %s", 1187 logical, rcu_str_deref(dev->name)); 1188 } 1189 1190 out: 1191 if (sblocks_for_recheck) { 1192 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1193 mirror_index++) { 1194 struct scrub_block *sblock = sblocks_for_recheck + 1195 mirror_index; 1196 struct scrub_recover *recover; 1197 int page_index; 1198 1199 for (page_index = 0; page_index < sblock->page_count; 1200 page_index++) { 1201 sblock->pagev[page_index]->sblock = NULL; 1202 recover = sblock->pagev[page_index]->recover; 1203 if (recover) { 1204 scrub_put_recover(fs_info, recover); 1205 sblock->pagev[page_index]->recover = 1206 NULL; 1207 } 1208 scrub_page_put(sblock->pagev[page_index]); 1209 } 1210 } 1211 kfree(sblocks_for_recheck); 1212 } 1213 1214 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1215 memalloc_nofs_restore(nofs_flag); 1216 if (ret < 0) 1217 return ret; 1218 return 0; 1219 } 1220 1221 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1222 { 1223 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1224 return 2; 1225 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1226 return 3; 1227 else 1228 return (int)bbio->num_stripes; 1229 } 1230 1231 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1232 u64 *raid_map, 1233 u64 mapped_length, 1234 int nstripes, int mirror, 1235 int *stripe_index, 1236 u64 *stripe_offset) 1237 { 1238 int i; 1239 1240 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1241 /* RAID5/6 */ 1242 for (i = 0; i < nstripes; i++) { 1243 if (raid_map[i] == RAID6_Q_STRIPE || 1244 raid_map[i] == RAID5_P_STRIPE) 1245 continue; 1246 1247 if (logical >= raid_map[i] && 1248 logical < raid_map[i] + mapped_length) 1249 break; 1250 } 1251 1252 *stripe_index = i; 1253 *stripe_offset = logical - raid_map[i]; 1254 } else { 1255 /* The other RAID type */ 1256 *stripe_index = mirror; 1257 *stripe_offset = 0; 1258 } 1259 } 1260 1261 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1262 struct scrub_block *sblocks_for_recheck) 1263 { 1264 struct scrub_ctx *sctx = original_sblock->sctx; 1265 struct btrfs_fs_info *fs_info = sctx->fs_info; 1266 u64 length = original_sblock->page_count * fs_info->sectorsize; 1267 u64 logical = original_sblock->pagev[0]->logical; 1268 u64 generation = original_sblock->pagev[0]->generation; 1269 u64 flags = original_sblock->pagev[0]->flags; 1270 u64 have_csum = original_sblock->pagev[0]->have_csum; 1271 struct scrub_recover *recover; 1272 struct btrfs_bio *bbio; 1273 u64 sublen; 1274 u64 mapped_length; 1275 u64 stripe_offset; 1276 int stripe_index; 1277 int page_index = 0; 1278 int mirror_index; 1279 int nmirrors; 1280 int ret; 1281 1282 /* 1283 * note: the two members refs and outstanding_pages 1284 * are not used (and not set) in the blocks that are used for 1285 * the recheck procedure 1286 */ 1287 1288 while (length > 0) { 1289 sublen = min_t(u64, length, fs_info->sectorsize); 1290 mapped_length = sublen; 1291 bbio = NULL; 1292 1293 /* 1294 * With a length of sectorsize, each returned stripe represents 1295 * one mirror 1296 */ 1297 btrfs_bio_counter_inc_blocked(fs_info); 1298 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1299 logical, &mapped_length, &bbio); 1300 if (ret || !bbio || mapped_length < sublen) { 1301 btrfs_put_bbio(bbio); 1302 btrfs_bio_counter_dec(fs_info); 1303 return -EIO; 1304 } 1305 1306 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1307 if (!recover) { 1308 btrfs_put_bbio(bbio); 1309 btrfs_bio_counter_dec(fs_info); 1310 return -ENOMEM; 1311 } 1312 1313 refcount_set(&recover->refs, 1); 1314 recover->bbio = bbio; 1315 recover->map_length = mapped_length; 1316 1317 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1318 1319 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1320 1321 for (mirror_index = 0; mirror_index < nmirrors; 1322 mirror_index++) { 1323 struct scrub_block *sblock; 1324 struct scrub_page *spage; 1325 1326 sblock = sblocks_for_recheck + mirror_index; 1327 sblock->sctx = sctx; 1328 1329 spage = kzalloc(sizeof(*spage), GFP_NOFS); 1330 if (!spage) { 1331 leave_nomem: 1332 spin_lock(&sctx->stat_lock); 1333 sctx->stat.malloc_errors++; 1334 spin_unlock(&sctx->stat_lock); 1335 scrub_put_recover(fs_info, recover); 1336 return -ENOMEM; 1337 } 1338 scrub_page_get(spage); 1339 sblock->pagev[page_index] = spage; 1340 spage->sblock = sblock; 1341 spage->flags = flags; 1342 spage->generation = generation; 1343 spage->logical = logical; 1344 spage->have_csum = have_csum; 1345 if (have_csum) 1346 memcpy(spage->csum, 1347 original_sblock->pagev[0]->csum, 1348 sctx->fs_info->csum_size); 1349 1350 scrub_stripe_index_and_offset(logical, 1351 bbio->map_type, 1352 bbio->raid_map, 1353 mapped_length, 1354 bbio->num_stripes - 1355 bbio->num_tgtdevs, 1356 mirror_index, 1357 &stripe_index, 1358 &stripe_offset); 1359 spage->physical = bbio->stripes[stripe_index].physical + 1360 stripe_offset; 1361 spage->dev = bbio->stripes[stripe_index].dev; 1362 1363 BUG_ON(page_index >= original_sblock->page_count); 1364 spage->physical_for_dev_replace = 1365 original_sblock->pagev[page_index]-> 1366 physical_for_dev_replace; 1367 /* for missing devices, dev->bdev is NULL */ 1368 spage->mirror_num = mirror_index + 1; 1369 sblock->page_count++; 1370 spage->page = alloc_page(GFP_NOFS); 1371 if (!spage->page) 1372 goto leave_nomem; 1373 1374 scrub_get_recover(recover); 1375 spage->recover = recover; 1376 } 1377 scrub_put_recover(fs_info, recover); 1378 length -= sublen; 1379 logical += sublen; 1380 page_index++; 1381 } 1382 1383 return 0; 1384 } 1385 1386 static void scrub_bio_wait_endio(struct bio *bio) 1387 { 1388 complete(bio->bi_private); 1389 } 1390 1391 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1392 struct bio *bio, 1393 struct scrub_page *spage) 1394 { 1395 DECLARE_COMPLETION_ONSTACK(done); 1396 int ret; 1397 int mirror_num; 1398 1399 bio->bi_iter.bi_sector = spage->logical >> 9; 1400 bio->bi_private = &done; 1401 bio->bi_end_io = scrub_bio_wait_endio; 1402 1403 mirror_num = spage->sblock->pagev[0]->mirror_num; 1404 ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio, 1405 spage->recover->map_length, 1406 mirror_num, 0); 1407 if (ret) 1408 return ret; 1409 1410 wait_for_completion_io(&done); 1411 return blk_status_to_errno(bio->bi_status); 1412 } 1413 1414 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1415 struct scrub_block *sblock) 1416 { 1417 struct scrub_page *first_page = sblock->pagev[0]; 1418 struct bio *bio; 1419 int page_num; 1420 1421 /* All pages in sblock belong to the same stripe on the same device. */ 1422 ASSERT(first_page->dev); 1423 if (!first_page->dev->bdev) 1424 goto out; 1425 1426 bio = btrfs_io_bio_alloc(BIO_MAX_VECS); 1427 bio_set_dev(bio, first_page->dev->bdev); 1428 1429 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1430 struct scrub_page *spage = sblock->pagev[page_num]; 1431 1432 WARN_ON(!spage->page); 1433 bio_add_page(bio, spage->page, PAGE_SIZE, 0); 1434 } 1435 1436 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1437 bio_put(bio); 1438 goto out; 1439 } 1440 1441 bio_put(bio); 1442 1443 scrub_recheck_block_checksum(sblock); 1444 1445 return; 1446 out: 1447 for (page_num = 0; page_num < sblock->page_count; page_num++) 1448 sblock->pagev[page_num]->io_error = 1; 1449 1450 sblock->no_io_error_seen = 0; 1451 } 1452 1453 /* 1454 * this function will check the on disk data for checksum errors, header 1455 * errors and read I/O errors. If any I/O errors happen, the exact pages 1456 * which are errored are marked as being bad. The goal is to enable scrub 1457 * to take those pages that are not errored from all the mirrors so that 1458 * the pages that are errored in the just handled mirror can be repaired. 1459 */ 1460 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1461 struct scrub_block *sblock, 1462 int retry_failed_mirror) 1463 { 1464 int page_num; 1465 1466 sblock->no_io_error_seen = 1; 1467 1468 /* short cut for raid56 */ 1469 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1470 return scrub_recheck_block_on_raid56(fs_info, sblock); 1471 1472 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1473 struct bio *bio; 1474 struct scrub_page *spage = sblock->pagev[page_num]; 1475 1476 if (spage->dev->bdev == NULL) { 1477 spage->io_error = 1; 1478 sblock->no_io_error_seen = 0; 1479 continue; 1480 } 1481 1482 WARN_ON(!spage->page); 1483 bio = btrfs_io_bio_alloc(1); 1484 bio_set_dev(bio, spage->dev->bdev); 1485 1486 bio_add_page(bio, spage->page, fs_info->sectorsize, 0); 1487 bio->bi_iter.bi_sector = spage->physical >> 9; 1488 bio->bi_opf = REQ_OP_READ; 1489 1490 if (btrfsic_submit_bio_wait(bio)) { 1491 spage->io_error = 1; 1492 sblock->no_io_error_seen = 0; 1493 } 1494 1495 bio_put(bio); 1496 } 1497 1498 if (sblock->no_io_error_seen) 1499 scrub_recheck_block_checksum(sblock); 1500 } 1501 1502 static inline int scrub_check_fsid(u8 fsid[], 1503 struct scrub_page *spage) 1504 { 1505 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1506 int ret; 1507 1508 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1509 return !ret; 1510 } 1511 1512 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1513 { 1514 sblock->header_error = 0; 1515 sblock->checksum_error = 0; 1516 sblock->generation_error = 0; 1517 1518 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1519 scrub_checksum_data(sblock); 1520 else 1521 scrub_checksum_tree_block(sblock); 1522 } 1523 1524 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1525 struct scrub_block *sblock_good) 1526 { 1527 int page_num; 1528 int ret = 0; 1529 1530 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1531 int ret_sub; 1532 1533 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1534 sblock_good, 1535 page_num, 1); 1536 if (ret_sub) 1537 ret = ret_sub; 1538 } 1539 1540 return ret; 1541 } 1542 1543 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1544 struct scrub_block *sblock_good, 1545 int page_num, int force_write) 1546 { 1547 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1548 struct scrub_page *spage_good = sblock_good->pagev[page_num]; 1549 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1550 const u32 sectorsize = fs_info->sectorsize; 1551 1552 BUG_ON(spage_bad->page == NULL); 1553 BUG_ON(spage_good->page == NULL); 1554 if (force_write || sblock_bad->header_error || 1555 sblock_bad->checksum_error || spage_bad->io_error) { 1556 struct bio *bio; 1557 int ret; 1558 1559 if (!spage_bad->dev->bdev) { 1560 btrfs_warn_rl(fs_info, 1561 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1562 return -EIO; 1563 } 1564 1565 bio = btrfs_io_bio_alloc(1); 1566 bio_set_dev(bio, spage_bad->dev->bdev); 1567 bio->bi_iter.bi_sector = spage_bad->physical >> 9; 1568 bio->bi_opf = REQ_OP_WRITE; 1569 1570 ret = bio_add_page(bio, spage_good->page, sectorsize, 0); 1571 if (ret != sectorsize) { 1572 bio_put(bio); 1573 return -EIO; 1574 } 1575 1576 if (btrfsic_submit_bio_wait(bio)) { 1577 btrfs_dev_stat_inc_and_print(spage_bad->dev, 1578 BTRFS_DEV_STAT_WRITE_ERRS); 1579 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1580 bio_put(bio); 1581 return -EIO; 1582 } 1583 bio_put(bio); 1584 } 1585 1586 return 0; 1587 } 1588 1589 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1590 { 1591 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1592 int page_num; 1593 1594 /* 1595 * This block is used for the check of the parity on the source device, 1596 * so the data needn't be written into the destination device. 1597 */ 1598 if (sblock->sparity) 1599 return; 1600 1601 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1602 int ret; 1603 1604 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1605 if (ret) 1606 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1607 } 1608 } 1609 1610 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1611 int page_num) 1612 { 1613 struct scrub_page *spage = sblock->pagev[page_num]; 1614 1615 BUG_ON(spage->page == NULL); 1616 if (spage->io_error) 1617 clear_page(page_address(spage->page)); 1618 1619 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1620 } 1621 1622 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 1623 { 1624 int ret = 0; 1625 u64 length; 1626 1627 if (!btrfs_is_zoned(sctx->fs_info)) 1628 return 0; 1629 1630 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 1631 return 0; 1632 1633 if (sctx->write_pointer < physical) { 1634 length = physical - sctx->write_pointer; 1635 1636 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 1637 sctx->write_pointer, length); 1638 if (!ret) 1639 sctx->write_pointer = physical; 1640 } 1641 return ret; 1642 } 1643 1644 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1645 struct scrub_page *spage) 1646 { 1647 struct scrub_bio *sbio; 1648 int ret; 1649 const u32 sectorsize = sctx->fs_info->sectorsize; 1650 1651 mutex_lock(&sctx->wr_lock); 1652 again: 1653 if (!sctx->wr_curr_bio) { 1654 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1655 GFP_KERNEL); 1656 if (!sctx->wr_curr_bio) { 1657 mutex_unlock(&sctx->wr_lock); 1658 return -ENOMEM; 1659 } 1660 sctx->wr_curr_bio->sctx = sctx; 1661 sctx->wr_curr_bio->page_count = 0; 1662 } 1663 sbio = sctx->wr_curr_bio; 1664 if (sbio->page_count == 0) { 1665 struct bio *bio; 1666 1667 ret = fill_writer_pointer_gap(sctx, 1668 spage->physical_for_dev_replace); 1669 if (ret) { 1670 mutex_unlock(&sctx->wr_lock); 1671 return ret; 1672 } 1673 1674 sbio->physical = spage->physical_for_dev_replace; 1675 sbio->logical = spage->logical; 1676 sbio->dev = sctx->wr_tgtdev; 1677 bio = sbio->bio; 1678 if (!bio) { 1679 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1680 sbio->bio = bio; 1681 } 1682 1683 bio->bi_private = sbio; 1684 bio->bi_end_io = scrub_wr_bio_end_io; 1685 bio_set_dev(bio, sbio->dev->bdev); 1686 bio->bi_iter.bi_sector = sbio->physical >> 9; 1687 bio->bi_opf = REQ_OP_WRITE; 1688 sbio->status = 0; 1689 } else if (sbio->physical + sbio->page_count * sectorsize != 1690 spage->physical_for_dev_replace || 1691 sbio->logical + sbio->page_count * sectorsize != 1692 spage->logical) { 1693 scrub_wr_submit(sctx); 1694 goto again; 1695 } 1696 1697 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0); 1698 if (ret != sectorsize) { 1699 if (sbio->page_count < 1) { 1700 bio_put(sbio->bio); 1701 sbio->bio = NULL; 1702 mutex_unlock(&sctx->wr_lock); 1703 return -EIO; 1704 } 1705 scrub_wr_submit(sctx); 1706 goto again; 1707 } 1708 1709 sbio->pagev[sbio->page_count] = spage; 1710 scrub_page_get(spage); 1711 sbio->page_count++; 1712 if (sbio->page_count == sctx->pages_per_wr_bio) 1713 scrub_wr_submit(sctx); 1714 mutex_unlock(&sctx->wr_lock); 1715 1716 return 0; 1717 } 1718 1719 static void scrub_wr_submit(struct scrub_ctx *sctx) 1720 { 1721 struct scrub_bio *sbio; 1722 1723 if (!sctx->wr_curr_bio) 1724 return; 1725 1726 sbio = sctx->wr_curr_bio; 1727 sctx->wr_curr_bio = NULL; 1728 WARN_ON(!sbio->bio->bi_bdev); 1729 scrub_pending_bio_inc(sctx); 1730 /* process all writes in a single worker thread. Then the block layer 1731 * orders the requests before sending them to the driver which 1732 * doubled the write performance on spinning disks when measured 1733 * with Linux 3.5 */ 1734 btrfsic_submit_bio(sbio->bio); 1735 1736 if (btrfs_is_zoned(sctx->fs_info)) 1737 sctx->write_pointer = sbio->physical + sbio->page_count * 1738 sctx->fs_info->sectorsize; 1739 } 1740 1741 static void scrub_wr_bio_end_io(struct bio *bio) 1742 { 1743 struct scrub_bio *sbio = bio->bi_private; 1744 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1745 1746 sbio->status = bio->bi_status; 1747 sbio->bio = bio; 1748 1749 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); 1750 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1751 } 1752 1753 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1754 { 1755 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1756 struct scrub_ctx *sctx = sbio->sctx; 1757 int i; 1758 1759 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1760 if (sbio->status) { 1761 struct btrfs_dev_replace *dev_replace = 1762 &sbio->sctx->fs_info->dev_replace; 1763 1764 for (i = 0; i < sbio->page_count; i++) { 1765 struct scrub_page *spage = sbio->pagev[i]; 1766 1767 spage->io_error = 1; 1768 atomic64_inc(&dev_replace->num_write_errors); 1769 } 1770 } 1771 1772 for (i = 0; i < sbio->page_count; i++) 1773 scrub_page_put(sbio->pagev[i]); 1774 1775 bio_put(sbio->bio); 1776 kfree(sbio); 1777 scrub_pending_bio_dec(sctx); 1778 } 1779 1780 static int scrub_checksum(struct scrub_block *sblock) 1781 { 1782 u64 flags; 1783 int ret; 1784 1785 /* 1786 * No need to initialize these stats currently, 1787 * because this function only use return value 1788 * instead of these stats value. 1789 * 1790 * Todo: 1791 * always use stats 1792 */ 1793 sblock->header_error = 0; 1794 sblock->generation_error = 0; 1795 sblock->checksum_error = 0; 1796 1797 WARN_ON(sblock->page_count < 1); 1798 flags = sblock->pagev[0]->flags; 1799 ret = 0; 1800 if (flags & BTRFS_EXTENT_FLAG_DATA) 1801 ret = scrub_checksum_data(sblock); 1802 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1803 ret = scrub_checksum_tree_block(sblock); 1804 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1805 (void)scrub_checksum_super(sblock); 1806 else 1807 WARN_ON(1); 1808 if (ret) 1809 scrub_handle_errored_block(sblock); 1810 1811 return ret; 1812 } 1813 1814 static int scrub_checksum_data(struct scrub_block *sblock) 1815 { 1816 struct scrub_ctx *sctx = sblock->sctx; 1817 struct btrfs_fs_info *fs_info = sctx->fs_info; 1818 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1819 u8 csum[BTRFS_CSUM_SIZE]; 1820 struct scrub_page *spage; 1821 char *kaddr; 1822 1823 BUG_ON(sblock->page_count < 1); 1824 spage = sblock->pagev[0]; 1825 if (!spage->have_csum) 1826 return 0; 1827 1828 kaddr = page_address(spage->page); 1829 1830 shash->tfm = fs_info->csum_shash; 1831 crypto_shash_init(shash); 1832 1833 /* 1834 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage 1835 * only contains one sector of data. 1836 */ 1837 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 1838 1839 if (memcmp(csum, spage->csum, fs_info->csum_size)) 1840 sblock->checksum_error = 1; 1841 return sblock->checksum_error; 1842 } 1843 1844 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1845 { 1846 struct scrub_ctx *sctx = sblock->sctx; 1847 struct btrfs_header *h; 1848 struct btrfs_fs_info *fs_info = sctx->fs_info; 1849 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1850 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1851 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1852 /* 1853 * This is done in sectorsize steps even for metadata as there's a 1854 * constraint for nodesize to be aligned to sectorsize. This will need 1855 * to change so we don't misuse data and metadata units like that. 1856 */ 1857 const u32 sectorsize = sctx->fs_info->sectorsize; 1858 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; 1859 int i; 1860 struct scrub_page *spage; 1861 char *kaddr; 1862 1863 BUG_ON(sblock->page_count < 1); 1864 1865 /* Each member in pagev is just one block, not a full page */ 1866 ASSERT(sblock->page_count == num_sectors); 1867 1868 spage = sblock->pagev[0]; 1869 kaddr = page_address(spage->page); 1870 h = (struct btrfs_header *)kaddr; 1871 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); 1872 1873 /* 1874 * we don't use the getter functions here, as we 1875 * a) don't have an extent buffer and 1876 * b) the page is already kmapped 1877 */ 1878 if (spage->logical != btrfs_stack_header_bytenr(h)) 1879 sblock->header_error = 1; 1880 1881 if (spage->generation != btrfs_stack_header_generation(h)) { 1882 sblock->header_error = 1; 1883 sblock->generation_error = 1; 1884 } 1885 1886 if (!scrub_check_fsid(h->fsid, spage)) 1887 sblock->header_error = 1; 1888 1889 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1890 BTRFS_UUID_SIZE)) 1891 sblock->header_error = 1; 1892 1893 shash->tfm = fs_info->csum_shash; 1894 crypto_shash_init(shash); 1895 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 1896 sectorsize - BTRFS_CSUM_SIZE); 1897 1898 for (i = 1; i < num_sectors; i++) { 1899 kaddr = page_address(sblock->pagev[i]->page); 1900 crypto_shash_update(shash, kaddr, sectorsize); 1901 } 1902 1903 crypto_shash_final(shash, calculated_csum); 1904 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) 1905 sblock->checksum_error = 1; 1906 1907 return sblock->header_error || sblock->checksum_error; 1908 } 1909 1910 static int scrub_checksum_super(struct scrub_block *sblock) 1911 { 1912 struct btrfs_super_block *s; 1913 struct scrub_ctx *sctx = sblock->sctx; 1914 struct btrfs_fs_info *fs_info = sctx->fs_info; 1915 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1916 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1917 struct scrub_page *spage; 1918 char *kaddr; 1919 int fail_gen = 0; 1920 int fail_cor = 0; 1921 1922 BUG_ON(sblock->page_count < 1); 1923 spage = sblock->pagev[0]; 1924 kaddr = page_address(spage->page); 1925 s = (struct btrfs_super_block *)kaddr; 1926 1927 if (spage->logical != btrfs_super_bytenr(s)) 1928 ++fail_cor; 1929 1930 if (spage->generation != btrfs_super_generation(s)) 1931 ++fail_gen; 1932 1933 if (!scrub_check_fsid(s->fsid, spage)) 1934 ++fail_cor; 1935 1936 shash->tfm = fs_info->csum_shash; 1937 crypto_shash_init(shash); 1938 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 1939 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 1940 1941 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) 1942 ++fail_cor; 1943 1944 if (fail_cor + fail_gen) { 1945 /* 1946 * if we find an error in a super block, we just report it. 1947 * They will get written with the next transaction commit 1948 * anyway 1949 */ 1950 spin_lock(&sctx->stat_lock); 1951 ++sctx->stat.super_errors; 1952 spin_unlock(&sctx->stat_lock); 1953 if (fail_cor) 1954 btrfs_dev_stat_inc_and_print(spage->dev, 1955 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1956 else 1957 btrfs_dev_stat_inc_and_print(spage->dev, 1958 BTRFS_DEV_STAT_GENERATION_ERRS); 1959 } 1960 1961 return fail_cor + fail_gen; 1962 } 1963 1964 static void scrub_block_get(struct scrub_block *sblock) 1965 { 1966 refcount_inc(&sblock->refs); 1967 } 1968 1969 static void scrub_block_put(struct scrub_block *sblock) 1970 { 1971 if (refcount_dec_and_test(&sblock->refs)) { 1972 int i; 1973 1974 if (sblock->sparity) 1975 scrub_parity_put(sblock->sparity); 1976 1977 for (i = 0; i < sblock->page_count; i++) 1978 scrub_page_put(sblock->pagev[i]); 1979 kfree(sblock); 1980 } 1981 } 1982 1983 static void scrub_page_get(struct scrub_page *spage) 1984 { 1985 atomic_inc(&spage->refs); 1986 } 1987 1988 static void scrub_page_put(struct scrub_page *spage) 1989 { 1990 if (atomic_dec_and_test(&spage->refs)) { 1991 if (spage->page) 1992 __free_page(spage->page); 1993 kfree(spage); 1994 } 1995 } 1996 1997 /* 1998 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1999 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 2000 */ 2001 static void scrub_throttle(struct scrub_ctx *sctx) 2002 { 2003 const int time_slice = 1000; 2004 struct scrub_bio *sbio; 2005 struct btrfs_device *device; 2006 s64 delta; 2007 ktime_t now; 2008 u32 div; 2009 u64 bwlimit; 2010 2011 sbio = sctx->bios[sctx->curr]; 2012 device = sbio->dev; 2013 bwlimit = READ_ONCE(device->scrub_speed_max); 2014 if (bwlimit == 0) 2015 return; 2016 2017 /* 2018 * Slice is divided into intervals when the IO is submitted, adjust by 2019 * bwlimit and maximum of 64 intervals. 2020 */ 2021 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 2022 div = min_t(u32, 64, div); 2023 2024 /* Start new epoch, set deadline */ 2025 now = ktime_get(); 2026 if (sctx->throttle_deadline == 0) { 2027 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 2028 sctx->throttle_sent = 0; 2029 } 2030 2031 /* Still in the time to send? */ 2032 if (ktime_before(now, sctx->throttle_deadline)) { 2033 /* If current bio is within the limit, send it */ 2034 sctx->throttle_sent += sbio->bio->bi_iter.bi_size; 2035 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 2036 return; 2037 2038 /* We're over the limit, sleep until the rest of the slice */ 2039 delta = ktime_ms_delta(sctx->throttle_deadline, now); 2040 } else { 2041 /* New request after deadline, start new epoch */ 2042 delta = 0; 2043 } 2044 2045 if (delta) { 2046 long timeout; 2047 2048 timeout = div_u64(delta * HZ, 1000); 2049 schedule_timeout_interruptible(timeout); 2050 } 2051 2052 /* Next call will start the deadline period */ 2053 sctx->throttle_deadline = 0; 2054 } 2055 2056 static void scrub_submit(struct scrub_ctx *sctx) 2057 { 2058 struct scrub_bio *sbio; 2059 2060 if (sctx->curr == -1) 2061 return; 2062 2063 scrub_throttle(sctx); 2064 2065 sbio = sctx->bios[sctx->curr]; 2066 sctx->curr = -1; 2067 scrub_pending_bio_inc(sctx); 2068 btrfsic_submit_bio(sbio->bio); 2069 } 2070 2071 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2072 struct scrub_page *spage) 2073 { 2074 struct scrub_block *sblock = spage->sblock; 2075 struct scrub_bio *sbio; 2076 const u32 sectorsize = sctx->fs_info->sectorsize; 2077 int ret; 2078 2079 again: 2080 /* 2081 * grab a fresh bio or wait for one to become available 2082 */ 2083 while (sctx->curr == -1) { 2084 spin_lock(&sctx->list_lock); 2085 sctx->curr = sctx->first_free; 2086 if (sctx->curr != -1) { 2087 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2088 sctx->bios[sctx->curr]->next_free = -1; 2089 sctx->bios[sctx->curr]->page_count = 0; 2090 spin_unlock(&sctx->list_lock); 2091 } else { 2092 spin_unlock(&sctx->list_lock); 2093 wait_event(sctx->list_wait, sctx->first_free != -1); 2094 } 2095 } 2096 sbio = sctx->bios[sctx->curr]; 2097 if (sbio->page_count == 0) { 2098 struct bio *bio; 2099 2100 sbio->physical = spage->physical; 2101 sbio->logical = spage->logical; 2102 sbio->dev = spage->dev; 2103 bio = sbio->bio; 2104 if (!bio) { 2105 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2106 sbio->bio = bio; 2107 } 2108 2109 bio->bi_private = sbio; 2110 bio->bi_end_io = scrub_bio_end_io; 2111 bio_set_dev(bio, sbio->dev->bdev); 2112 bio->bi_iter.bi_sector = sbio->physical >> 9; 2113 bio->bi_opf = REQ_OP_READ; 2114 sbio->status = 0; 2115 } else if (sbio->physical + sbio->page_count * sectorsize != 2116 spage->physical || 2117 sbio->logical + sbio->page_count * sectorsize != 2118 spage->logical || 2119 sbio->dev != spage->dev) { 2120 scrub_submit(sctx); 2121 goto again; 2122 } 2123 2124 sbio->pagev[sbio->page_count] = spage; 2125 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0); 2126 if (ret != sectorsize) { 2127 if (sbio->page_count < 1) { 2128 bio_put(sbio->bio); 2129 sbio->bio = NULL; 2130 return -EIO; 2131 } 2132 scrub_submit(sctx); 2133 goto again; 2134 } 2135 2136 scrub_block_get(sblock); /* one for the page added to the bio */ 2137 atomic_inc(&sblock->outstanding_pages); 2138 sbio->page_count++; 2139 if (sbio->page_count == sctx->pages_per_rd_bio) 2140 scrub_submit(sctx); 2141 2142 return 0; 2143 } 2144 2145 static void scrub_missing_raid56_end_io(struct bio *bio) 2146 { 2147 struct scrub_block *sblock = bio->bi_private; 2148 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2149 2150 if (bio->bi_status) 2151 sblock->no_io_error_seen = 0; 2152 2153 bio_put(bio); 2154 2155 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2156 } 2157 2158 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2159 { 2160 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2161 struct scrub_ctx *sctx = sblock->sctx; 2162 struct btrfs_fs_info *fs_info = sctx->fs_info; 2163 u64 logical; 2164 struct btrfs_device *dev; 2165 2166 logical = sblock->pagev[0]->logical; 2167 dev = sblock->pagev[0]->dev; 2168 2169 if (sblock->no_io_error_seen) 2170 scrub_recheck_block_checksum(sblock); 2171 2172 if (!sblock->no_io_error_seen) { 2173 spin_lock(&sctx->stat_lock); 2174 sctx->stat.read_errors++; 2175 spin_unlock(&sctx->stat_lock); 2176 btrfs_err_rl_in_rcu(fs_info, 2177 "IO error rebuilding logical %llu for dev %s", 2178 logical, rcu_str_deref(dev->name)); 2179 } else if (sblock->header_error || sblock->checksum_error) { 2180 spin_lock(&sctx->stat_lock); 2181 sctx->stat.uncorrectable_errors++; 2182 spin_unlock(&sctx->stat_lock); 2183 btrfs_err_rl_in_rcu(fs_info, 2184 "failed to rebuild valid logical %llu for dev %s", 2185 logical, rcu_str_deref(dev->name)); 2186 } else { 2187 scrub_write_block_to_dev_replace(sblock); 2188 } 2189 2190 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2191 mutex_lock(&sctx->wr_lock); 2192 scrub_wr_submit(sctx); 2193 mutex_unlock(&sctx->wr_lock); 2194 } 2195 2196 scrub_block_put(sblock); 2197 scrub_pending_bio_dec(sctx); 2198 } 2199 2200 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2201 { 2202 struct scrub_ctx *sctx = sblock->sctx; 2203 struct btrfs_fs_info *fs_info = sctx->fs_info; 2204 u64 length = sblock->page_count * PAGE_SIZE; 2205 u64 logical = sblock->pagev[0]->logical; 2206 struct btrfs_bio *bbio = NULL; 2207 struct bio *bio; 2208 struct btrfs_raid_bio *rbio; 2209 int ret; 2210 int i; 2211 2212 btrfs_bio_counter_inc_blocked(fs_info); 2213 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2214 &length, &bbio); 2215 if (ret || !bbio || !bbio->raid_map) 2216 goto bbio_out; 2217 2218 if (WARN_ON(!sctx->is_dev_replace || 2219 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2220 /* 2221 * We shouldn't be scrubbing a missing device. Even for dev 2222 * replace, we should only get here for RAID 5/6. We either 2223 * managed to mount something with no mirrors remaining or 2224 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2225 */ 2226 goto bbio_out; 2227 } 2228 2229 bio = btrfs_io_bio_alloc(0); 2230 bio->bi_iter.bi_sector = logical >> 9; 2231 bio->bi_private = sblock; 2232 bio->bi_end_io = scrub_missing_raid56_end_io; 2233 2234 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2235 if (!rbio) 2236 goto rbio_out; 2237 2238 for (i = 0; i < sblock->page_count; i++) { 2239 struct scrub_page *spage = sblock->pagev[i]; 2240 2241 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2242 } 2243 2244 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); 2245 scrub_block_get(sblock); 2246 scrub_pending_bio_inc(sctx); 2247 raid56_submit_missing_rbio(rbio); 2248 return; 2249 2250 rbio_out: 2251 bio_put(bio); 2252 bbio_out: 2253 btrfs_bio_counter_dec(fs_info); 2254 btrfs_put_bbio(bbio); 2255 spin_lock(&sctx->stat_lock); 2256 sctx->stat.malloc_errors++; 2257 spin_unlock(&sctx->stat_lock); 2258 } 2259 2260 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 2261 u64 physical, struct btrfs_device *dev, u64 flags, 2262 u64 gen, int mirror_num, u8 *csum, 2263 u64 physical_for_dev_replace) 2264 { 2265 struct scrub_block *sblock; 2266 const u32 sectorsize = sctx->fs_info->sectorsize; 2267 int index; 2268 2269 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2270 if (!sblock) { 2271 spin_lock(&sctx->stat_lock); 2272 sctx->stat.malloc_errors++; 2273 spin_unlock(&sctx->stat_lock); 2274 return -ENOMEM; 2275 } 2276 2277 /* one ref inside this function, plus one for each page added to 2278 * a bio later on */ 2279 refcount_set(&sblock->refs, 1); 2280 sblock->sctx = sctx; 2281 sblock->no_io_error_seen = 1; 2282 2283 for (index = 0; len > 0; index++) { 2284 struct scrub_page *spage; 2285 /* 2286 * Here we will allocate one page for one sector to scrub. 2287 * This is fine if PAGE_SIZE == sectorsize, but will cost 2288 * more memory for PAGE_SIZE > sectorsize case. 2289 */ 2290 u32 l = min(sectorsize, len); 2291 2292 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2293 if (!spage) { 2294 leave_nomem: 2295 spin_lock(&sctx->stat_lock); 2296 sctx->stat.malloc_errors++; 2297 spin_unlock(&sctx->stat_lock); 2298 scrub_block_put(sblock); 2299 return -ENOMEM; 2300 } 2301 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2302 scrub_page_get(spage); 2303 sblock->pagev[index] = spage; 2304 spage->sblock = sblock; 2305 spage->dev = dev; 2306 spage->flags = flags; 2307 spage->generation = gen; 2308 spage->logical = logical; 2309 spage->physical = physical; 2310 spage->physical_for_dev_replace = physical_for_dev_replace; 2311 spage->mirror_num = mirror_num; 2312 if (csum) { 2313 spage->have_csum = 1; 2314 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2315 } else { 2316 spage->have_csum = 0; 2317 } 2318 sblock->page_count++; 2319 spage->page = alloc_page(GFP_KERNEL); 2320 if (!spage->page) 2321 goto leave_nomem; 2322 len -= l; 2323 logical += l; 2324 physical += l; 2325 physical_for_dev_replace += l; 2326 } 2327 2328 WARN_ON(sblock->page_count == 0); 2329 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2330 /* 2331 * This case should only be hit for RAID 5/6 device replace. See 2332 * the comment in scrub_missing_raid56_pages() for details. 2333 */ 2334 scrub_missing_raid56_pages(sblock); 2335 } else { 2336 for (index = 0; index < sblock->page_count; index++) { 2337 struct scrub_page *spage = sblock->pagev[index]; 2338 int ret; 2339 2340 ret = scrub_add_page_to_rd_bio(sctx, spage); 2341 if (ret) { 2342 scrub_block_put(sblock); 2343 return ret; 2344 } 2345 } 2346 2347 if (flags & BTRFS_EXTENT_FLAG_SUPER) 2348 scrub_submit(sctx); 2349 } 2350 2351 /* last one frees, either here or in bio completion for last page */ 2352 scrub_block_put(sblock); 2353 return 0; 2354 } 2355 2356 static void scrub_bio_end_io(struct bio *bio) 2357 { 2358 struct scrub_bio *sbio = bio->bi_private; 2359 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2360 2361 sbio->status = bio->bi_status; 2362 sbio->bio = bio; 2363 2364 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2365 } 2366 2367 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2368 { 2369 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2370 struct scrub_ctx *sctx = sbio->sctx; 2371 int i; 2372 2373 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2374 if (sbio->status) { 2375 for (i = 0; i < sbio->page_count; i++) { 2376 struct scrub_page *spage = sbio->pagev[i]; 2377 2378 spage->io_error = 1; 2379 spage->sblock->no_io_error_seen = 0; 2380 } 2381 } 2382 2383 /* now complete the scrub_block items that have all pages completed */ 2384 for (i = 0; i < sbio->page_count; i++) { 2385 struct scrub_page *spage = sbio->pagev[i]; 2386 struct scrub_block *sblock = spage->sblock; 2387 2388 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2389 scrub_block_complete(sblock); 2390 scrub_block_put(sblock); 2391 } 2392 2393 bio_put(sbio->bio); 2394 sbio->bio = NULL; 2395 spin_lock(&sctx->list_lock); 2396 sbio->next_free = sctx->first_free; 2397 sctx->first_free = sbio->index; 2398 spin_unlock(&sctx->list_lock); 2399 2400 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2401 mutex_lock(&sctx->wr_lock); 2402 scrub_wr_submit(sctx); 2403 mutex_unlock(&sctx->wr_lock); 2404 } 2405 2406 scrub_pending_bio_dec(sctx); 2407 } 2408 2409 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2410 unsigned long *bitmap, 2411 u64 start, u32 len) 2412 { 2413 u64 offset; 2414 u32 nsectors; 2415 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; 2416 2417 if (len >= sparity->stripe_len) { 2418 bitmap_set(bitmap, 0, sparity->nsectors); 2419 return; 2420 } 2421 2422 start -= sparity->logic_start; 2423 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2424 offset = offset >> sectorsize_bits; 2425 nsectors = len >> sectorsize_bits; 2426 2427 if (offset + nsectors <= sparity->nsectors) { 2428 bitmap_set(bitmap, offset, nsectors); 2429 return; 2430 } 2431 2432 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2433 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2434 } 2435 2436 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2437 u64 start, u32 len) 2438 { 2439 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2440 } 2441 2442 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2443 u64 start, u32 len) 2444 { 2445 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2446 } 2447 2448 static void scrub_block_complete(struct scrub_block *sblock) 2449 { 2450 int corrupted = 0; 2451 2452 if (!sblock->no_io_error_seen) { 2453 corrupted = 1; 2454 scrub_handle_errored_block(sblock); 2455 } else { 2456 /* 2457 * if has checksum error, write via repair mechanism in 2458 * dev replace case, otherwise write here in dev replace 2459 * case. 2460 */ 2461 corrupted = scrub_checksum(sblock); 2462 if (!corrupted && sblock->sctx->is_dev_replace) 2463 scrub_write_block_to_dev_replace(sblock); 2464 } 2465 2466 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2467 u64 start = sblock->pagev[0]->logical; 2468 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2469 sblock->sctx->fs_info->sectorsize; 2470 2471 ASSERT(end - start <= U32_MAX); 2472 scrub_parity_mark_sectors_error(sblock->sparity, 2473 start, end - start); 2474 } 2475 } 2476 2477 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) 2478 { 2479 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; 2480 list_del(&sum->list); 2481 kfree(sum); 2482 } 2483 2484 /* 2485 * Find the desired csum for range [logical, logical + sectorsize), and store 2486 * the csum into @csum. 2487 * 2488 * The search source is sctx->csum_list, which is a pre-populated list 2489 * storing bytenr ordered csum ranges. We're responsible to cleanup any range 2490 * that is before @logical. 2491 * 2492 * Return 0 if there is no csum for the range. 2493 * Return 1 if there is csum for the range and copied to @csum. 2494 */ 2495 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2496 { 2497 bool found = false; 2498 2499 while (!list_empty(&sctx->csum_list)) { 2500 struct btrfs_ordered_sum *sum = NULL; 2501 unsigned long index; 2502 unsigned long num_sectors; 2503 2504 sum = list_first_entry(&sctx->csum_list, 2505 struct btrfs_ordered_sum, list); 2506 /* The current csum range is beyond our range, no csum found */ 2507 if (sum->bytenr > logical) 2508 break; 2509 2510 /* 2511 * The current sum is before our bytenr, since scrub is always 2512 * done in bytenr order, the csum will never be used anymore, 2513 * clean it up so that later calls won't bother with the range, 2514 * and continue search the next range. 2515 */ 2516 if (sum->bytenr + sum->len <= logical) { 2517 drop_csum_range(sctx, sum); 2518 continue; 2519 } 2520 2521 /* Now the csum range covers our bytenr, copy the csum */ 2522 found = true; 2523 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; 2524 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; 2525 2526 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, 2527 sctx->fs_info->csum_size); 2528 2529 /* Cleanup the range if we're at the end of the csum range */ 2530 if (index == num_sectors - 1) 2531 drop_csum_range(sctx, sum); 2532 break; 2533 } 2534 if (!found) 2535 return 0; 2536 return 1; 2537 } 2538 2539 /* scrub extent tries to collect up to 64 kB for each bio */ 2540 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2541 u64 logical, u32 len, 2542 u64 physical, struct btrfs_device *dev, u64 flags, 2543 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2544 { 2545 int ret; 2546 u8 csum[BTRFS_CSUM_SIZE]; 2547 u32 blocksize; 2548 2549 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2550 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2551 blocksize = map->stripe_len; 2552 else 2553 blocksize = sctx->fs_info->sectorsize; 2554 spin_lock(&sctx->stat_lock); 2555 sctx->stat.data_extents_scrubbed++; 2556 sctx->stat.data_bytes_scrubbed += len; 2557 spin_unlock(&sctx->stat_lock); 2558 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2559 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2560 blocksize = map->stripe_len; 2561 else 2562 blocksize = sctx->fs_info->nodesize; 2563 spin_lock(&sctx->stat_lock); 2564 sctx->stat.tree_extents_scrubbed++; 2565 sctx->stat.tree_bytes_scrubbed += len; 2566 spin_unlock(&sctx->stat_lock); 2567 } else { 2568 blocksize = sctx->fs_info->sectorsize; 2569 WARN_ON(1); 2570 } 2571 2572 while (len) { 2573 u32 l = min(len, blocksize); 2574 int have_csum = 0; 2575 2576 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2577 /* push csums to sbio */ 2578 have_csum = scrub_find_csum(sctx, logical, csum); 2579 if (have_csum == 0) 2580 ++sctx->stat.no_csum; 2581 } 2582 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2583 mirror_num, have_csum ? csum : NULL, 2584 physical_for_dev_replace); 2585 if (ret) 2586 return ret; 2587 len -= l; 2588 logical += l; 2589 physical += l; 2590 physical_for_dev_replace += l; 2591 } 2592 return 0; 2593 } 2594 2595 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2596 u64 logical, u32 len, 2597 u64 physical, struct btrfs_device *dev, 2598 u64 flags, u64 gen, int mirror_num, u8 *csum) 2599 { 2600 struct scrub_ctx *sctx = sparity->sctx; 2601 struct scrub_block *sblock; 2602 const u32 sectorsize = sctx->fs_info->sectorsize; 2603 int index; 2604 2605 ASSERT(IS_ALIGNED(len, sectorsize)); 2606 2607 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2608 if (!sblock) { 2609 spin_lock(&sctx->stat_lock); 2610 sctx->stat.malloc_errors++; 2611 spin_unlock(&sctx->stat_lock); 2612 return -ENOMEM; 2613 } 2614 2615 /* one ref inside this function, plus one for each page added to 2616 * a bio later on */ 2617 refcount_set(&sblock->refs, 1); 2618 sblock->sctx = sctx; 2619 sblock->no_io_error_seen = 1; 2620 sblock->sparity = sparity; 2621 scrub_parity_get(sparity); 2622 2623 for (index = 0; len > 0; index++) { 2624 struct scrub_page *spage; 2625 2626 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2627 if (!spage) { 2628 leave_nomem: 2629 spin_lock(&sctx->stat_lock); 2630 sctx->stat.malloc_errors++; 2631 spin_unlock(&sctx->stat_lock); 2632 scrub_block_put(sblock); 2633 return -ENOMEM; 2634 } 2635 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2636 /* For scrub block */ 2637 scrub_page_get(spage); 2638 sblock->pagev[index] = spage; 2639 /* For scrub parity */ 2640 scrub_page_get(spage); 2641 list_add_tail(&spage->list, &sparity->spages); 2642 spage->sblock = sblock; 2643 spage->dev = dev; 2644 spage->flags = flags; 2645 spage->generation = gen; 2646 spage->logical = logical; 2647 spage->physical = physical; 2648 spage->mirror_num = mirror_num; 2649 if (csum) { 2650 spage->have_csum = 1; 2651 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2652 } else { 2653 spage->have_csum = 0; 2654 } 2655 sblock->page_count++; 2656 spage->page = alloc_page(GFP_KERNEL); 2657 if (!spage->page) 2658 goto leave_nomem; 2659 2660 2661 /* Iterate over the stripe range in sectorsize steps */ 2662 len -= sectorsize; 2663 logical += sectorsize; 2664 physical += sectorsize; 2665 } 2666 2667 WARN_ON(sblock->page_count == 0); 2668 for (index = 0; index < sblock->page_count; index++) { 2669 struct scrub_page *spage = sblock->pagev[index]; 2670 int ret; 2671 2672 ret = scrub_add_page_to_rd_bio(sctx, spage); 2673 if (ret) { 2674 scrub_block_put(sblock); 2675 return ret; 2676 } 2677 } 2678 2679 /* last one frees, either here or in bio completion for last page */ 2680 scrub_block_put(sblock); 2681 return 0; 2682 } 2683 2684 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2685 u64 logical, u32 len, 2686 u64 physical, struct btrfs_device *dev, 2687 u64 flags, u64 gen, int mirror_num) 2688 { 2689 struct scrub_ctx *sctx = sparity->sctx; 2690 int ret; 2691 u8 csum[BTRFS_CSUM_SIZE]; 2692 u32 blocksize; 2693 2694 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2695 scrub_parity_mark_sectors_error(sparity, logical, len); 2696 return 0; 2697 } 2698 2699 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2700 blocksize = sparity->stripe_len; 2701 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2702 blocksize = sparity->stripe_len; 2703 } else { 2704 blocksize = sctx->fs_info->sectorsize; 2705 WARN_ON(1); 2706 } 2707 2708 while (len) { 2709 u32 l = min(len, blocksize); 2710 int have_csum = 0; 2711 2712 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2713 /* push csums to sbio */ 2714 have_csum = scrub_find_csum(sctx, logical, csum); 2715 if (have_csum == 0) 2716 goto skip; 2717 } 2718 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2719 flags, gen, mirror_num, 2720 have_csum ? csum : NULL); 2721 if (ret) 2722 return ret; 2723 skip: 2724 len -= l; 2725 logical += l; 2726 physical += l; 2727 } 2728 return 0; 2729 } 2730 2731 /* 2732 * Given a physical address, this will calculate it's 2733 * logical offset. if this is a parity stripe, it will return 2734 * the most left data stripe's logical offset. 2735 * 2736 * return 0 if it is a data stripe, 1 means parity stripe. 2737 */ 2738 static int get_raid56_logic_offset(u64 physical, int num, 2739 struct map_lookup *map, u64 *offset, 2740 u64 *stripe_start) 2741 { 2742 int i; 2743 int j = 0; 2744 u64 stripe_nr; 2745 u64 last_offset; 2746 u32 stripe_index; 2747 u32 rot; 2748 const int data_stripes = nr_data_stripes(map); 2749 2750 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2751 if (stripe_start) 2752 *stripe_start = last_offset; 2753 2754 *offset = last_offset; 2755 for (i = 0; i < data_stripes; i++) { 2756 *offset = last_offset + i * map->stripe_len; 2757 2758 stripe_nr = div64_u64(*offset, map->stripe_len); 2759 stripe_nr = div_u64(stripe_nr, data_stripes); 2760 2761 /* Work out the disk rotation on this stripe-set */ 2762 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2763 /* calculate which stripe this data locates */ 2764 rot += i; 2765 stripe_index = rot % map->num_stripes; 2766 if (stripe_index == num) 2767 return 0; 2768 if (stripe_index < num) 2769 j++; 2770 } 2771 *offset = last_offset + j * map->stripe_len; 2772 return 1; 2773 } 2774 2775 static void scrub_free_parity(struct scrub_parity *sparity) 2776 { 2777 struct scrub_ctx *sctx = sparity->sctx; 2778 struct scrub_page *curr, *next; 2779 int nbits; 2780 2781 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2782 if (nbits) { 2783 spin_lock(&sctx->stat_lock); 2784 sctx->stat.read_errors += nbits; 2785 sctx->stat.uncorrectable_errors += nbits; 2786 spin_unlock(&sctx->stat_lock); 2787 } 2788 2789 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2790 list_del_init(&curr->list); 2791 scrub_page_put(curr); 2792 } 2793 2794 kfree(sparity); 2795 } 2796 2797 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2798 { 2799 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2800 work); 2801 struct scrub_ctx *sctx = sparity->sctx; 2802 2803 scrub_free_parity(sparity); 2804 scrub_pending_bio_dec(sctx); 2805 } 2806 2807 static void scrub_parity_bio_endio(struct bio *bio) 2808 { 2809 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2810 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2811 2812 if (bio->bi_status) 2813 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2814 sparity->nsectors); 2815 2816 bio_put(bio); 2817 2818 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, 2819 NULL); 2820 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2821 } 2822 2823 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2824 { 2825 struct scrub_ctx *sctx = sparity->sctx; 2826 struct btrfs_fs_info *fs_info = sctx->fs_info; 2827 struct bio *bio; 2828 struct btrfs_raid_bio *rbio; 2829 struct btrfs_bio *bbio = NULL; 2830 u64 length; 2831 int ret; 2832 2833 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2834 sparity->nsectors)) 2835 goto out; 2836 2837 length = sparity->logic_end - sparity->logic_start; 2838 2839 btrfs_bio_counter_inc_blocked(fs_info); 2840 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2841 &length, &bbio); 2842 if (ret || !bbio || !bbio->raid_map) 2843 goto bbio_out; 2844 2845 bio = btrfs_io_bio_alloc(0); 2846 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2847 bio->bi_private = sparity; 2848 bio->bi_end_io = scrub_parity_bio_endio; 2849 2850 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 2851 length, sparity->scrub_dev, 2852 sparity->dbitmap, 2853 sparity->nsectors); 2854 if (!rbio) 2855 goto rbio_out; 2856 2857 scrub_pending_bio_inc(sctx); 2858 raid56_parity_submit_scrub_rbio(rbio); 2859 return; 2860 2861 rbio_out: 2862 bio_put(bio); 2863 bbio_out: 2864 btrfs_bio_counter_dec(fs_info); 2865 btrfs_put_bbio(bbio); 2866 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2867 sparity->nsectors); 2868 spin_lock(&sctx->stat_lock); 2869 sctx->stat.malloc_errors++; 2870 spin_unlock(&sctx->stat_lock); 2871 out: 2872 scrub_free_parity(sparity); 2873 } 2874 2875 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2876 { 2877 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2878 } 2879 2880 static void scrub_parity_get(struct scrub_parity *sparity) 2881 { 2882 refcount_inc(&sparity->refs); 2883 } 2884 2885 static void scrub_parity_put(struct scrub_parity *sparity) 2886 { 2887 if (!refcount_dec_and_test(&sparity->refs)) 2888 return; 2889 2890 scrub_parity_check_and_repair(sparity); 2891 } 2892 2893 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2894 struct map_lookup *map, 2895 struct btrfs_device *sdev, 2896 struct btrfs_path *path, 2897 u64 logic_start, 2898 u64 logic_end) 2899 { 2900 struct btrfs_fs_info *fs_info = sctx->fs_info; 2901 struct btrfs_root *root = fs_info->extent_root; 2902 struct btrfs_root *csum_root = fs_info->csum_root; 2903 struct btrfs_extent_item *extent; 2904 struct btrfs_bio *bbio = NULL; 2905 u64 flags; 2906 int ret; 2907 int slot; 2908 struct extent_buffer *l; 2909 struct btrfs_key key; 2910 u64 generation; 2911 u64 extent_logical; 2912 u64 extent_physical; 2913 /* Check the comment in scrub_stripe() for why u32 is enough here */ 2914 u32 extent_len; 2915 u64 mapped_length; 2916 struct btrfs_device *extent_dev; 2917 struct scrub_parity *sparity; 2918 int nsectors; 2919 int bitmap_len; 2920 int extent_mirror_num; 2921 int stop_loop = 0; 2922 2923 ASSERT(map->stripe_len <= U32_MAX); 2924 nsectors = map->stripe_len >> fs_info->sectorsize_bits; 2925 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2926 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2927 GFP_NOFS); 2928 if (!sparity) { 2929 spin_lock(&sctx->stat_lock); 2930 sctx->stat.malloc_errors++; 2931 spin_unlock(&sctx->stat_lock); 2932 return -ENOMEM; 2933 } 2934 2935 ASSERT(map->stripe_len <= U32_MAX); 2936 sparity->stripe_len = map->stripe_len; 2937 sparity->nsectors = nsectors; 2938 sparity->sctx = sctx; 2939 sparity->scrub_dev = sdev; 2940 sparity->logic_start = logic_start; 2941 sparity->logic_end = logic_end; 2942 refcount_set(&sparity->refs, 1); 2943 INIT_LIST_HEAD(&sparity->spages); 2944 sparity->dbitmap = sparity->bitmap; 2945 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2946 2947 ret = 0; 2948 while (logic_start < logic_end) { 2949 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2950 key.type = BTRFS_METADATA_ITEM_KEY; 2951 else 2952 key.type = BTRFS_EXTENT_ITEM_KEY; 2953 key.objectid = logic_start; 2954 key.offset = (u64)-1; 2955 2956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2957 if (ret < 0) 2958 goto out; 2959 2960 if (ret > 0) { 2961 ret = btrfs_previous_extent_item(root, path, 0); 2962 if (ret < 0) 2963 goto out; 2964 if (ret > 0) { 2965 btrfs_release_path(path); 2966 ret = btrfs_search_slot(NULL, root, &key, 2967 path, 0, 0); 2968 if (ret < 0) 2969 goto out; 2970 } 2971 } 2972 2973 stop_loop = 0; 2974 while (1) { 2975 u64 bytes; 2976 2977 l = path->nodes[0]; 2978 slot = path->slots[0]; 2979 if (slot >= btrfs_header_nritems(l)) { 2980 ret = btrfs_next_leaf(root, path); 2981 if (ret == 0) 2982 continue; 2983 if (ret < 0) 2984 goto out; 2985 2986 stop_loop = 1; 2987 break; 2988 } 2989 btrfs_item_key_to_cpu(l, &key, slot); 2990 2991 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2992 key.type != BTRFS_METADATA_ITEM_KEY) 2993 goto next; 2994 2995 if (key.type == BTRFS_METADATA_ITEM_KEY) 2996 bytes = fs_info->nodesize; 2997 else 2998 bytes = key.offset; 2999 3000 if (key.objectid + bytes <= logic_start) 3001 goto next; 3002 3003 if (key.objectid >= logic_end) { 3004 stop_loop = 1; 3005 break; 3006 } 3007 3008 while (key.objectid >= logic_start + map->stripe_len) 3009 logic_start += map->stripe_len; 3010 3011 extent = btrfs_item_ptr(l, slot, 3012 struct btrfs_extent_item); 3013 flags = btrfs_extent_flags(l, extent); 3014 generation = btrfs_extent_generation(l, extent); 3015 3016 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3017 (key.objectid < logic_start || 3018 key.objectid + bytes > 3019 logic_start + map->stripe_len)) { 3020 btrfs_err(fs_info, 3021 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3022 key.objectid, logic_start); 3023 spin_lock(&sctx->stat_lock); 3024 sctx->stat.uncorrectable_errors++; 3025 spin_unlock(&sctx->stat_lock); 3026 goto next; 3027 } 3028 again: 3029 extent_logical = key.objectid; 3030 ASSERT(bytes <= U32_MAX); 3031 extent_len = bytes; 3032 3033 if (extent_logical < logic_start) { 3034 extent_len -= logic_start - extent_logical; 3035 extent_logical = logic_start; 3036 } 3037 3038 if (extent_logical + extent_len > 3039 logic_start + map->stripe_len) 3040 extent_len = logic_start + map->stripe_len - 3041 extent_logical; 3042 3043 scrub_parity_mark_sectors_data(sparity, extent_logical, 3044 extent_len); 3045 3046 mapped_length = extent_len; 3047 bbio = NULL; 3048 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3049 extent_logical, &mapped_length, &bbio, 3050 0); 3051 if (!ret) { 3052 if (!bbio || mapped_length < extent_len) 3053 ret = -EIO; 3054 } 3055 if (ret) { 3056 btrfs_put_bbio(bbio); 3057 goto out; 3058 } 3059 extent_physical = bbio->stripes[0].physical; 3060 extent_mirror_num = bbio->mirror_num; 3061 extent_dev = bbio->stripes[0].dev; 3062 btrfs_put_bbio(bbio); 3063 3064 ret = btrfs_lookup_csums_range(csum_root, 3065 extent_logical, 3066 extent_logical + extent_len - 1, 3067 &sctx->csum_list, 1); 3068 if (ret) 3069 goto out; 3070 3071 ret = scrub_extent_for_parity(sparity, extent_logical, 3072 extent_len, 3073 extent_physical, 3074 extent_dev, flags, 3075 generation, 3076 extent_mirror_num); 3077 3078 scrub_free_csums(sctx); 3079 3080 if (ret) 3081 goto out; 3082 3083 if (extent_logical + extent_len < 3084 key.objectid + bytes) { 3085 logic_start += map->stripe_len; 3086 3087 if (logic_start >= logic_end) { 3088 stop_loop = 1; 3089 break; 3090 } 3091 3092 if (logic_start < key.objectid + bytes) { 3093 cond_resched(); 3094 goto again; 3095 } 3096 } 3097 next: 3098 path->slots[0]++; 3099 } 3100 3101 btrfs_release_path(path); 3102 3103 if (stop_loop) 3104 break; 3105 3106 logic_start += map->stripe_len; 3107 } 3108 out: 3109 if (ret < 0) { 3110 ASSERT(logic_end - logic_start <= U32_MAX); 3111 scrub_parity_mark_sectors_error(sparity, logic_start, 3112 logic_end - logic_start); 3113 } 3114 scrub_parity_put(sparity); 3115 scrub_submit(sctx); 3116 mutex_lock(&sctx->wr_lock); 3117 scrub_wr_submit(sctx); 3118 mutex_unlock(&sctx->wr_lock); 3119 3120 btrfs_release_path(path); 3121 return ret < 0 ? ret : 0; 3122 } 3123 3124 static void sync_replace_for_zoned(struct scrub_ctx *sctx) 3125 { 3126 if (!btrfs_is_zoned(sctx->fs_info)) 3127 return; 3128 3129 sctx->flush_all_writes = true; 3130 scrub_submit(sctx); 3131 mutex_lock(&sctx->wr_lock); 3132 scrub_wr_submit(sctx); 3133 mutex_unlock(&sctx->wr_lock); 3134 3135 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3136 } 3137 3138 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 3139 u64 physical, u64 physical_end) 3140 { 3141 struct btrfs_fs_info *fs_info = sctx->fs_info; 3142 int ret = 0; 3143 3144 if (!btrfs_is_zoned(fs_info)) 3145 return 0; 3146 3147 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3148 3149 mutex_lock(&sctx->wr_lock); 3150 if (sctx->write_pointer < physical_end) { 3151 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 3152 physical, 3153 sctx->write_pointer); 3154 if (ret) 3155 btrfs_err(fs_info, 3156 "zoned: failed to recover write pointer"); 3157 } 3158 mutex_unlock(&sctx->wr_lock); 3159 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 3160 3161 return ret; 3162 } 3163 3164 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3165 struct map_lookup *map, 3166 struct btrfs_device *scrub_dev, 3167 int num, u64 base, u64 length, 3168 struct btrfs_block_group *cache) 3169 { 3170 struct btrfs_path *path, *ppath; 3171 struct btrfs_fs_info *fs_info = sctx->fs_info; 3172 struct btrfs_root *root = fs_info->extent_root; 3173 struct btrfs_root *csum_root = fs_info->csum_root; 3174 struct btrfs_extent_item *extent; 3175 struct blk_plug plug; 3176 u64 flags; 3177 int ret; 3178 int slot; 3179 u64 nstripes; 3180 struct extent_buffer *l; 3181 u64 physical; 3182 u64 logical; 3183 u64 logic_end; 3184 u64 physical_end; 3185 u64 generation; 3186 int mirror_num; 3187 struct reada_control *reada1; 3188 struct reada_control *reada2; 3189 struct btrfs_key key; 3190 struct btrfs_key key_end; 3191 u64 increment = map->stripe_len; 3192 u64 offset; 3193 u64 extent_logical; 3194 u64 extent_physical; 3195 /* 3196 * Unlike chunk length, extent length should never go beyond 3197 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here. 3198 */ 3199 u32 extent_len; 3200 u64 stripe_logical; 3201 u64 stripe_end; 3202 struct btrfs_device *extent_dev; 3203 int extent_mirror_num; 3204 int stop_loop = 0; 3205 3206 physical = map->stripes[num].physical; 3207 offset = 0; 3208 nstripes = div64_u64(length, map->stripe_len); 3209 mirror_num = 1; 3210 increment = map->stripe_len; 3211 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3212 offset = map->stripe_len * num; 3213 increment = map->stripe_len * map->num_stripes; 3214 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3215 int factor = map->num_stripes / map->sub_stripes; 3216 offset = map->stripe_len * (num / map->sub_stripes); 3217 increment = map->stripe_len * factor; 3218 mirror_num = num % map->sub_stripes + 1; 3219 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 3220 mirror_num = num % map->num_stripes + 1; 3221 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3222 mirror_num = num % map->num_stripes + 1; 3223 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3224 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3225 increment = map->stripe_len * nr_data_stripes(map); 3226 } 3227 3228 path = btrfs_alloc_path(); 3229 if (!path) 3230 return -ENOMEM; 3231 3232 ppath = btrfs_alloc_path(); 3233 if (!ppath) { 3234 btrfs_free_path(path); 3235 return -ENOMEM; 3236 } 3237 3238 /* 3239 * work on commit root. The related disk blocks are static as 3240 * long as COW is applied. This means, it is save to rewrite 3241 * them to repair disk errors without any race conditions 3242 */ 3243 path->search_commit_root = 1; 3244 path->skip_locking = 1; 3245 3246 ppath->search_commit_root = 1; 3247 ppath->skip_locking = 1; 3248 /* 3249 * trigger the readahead for extent tree csum tree and wait for 3250 * completion. During readahead, the scrub is officially paused 3251 * to not hold off transaction commits 3252 */ 3253 logical = base + offset; 3254 physical_end = physical + nstripes * map->stripe_len; 3255 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3256 get_raid56_logic_offset(physical_end, num, 3257 map, &logic_end, NULL); 3258 logic_end += base; 3259 } else { 3260 logic_end = logical + increment * nstripes; 3261 } 3262 wait_event(sctx->list_wait, 3263 atomic_read(&sctx->bios_in_flight) == 0); 3264 scrub_blocked_if_needed(fs_info); 3265 3266 /* FIXME it might be better to start readahead at commit root */ 3267 key.objectid = logical; 3268 key.type = BTRFS_EXTENT_ITEM_KEY; 3269 key.offset = (u64)0; 3270 key_end.objectid = logic_end; 3271 key_end.type = BTRFS_METADATA_ITEM_KEY; 3272 key_end.offset = (u64)-1; 3273 reada1 = btrfs_reada_add(root, &key, &key_end); 3274 3275 if (cache->flags & BTRFS_BLOCK_GROUP_DATA) { 3276 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3277 key.type = BTRFS_EXTENT_CSUM_KEY; 3278 key.offset = logical; 3279 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3280 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3281 key_end.offset = logic_end; 3282 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3283 } else { 3284 reada2 = NULL; 3285 } 3286 3287 if (!IS_ERR(reada1)) 3288 btrfs_reada_wait(reada1); 3289 if (!IS_ERR_OR_NULL(reada2)) 3290 btrfs_reada_wait(reada2); 3291 3292 3293 /* 3294 * collect all data csums for the stripe to avoid seeking during 3295 * the scrub. This might currently (crc32) end up to be about 1MB 3296 */ 3297 blk_start_plug(&plug); 3298 3299 if (sctx->is_dev_replace && 3300 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 3301 mutex_lock(&sctx->wr_lock); 3302 sctx->write_pointer = physical; 3303 mutex_unlock(&sctx->wr_lock); 3304 sctx->flush_all_writes = true; 3305 } 3306 3307 /* 3308 * now find all extents for each stripe and scrub them 3309 */ 3310 ret = 0; 3311 while (physical < physical_end) { 3312 /* 3313 * canceled? 3314 */ 3315 if (atomic_read(&fs_info->scrub_cancel_req) || 3316 atomic_read(&sctx->cancel_req)) { 3317 ret = -ECANCELED; 3318 goto out; 3319 } 3320 /* 3321 * check to see if we have to pause 3322 */ 3323 if (atomic_read(&fs_info->scrub_pause_req)) { 3324 /* push queued extents */ 3325 sctx->flush_all_writes = true; 3326 scrub_submit(sctx); 3327 mutex_lock(&sctx->wr_lock); 3328 scrub_wr_submit(sctx); 3329 mutex_unlock(&sctx->wr_lock); 3330 wait_event(sctx->list_wait, 3331 atomic_read(&sctx->bios_in_flight) == 0); 3332 sctx->flush_all_writes = false; 3333 scrub_blocked_if_needed(fs_info); 3334 } 3335 3336 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3337 ret = get_raid56_logic_offset(physical, num, map, 3338 &logical, 3339 &stripe_logical); 3340 logical += base; 3341 if (ret) { 3342 /* it is parity strip */ 3343 stripe_logical += base; 3344 stripe_end = stripe_logical + increment; 3345 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3346 ppath, stripe_logical, 3347 stripe_end); 3348 if (ret) 3349 goto out; 3350 goto skip; 3351 } 3352 } 3353 3354 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3355 key.type = BTRFS_METADATA_ITEM_KEY; 3356 else 3357 key.type = BTRFS_EXTENT_ITEM_KEY; 3358 key.objectid = logical; 3359 key.offset = (u64)-1; 3360 3361 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3362 if (ret < 0) 3363 goto out; 3364 3365 if (ret > 0) { 3366 ret = btrfs_previous_extent_item(root, path, 0); 3367 if (ret < 0) 3368 goto out; 3369 if (ret > 0) { 3370 /* there's no smaller item, so stick with the 3371 * larger one */ 3372 btrfs_release_path(path); 3373 ret = btrfs_search_slot(NULL, root, &key, 3374 path, 0, 0); 3375 if (ret < 0) 3376 goto out; 3377 } 3378 } 3379 3380 stop_loop = 0; 3381 while (1) { 3382 u64 bytes; 3383 3384 l = path->nodes[0]; 3385 slot = path->slots[0]; 3386 if (slot >= btrfs_header_nritems(l)) { 3387 ret = btrfs_next_leaf(root, path); 3388 if (ret == 0) 3389 continue; 3390 if (ret < 0) 3391 goto out; 3392 3393 stop_loop = 1; 3394 break; 3395 } 3396 btrfs_item_key_to_cpu(l, &key, slot); 3397 3398 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3399 key.type != BTRFS_METADATA_ITEM_KEY) 3400 goto next; 3401 3402 if (key.type == BTRFS_METADATA_ITEM_KEY) 3403 bytes = fs_info->nodesize; 3404 else 3405 bytes = key.offset; 3406 3407 if (key.objectid + bytes <= logical) 3408 goto next; 3409 3410 if (key.objectid >= logical + map->stripe_len) { 3411 /* out of this device extent */ 3412 if (key.objectid >= logic_end) 3413 stop_loop = 1; 3414 break; 3415 } 3416 3417 /* 3418 * If our block group was removed in the meanwhile, just 3419 * stop scrubbing since there is no point in continuing. 3420 * Continuing would prevent reusing its device extents 3421 * for new block groups for a long time. 3422 */ 3423 spin_lock(&cache->lock); 3424 if (cache->removed) { 3425 spin_unlock(&cache->lock); 3426 ret = 0; 3427 goto out; 3428 } 3429 spin_unlock(&cache->lock); 3430 3431 extent = btrfs_item_ptr(l, slot, 3432 struct btrfs_extent_item); 3433 flags = btrfs_extent_flags(l, extent); 3434 generation = btrfs_extent_generation(l, extent); 3435 3436 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3437 (key.objectid < logical || 3438 key.objectid + bytes > 3439 logical + map->stripe_len)) { 3440 btrfs_err(fs_info, 3441 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3442 key.objectid, logical); 3443 spin_lock(&sctx->stat_lock); 3444 sctx->stat.uncorrectable_errors++; 3445 spin_unlock(&sctx->stat_lock); 3446 goto next; 3447 } 3448 3449 again: 3450 extent_logical = key.objectid; 3451 ASSERT(bytes <= U32_MAX); 3452 extent_len = bytes; 3453 3454 /* 3455 * trim extent to this stripe 3456 */ 3457 if (extent_logical < logical) { 3458 extent_len -= logical - extent_logical; 3459 extent_logical = logical; 3460 } 3461 if (extent_logical + extent_len > 3462 logical + map->stripe_len) { 3463 extent_len = logical + map->stripe_len - 3464 extent_logical; 3465 } 3466 3467 extent_physical = extent_logical - logical + physical; 3468 extent_dev = scrub_dev; 3469 extent_mirror_num = mirror_num; 3470 if (sctx->is_dev_replace) 3471 scrub_remap_extent(fs_info, extent_logical, 3472 extent_len, &extent_physical, 3473 &extent_dev, 3474 &extent_mirror_num); 3475 3476 if (flags & BTRFS_EXTENT_FLAG_DATA) { 3477 ret = btrfs_lookup_csums_range(csum_root, 3478 extent_logical, 3479 extent_logical + extent_len - 1, 3480 &sctx->csum_list, 1); 3481 if (ret) 3482 goto out; 3483 } 3484 3485 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3486 extent_physical, extent_dev, flags, 3487 generation, extent_mirror_num, 3488 extent_logical - logical + physical); 3489 3490 scrub_free_csums(sctx); 3491 3492 if (ret) 3493 goto out; 3494 3495 if (sctx->is_dev_replace) 3496 sync_replace_for_zoned(sctx); 3497 3498 if (extent_logical + extent_len < 3499 key.objectid + bytes) { 3500 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3501 /* 3502 * loop until we find next data stripe 3503 * or we have finished all stripes. 3504 */ 3505 loop: 3506 physical += map->stripe_len; 3507 ret = get_raid56_logic_offset(physical, 3508 num, map, &logical, 3509 &stripe_logical); 3510 logical += base; 3511 3512 if (ret && physical < physical_end) { 3513 stripe_logical += base; 3514 stripe_end = stripe_logical + 3515 increment; 3516 ret = scrub_raid56_parity(sctx, 3517 map, scrub_dev, ppath, 3518 stripe_logical, 3519 stripe_end); 3520 if (ret) 3521 goto out; 3522 goto loop; 3523 } 3524 } else { 3525 physical += map->stripe_len; 3526 logical += increment; 3527 } 3528 if (logical < key.objectid + bytes) { 3529 cond_resched(); 3530 goto again; 3531 } 3532 3533 if (physical >= physical_end) { 3534 stop_loop = 1; 3535 break; 3536 } 3537 } 3538 next: 3539 path->slots[0]++; 3540 } 3541 btrfs_release_path(path); 3542 skip: 3543 logical += increment; 3544 physical += map->stripe_len; 3545 spin_lock(&sctx->stat_lock); 3546 if (stop_loop) 3547 sctx->stat.last_physical = map->stripes[num].physical + 3548 length; 3549 else 3550 sctx->stat.last_physical = physical; 3551 spin_unlock(&sctx->stat_lock); 3552 if (stop_loop) 3553 break; 3554 } 3555 out: 3556 /* push queued extents */ 3557 scrub_submit(sctx); 3558 mutex_lock(&sctx->wr_lock); 3559 scrub_wr_submit(sctx); 3560 mutex_unlock(&sctx->wr_lock); 3561 3562 blk_finish_plug(&plug); 3563 btrfs_free_path(path); 3564 btrfs_free_path(ppath); 3565 3566 if (sctx->is_dev_replace && ret >= 0) { 3567 int ret2; 3568 3569 ret2 = sync_write_pointer_for_zoned(sctx, base + offset, 3570 map->stripes[num].physical, 3571 physical_end); 3572 if (ret2) 3573 ret = ret2; 3574 } 3575 3576 return ret < 0 ? ret : 0; 3577 } 3578 3579 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3580 struct btrfs_device *scrub_dev, 3581 u64 chunk_offset, u64 length, 3582 u64 dev_offset, 3583 struct btrfs_block_group *cache) 3584 { 3585 struct btrfs_fs_info *fs_info = sctx->fs_info; 3586 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3587 struct map_lookup *map; 3588 struct extent_map *em; 3589 int i; 3590 int ret = 0; 3591 3592 read_lock(&map_tree->lock); 3593 em = lookup_extent_mapping(map_tree, chunk_offset, 1); 3594 read_unlock(&map_tree->lock); 3595 3596 if (!em) { 3597 /* 3598 * Might have been an unused block group deleted by the cleaner 3599 * kthread or relocation. 3600 */ 3601 spin_lock(&cache->lock); 3602 if (!cache->removed) 3603 ret = -EINVAL; 3604 spin_unlock(&cache->lock); 3605 3606 return ret; 3607 } 3608 3609 map = em->map_lookup; 3610 if (em->start != chunk_offset) 3611 goto out; 3612 3613 if (em->len < length) 3614 goto out; 3615 3616 for (i = 0; i < map->num_stripes; ++i) { 3617 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3618 map->stripes[i].physical == dev_offset) { 3619 ret = scrub_stripe(sctx, map, scrub_dev, i, 3620 chunk_offset, length, cache); 3621 if (ret) 3622 goto out; 3623 } 3624 } 3625 out: 3626 free_extent_map(em); 3627 3628 return ret; 3629 } 3630 3631 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 3632 struct btrfs_block_group *cache) 3633 { 3634 struct btrfs_fs_info *fs_info = cache->fs_info; 3635 struct btrfs_trans_handle *trans; 3636 3637 if (!btrfs_is_zoned(fs_info)) 3638 return 0; 3639 3640 btrfs_wait_block_group_reservations(cache); 3641 btrfs_wait_nocow_writers(cache); 3642 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 3643 3644 trans = btrfs_join_transaction(root); 3645 if (IS_ERR(trans)) 3646 return PTR_ERR(trans); 3647 return btrfs_commit_transaction(trans); 3648 } 3649 3650 static noinline_for_stack 3651 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3652 struct btrfs_device *scrub_dev, u64 start, u64 end) 3653 { 3654 struct btrfs_dev_extent *dev_extent = NULL; 3655 struct btrfs_path *path; 3656 struct btrfs_fs_info *fs_info = sctx->fs_info; 3657 struct btrfs_root *root = fs_info->dev_root; 3658 u64 length; 3659 u64 chunk_offset; 3660 int ret = 0; 3661 int ro_set; 3662 int slot; 3663 struct extent_buffer *l; 3664 struct btrfs_key key; 3665 struct btrfs_key found_key; 3666 struct btrfs_block_group *cache; 3667 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3668 3669 path = btrfs_alloc_path(); 3670 if (!path) 3671 return -ENOMEM; 3672 3673 path->reada = READA_FORWARD; 3674 path->search_commit_root = 1; 3675 path->skip_locking = 1; 3676 3677 key.objectid = scrub_dev->devid; 3678 key.offset = 0ull; 3679 key.type = BTRFS_DEV_EXTENT_KEY; 3680 3681 while (1) { 3682 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3683 if (ret < 0) 3684 break; 3685 if (ret > 0) { 3686 if (path->slots[0] >= 3687 btrfs_header_nritems(path->nodes[0])) { 3688 ret = btrfs_next_leaf(root, path); 3689 if (ret < 0) 3690 break; 3691 if (ret > 0) { 3692 ret = 0; 3693 break; 3694 } 3695 } else { 3696 ret = 0; 3697 } 3698 } 3699 3700 l = path->nodes[0]; 3701 slot = path->slots[0]; 3702 3703 btrfs_item_key_to_cpu(l, &found_key, slot); 3704 3705 if (found_key.objectid != scrub_dev->devid) 3706 break; 3707 3708 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3709 break; 3710 3711 if (found_key.offset >= end) 3712 break; 3713 3714 if (found_key.offset < key.offset) 3715 break; 3716 3717 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3718 length = btrfs_dev_extent_length(l, dev_extent); 3719 3720 if (found_key.offset + length <= start) 3721 goto skip; 3722 3723 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3724 3725 /* 3726 * get a reference on the corresponding block group to prevent 3727 * the chunk from going away while we scrub it 3728 */ 3729 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3730 3731 /* some chunks are removed but not committed to disk yet, 3732 * continue scrubbing */ 3733 if (!cache) 3734 goto skip; 3735 3736 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 3737 spin_lock(&cache->lock); 3738 if (!cache->to_copy) { 3739 spin_unlock(&cache->lock); 3740 btrfs_put_block_group(cache); 3741 goto skip; 3742 } 3743 spin_unlock(&cache->lock); 3744 } 3745 3746 /* 3747 * Make sure that while we are scrubbing the corresponding block 3748 * group doesn't get its logical address and its device extents 3749 * reused for another block group, which can possibly be of a 3750 * different type and different profile. We do this to prevent 3751 * false error detections and crashes due to bogus attempts to 3752 * repair extents. 3753 */ 3754 spin_lock(&cache->lock); 3755 if (cache->removed) { 3756 spin_unlock(&cache->lock); 3757 btrfs_put_block_group(cache); 3758 goto skip; 3759 } 3760 btrfs_freeze_block_group(cache); 3761 spin_unlock(&cache->lock); 3762 3763 /* 3764 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3765 * to avoid deadlock caused by: 3766 * btrfs_inc_block_group_ro() 3767 * -> btrfs_wait_for_commit() 3768 * -> btrfs_commit_transaction() 3769 * -> btrfs_scrub_pause() 3770 */ 3771 scrub_pause_on(fs_info); 3772 3773 /* 3774 * Don't do chunk preallocation for scrub. 3775 * 3776 * This is especially important for SYSTEM bgs, or we can hit 3777 * -EFBIG from btrfs_finish_chunk_alloc() like: 3778 * 1. The only SYSTEM bg is marked RO. 3779 * Since SYSTEM bg is small, that's pretty common. 3780 * 2. New SYSTEM bg will be allocated 3781 * Due to regular version will allocate new chunk. 3782 * 3. New SYSTEM bg is empty and will get cleaned up 3783 * Before cleanup really happens, it's marked RO again. 3784 * 4. Empty SYSTEM bg get scrubbed 3785 * We go back to 2. 3786 * 3787 * This can easily boost the amount of SYSTEM chunks if cleaner 3788 * thread can't be triggered fast enough, and use up all space 3789 * of btrfs_super_block::sys_chunk_array 3790 * 3791 * While for dev replace, we need to try our best to mark block 3792 * group RO, to prevent race between: 3793 * - Write duplication 3794 * Contains latest data 3795 * - Scrub copy 3796 * Contains data from commit tree 3797 * 3798 * If target block group is not marked RO, nocow writes can 3799 * be overwritten by scrub copy, causing data corruption. 3800 * So for dev-replace, it's not allowed to continue if a block 3801 * group is not RO. 3802 */ 3803 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3804 if (!ret && sctx->is_dev_replace) { 3805 ret = finish_extent_writes_for_zoned(root, cache); 3806 if (ret) { 3807 btrfs_dec_block_group_ro(cache); 3808 scrub_pause_off(fs_info); 3809 btrfs_put_block_group(cache); 3810 break; 3811 } 3812 } 3813 3814 if (ret == 0) { 3815 ro_set = 1; 3816 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 3817 /* 3818 * btrfs_inc_block_group_ro return -ENOSPC when it 3819 * failed in creating new chunk for metadata. 3820 * It is not a problem for scrub, because 3821 * metadata are always cowed, and our scrub paused 3822 * commit_transactions. 3823 */ 3824 ro_set = 0; 3825 } else if (ret == -ETXTBSY) { 3826 btrfs_warn(fs_info, 3827 "skipping scrub of block group %llu due to active swapfile", 3828 cache->start); 3829 scrub_pause_off(fs_info); 3830 ret = 0; 3831 goto skip_unfreeze; 3832 } else { 3833 btrfs_warn(fs_info, 3834 "failed setting block group ro: %d", ret); 3835 btrfs_unfreeze_block_group(cache); 3836 btrfs_put_block_group(cache); 3837 scrub_pause_off(fs_info); 3838 break; 3839 } 3840 3841 /* 3842 * Now the target block is marked RO, wait for nocow writes to 3843 * finish before dev-replace. 3844 * COW is fine, as COW never overwrites extents in commit tree. 3845 */ 3846 if (sctx->is_dev_replace) { 3847 btrfs_wait_nocow_writers(cache); 3848 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 3849 cache->length); 3850 } 3851 3852 scrub_pause_off(fs_info); 3853 down_write(&dev_replace->rwsem); 3854 dev_replace->cursor_right = found_key.offset + length; 3855 dev_replace->cursor_left = found_key.offset; 3856 dev_replace->item_needs_writeback = 1; 3857 up_write(&dev_replace->rwsem); 3858 3859 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3860 found_key.offset, cache); 3861 3862 /* 3863 * flush, submit all pending read and write bios, afterwards 3864 * wait for them. 3865 * Note that in the dev replace case, a read request causes 3866 * write requests that are submitted in the read completion 3867 * worker. Therefore in the current situation, it is required 3868 * that all write requests are flushed, so that all read and 3869 * write requests are really completed when bios_in_flight 3870 * changes to 0. 3871 */ 3872 sctx->flush_all_writes = true; 3873 scrub_submit(sctx); 3874 mutex_lock(&sctx->wr_lock); 3875 scrub_wr_submit(sctx); 3876 mutex_unlock(&sctx->wr_lock); 3877 3878 wait_event(sctx->list_wait, 3879 atomic_read(&sctx->bios_in_flight) == 0); 3880 3881 scrub_pause_on(fs_info); 3882 3883 /* 3884 * must be called before we decrease @scrub_paused. 3885 * make sure we don't block transaction commit while 3886 * we are waiting pending workers finished. 3887 */ 3888 wait_event(sctx->list_wait, 3889 atomic_read(&sctx->workers_pending) == 0); 3890 sctx->flush_all_writes = false; 3891 3892 scrub_pause_off(fs_info); 3893 3894 if (sctx->is_dev_replace && 3895 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 3896 cache, found_key.offset)) 3897 ro_set = 0; 3898 3899 down_write(&dev_replace->rwsem); 3900 dev_replace->cursor_left = dev_replace->cursor_right; 3901 dev_replace->item_needs_writeback = 1; 3902 up_write(&dev_replace->rwsem); 3903 3904 if (ro_set) 3905 btrfs_dec_block_group_ro(cache); 3906 3907 /* 3908 * We might have prevented the cleaner kthread from deleting 3909 * this block group if it was already unused because we raced 3910 * and set it to RO mode first. So add it back to the unused 3911 * list, otherwise it might not ever be deleted unless a manual 3912 * balance is triggered or it becomes used and unused again. 3913 */ 3914 spin_lock(&cache->lock); 3915 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3916 cache->used == 0) { 3917 spin_unlock(&cache->lock); 3918 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 3919 btrfs_discard_queue_work(&fs_info->discard_ctl, 3920 cache); 3921 else 3922 btrfs_mark_bg_unused(cache); 3923 } else { 3924 spin_unlock(&cache->lock); 3925 } 3926 skip_unfreeze: 3927 btrfs_unfreeze_block_group(cache); 3928 btrfs_put_block_group(cache); 3929 if (ret) 3930 break; 3931 if (sctx->is_dev_replace && 3932 atomic64_read(&dev_replace->num_write_errors) > 0) { 3933 ret = -EIO; 3934 break; 3935 } 3936 if (sctx->stat.malloc_errors > 0) { 3937 ret = -ENOMEM; 3938 break; 3939 } 3940 skip: 3941 key.offset = found_key.offset + length; 3942 btrfs_release_path(path); 3943 } 3944 3945 btrfs_free_path(path); 3946 3947 return ret; 3948 } 3949 3950 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3951 struct btrfs_device *scrub_dev) 3952 { 3953 int i; 3954 u64 bytenr; 3955 u64 gen; 3956 int ret; 3957 struct btrfs_fs_info *fs_info = sctx->fs_info; 3958 3959 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3960 return -EROFS; 3961 3962 /* Seed devices of a new filesystem has their own generation. */ 3963 if (scrub_dev->fs_devices != fs_info->fs_devices) 3964 gen = scrub_dev->generation; 3965 else 3966 gen = fs_info->last_trans_committed; 3967 3968 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3969 bytenr = btrfs_sb_offset(i); 3970 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3971 scrub_dev->commit_total_bytes) 3972 break; 3973 if (!btrfs_check_super_location(scrub_dev, bytenr)) 3974 continue; 3975 3976 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3977 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3978 NULL, bytenr); 3979 if (ret) 3980 return ret; 3981 } 3982 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3983 3984 return 0; 3985 } 3986 3987 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 3988 { 3989 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 3990 &fs_info->scrub_lock)) { 3991 struct btrfs_workqueue *scrub_workers = NULL; 3992 struct btrfs_workqueue *scrub_wr_comp = NULL; 3993 struct btrfs_workqueue *scrub_parity = NULL; 3994 3995 scrub_workers = fs_info->scrub_workers; 3996 scrub_wr_comp = fs_info->scrub_wr_completion_workers; 3997 scrub_parity = fs_info->scrub_parity_workers; 3998 3999 fs_info->scrub_workers = NULL; 4000 fs_info->scrub_wr_completion_workers = NULL; 4001 fs_info->scrub_parity_workers = NULL; 4002 mutex_unlock(&fs_info->scrub_lock); 4003 4004 btrfs_destroy_workqueue(scrub_workers); 4005 btrfs_destroy_workqueue(scrub_wr_comp); 4006 btrfs_destroy_workqueue(scrub_parity); 4007 } 4008 } 4009 4010 /* 4011 * get a reference count on fs_info->scrub_workers. start worker if necessary 4012 */ 4013 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4014 int is_dev_replace) 4015 { 4016 struct btrfs_workqueue *scrub_workers = NULL; 4017 struct btrfs_workqueue *scrub_wr_comp = NULL; 4018 struct btrfs_workqueue *scrub_parity = NULL; 4019 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4020 int max_active = fs_info->thread_pool_size; 4021 int ret = -ENOMEM; 4022 4023 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 4024 return 0; 4025 4026 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags, 4027 is_dev_replace ? 1 : max_active, 4); 4028 if (!scrub_workers) 4029 goto fail_scrub_workers; 4030 4031 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4032 max_active, 2); 4033 if (!scrub_wr_comp) 4034 goto fail_scrub_wr_completion_workers; 4035 4036 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4037 max_active, 2); 4038 if (!scrub_parity) 4039 goto fail_scrub_parity_workers; 4040 4041 mutex_lock(&fs_info->scrub_lock); 4042 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 4043 ASSERT(fs_info->scrub_workers == NULL && 4044 fs_info->scrub_wr_completion_workers == NULL && 4045 fs_info->scrub_parity_workers == NULL); 4046 fs_info->scrub_workers = scrub_workers; 4047 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 4048 fs_info->scrub_parity_workers = scrub_parity; 4049 refcount_set(&fs_info->scrub_workers_refcnt, 1); 4050 mutex_unlock(&fs_info->scrub_lock); 4051 return 0; 4052 } 4053 /* Other thread raced in and created the workers for us */ 4054 refcount_inc(&fs_info->scrub_workers_refcnt); 4055 mutex_unlock(&fs_info->scrub_lock); 4056 4057 ret = 0; 4058 btrfs_destroy_workqueue(scrub_parity); 4059 fail_scrub_parity_workers: 4060 btrfs_destroy_workqueue(scrub_wr_comp); 4061 fail_scrub_wr_completion_workers: 4062 btrfs_destroy_workqueue(scrub_workers); 4063 fail_scrub_workers: 4064 return ret; 4065 } 4066 4067 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4068 u64 end, struct btrfs_scrub_progress *progress, 4069 int readonly, int is_dev_replace) 4070 { 4071 struct scrub_ctx *sctx; 4072 int ret; 4073 struct btrfs_device *dev; 4074 unsigned int nofs_flag; 4075 4076 if (btrfs_fs_closing(fs_info)) 4077 return -EAGAIN; 4078 4079 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4080 /* 4081 * in this case scrub is unable to calculate the checksum 4082 * the way scrub is implemented. Do not handle this 4083 * situation at all because it won't ever happen. 4084 */ 4085 btrfs_err(fs_info, 4086 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4087 fs_info->nodesize, 4088 BTRFS_STRIPE_LEN); 4089 return -EINVAL; 4090 } 4091 4092 if (fs_info->nodesize > 4093 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4094 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4095 /* 4096 * would exhaust the array bounds of pagev member in 4097 * struct scrub_block 4098 */ 4099 btrfs_err(fs_info, 4100 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4101 fs_info->nodesize, 4102 SCRUB_MAX_PAGES_PER_BLOCK, 4103 fs_info->sectorsize, 4104 SCRUB_MAX_PAGES_PER_BLOCK); 4105 return -EINVAL; 4106 } 4107 4108 /* Allocate outside of device_list_mutex */ 4109 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 4110 if (IS_ERR(sctx)) 4111 return PTR_ERR(sctx); 4112 4113 ret = scrub_workers_get(fs_info, is_dev_replace); 4114 if (ret) 4115 goto out_free_ctx; 4116 4117 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4118 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 4119 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4120 !is_dev_replace)) { 4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4122 ret = -ENODEV; 4123 goto out; 4124 } 4125 4126 if (!is_dev_replace && !readonly && 4127 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4128 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4129 btrfs_err_in_rcu(fs_info, 4130 "scrub on devid %llu: filesystem on %s is not writable", 4131 devid, rcu_str_deref(dev->name)); 4132 ret = -EROFS; 4133 goto out; 4134 } 4135 4136 mutex_lock(&fs_info->scrub_lock); 4137 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4138 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4139 mutex_unlock(&fs_info->scrub_lock); 4140 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4141 ret = -EIO; 4142 goto out; 4143 } 4144 4145 down_read(&fs_info->dev_replace.rwsem); 4146 if (dev->scrub_ctx || 4147 (!is_dev_replace && 4148 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4149 up_read(&fs_info->dev_replace.rwsem); 4150 mutex_unlock(&fs_info->scrub_lock); 4151 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4152 ret = -EINPROGRESS; 4153 goto out; 4154 } 4155 up_read(&fs_info->dev_replace.rwsem); 4156 4157 sctx->readonly = readonly; 4158 dev->scrub_ctx = sctx; 4159 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4160 4161 /* 4162 * checking @scrub_pause_req here, we can avoid 4163 * race between committing transaction and scrubbing. 4164 */ 4165 __scrub_blocked_if_needed(fs_info); 4166 atomic_inc(&fs_info->scrubs_running); 4167 mutex_unlock(&fs_info->scrub_lock); 4168 4169 /* 4170 * In order to avoid deadlock with reclaim when there is a transaction 4171 * trying to pause scrub, make sure we use GFP_NOFS for all the 4172 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() 4173 * invoked by our callees. The pausing request is done when the 4174 * transaction commit starts, and it blocks the transaction until scrub 4175 * is paused (done at specific points at scrub_stripe() or right above 4176 * before incrementing fs_info->scrubs_running). 4177 */ 4178 nofs_flag = memalloc_nofs_save(); 4179 if (!is_dev_replace) { 4180 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 4181 /* 4182 * by holding device list mutex, we can 4183 * kick off writing super in log tree sync. 4184 */ 4185 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4186 ret = scrub_supers(sctx, dev); 4187 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4188 } 4189 4190 if (!ret) 4191 ret = scrub_enumerate_chunks(sctx, dev, start, end); 4192 memalloc_nofs_restore(nofs_flag); 4193 4194 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4195 atomic_dec(&fs_info->scrubs_running); 4196 wake_up(&fs_info->scrub_pause_wait); 4197 4198 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4199 4200 if (progress) 4201 memcpy(progress, &sctx->stat, sizeof(*progress)); 4202 4203 if (!is_dev_replace) 4204 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 4205 ret ? "not finished" : "finished", devid, ret); 4206 4207 mutex_lock(&fs_info->scrub_lock); 4208 dev->scrub_ctx = NULL; 4209 mutex_unlock(&fs_info->scrub_lock); 4210 4211 scrub_workers_put(fs_info); 4212 scrub_put_ctx(sctx); 4213 4214 return ret; 4215 out: 4216 scrub_workers_put(fs_info); 4217 out_free_ctx: 4218 scrub_free_ctx(sctx); 4219 4220 return ret; 4221 } 4222 4223 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4224 { 4225 mutex_lock(&fs_info->scrub_lock); 4226 atomic_inc(&fs_info->scrub_pause_req); 4227 while (atomic_read(&fs_info->scrubs_paused) != 4228 atomic_read(&fs_info->scrubs_running)) { 4229 mutex_unlock(&fs_info->scrub_lock); 4230 wait_event(fs_info->scrub_pause_wait, 4231 atomic_read(&fs_info->scrubs_paused) == 4232 atomic_read(&fs_info->scrubs_running)); 4233 mutex_lock(&fs_info->scrub_lock); 4234 } 4235 mutex_unlock(&fs_info->scrub_lock); 4236 } 4237 4238 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4239 { 4240 atomic_dec(&fs_info->scrub_pause_req); 4241 wake_up(&fs_info->scrub_pause_wait); 4242 } 4243 4244 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4245 { 4246 mutex_lock(&fs_info->scrub_lock); 4247 if (!atomic_read(&fs_info->scrubs_running)) { 4248 mutex_unlock(&fs_info->scrub_lock); 4249 return -ENOTCONN; 4250 } 4251 4252 atomic_inc(&fs_info->scrub_cancel_req); 4253 while (atomic_read(&fs_info->scrubs_running)) { 4254 mutex_unlock(&fs_info->scrub_lock); 4255 wait_event(fs_info->scrub_pause_wait, 4256 atomic_read(&fs_info->scrubs_running) == 0); 4257 mutex_lock(&fs_info->scrub_lock); 4258 } 4259 atomic_dec(&fs_info->scrub_cancel_req); 4260 mutex_unlock(&fs_info->scrub_lock); 4261 4262 return 0; 4263 } 4264 4265 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4266 { 4267 struct btrfs_fs_info *fs_info = dev->fs_info; 4268 struct scrub_ctx *sctx; 4269 4270 mutex_lock(&fs_info->scrub_lock); 4271 sctx = dev->scrub_ctx; 4272 if (!sctx) { 4273 mutex_unlock(&fs_info->scrub_lock); 4274 return -ENOTCONN; 4275 } 4276 atomic_inc(&sctx->cancel_req); 4277 while (dev->scrub_ctx) { 4278 mutex_unlock(&fs_info->scrub_lock); 4279 wait_event(fs_info->scrub_pause_wait, 4280 dev->scrub_ctx == NULL); 4281 mutex_lock(&fs_info->scrub_lock); 4282 } 4283 mutex_unlock(&fs_info->scrub_lock); 4284 4285 return 0; 4286 } 4287 4288 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4289 struct btrfs_scrub_progress *progress) 4290 { 4291 struct btrfs_device *dev; 4292 struct scrub_ctx *sctx = NULL; 4293 4294 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4295 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 4296 if (dev) 4297 sctx = dev->scrub_ctx; 4298 if (sctx) 4299 memcpy(progress, &sctx->stat, sizeof(*progress)); 4300 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4301 4302 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4303 } 4304 4305 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4306 u64 extent_logical, u32 extent_len, 4307 u64 *extent_physical, 4308 struct btrfs_device **extent_dev, 4309 int *extent_mirror_num) 4310 { 4311 u64 mapped_length; 4312 struct btrfs_bio *bbio = NULL; 4313 int ret; 4314 4315 mapped_length = extent_len; 4316 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4317 &mapped_length, &bbio, 0); 4318 if (ret || !bbio || mapped_length < extent_len || 4319 !bbio->stripes[0].dev->bdev) { 4320 btrfs_put_bbio(bbio); 4321 return; 4322 } 4323 4324 *extent_physical = bbio->stripes[0].physical; 4325 *extent_mirror_num = bbio->mirror_num; 4326 *extent_dev = bbio->stripes[0].dev; 4327 btrfs_put_bbio(bbio); 4328 } 4329