1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 #include "zoned.h" 24 25 /* 26 * This is only the first step towards a full-features scrub. It reads all 27 * extent and super block and verifies the checksums. In case a bad checksum 28 * is found or the extent cannot be read, good data will be written back if 29 * any can be found. 30 * 31 * Future enhancements: 32 * - In case an unrepairable extent is encountered, track which files are 33 * affected and report them 34 * - track and record media errors, throw out bad devices 35 * - add a mode to also read unallocated space 36 */ 37 38 struct scrub_block; 39 struct scrub_ctx; 40 41 /* 42 * The following three values only influence the performance. 43 * 44 * The last one configures the number of parallel and outstanding I/O 45 * operations. The first one configures an upper limit for the number 46 * of (dynamically allocated) pages that are added to a bio. 47 */ 48 #define SCRUB_PAGES_PER_BIO 32 /* 128KiB per bio for x86 */ 49 #define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for x86 */ 50 51 /* 52 * The following value times PAGE_SIZE needs to be large enough to match the 53 * largest node/leaf/sector size that shall be supported. 54 */ 55 #define SCRUB_MAX_PAGES_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 56 57 struct scrub_recover { 58 refcount_t refs; 59 struct btrfs_io_context *bioc; 60 u64 map_length; 61 }; 62 63 struct scrub_page { 64 struct scrub_block *sblock; 65 struct page *page; 66 struct btrfs_device *dev; 67 struct list_head list; 68 u64 flags; /* extent flags */ 69 u64 generation; 70 u64 logical; 71 u64 physical; 72 u64 physical_for_dev_replace; 73 atomic_t refs; 74 u8 mirror_num; 75 unsigned int have_csum:1; 76 unsigned int io_error:1; 77 u8 csum[BTRFS_CSUM_SIZE]; 78 79 struct scrub_recover *recover; 80 }; 81 82 struct scrub_bio { 83 int index; 84 struct scrub_ctx *sctx; 85 struct btrfs_device *dev; 86 struct bio *bio; 87 blk_status_t status; 88 u64 logical; 89 u64 physical; 90 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO]; 91 int page_count; 92 int next_free; 93 struct btrfs_work work; 94 }; 95 96 struct scrub_block { 97 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 98 int page_count; 99 atomic_t outstanding_pages; 100 refcount_t refs; /* free mem on transition to zero */ 101 struct scrub_ctx *sctx; 102 struct scrub_parity *sparity; 103 struct { 104 unsigned int header_error:1; 105 unsigned int checksum_error:1; 106 unsigned int no_io_error_seen:1; 107 unsigned int generation_error:1; /* also sets header_error */ 108 109 /* The following is for the data used to check parity */ 110 /* It is for the data with checksum */ 111 unsigned int data_corrected:1; 112 }; 113 struct btrfs_work work; 114 }; 115 116 /* Used for the chunks with parity stripe such RAID5/6 */ 117 struct scrub_parity { 118 struct scrub_ctx *sctx; 119 120 struct btrfs_device *scrub_dev; 121 122 u64 logic_start; 123 124 u64 logic_end; 125 126 int nsectors; 127 128 u32 stripe_len; 129 130 refcount_t refs; 131 132 struct list_head spages; 133 134 /* Work of parity check and repair */ 135 struct btrfs_work work; 136 137 /* Mark the parity blocks which have data */ 138 unsigned long *dbitmap; 139 140 /* 141 * Mark the parity blocks which have data, but errors happen when 142 * read data or check data 143 */ 144 unsigned long *ebitmap; 145 146 unsigned long bitmap[]; 147 }; 148 149 struct scrub_ctx { 150 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 151 struct btrfs_fs_info *fs_info; 152 int first_free; 153 int curr; 154 atomic_t bios_in_flight; 155 atomic_t workers_pending; 156 spinlock_t list_lock; 157 wait_queue_head_t list_wait; 158 struct list_head csum_list; 159 atomic_t cancel_req; 160 int readonly; 161 int pages_per_bio; 162 163 /* State of IO submission throttling affecting the associated device */ 164 ktime_t throttle_deadline; 165 u64 throttle_sent; 166 167 int is_dev_replace; 168 u64 write_pointer; 169 170 struct scrub_bio *wr_curr_bio; 171 struct mutex wr_lock; 172 struct btrfs_device *wr_tgtdev; 173 bool flush_all_writes; 174 175 /* 176 * statistics 177 */ 178 struct btrfs_scrub_progress stat; 179 spinlock_t stat_lock; 180 181 /* 182 * Use a ref counter to avoid use-after-free issues. Scrub workers 183 * decrement bios_in_flight and workers_pending and then do a wakeup 184 * on the list_wait wait queue. We must ensure the main scrub task 185 * doesn't free the scrub context before or while the workers are 186 * doing the wakeup() call. 187 */ 188 refcount_t refs; 189 }; 190 191 struct scrub_warning { 192 struct btrfs_path *path; 193 u64 extent_item_size; 194 const char *errstr; 195 u64 physical; 196 u64 logical; 197 struct btrfs_device *dev; 198 }; 199 200 struct full_stripe_lock { 201 struct rb_node node; 202 u64 logical; 203 u64 refs; 204 struct mutex mutex; 205 }; 206 207 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 208 struct scrub_block *sblocks_for_recheck); 209 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 210 struct scrub_block *sblock, 211 int retry_failed_mirror); 212 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 213 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 214 struct scrub_block *sblock_good); 215 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 216 struct scrub_block *sblock_good, 217 int page_num, int force_write); 218 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 219 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 220 int page_num); 221 static int scrub_checksum_data(struct scrub_block *sblock); 222 static int scrub_checksum_tree_block(struct scrub_block *sblock); 223 static int scrub_checksum_super(struct scrub_block *sblock); 224 static void scrub_block_put(struct scrub_block *sblock); 225 static void scrub_page_get(struct scrub_page *spage); 226 static void scrub_page_put(struct scrub_page *spage); 227 static void scrub_parity_get(struct scrub_parity *sparity); 228 static void scrub_parity_put(struct scrub_parity *sparity); 229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 230 u64 physical, struct btrfs_device *dev, u64 flags, 231 u64 gen, int mirror_num, u8 *csum, 232 u64 physical_for_dev_replace); 233 static void scrub_bio_end_io(struct bio *bio); 234 static void scrub_bio_end_io_worker(struct btrfs_work *work); 235 static void scrub_block_complete(struct scrub_block *sblock); 236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 237 u64 extent_logical, u32 extent_len, 238 u64 *extent_physical, 239 struct btrfs_device **extent_dev, 240 int *extent_mirror_num); 241 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 242 struct scrub_page *spage); 243 static void scrub_wr_submit(struct scrub_ctx *sctx); 244 static void scrub_wr_bio_end_io(struct bio *bio); 245 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 246 static void scrub_put_ctx(struct scrub_ctx *sctx); 247 248 static inline int scrub_is_page_on_raid56(struct scrub_page *spage) 249 { 250 return spage->recover && 251 (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 252 } 253 254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 255 { 256 refcount_inc(&sctx->refs); 257 atomic_inc(&sctx->bios_in_flight); 258 } 259 260 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 261 { 262 atomic_dec(&sctx->bios_in_flight); 263 wake_up(&sctx->list_wait); 264 scrub_put_ctx(sctx); 265 } 266 267 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 268 { 269 while (atomic_read(&fs_info->scrub_pause_req)) { 270 mutex_unlock(&fs_info->scrub_lock); 271 wait_event(fs_info->scrub_pause_wait, 272 atomic_read(&fs_info->scrub_pause_req) == 0); 273 mutex_lock(&fs_info->scrub_lock); 274 } 275 } 276 277 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 278 { 279 atomic_inc(&fs_info->scrubs_paused); 280 wake_up(&fs_info->scrub_pause_wait); 281 } 282 283 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 284 { 285 mutex_lock(&fs_info->scrub_lock); 286 __scrub_blocked_if_needed(fs_info); 287 atomic_dec(&fs_info->scrubs_paused); 288 mutex_unlock(&fs_info->scrub_lock); 289 290 wake_up(&fs_info->scrub_pause_wait); 291 } 292 293 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 294 { 295 scrub_pause_on(fs_info); 296 scrub_pause_off(fs_info); 297 } 298 299 /* 300 * Insert new full stripe lock into full stripe locks tree 301 * 302 * Return pointer to existing or newly inserted full_stripe_lock structure if 303 * everything works well. 304 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 305 * 306 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 307 * function 308 */ 309 static struct full_stripe_lock *insert_full_stripe_lock( 310 struct btrfs_full_stripe_locks_tree *locks_root, 311 u64 fstripe_logical) 312 { 313 struct rb_node **p; 314 struct rb_node *parent = NULL; 315 struct full_stripe_lock *entry; 316 struct full_stripe_lock *ret; 317 318 lockdep_assert_held(&locks_root->lock); 319 320 p = &locks_root->root.rb_node; 321 while (*p) { 322 parent = *p; 323 entry = rb_entry(parent, struct full_stripe_lock, node); 324 if (fstripe_logical < entry->logical) { 325 p = &(*p)->rb_left; 326 } else if (fstripe_logical > entry->logical) { 327 p = &(*p)->rb_right; 328 } else { 329 entry->refs++; 330 return entry; 331 } 332 } 333 334 /* 335 * Insert new lock. 336 */ 337 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 338 if (!ret) 339 return ERR_PTR(-ENOMEM); 340 ret->logical = fstripe_logical; 341 ret->refs = 1; 342 mutex_init(&ret->mutex); 343 344 rb_link_node(&ret->node, parent, p); 345 rb_insert_color(&ret->node, &locks_root->root); 346 return ret; 347 } 348 349 /* 350 * Search for a full stripe lock of a block group 351 * 352 * Return pointer to existing full stripe lock if found 353 * Return NULL if not found 354 */ 355 static struct full_stripe_lock *search_full_stripe_lock( 356 struct btrfs_full_stripe_locks_tree *locks_root, 357 u64 fstripe_logical) 358 { 359 struct rb_node *node; 360 struct full_stripe_lock *entry; 361 362 lockdep_assert_held(&locks_root->lock); 363 364 node = locks_root->root.rb_node; 365 while (node) { 366 entry = rb_entry(node, struct full_stripe_lock, node); 367 if (fstripe_logical < entry->logical) 368 node = node->rb_left; 369 else if (fstripe_logical > entry->logical) 370 node = node->rb_right; 371 else 372 return entry; 373 } 374 return NULL; 375 } 376 377 /* 378 * Helper to get full stripe logical from a normal bytenr. 379 * 380 * Caller must ensure @cache is a RAID56 block group. 381 */ 382 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 383 { 384 u64 ret; 385 386 /* 387 * Due to chunk item size limit, full stripe length should not be 388 * larger than U32_MAX. Just a sanity check here. 389 */ 390 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 391 392 /* 393 * round_down() can only handle power of 2, while RAID56 full 394 * stripe length can be 64KiB * n, so we need to manually round down. 395 */ 396 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 397 cache->full_stripe_len + cache->start; 398 return ret; 399 } 400 401 /* 402 * Lock a full stripe to avoid concurrency of recovery and read 403 * 404 * It's only used for profiles with parities (RAID5/6), for other profiles it 405 * does nothing. 406 * 407 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 408 * So caller must call unlock_full_stripe() at the same context. 409 * 410 * Return <0 if encounters error. 411 */ 412 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 413 bool *locked_ret) 414 { 415 struct btrfs_block_group *bg_cache; 416 struct btrfs_full_stripe_locks_tree *locks_root; 417 struct full_stripe_lock *existing; 418 u64 fstripe_start; 419 int ret = 0; 420 421 *locked_ret = false; 422 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 423 if (!bg_cache) { 424 ASSERT(0); 425 return -ENOENT; 426 } 427 428 /* Profiles not based on parity don't need full stripe lock */ 429 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 430 goto out; 431 locks_root = &bg_cache->full_stripe_locks_root; 432 433 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 434 435 /* Now insert the full stripe lock */ 436 mutex_lock(&locks_root->lock); 437 existing = insert_full_stripe_lock(locks_root, fstripe_start); 438 mutex_unlock(&locks_root->lock); 439 if (IS_ERR(existing)) { 440 ret = PTR_ERR(existing); 441 goto out; 442 } 443 mutex_lock(&existing->mutex); 444 *locked_ret = true; 445 out: 446 btrfs_put_block_group(bg_cache); 447 return ret; 448 } 449 450 /* 451 * Unlock a full stripe. 452 * 453 * NOTE: Caller must ensure it's the same context calling corresponding 454 * lock_full_stripe(). 455 * 456 * Return 0 if we unlock full stripe without problem. 457 * Return <0 for error 458 */ 459 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 460 bool locked) 461 { 462 struct btrfs_block_group *bg_cache; 463 struct btrfs_full_stripe_locks_tree *locks_root; 464 struct full_stripe_lock *fstripe_lock; 465 u64 fstripe_start; 466 bool freeit = false; 467 int ret = 0; 468 469 /* If we didn't acquire full stripe lock, no need to continue */ 470 if (!locked) 471 return 0; 472 473 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 474 if (!bg_cache) { 475 ASSERT(0); 476 return -ENOENT; 477 } 478 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 479 goto out; 480 481 locks_root = &bg_cache->full_stripe_locks_root; 482 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 483 484 mutex_lock(&locks_root->lock); 485 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 486 /* Unpaired unlock_full_stripe() detected */ 487 if (!fstripe_lock) { 488 WARN_ON(1); 489 ret = -ENOENT; 490 mutex_unlock(&locks_root->lock); 491 goto out; 492 } 493 494 if (fstripe_lock->refs == 0) { 495 WARN_ON(1); 496 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 497 fstripe_lock->logical); 498 } else { 499 fstripe_lock->refs--; 500 } 501 502 if (fstripe_lock->refs == 0) { 503 rb_erase(&fstripe_lock->node, &locks_root->root); 504 freeit = true; 505 } 506 mutex_unlock(&locks_root->lock); 507 508 mutex_unlock(&fstripe_lock->mutex); 509 if (freeit) 510 kfree(fstripe_lock); 511 out: 512 btrfs_put_block_group(bg_cache); 513 return ret; 514 } 515 516 static void scrub_free_csums(struct scrub_ctx *sctx) 517 { 518 while (!list_empty(&sctx->csum_list)) { 519 struct btrfs_ordered_sum *sum; 520 sum = list_first_entry(&sctx->csum_list, 521 struct btrfs_ordered_sum, list); 522 list_del(&sum->list); 523 kfree(sum); 524 } 525 } 526 527 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 528 { 529 int i; 530 531 if (!sctx) 532 return; 533 534 /* this can happen when scrub is cancelled */ 535 if (sctx->curr != -1) { 536 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 537 538 for (i = 0; i < sbio->page_count; i++) { 539 WARN_ON(!sbio->pagev[i]->page); 540 scrub_block_put(sbio->pagev[i]->sblock); 541 } 542 bio_put(sbio->bio); 543 } 544 545 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 546 struct scrub_bio *sbio = sctx->bios[i]; 547 548 if (!sbio) 549 break; 550 kfree(sbio); 551 } 552 553 kfree(sctx->wr_curr_bio); 554 scrub_free_csums(sctx); 555 kfree(sctx); 556 } 557 558 static void scrub_put_ctx(struct scrub_ctx *sctx) 559 { 560 if (refcount_dec_and_test(&sctx->refs)) 561 scrub_free_ctx(sctx); 562 } 563 564 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 565 struct btrfs_fs_info *fs_info, int is_dev_replace) 566 { 567 struct scrub_ctx *sctx; 568 int i; 569 570 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 571 if (!sctx) 572 goto nomem; 573 refcount_set(&sctx->refs, 1); 574 sctx->is_dev_replace = is_dev_replace; 575 sctx->pages_per_bio = SCRUB_PAGES_PER_BIO; 576 sctx->curr = -1; 577 sctx->fs_info = fs_info; 578 INIT_LIST_HEAD(&sctx->csum_list); 579 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 580 struct scrub_bio *sbio; 581 582 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 583 if (!sbio) 584 goto nomem; 585 sctx->bios[i] = sbio; 586 587 sbio->index = i; 588 sbio->sctx = sctx; 589 sbio->page_count = 0; 590 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, 591 NULL); 592 593 if (i != SCRUB_BIOS_PER_SCTX - 1) 594 sctx->bios[i]->next_free = i + 1; 595 else 596 sctx->bios[i]->next_free = -1; 597 } 598 sctx->first_free = 0; 599 atomic_set(&sctx->bios_in_flight, 0); 600 atomic_set(&sctx->workers_pending, 0); 601 atomic_set(&sctx->cancel_req, 0); 602 603 spin_lock_init(&sctx->list_lock); 604 spin_lock_init(&sctx->stat_lock); 605 init_waitqueue_head(&sctx->list_wait); 606 sctx->throttle_deadline = 0; 607 608 WARN_ON(sctx->wr_curr_bio != NULL); 609 mutex_init(&sctx->wr_lock); 610 sctx->wr_curr_bio = NULL; 611 if (is_dev_replace) { 612 WARN_ON(!fs_info->dev_replace.tgtdev); 613 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 614 sctx->flush_all_writes = false; 615 } 616 617 return sctx; 618 619 nomem: 620 scrub_free_ctx(sctx); 621 return ERR_PTR(-ENOMEM); 622 } 623 624 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 625 void *warn_ctx) 626 { 627 u32 nlink; 628 int ret; 629 int i; 630 unsigned nofs_flag; 631 struct extent_buffer *eb; 632 struct btrfs_inode_item *inode_item; 633 struct scrub_warning *swarn = warn_ctx; 634 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 635 struct inode_fs_paths *ipath = NULL; 636 struct btrfs_root *local_root; 637 struct btrfs_key key; 638 639 local_root = btrfs_get_fs_root(fs_info, root, true); 640 if (IS_ERR(local_root)) { 641 ret = PTR_ERR(local_root); 642 goto err; 643 } 644 645 /* 646 * this makes the path point to (inum INODE_ITEM ioff) 647 */ 648 key.objectid = inum; 649 key.type = BTRFS_INODE_ITEM_KEY; 650 key.offset = 0; 651 652 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 653 if (ret) { 654 btrfs_put_root(local_root); 655 btrfs_release_path(swarn->path); 656 goto err; 657 } 658 659 eb = swarn->path->nodes[0]; 660 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 661 struct btrfs_inode_item); 662 nlink = btrfs_inode_nlink(eb, inode_item); 663 btrfs_release_path(swarn->path); 664 665 /* 666 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 667 * uses GFP_NOFS in this context, so we keep it consistent but it does 668 * not seem to be strictly necessary. 669 */ 670 nofs_flag = memalloc_nofs_save(); 671 ipath = init_ipath(4096, local_root, swarn->path); 672 memalloc_nofs_restore(nofs_flag); 673 if (IS_ERR(ipath)) { 674 btrfs_put_root(local_root); 675 ret = PTR_ERR(ipath); 676 ipath = NULL; 677 goto err; 678 } 679 ret = paths_from_inode(inum, ipath); 680 681 if (ret < 0) 682 goto err; 683 684 /* 685 * we deliberately ignore the bit ipath might have been too small to 686 * hold all of the paths here 687 */ 688 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 689 btrfs_warn_in_rcu(fs_info, 690 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 691 swarn->errstr, swarn->logical, 692 rcu_str_deref(swarn->dev->name), 693 swarn->physical, 694 root, inum, offset, 695 fs_info->sectorsize, nlink, 696 (char *)(unsigned long)ipath->fspath->val[i]); 697 698 btrfs_put_root(local_root); 699 free_ipath(ipath); 700 return 0; 701 702 err: 703 btrfs_warn_in_rcu(fs_info, 704 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 705 swarn->errstr, swarn->logical, 706 rcu_str_deref(swarn->dev->name), 707 swarn->physical, 708 root, inum, offset, ret); 709 710 free_ipath(ipath); 711 return 0; 712 } 713 714 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 715 { 716 struct btrfs_device *dev; 717 struct btrfs_fs_info *fs_info; 718 struct btrfs_path *path; 719 struct btrfs_key found_key; 720 struct extent_buffer *eb; 721 struct btrfs_extent_item *ei; 722 struct scrub_warning swarn; 723 unsigned long ptr = 0; 724 u64 extent_item_pos; 725 u64 flags = 0; 726 u64 ref_root; 727 u32 item_size; 728 u8 ref_level = 0; 729 int ret; 730 731 WARN_ON(sblock->page_count < 1); 732 dev = sblock->pagev[0]->dev; 733 fs_info = sblock->sctx->fs_info; 734 735 path = btrfs_alloc_path(); 736 if (!path) 737 return; 738 739 swarn.physical = sblock->pagev[0]->physical; 740 swarn.logical = sblock->pagev[0]->logical; 741 swarn.errstr = errstr; 742 swarn.dev = NULL; 743 744 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 745 &flags); 746 if (ret < 0) 747 goto out; 748 749 extent_item_pos = swarn.logical - found_key.objectid; 750 swarn.extent_item_size = found_key.offset; 751 752 eb = path->nodes[0]; 753 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 754 item_size = btrfs_item_size(eb, path->slots[0]); 755 756 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 757 do { 758 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 759 item_size, &ref_root, 760 &ref_level); 761 btrfs_warn_in_rcu(fs_info, 762 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 763 errstr, swarn.logical, 764 rcu_str_deref(dev->name), 765 swarn.physical, 766 ref_level ? "node" : "leaf", 767 ret < 0 ? -1 : ref_level, 768 ret < 0 ? -1 : ref_root); 769 } while (ret != 1); 770 btrfs_release_path(path); 771 } else { 772 btrfs_release_path(path); 773 swarn.path = path; 774 swarn.dev = dev; 775 iterate_extent_inodes(fs_info, found_key.objectid, 776 extent_item_pos, 1, 777 scrub_print_warning_inode, &swarn, false); 778 } 779 780 out: 781 btrfs_free_path(path); 782 } 783 784 static inline void scrub_get_recover(struct scrub_recover *recover) 785 { 786 refcount_inc(&recover->refs); 787 } 788 789 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 790 struct scrub_recover *recover) 791 { 792 if (refcount_dec_and_test(&recover->refs)) { 793 btrfs_bio_counter_dec(fs_info); 794 btrfs_put_bioc(recover->bioc); 795 kfree(recover); 796 } 797 } 798 799 /* 800 * scrub_handle_errored_block gets called when either verification of the 801 * pages failed or the bio failed to read, e.g. with EIO. In the latter 802 * case, this function handles all pages in the bio, even though only one 803 * may be bad. 804 * The goal of this function is to repair the errored block by using the 805 * contents of one of the mirrors. 806 */ 807 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 808 { 809 struct scrub_ctx *sctx = sblock_to_check->sctx; 810 struct btrfs_device *dev; 811 struct btrfs_fs_info *fs_info; 812 u64 logical; 813 unsigned int failed_mirror_index; 814 unsigned int is_metadata; 815 unsigned int have_csum; 816 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 817 struct scrub_block *sblock_bad; 818 int ret; 819 int mirror_index; 820 int page_num; 821 int success; 822 bool full_stripe_locked; 823 unsigned int nofs_flag; 824 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 825 DEFAULT_RATELIMIT_BURST); 826 827 BUG_ON(sblock_to_check->page_count < 1); 828 fs_info = sctx->fs_info; 829 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 830 /* 831 * if we find an error in a super block, we just report it. 832 * They will get written with the next transaction commit 833 * anyway 834 */ 835 spin_lock(&sctx->stat_lock); 836 ++sctx->stat.super_errors; 837 spin_unlock(&sctx->stat_lock); 838 return 0; 839 } 840 logical = sblock_to_check->pagev[0]->logical; 841 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 842 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 843 is_metadata = !(sblock_to_check->pagev[0]->flags & 844 BTRFS_EXTENT_FLAG_DATA); 845 have_csum = sblock_to_check->pagev[0]->have_csum; 846 dev = sblock_to_check->pagev[0]->dev; 847 848 if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical)) 849 return 0; 850 851 /* 852 * We must use GFP_NOFS because the scrub task might be waiting for a 853 * worker task executing this function and in turn a transaction commit 854 * might be waiting the scrub task to pause (which needs to wait for all 855 * the worker tasks to complete before pausing). 856 * We do allocations in the workers through insert_full_stripe_lock() 857 * and scrub_add_page_to_wr_bio(), which happens down the call chain of 858 * this function. 859 */ 860 nofs_flag = memalloc_nofs_save(); 861 /* 862 * For RAID5/6, race can happen for a different device scrub thread. 863 * For data corruption, Parity and Data threads will both try 864 * to recovery the data. 865 * Race can lead to doubly added csum error, or even unrecoverable 866 * error. 867 */ 868 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 869 if (ret < 0) { 870 memalloc_nofs_restore(nofs_flag); 871 spin_lock(&sctx->stat_lock); 872 if (ret == -ENOMEM) 873 sctx->stat.malloc_errors++; 874 sctx->stat.read_errors++; 875 sctx->stat.uncorrectable_errors++; 876 spin_unlock(&sctx->stat_lock); 877 return ret; 878 } 879 880 /* 881 * read all mirrors one after the other. This includes to 882 * re-read the extent or metadata block that failed (that was 883 * the cause that this fixup code is called) another time, 884 * sector by sector this time in order to know which sectors 885 * caused I/O errors and which ones are good (for all mirrors). 886 * It is the goal to handle the situation when more than one 887 * mirror contains I/O errors, but the errors do not 888 * overlap, i.e. the data can be repaired by selecting the 889 * sectors from those mirrors without I/O error on the 890 * particular sectors. One example (with blocks >= 2 * sectorsize) 891 * would be that mirror #1 has an I/O error on the first sector, 892 * the second sector is good, and mirror #2 has an I/O error on 893 * the second sector, but the first sector is good. 894 * Then the first sector of the first mirror can be repaired by 895 * taking the first sector of the second mirror, and the 896 * second sector of the second mirror can be repaired by 897 * copying the contents of the 2nd sector of the 1st mirror. 898 * One more note: if the sectors of one mirror contain I/O 899 * errors, the checksum cannot be verified. In order to get 900 * the best data for repairing, the first attempt is to find 901 * a mirror without I/O errors and with a validated checksum. 902 * Only if this is not possible, the sectors are picked from 903 * mirrors with I/O errors without considering the checksum. 904 * If the latter is the case, at the end, the checksum of the 905 * repaired area is verified in order to correctly maintain 906 * the statistics. 907 */ 908 909 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 910 sizeof(*sblocks_for_recheck), GFP_KERNEL); 911 if (!sblocks_for_recheck) { 912 spin_lock(&sctx->stat_lock); 913 sctx->stat.malloc_errors++; 914 sctx->stat.read_errors++; 915 sctx->stat.uncorrectable_errors++; 916 spin_unlock(&sctx->stat_lock); 917 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 918 goto out; 919 } 920 921 /* setup the context, map the logical blocks and alloc the pages */ 922 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 923 if (ret) { 924 spin_lock(&sctx->stat_lock); 925 sctx->stat.read_errors++; 926 sctx->stat.uncorrectable_errors++; 927 spin_unlock(&sctx->stat_lock); 928 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 929 goto out; 930 } 931 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 932 sblock_bad = sblocks_for_recheck + failed_mirror_index; 933 934 /* build and submit the bios for the failed mirror, check checksums */ 935 scrub_recheck_block(fs_info, sblock_bad, 1); 936 937 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 938 sblock_bad->no_io_error_seen) { 939 /* 940 * the error disappeared after reading page by page, or 941 * the area was part of a huge bio and other parts of the 942 * bio caused I/O errors, or the block layer merged several 943 * read requests into one and the error is caused by a 944 * different bio (usually one of the two latter cases is 945 * the cause) 946 */ 947 spin_lock(&sctx->stat_lock); 948 sctx->stat.unverified_errors++; 949 sblock_to_check->data_corrected = 1; 950 spin_unlock(&sctx->stat_lock); 951 952 if (sctx->is_dev_replace) 953 scrub_write_block_to_dev_replace(sblock_bad); 954 goto out; 955 } 956 957 if (!sblock_bad->no_io_error_seen) { 958 spin_lock(&sctx->stat_lock); 959 sctx->stat.read_errors++; 960 spin_unlock(&sctx->stat_lock); 961 if (__ratelimit(&rs)) 962 scrub_print_warning("i/o error", sblock_to_check); 963 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 964 } else if (sblock_bad->checksum_error) { 965 spin_lock(&sctx->stat_lock); 966 sctx->stat.csum_errors++; 967 spin_unlock(&sctx->stat_lock); 968 if (__ratelimit(&rs)) 969 scrub_print_warning("checksum error", sblock_to_check); 970 btrfs_dev_stat_inc_and_print(dev, 971 BTRFS_DEV_STAT_CORRUPTION_ERRS); 972 } else if (sblock_bad->header_error) { 973 spin_lock(&sctx->stat_lock); 974 sctx->stat.verify_errors++; 975 spin_unlock(&sctx->stat_lock); 976 if (__ratelimit(&rs)) 977 scrub_print_warning("checksum/header error", 978 sblock_to_check); 979 if (sblock_bad->generation_error) 980 btrfs_dev_stat_inc_and_print(dev, 981 BTRFS_DEV_STAT_GENERATION_ERRS); 982 else 983 btrfs_dev_stat_inc_and_print(dev, 984 BTRFS_DEV_STAT_CORRUPTION_ERRS); 985 } 986 987 if (sctx->readonly) { 988 ASSERT(!sctx->is_dev_replace); 989 goto out; 990 } 991 992 /* 993 * now build and submit the bios for the other mirrors, check 994 * checksums. 995 * First try to pick the mirror which is completely without I/O 996 * errors and also does not have a checksum error. 997 * If one is found, and if a checksum is present, the full block 998 * that is known to contain an error is rewritten. Afterwards 999 * the block is known to be corrected. 1000 * If a mirror is found which is completely correct, and no 1001 * checksum is present, only those pages are rewritten that had 1002 * an I/O error in the block to be repaired, since it cannot be 1003 * determined, which copy of the other pages is better (and it 1004 * could happen otherwise that a correct page would be 1005 * overwritten by a bad one). 1006 */ 1007 for (mirror_index = 0; ;mirror_index++) { 1008 struct scrub_block *sblock_other; 1009 1010 if (mirror_index == failed_mirror_index) 1011 continue; 1012 1013 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1014 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1015 if (mirror_index >= BTRFS_MAX_MIRRORS) 1016 break; 1017 if (!sblocks_for_recheck[mirror_index].page_count) 1018 break; 1019 1020 sblock_other = sblocks_for_recheck + mirror_index; 1021 } else { 1022 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1023 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs; 1024 1025 if (mirror_index >= max_allowed) 1026 break; 1027 if (!sblocks_for_recheck[1].page_count) 1028 break; 1029 1030 ASSERT(failed_mirror_index == 0); 1031 sblock_other = sblocks_for_recheck + 1; 1032 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1033 } 1034 1035 /* build and submit the bios, check checksums */ 1036 scrub_recheck_block(fs_info, sblock_other, 0); 1037 1038 if (!sblock_other->header_error && 1039 !sblock_other->checksum_error && 1040 sblock_other->no_io_error_seen) { 1041 if (sctx->is_dev_replace) { 1042 scrub_write_block_to_dev_replace(sblock_other); 1043 goto corrected_error; 1044 } else { 1045 ret = scrub_repair_block_from_good_copy( 1046 sblock_bad, sblock_other); 1047 if (!ret) 1048 goto corrected_error; 1049 } 1050 } 1051 } 1052 1053 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1054 goto did_not_correct_error; 1055 1056 /* 1057 * In case of I/O errors in the area that is supposed to be 1058 * repaired, continue by picking good copies of those sectors. 1059 * Select the good sectors from mirrors to rewrite bad sectors from 1060 * the area to fix. Afterwards verify the checksum of the block 1061 * that is supposed to be repaired. This verification step is 1062 * only done for the purpose of statistic counting and for the 1063 * final scrub report, whether errors remain. 1064 * A perfect algorithm could make use of the checksum and try 1065 * all possible combinations of sectors from the different mirrors 1066 * until the checksum verification succeeds. For example, when 1067 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector 1068 * of mirror #2 is readable but the final checksum test fails, 1069 * then the 2nd sector of mirror #3 could be tried, whether now 1070 * the final checksum succeeds. But this would be a rare 1071 * exception and is therefore not implemented. At least it is 1072 * avoided that the good copy is overwritten. 1073 * A more useful improvement would be to pick the sectors 1074 * without I/O error based on sector sizes (512 bytes on legacy 1075 * disks) instead of on sectorsize. Then maybe 512 byte of one 1076 * mirror could be repaired by taking 512 byte of a different 1077 * mirror, even if other 512 byte sectors in the same sectorsize 1078 * area are unreadable. 1079 */ 1080 success = 1; 1081 for (page_num = 0; page_num < sblock_bad->page_count; 1082 page_num++) { 1083 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1084 struct scrub_block *sblock_other = NULL; 1085 1086 /* skip no-io-error page in scrub */ 1087 if (!spage_bad->io_error && !sctx->is_dev_replace) 1088 continue; 1089 1090 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1091 /* 1092 * In case of dev replace, if raid56 rebuild process 1093 * didn't work out correct data, then copy the content 1094 * in sblock_bad to make sure target device is identical 1095 * to source device, instead of writing garbage data in 1096 * sblock_for_recheck array to target device. 1097 */ 1098 sblock_other = NULL; 1099 } else if (spage_bad->io_error) { 1100 /* try to find no-io-error page in mirrors */ 1101 for (mirror_index = 0; 1102 mirror_index < BTRFS_MAX_MIRRORS && 1103 sblocks_for_recheck[mirror_index].page_count > 0; 1104 mirror_index++) { 1105 if (!sblocks_for_recheck[mirror_index]. 1106 pagev[page_num]->io_error) { 1107 sblock_other = sblocks_for_recheck + 1108 mirror_index; 1109 break; 1110 } 1111 } 1112 if (!sblock_other) 1113 success = 0; 1114 } 1115 1116 if (sctx->is_dev_replace) { 1117 /* 1118 * did not find a mirror to fetch the page 1119 * from. scrub_write_page_to_dev_replace() 1120 * handles this case (page->io_error), by 1121 * filling the block with zeros before 1122 * submitting the write request 1123 */ 1124 if (!sblock_other) 1125 sblock_other = sblock_bad; 1126 1127 if (scrub_write_page_to_dev_replace(sblock_other, 1128 page_num) != 0) { 1129 atomic64_inc( 1130 &fs_info->dev_replace.num_write_errors); 1131 success = 0; 1132 } 1133 } else if (sblock_other) { 1134 ret = scrub_repair_page_from_good_copy(sblock_bad, 1135 sblock_other, 1136 page_num, 0); 1137 if (0 == ret) 1138 spage_bad->io_error = 0; 1139 else 1140 success = 0; 1141 } 1142 } 1143 1144 if (success && !sctx->is_dev_replace) { 1145 if (is_metadata || have_csum) { 1146 /* 1147 * need to verify the checksum now that all 1148 * sectors on disk are repaired (the write 1149 * request for data to be repaired is on its way). 1150 * Just be lazy and use scrub_recheck_block() 1151 * which re-reads the data before the checksum 1152 * is verified, but most likely the data comes out 1153 * of the page cache. 1154 */ 1155 scrub_recheck_block(fs_info, sblock_bad, 1); 1156 if (!sblock_bad->header_error && 1157 !sblock_bad->checksum_error && 1158 sblock_bad->no_io_error_seen) 1159 goto corrected_error; 1160 else 1161 goto did_not_correct_error; 1162 } else { 1163 corrected_error: 1164 spin_lock(&sctx->stat_lock); 1165 sctx->stat.corrected_errors++; 1166 sblock_to_check->data_corrected = 1; 1167 spin_unlock(&sctx->stat_lock); 1168 btrfs_err_rl_in_rcu(fs_info, 1169 "fixed up error at logical %llu on dev %s", 1170 logical, rcu_str_deref(dev->name)); 1171 } 1172 } else { 1173 did_not_correct_error: 1174 spin_lock(&sctx->stat_lock); 1175 sctx->stat.uncorrectable_errors++; 1176 spin_unlock(&sctx->stat_lock); 1177 btrfs_err_rl_in_rcu(fs_info, 1178 "unable to fixup (regular) error at logical %llu on dev %s", 1179 logical, rcu_str_deref(dev->name)); 1180 } 1181 1182 out: 1183 if (sblocks_for_recheck) { 1184 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1185 mirror_index++) { 1186 struct scrub_block *sblock = sblocks_for_recheck + 1187 mirror_index; 1188 struct scrub_recover *recover; 1189 int page_index; 1190 1191 for (page_index = 0; page_index < sblock->page_count; 1192 page_index++) { 1193 sblock->pagev[page_index]->sblock = NULL; 1194 recover = sblock->pagev[page_index]->recover; 1195 if (recover) { 1196 scrub_put_recover(fs_info, recover); 1197 sblock->pagev[page_index]->recover = 1198 NULL; 1199 } 1200 scrub_page_put(sblock->pagev[page_index]); 1201 } 1202 } 1203 kfree(sblocks_for_recheck); 1204 } 1205 1206 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1207 memalloc_nofs_restore(nofs_flag); 1208 if (ret < 0) 1209 return ret; 1210 return 0; 1211 } 1212 1213 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) 1214 { 1215 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) 1216 return 2; 1217 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) 1218 return 3; 1219 else 1220 return (int)bioc->num_stripes; 1221 } 1222 1223 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1224 u64 *raid_map, 1225 u64 mapped_length, 1226 int nstripes, int mirror, 1227 int *stripe_index, 1228 u64 *stripe_offset) 1229 { 1230 int i; 1231 1232 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1233 /* RAID5/6 */ 1234 for (i = 0; i < nstripes; i++) { 1235 if (raid_map[i] == RAID6_Q_STRIPE || 1236 raid_map[i] == RAID5_P_STRIPE) 1237 continue; 1238 1239 if (logical >= raid_map[i] && 1240 logical < raid_map[i] + mapped_length) 1241 break; 1242 } 1243 1244 *stripe_index = i; 1245 *stripe_offset = logical - raid_map[i]; 1246 } else { 1247 /* The other RAID type */ 1248 *stripe_index = mirror; 1249 *stripe_offset = 0; 1250 } 1251 } 1252 1253 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1254 struct scrub_block *sblocks_for_recheck) 1255 { 1256 struct scrub_ctx *sctx = original_sblock->sctx; 1257 struct btrfs_fs_info *fs_info = sctx->fs_info; 1258 u64 length = original_sblock->page_count * fs_info->sectorsize; 1259 u64 logical = original_sblock->pagev[0]->logical; 1260 u64 generation = original_sblock->pagev[0]->generation; 1261 u64 flags = original_sblock->pagev[0]->flags; 1262 u64 have_csum = original_sblock->pagev[0]->have_csum; 1263 struct scrub_recover *recover; 1264 struct btrfs_io_context *bioc; 1265 u64 sublen; 1266 u64 mapped_length; 1267 u64 stripe_offset; 1268 int stripe_index; 1269 int page_index = 0; 1270 int mirror_index; 1271 int nmirrors; 1272 int ret; 1273 1274 /* 1275 * note: the two members refs and outstanding_pages 1276 * are not used (and not set) in the blocks that are used for 1277 * the recheck procedure 1278 */ 1279 1280 while (length > 0) { 1281 sublen = min_t(u64, length, fs_info->sectorsize); 1282 mapped_length = sublen; 1283 bioc = NULL; 1284 1285 /* 1286 * With a length of sectorsize, each returned stripe represents 1287 * one mirror 1288 */ 1289 btrfs_bio_counter_inc_blocked(fs_info); 1290 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1291 logical, &mapped_length, &bioc); 1292 if (ret || !bioc || mapped_length < sublen) { 1293 btrfs_put_bioc(bioc); 1294 btrfs_bio_counter_dec(fs_info); 1295 return -EIO; 1296 } 1297 1298 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1299 if (!recover) { 1300 btrfs_put_bioc(bioc); 1301 btrfs_bio_counter_dec(fs_info); 1302 return -ENOMEM; 1303 } 1304 1305 refcount_set(&recover->refs, 1); 1306 recover->bioc = bioc; 1307 recover->map_length = mapped_length; 1308 1309 ASSERT(page_index < SCRUB_MAX_PAGES_PER_BLOCK); 1310 1311 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); 1312 1313 for (mirror_index = 0; mirror_index < nmirrors; 1314 mirror_index++) { 1315 struct scrub_block *sblock; 1316 struct scrub_page *spage; 1317 1318 sblock = sblocks_for_recheck + mirror_index; 1319 sblock->sctx = sctx; 1320 1321 spage = kzalloc(sizeof(*spage), GFP_NOFS); 1322 if (!spage) { 1323 leave_nomem: 1324 spin_lock(&sctx->stat_lock); 1325 sctx->stat.malloc_errors++; 1326 spin_unlock(&sctx->stat_lock); 1327 scrub_put_recover(fs_info, recover); 1328 return -ENOMEM; 1329 } 1330 scrub_page_get(spage); 1331 sblock->pagev[page_index] = spage; 1332 spage->sblock = sblock; 1333 spage->flags = flags; 1334 spage->generation = generation; 1335 spage->logical = logical; 1336 spage->have_csum = have_csum; 1337 if (have_csum) 1338 memcpy(spage->csum, 1339 original_sblock->pagev[0]->csum, 1340 sctx->fs_info->csum_size); 1341 1342 scrub_stripe_index_and_offset(logical, 1343 bioc->map_type, 1344 bioc->raid_map, 1345 mapped_length, 1346 bioc->num_stripes - 1347 bioc->num_tgtdevs, 1348 mirror_index, 1349 &stripe_index, 1350 &stripe_offset); 1351 spage->physical = bioc->stripes[stripe_index].physical + 1352 stripe_offset; 1353 spage->dev = bioc->stripes[stripe_index].dev; 1354 1355 BUG_ON(page_index >= original_sblock->page_count); 1356 spage->physical_for_dev_replace = 1357 original_sblock->pagev[page_index]-> 1358 physical_for_dev_replace; 1359 /* for missing devices, dev->bdev is NULL */ 1360 spage->mirror_num = mirror_index + 1; 1361 sblock->page_count++; 1362 spage->page = alloc_page(GFP_NOFS); 1363 if (!spage->page) 1364 goto leave_nomem; 1365 1366 scrub_get_recover(recover); 1367 spage->recover = recover; 1368 } 1369 scrub_put_recover(fs_info, recover); 1370 length -= sublen; 1371 logical += sublen; 1372 page_index++; 1373 } 1374 1375 return 0; 1376 } 1377 1378 static void scrub_bio_wait_endio(struct bio *bio) 1379 { 1380 complete(bio->bi_private); 1381 } 1382 1383 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1384 struct bio *bio, 1385 struct scrub_page *spage) 1386 { 1387 DECLARE_COMPLETION_ONSTACK(done); 1388 int ret; 1389 int mirror_num; 1390 1391 bio->bi_iter.bi_sector = spage->logical >> 9; 1392 bio->bi_private = &done; 1393 bio->bi_end_io = scrub_bio_wait_endio; 1394 1395 mirror_num = spage->sblock->pagev[0]->mirror_num; 1396 ret = raid56_parity_recover(bio, spage->recover->bioc, 1397 spage->recover->map_length, 1398 mirror_num, 0); 1399 if (ret) 1400 return ret; 1401 1402 wait_for_completion_io(&done); 1403 return blk_status_to_errno(bio->bi_status); 1404 } 1405 1406 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1407 struct scrub_block *sblock) 1408 { 1409 struct scrub_page *first_page = sblock->pagev[0]; 1410 struct bio *bio; 1411 int page_num; 1412 1413 /* All pages in sblock belong to the same stripe on the same device. */ 1414 ASSERT(first_page->dev); 1415 if (!first_page->dev->bdev) 1416 goto out; 1417 1418 bio = btrfs_bio_alloc(BIO_MAX_VECS); 1419 bio_set_dev(bio, first_page->dev->bdev); 1420 1421 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1422 struct scrub_page *spage = sblock->pagev[page_num]; 1423 1424 WARN_ON(!spage->page); 1425 bio_add_page(bio, spage->page, PAGE_SIZE, 0); 1426 } 1427 1428 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1429 bio_put(bio); 1430 goto out; 1431 } 1432 1433 bio_put(bio); 1434 1435 scrub_recheck_block_checksum(sblock); 1436 1437 return; 1438 out: 1439 for (page_num = 0; page_num < sblock->page_count; page_num++) 1440 sblock->pagev[page_num]->io_error = 1; 1441 1442 sblock->no_io_error_seen = 0; 1443 } 1444 1445 /* 1446 * this function will check the on disk data for checksum errors, header 1447 * errors and read I/O errors. If any I/O errors happen, the exact pages 1448 * which are errored are marked as being bad. The goal is to enable scrub 1449 * to take those pages that are not errored from all the mirrors so that 1450 * the pages that are errored in the just handled mirror can be repaired. 1451 */ 1452 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1453 struct scrub_block *sblock, 1454 int retry_failed_mirror) 1455 { 1456 int page_num; 1457 1458 sblock->no_io_error_seen = 1; 1459 1460 /* short cut for raid56 */ 1461 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1462 return scrub_recheck_block_on_raid56(fs_info, sblock); 1463 1464 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1465 struct bio *bio; 1466 struct scrub_page *spage = sblock->pagev[page_num]; 1467 1468 if (spage->dev->bdev == NULL) { 1469 spage->io_error = 1; 1470 sblock->no_io_error_seen = 0; 1471 continue; 1472 } 1473 1474 WARN_ON(!spage->page); 1475 bio = btrfs_bio_alloc(1); 1476 bio_set_dev(bio, spage->dev->bdev); 1477 1478 bio_add_page(bio, spage->page, fs_info->sectorsize, 0); 1479 bio->bi_iter.bi_sector = spage->physical >> 9; 1480 bio->bi_opf = REQ_OP_READ; 1481 1482 if (btrfsic_submit_bio_wait(bio)) { 1483 spage->io_error = 1; 1484 sblock->no_io_error_seen = 0; 1485 } 1486 1487 bio_put(bio); 1488 } 1489 1490 if (sblock->no_io_error_seen) 1491 scrub_recheck_block_checksum(sblock); 1492 } 1493 1494 static inline int scrub_check_fsid(u8 fsid[], 1495 struct scrub_page *spage) 1496 { 1497 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1498 int ret; 1499 1500 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1501 return !ret; 1502 } 1503 1504 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1505 { 1506 sblock->header_error = 0; 1507 sblock->checksum_error = 0; 1508 sblock->generation_error = 0; 1509 1510 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1511 scrub_checksum_data(sblock); 1512 else 1513 scrub_checksum_tree_block(sblock); 1514 } 1515 1516 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1517 struct scrub_block *sblock_good) 1518 { 1519 int page_num; 1520 int ret = 0; 1521 1522 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1523 int ret_sub; 1524 1525 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1526 sblock_good, 1527 page_num, 1); 1528 if (ret_sub) 1529 ret = ret_sub; 1530 } 1531 1532 return ret; 1533 } 1534 1535 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1536 struct scrub_block *sblock_good, 1537 int page_num, int force_write) 1538 { 1539 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1540 struct scrub_page *spage_good = sblock_good->pagev[page_num]; 1541 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1542 const u32 sectorsize = fs_info->sectorsize; 1543 1544 BUG_ON(spage_bad->page == NULL); 1545 BUG_ON(spage_good->page == NULL); 1546 if (force_write || sblock_bad->header_error || 1547 sblock_bad->checksum_error || spage_bad->io_error) { 1548 struct bio *bio; 1549 int ret; 1550 1551 if (!spage_bad->dev->bdev) { 1552 btrfs_warn_rl(fs_info, 1553 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1554 return -EIO; 1555 } 1556 1557 bio = btrfs_bio_alloc(1); 1558 bio_set_dev(bio, spage_bad->dev->bdev); 1559 bio->bi_iter.bi_sector = spage_bad->physical >> 9; 1560 bio->bi_opf = REQ_OP_WRITE; 1561 1562 ret = bio_add_page(bio, spage_good->page, sectorsize, 0); 1563 if (ret != sectorsize) { 1564 bio_put(bio); 1565 return -EIO; 1566 } 1567 1568 if (btrfsic_submit_bio_wait(bio)) { 1569 btrfs_dev_stat_inc_and_print(spage_bad->dev, 1570 BTRFS_DEV_STAT_WRITE_ERRS); 1571 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1572 bio_put(bio); 1573 return -EIO; 1574 } 1575 bio_put(bio); 1576 } 1577 1578 return 0; 1579 } 1580 1581 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1582 { 1583 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1584 int page_num; 1585 1586 /* 1587 * This block is used for the check of the parity on the source device, 1588 * so the data needn't be written into the destination device. 1589 */ 1590 if (sblock->sparity) 1591 return; 1592 1593 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1594 int ret; 1595 1596 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1597 if (ret) 1598 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1599 } 1600 } 1601 1602 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1603 int page_num) 1604 { 1605 struct scrub_page *spage = sblock->pagev[page_num]; 1606 1607 BUG_ON(spage->page == NULL); 1608 if (spage->io_error) 1609 clear_page(page_address(spage->page)); 1610 1611 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1612 } 1613 1614 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 1615 { 1616 int ret = 0; 1617 u64 length; 1618 1619 if (!btrfs_is_zoned(sctx->fs_info)) 1620 return 0; 1621 1622 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 1623 return 0; 1624 1625 if (sctx->write_pointer < physical) { 1626 length = physical - sctx->write_pointer; 1627 1628 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 1629 sctx->write_pointer, length); 1630 if (!ret) 1631 sctx->write_pointer = physical; 1632 } 1633 return ret; 1634 } 1635 1636 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1637 struct scrub_page *spage) 1638 { 1639 struct scrub_bio *sbio; 1640 int ret; 1641 const u32 sectorsize = sctx->fs_info->sectorsize; 1642 1643 mutex_lock(&sctx->wr_lock); 1644 again: 1645 if (!sctx->wr_curr_bio) { 1646 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1647 GFP_KERNEL); 1648 if (!sctx->wr_curr_bio) { 1649 mutex_unlock(&sctx->wr_lock); 1650 return -ENOMEM; 1651 } 1652 sctx->wr_curr_bio->sctx = sctx; 1653 sctx->wr_curr_bio->page_count = 0; 1654 } 1655 sbio = sctx->wr_curr_bio; 1656 if (sbio->page_count == 0) { 1657 struct bio *bio; 1658 1659 ret = fill_writer_pointer_gap(sctx, 1660 spage->physical_for_dev_replace); 1661 if (ret) { 1662 mutex_unlock(&sctx->wr_lock); 1663 return ret; 1664 } 1665 1666 sbio->physical = spage->physical_for_dev_replace; 1667 sbio->logical = spage->logical; 1668 sbio->dev = sctx->wr_tgtdev; 1669 bio = sbio->bio; 1670 if (!bio) { 1671 bio = btrfs_bio_alloc(sctx->pages_per_bio); 1672 sbio->bio = bio; 1673 } 1674 1675 bio->bi_private = sbio; 1676 bio->bi_end_io = scrub_wr_bio_end_io; 1677 bio_set_dev(bio, sbio->dev->bdev); 1678 bio->bi_iter.bi_sector = sbio->physical >> 9; 1679 bio->bi_opf = REQ_OP_WRITE; 1680 sbio->status = 0; 1681 } else if (sbio->physical + sbio->page_count * sectorsize != 1682 spage->physical_for_dev_replace || 1683 sbio->logical + sbio->page_count * sectorsize != 1684 spage->logical) { 1685 scrub_wr_submit(sctx); 1686 goto again; 1687 } 1688 1689 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0); 1690 if (ret != sectorsize) { 1691 if (sbio->page_count < 1) { 1692 bio_put(sbio->bio); 1693 sbio->bio = NULL; 1694 mutex_unlock(&sctx->wr_lock); 1695 return -EIO; 1696 } 1697 scrub_wr_submit(sctx); 1698 goto again; 1699 } 1700 1701 sbio->pagev[sbio->page_count] = spage; 1702 scrub_page_get(spage); 1703 sbio->page_count++; 1704 if (sbio->page_count == sctx->pages_per_bio) 1705 scrub_wr_submit(sctx); 1706 mutex_unlock(&sctx->wr_lock); 1707 1708 return 0; 1709 } 1710 1711 static void scrub_wr_submit(struct scrub_ctx *sctx) 1712 { 1713 struct scrub_bio *sbio; 1714 1715 if (!sctx->wr_curr_bio) 1716 return; 1717 1718 sbio = sctx->wr_curr_bio; 1719 sctx->wr_curr_bio = NULL; 1720 WARN_ON(!sbio->bio->bi_bdev); 1721 scrub_pending_bio_inc(sctx); 1722 /* process all writes in a single worker thread. Then the block layer 1723 * orders the requests before sending them to the driver which 1724 * doubled the write performance on spinning disks when measured 1725 * with Linux 3.5 */ 1726 btrfsic_submit_bio(sbio->bio); 1727 1728 if (btrfs_is_zoned(sctx->fs_info)) 1729 sctx->write_pointer = sbio->physical + sbio->page_count * 1730 sctx->fs_info->sectorsize; 1731 } 1732 1733 static void scrub_wr_bio_end_io(struct bio *bio) 1734 { 1735 struct scrub_bio *sbio = bio->bi_private; 1736 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1737 1738 sbio->status = bio->bi_status; 1739 sbio->bio = bio; 1740 1741 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); 1742 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1743 } 1744 1745 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1746 { 1747 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1748 struct scrub_ctx *sctx = sbio->sctx; 1749 int i; 1750 1751 ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO); 1752 if (sbio->status) { 1753 struct btrfs_dev_replace *dev_replace = 1754 &sbio->sctx->fs_info->dev_replace; 1755 1756 for (i = 0; i < sbio->page_count; i++) { 1757 struct scrub_page *spage = sbio->pagev[i]; 1758 1759 spage->io_error = 1; 1760 atomic64_inc(&dev_replace->num_write_errors); 1761 } 1762 } 1763 1764 for (i = 0; i < sbio->page_count; i++) 1765 scrub_page_put(sbio->pagev[i]); 1766 1767 bio_put(sbio->bio); 1768 kfree(sbio); 1769 scrub_pending_bio_dec(sctx); 1770 } 1771 1772 static int scrub_checksum(struct scrub_block *sblock) 1773 { 1774 u64 flags; 1775 int ret; 1776 1777 /* 1778 * No need to initialize these stats currently, 1779 * because this function only use return value 1780 * instead of these stats value. 1781 * 1782 * Todo: 1783 * always use stats 1784 */ 1785 sblock->header_error = 0; 1786 sblock->generation_error = 0; 1787 sblock->checksum_error = 0; 1788 1789 WARN_ON(sblock->page_count < 1); 1790 flags = sblock->pagev[0]->flags; 1791 ret = 0; 1792 if (flags & BTRFS_EXTENT_FLAG_DATA) 1793 ret = scrub_checksum_data(sblock); 1794 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1795 ret = scrub_checksum_tree_block(sblock); 1796 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1797 (void)scrub_checksum_super(sblock); 1798 else 1799 WARN_ON(1); 1800 if (ret) 1801 scrub_handle_errored_block(sblock); 1802 1803 return ret; 1804 } 1805 1806 static int scrub_checksum_data(struct scrub_block *sblock) 1807 { 1808 struct scrub_ctx *sctx = sblock->sctx; 1809 struct btrfs_fs_info *fs_info = sctx->fs_info; 1810 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1811 u8 csum[BTRFS_CSUM_SIZE]; 1812 struct scrub_page *spage; 1813 char *kaddr; 1814 1815 BUG_ON(sblock->page_count < 1); 1816 spage = sblock->pagev[0]; 1817 if (!spage->have_csum) 1818 return 0; 1819 1820 kaddr = page_address(spage->page); 1821 1822 shash->tfm = fs_info->csum_shash; 1823 crypto_shash_init(shash); 1824 1825 /* 1826 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage 1827 * only contains one sector of data. 1828 */ 1829 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 1830 1831 if (memcmp(csum, spage->csum, fs_info->csum_size)) 1832 sblock->checksum_error = 1; 1833 return sblock->checksum_error; 1834 } 1835 1836 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1837 { 1838 struct scrub_ctx *sctx = sblock->sctx; 1839 struct btrfs_header *h; 1840 struct btrfs_fs_info *fs_info = sctx->fs_info; 1841 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1842 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1843 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1844 /* 1845 * This is done in sectorsize steps even for metadata as there's a 1846 * constraint for nodesize to be aligned to sectorsize. This will need 1847 * to change so we don't misuse data and metadata units like that. 1848 */ 1849 const u32 sectorsize = sctx->fs_info->sectorsize; 1850 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; 1851 int i; 1852 struct scrub_page *spage; 1853 char *kaddr; 1854 1855 BUG_ON(sblock->page_count < 1); 1856 1857 /* Each member in pagev is just one block, not a full page */ 1858 ASSERT(sblock->page_count == num_sectors); 1859 1860 spage = sblock->pagev[0]; 1861 kaddr = page_address(spage->page); 1862 h = (struct btrfs_header *)kaddr; 1863 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); 1864 1865 /* 1866 * we don't use the getter functions here, as we 1867 * a) don't have an extent buffer and 1868 * b) the page is already kmapped 1869 */ 1870 if (spage->logical != btrfs_stack_header_bytenr(h)) 1871 sblock->header_error = 1; 1872 1873 if (spage->generation != btrfs_stack_header_generation(h)) { 1874 sblock->header_error = 1; 1875 sblock->generation_error = 1; 1876 } 1877 1878 if (!scrub_check_fsid(h->fsid, spage)) 1879 sblock->header_error = 1; 1880 1881 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1882 BTRFS_UUID_SIZE)) 1883 sblock->header_error = 1; 1884 1885 shash->tfm = fs_info->csum_shash; 1886 crypto_shash_init(shash); 1887 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 1888 sectorsize - BTRFS_CSUM_SIZE); 1889 1890 for (i = 1; i < num_sectors; i++) { 1891 kaddr = page_address(sblock->pagev[i]->page); 1892 crypto_shash_update(shash, kaddr, sectorsize); 1893 } 1894 1895 crypto_shash_final(shash, calculated_csum); 1896 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) 1897 sblock->checksum_error = 1; 1898 1899 return sblock->header_error || sblock->checksum_error; 1900 } 1901 1902 static int scrub_checksum_super(struct scrub_block *sblock) 1903 { 1904 struct btrfs_super_block *s; 1905 struct scrub_ctx *sctx = sblock->sctx; 1906 struct btrfs_fs_info *fs_info = sctx->fs_info; 1907 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1908 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1909 struct scrub_page *spage; 1910 char *kaddr; 1911 int fail_gen = 0; 1912 int fail_cor = 0; 1913 1914 BUG_ON(sblock->page_count < 1); 1915 spage = sblock->pagev[0]; 1916 kaddr = page_address(spage->page); 1917 s = (struct btrfs_super_block *)kaddr; 1918 1919 if (spage->logical != btrfs_super_bytenr(s)) 1920 ++fail_cor; 1921 1922 if (spage->generation != btrfs_super_generation(s)) 1923 ++fail_gen; 1924 1925 if (!scrub_check_fsid(s->fsid, spage)) 1926 ++fail_cor; 1927 1928 shash->tfm = fs_info->csum_shash; 1929 crypto_shash_init(shash); 1930 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 1931 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 1932 1933 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) 1934 ++fail_cor; 1935 1936 if (fail_cor + fail_gen) { 1937 /* 1938 * if we find an error in a super block, we just report it. 1939 * They will get written with the next transaction commit 1940 * anyway 1941 */ 1942 spin_lock(&sctx->stat_lock); 1943 ++sctx->stat.super_errors; 1944 spin_unlock(&sctx->stat_lock); 1945 if (fail_cor) 1946 btrfs_dev_stat_inc_and_print(spage->dev, 1947 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1948 else 1949 btrfs_dev_stat_inc_and_print(spage->dev, 1950 BTRFS_DEV_STAT_GENERATION_ERRS); 1951 } 1952 1953 return fail_cor + fail_gen; 1954 } 1955 1956 static void scrub_block_get(struct scrub_block *sblock) 1957 { 1958 refcount_inc(&sblock->refs); 1959 } 1960 1961 static void scrub_block_put(struct scrub_block *sblock) 1962 { 1963 if (refcount_dec_and_test(&sblock->refs)) { 1964 int i; 1965 1966 if (sblock->sparity) 1967 scrub_parity_put(sblock->sparity); 1968 1969 for (i = 0; i < sblock->page_count; i++) 1970 scrub_page_put(sblock->pagev[i]); 1971 kfree(sblock); 1972 } 1973 } 1974 1975 static void scrub_page_get(struct scrub_page *spage) 1976 { 1977 atomic_inc(&spage->refs); 1978 } 1979 1980 static void scrub_page_put(struct scrub_page *spage) 1981 { 1982 if (atomic_dec_and_test(&spage->refs)) { 1983 if (spage->page) 1984 __free_page(spage->page); 1985 kfree(spage); 1986 } 1987 } 1988 1989 /* 1990 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1991 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1992 */ 1993 static void scrub_throttle(struct scrub_ctx *sctx) 1994 { 1995 const int time_slice = 1000; 1996 struct scrub_bio *sbio; 1997 struct btrfs_device *device; 1998 s64 delta; 1999 ktime_t now; 2000 u32 div; 2001 u64 bwlimit; 2002 2003 sbio = sctx->bios[sctx->curr]; 2004 device = sbio->dev; 2005 bwlimit = READ_ONCE(device->scrub_speed_max); 2006 if (bwlimit == 0) 2007 return; 2008 2009 /* 2010 * Slice is divided into intervals when the IO is submitted, adjust by 2011 * bwlimit and maximum of 64 intervals. 2012 */ 2013 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 2014 div = min_t(u32, 64, div); 2015 2016 /* Start new epoch, set deadline */ 2017 now = ktime_get(); 2018 if (sctx->throttle_deadline == 0) { 2019 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 2020 sctx->throttle_sent = 0; 2021 } 2022 2023 /* Still in the time to send? */ 2024 if (ktime_before(now, sctx->throttle_deadline)) { 2025 /* If current bio is within the limit, send it */ 2026 sctx->throttle_sent += sbio->bio->bi_iter.bi_size; 2027 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 2028 return; 2029 2030 /* We're over the limit, sleep until the rest of the slice */ 2031 delta = ktime_ms_delta(sctx->throttle_deadline, now); 2032 } else { 2033 /* New request after deadline, start new epoch */ 2034 delta = 0; 2035 } 2036 2037 if (delta) { 2038 long timeout; 2039 2040 timeout = div_u64(delta * HZ, 1000); 2041 schedule_timeout_interruptible(timeout); 2042 } 2043 2044 /* Next call will start the deadline period */ 2045 sctx->throttle_deadline = 0; 2046 } 2047 2048 static void scrub_submit(struct scrub_ctx *sctx) 2049 { 2050 struct scrub_bio *sbio; 2051 2052 if (sctx->curr == -1) 2053 return; 2054 2055 scrub_throttle(sctx); 2056 2057 sbio = sctx->bios[sctx->curr]; 2058 sctx->curr = -1; 2059 scrub_pending_bio_inc(sctx); 2060 btrfsic_submit_bio(sbio->bio); 2061 } 2062 2063 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2064 struct scrub_page *spage) 2065 { 2066 struct scrub_block *sblock = spage->sblock; 2067 struct scrub_bio *sbio; 2068 const u32 sectorsize = sctx->fs_info->sectorsize; 2069 int ret; 2070 2071 again: 2072 /* 2073 * grab a fresh bio or wait for one to become available 2074 */ 2075 while (sctx->curr == -1) { 2076 spin_lock(&sctx->list_lock); 2077 sctx->curr = sctx->first_free; 2078 if (sctx->curr != -1) { 2079 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2080 sctx->bios[sctx->curr]->next_free = -1; 2081 sctx->bios[sctx->curr]->page_count = 0; 2082 spin_unlock(&sctx->list_lock); 2083 } else { 2084 spin_unlock(&sctx->list_lock); 2085 wait_event(sctx->list_wait, sctx->first_free != -1); 2086 } 2087 } 2088 sbio = sctx->bios[sctx->curr]; 2089 if (sbio->page_count == 0) { 2090 struct bio *bio; 2091 2092 sbio->physical = spage->physical; 2093 sbio->logical = spage->logical; 2094 sbio->dev = spage->dev; 2095 bio = sbio->bio; 2096 if (!bio) { 2097 bio = btrfs_bio_alloc(sctx->pages_per_bio); 2098 sbio->bio = bio; 2099 } 2100 2101 bio->bi_private = sbio; 2102 bio->bi_end_io = scrub_bio_end_io; 2103 bio_set_dev(bio, sbio->dev->bdev); 2104 bio->bi_iter.bi_sector = sbio->physical >> 9; 2105 bio->bi_opf = REQ_OP_READ; 2106 sbio->status = 0; 2107 } else if (sbio->physical + sbio->page_count * sectorsize != 2108 spage->physical || 2109 sbio->logical + sbio->page_count * sectorsize != 2110 spage->logical || 2111 sbio->dev != spage->dev) { 2112 scrub_submit(sctx); 2113 goto again; 2114 } 2115 2116 sbio->pagev[sbio->page_count] = spage; 2117 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0); 2118 if (ret != sectorsize) { 2119 if (sbio->page_count < 1) { 2120 bio_put(sbio->bio); 2121 sbio->bio = NULL; 2122 return -EIO; 2123 } 2124 scrub_submit(sctx); 2125 goto again; 2126 } 2127 2128 scrub_block_get(sblock); /* one for the page added to the bio */ 2129 atomic_inc(&sblock->outstanding_pages); 2130 sbio->page_count++; 2131 if (sbio->page_count == sctx->pages_per_bio) 2132 scrub_submit(sctx); 2133 2134 return 0; 2135 } 2136 2137 static void scrub_missing_raid56_end_io(struct bio *bio) 2138 { 2139 struct scrub_block *sblock = bio->bi_private; 2140 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2141 2142 if (bio->bi_status) 2143 sblock->no_io_error_seen = 0; 2144 2145 bio_put(bio); 2146 2147 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2148 } 2149 2150 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2151 { 2152 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2153 struct scrub_ctx *sctx = sblock->sctx; 2154 struct btrfs_fs_info *fs_info = sctx->fs_info; 2155 u64 logical; 2156 struct btrfs_device *dev; 2157 2158 logical = sblock->pagev[0]->logical; 2159 dev = sblock->pagev[0]->dev; 2160 2161 if (sblock->no_io_error_seen) 2162 scrub_recheck_block_checksum(sblock); 2163 2164 if (!sblock->no_io_error_seen) { 2165 spin_lock(&sctx->stat_lock); 2166 sctx->stat.read_errors++; 2167 spin_unlock(&sctx->stat_lock); 2168 btrfs_err_rl_in_rcu(fs_info, 2169 "IO error rebuilding logical %llu for dev %s", 2170 logical, rcu_str_deref(dev->name)); 2171 } else if (sblock->header_error || sblock->checksum_error) { 2172 spin_lock(&sctx->stat_lock); 2173 sctx->stat.uncorrectable_errors++; 2174 spin_unlock(&sctx->stat_lock); 2175 btrfs_err_rl_in_rcu(fs_info, 2176 "failed to rebuild valid logical %llu for dev %s", 2177 logical, rcu_str_deref(dev->name)); 2178 } else { 2179 scrub_write_block_to_dev_replace(sblock); 2180 } 2181 2182 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2183 mutex_lock(&sctx->wr_lock); 2184 scrub_wr_submit(sctx); 2185 mutex_unlock(&sctx->wr_lock); 2186 } 2187 2188 scrub_block_put(sblock); 2189 scrub_pending_bio_dec(sctx); 2190 } 2191 2192 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2193 { 2194 struct scrub_ctx *sctx = sblock->sctx; 2195 struct btrfs_fs_info *fs_info = sctx->fs_info; 2196 u64 length = sblock->page_count * PAGE_SIZE; 2197 u64 logical = sblock->pagev[0]->logical; 2198 struct btrfs_io_context *bioc = NULL; 2199 struct bio *bio; 2200 struct btrfs_raid_bio *rbio; 2201 int ret; 2202 int i; 2203 2204 btrfs_bio_counter_inc_blocked(fs_info); 2205 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2206 &length, &bioc); 2207 if (ret || !bioc || !bioc->raid_map) 2208 goto bioc_out; 2209 2210 if (WARN_ON(!sctx->is_dev_replace || 2211 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2212 /* 2213 * We shouldn't be scrubbing a missing device. Even for dev 2214 * replace, we should only get here for RAID 5/6. We either 2215 * managed to mount something with no mirrors remaining or 2216 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2217 */ 2218 goto bioc_out; 2219 } 2220 2221 bio = btrfs_bio_alloc(BIO_MAX_VECS); 2222 bio->bi_iter.bi_sector = logical >> 9; 2223 bio->bi_private = sblock; 2224 bio->bi_end_io = scrub_missing_raid56_end_io; 2225 2226 rbio = raid56_alloc_missing_rbio(bio, bioc, length); 2227 if (!rbio) 2228 goto rbio_out; 2229 2230 for (i = 0; i < sblock->page_count; i++) { 2231 struct scrub_page *spage = sblock->pagev[i]; 2232 2233 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2234 } 2235 2236 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); 2237 scrub_block_get(sblock); 2238 scrub_pending_bio_inc(sctx); 2239 raid56_submit_missing_rbio(rbio); 2240 return; 2241 2242 rbio_out: 2243 bio_put(bio); 2244 bioc_out: 2245 btrfs_bio_counter_dec(fs_info); 2246 btrfs_put_bioc(bioc); 2247 spin_lock(&sctx->stat_lock); 2248 sctx->stat.malloc_errors++; 2249 spin_unlock(&sctx->stat_lock); 2250 } 2251 2252 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 2253 u64 physical, struct btrfs_device *dev, u64 flags, 2254 u64 gen, int mirror_num, u8 *csum, 2255 u64 physical_for_dev_replace) 2256 { 2257 struct scrub_block *sblock; 2258 const u32 sectorsize = sctx->fs_info->sectorsize; 2259 int index; 2260 2261 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2262 if (!sblock) { 2263 spin_lock(&sctx->stat_lock); 2264 sctx->stat.malloc_errors++; 2265 spin_unlock(&sctx->stat_lock); 2266 return -ENOMEM; 2267 } 2268 2269 /* one ref inside this function, plus one for each page added to 2270 * a bio later on */ 2271 refcount_set(&sblock->refs, 1); 2272 sblock->sctx = sctx; 2273 sblock->no_io_error_seen = 1; 2274 2275 for (index = 0; len > 0; index++) { 2276 struct scrub_page *spage; 2277 /* 2278 * Here we will allocate one page for one sector to scrub. 2279 * This is fine if PAGE_SIZE == sectorsize, but will cost 2280 * more memory for PAGE_SIZE > sectorsize case. 2281 */ 2282 u32 l = min(sectorsize, len); 2283 2284 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2285 if (!spage) { 2286 leave_nomem: 2287 spin_lock(&sctx->stat_lock); 2288 sctx->stat.malloc_errors++; 2289 spin_unlock(&sctx->stat_lock); 2290 scrub_block_put(sblock); 2291 return -ENOMEM; 2292 } 2293 ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK); 2294 scrub_page_get(spage); 2295 sblock->pagev[index] = spage; 2296 spage->sblock = sblock; 2297 spage->dev = dev; 2298 spage->flags = flags; 2299 spage->generation = gen; 2300 spage->logical = logical; 2301 spage->physical = physical; 2302 spage->physical_for_dev_replace = physical_for_dev_replace; 2303 spage->mirror_num = mirror_num; 2304 if (csum) { 2305 spage->have_csum = 1; 2306 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2307 } else { 2308 spage->have_csum = 0; 2309 } 2310 sblock->page_count++; 2311 spage->page = alloc_page(GFP_KERNEL); 2312 if (!spage->page) 2313 goto leave_nomem; 2314 len -= l; 2315 logical += l; 2316 physical += l; 2317 physical_for_dev_replace += l; 2318 } 2319 2320 WARN_ON(sblock->page_count == 0); 2321 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2322 /* 2323 * This case should only be hit for RAID 5/6 device replace. See 2324 * the comment in scrub_missing_raid56_pages() for details. 2325 */ 2326 scrub_missing_raid56_pages(sblock); 2327 } else { 2328 for (index = 0; index < sblock->page_count; index++) { 2329 struct scrub_page *spage = sblock->pagev[index]; 2330 int ret; 2331 2332 ret = scrub_add_page_to_rd_bio(sctx, spage); 2333 if (ret) { 2334 scrub_block_put(sblock); 2335 return ret; 2336 } 2337 } 2338 2339 if (flags & BTRFS_EXTENT_FLAG_SUPER) 2340 scrub_submit(sctx); 2341 } 2342 2343 /* last one frees, either here or in bio completion for last page */ 2344 scrub_block_put(sblock); 2345 return 0; 2346 } 2347 2348 static void scrub_bio_end_io(struct bio *bio) 2349 { 2350 struct scrub_bio *sbio = bio->bi_private; 2351 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2352 2353 sbio->status = bio->bi_status; 2354 sbio->bio = bio; 2355 2356 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2357 } 2358 2359 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2360 { 2361 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2362 struct scrub_ctx *sctx = sbio->sctx; 2363 int i; 2364 2365 ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO); 2366 if (sbio->status) { 2367 for (i = 0; i < sbio->page_count; i++) { 2368 struct scrub_page *spage = sbio->pagev[i]; 2369 2370 spage->io_error = 1; 2371 spage->sblock->no_io_error_seen = 0; 2372 } 2373 } 2374 2375 /* now complete the scrub_block items that have all pages completed */ 2376 for (i = 0; i < sbio->page_count; i++) { 2377 struct scrub_page *spage = sbio->pagev[i]; 2378 struct scrub_block *sblock = spage->sblock; 2379 2380 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2381 scrub_block_complete(sblock); 2382 scrub_block_put(sblock); 2383 } 2384 2385 bio_put(sbio->bio); 2386 sbio->bio = NULL; 2387 spin_lock(&sctx->list_lock); 2388 sbio->next_free = sctx->first_free; 2389 sctx->first_free = sbio->index; 2390 spin_unlock(&sctx->list_lock); 2391 2392 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2393 mutex_lock(&sctx->wr_lock); 2394 scrub_wr_submit(sctx); 2395 mutex_unlock(&sctx->wr_lock); 2396 } 2397 2398 scrub_pending_bio_dec(sctx); 2399 } 2400 2401 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2402 unsigned long *bitmap, 2403 u64 start, u32 len) 2404 { 2405 u64 offset; 2406 u32 nsectors; 2407 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; 2408 2409 if (len >= sparity->stripe_len) { 2410 bitmap_set(bitmap, 0, sparity->nsectors); 2411 return; 2412 } 2413 2414 start -= sparity->logic_start; 2415 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2416 offset = offset >> sectorsize_bits; 2417 nsectors = len >> sectorsize_bits; 2418 2419 if (offset + nsectors <= sparity->nsectors) { 2420 bitmap_set(bitmap, offset, nsectors); 2421 return; 2422 } 2423 2424 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2425 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2426 } 2427 2428 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2429 u64 start, u32 len) 2430 { 2431 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2432 } 2433 2434 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2435 u64 start, u32 len) 2436 { 2437 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2438 } 2439 2440 static void scrub_block_complete(struct scrub_block *sblock) 2441 { 2442 int corrupted = 0; 2443 2444 if (!sblock->no_io_error_seen) { 2445 corrupted = 1; 2446 scrub_handle_errored_block(sblock); 2447 } else { 2448 /* 2449 * if has checksum error, write via repair mechanism in 2450 * dev replace case, otherwise write here in dev replace 2451 * case. 2452 */ 2453 corrupted = scrub_checksum(sblock); 2454 if (!corrupted && sblock->sctx->is_dev_replace) 2455 scrub_write_block_to_dev_replace(sblock); 2456 } 2457 2458 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2459 u64 start = sblock->pagev[0]->logical; 2460 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2461 sblock->sctx->fs_info->sectorsize; 2462 2463 ASSERT(end - start <= U32_MAX); 2464 scrub_parity_mark_sectors_error(sblock->sparity, 2465 start, end - start); 2466 } 2467 } 2468 2469 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) 2470 { 2471 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; 2472 list_del(&sum->list); 2473 kfree(sum); 2474 } 2475 2476 /* 2477 * Find the desired csum for range [logical, logical + sectorsize), and store 2478 * the csum into @csum. 2479 * 2480 * The search source is sctx->csum_list, which is a pre-populated list 2481 * storing bytenr ordered csum ranges. We're responsible to cleanup any range 2482 * that is before @logical. 2483 * 2484 * Return 0 if there is no csum for the range. 2485 * Return 1 if there is csum for the range and copied to @csum. 2486 */ 2487 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2488 { 2489 bool found = false; 2490 2491 while (!list_empty(&sctx->csum_list)) { 2492 struct btrfs_ordered_sum *sum = NULL; 2493 unsigned long index; 2494 unsigned long num_sectors; 2495 2496 sum = list_first_entry(&sctx->csum_list, 2497 struct btrfs_ordered_sum, list); 2498 /* The current csum range is beyond our range, no csum found */ 2499 if (sum->bytenr > logical) 2500 break; 2501 2502 /* 2503 * The current sum is before our bytenr, since scrub is always 2504 * done in bytenr order, the csum will never be used anymore, 2505 * clean it up so that later calls won't bother with the range, 2506 * and continue search the next range. 2507 */ 2508 if (sum->bytenr + sum->len <= logical) { 2509 drop_csum_range(sctx, sum); 2510 continue; 2511 } 2512 2513 /* Now the csum range covers our bytenr, copy the csum */ 2514 found = true; 2515 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; 2516 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; 2517 2518 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, 2519 sctx->fs_info->csum_size); 2520 2521 /* Cleanup the range if we're at the end of the csum range */ 2522 if (index == num_sectors - 1) 2523 drop_csum_range(sctx, sum); 2524 break; 2525 } 2526 if (!found) 2527 return 0; 2528 return 1; 2529 } 2530 2531 /* scrub extent tries to collect up to 64 kB for each bio */ 2532 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2533 u64 logical, u32 len, 2534 u64 physical, struct btrfs_device *dev, u64 flags, 2535 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2536 { 2537 int ret; 2538 u8 csum[BTRFS_CSUM_SIZE]; 2539 u32 blocksize; 2540 2541 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2542 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2543 blocksize = map->stripe_len; 2544 else 2545 blocksize = sctx->fs_info->sectorsize; 2546 spin_lock(&sctx->stat_lock); 2547 sctx->stat.data_extents_scrubbed++; 2548 sctx->stat.data_bytes_scrubbed += len; 2549 spin_unlock(&sctx->stat_lock); 2550 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2551 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2552 blocksize = map->stripe_len; 2553 else 2554 blocksize = sctx->fs_info->nodesize; 2555 spin_lock(&sctx->stat_lock); 2556 sctx->stat.tree_extents_scrubbed++; 2557 sctx->stat.tree_bytes_scrubbed += len; 2558 spin_unlock(&sctx->stat_lock); 2559 } else { 2560 blocksize = sctx->fs_info->sectorsize; 2561 WARN_ON(1); 2562 } 2563 2564 while (len) { 2565 u32 l = min(len, blocksize); 2566 int have_csum = 0; 2567 2568 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2569 /* push csums to sbio */ 2570 have_csum = scrub_find_csum(sctx, logical, csum); 2571 if (have_csum == 0) 2572 ++sctx->stat.no_csum; 2573 } 2574 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2575 mirror_num, have_csum ? csum : NULL, 2576 physical_for_dev_replace); 2577 if (ret) 2578 return ret; 2579 len -= l; 2580 logical += l; 2581 physical += l; 2582 physical_for_dev_replace += l; 2583 } 2584 return 0; 2585 } 2586 2587 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2588 u64 logical, u32 len, 2589 u64 physical, struct btrfs_device *dev, 2590 u64 flags, u64 gen, int mirror_num, u8 *csum) 2591 { 2592 struct scrub_ctx *sctx = sparity->sctx; 2593 struct scrub_block *sblock; 2594 const u32 sectorsize = sctx->fs_info->sectorsize; 2595 int index; 2596 2597 ASSERT(IS_ALIGNED(len, sectorsize)); 2598 2599 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2600 if (!sblock) { 2601 spin_lock(&sctx->stat_lock); 2602 sctx->stat.malloc_errors++; 2603 spin_unlock(&sctx->stat_lock); 2604 return -ENOMEM; 2605 } 2606 2607 /* one ref inside this function, plus one for each page added to 2608 * a bio later on */ 2609 refcount_set(&sblock->refs, 1); 2610 sblock->sctx = sctx; 2611 sblock->no_io_error_seen = 1; 2612 sblock->sparity = sparity; 2613 scrub_parity_get(sparity); 2614 2615 for (index = 0; len > 0; index++) { 2616 struct scrub_page *spage; 2617 2618 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2619 if (!spage) { 2620 leave_nomem: 2621 spin_lock(&sctx->stat_lock); 2622 sctx->stat.malloc_errors++; 2623 spin_unlock(&sctx->stat_lock); 2624 scrub_block_put(sblock); 2625 return -ENOMEM; 2626 } 2627 ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK); 2628 /* For scrub block */ 2629 scrub_page_get(spage); 2630 sblock->pagev[index] = spage; 2631 /* For scrub parity */ 2632 scrub_page_get(spage); 2633 list_add_tail(&spage->list, &sparity->spages); 2634 spage->sblock = sblock; 2635 spage->dev = dev; 2636 spage->flags = flags; 2637 spage->generation = gen; 2638 spage->logical = logical; 2639 spage->physical = physical; 2640 spage->mirror_num = mirror_num; 2641 if (csum) { 2642 spage->have_csum = 1; 2643 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2644 } else { 2645 spage->have_csum = 0; 2646 } 2647 sblock->page_count++; 2648 spage->page = alloc_page(GFP_KERNEL); 2649 if (!spage->page) 2650 goto leave_nomem; 2651 2652 2653 /* Iterate over the stripe range in sectorsize steps */ 2654 len -= sectorsize; 2655 logical += sectorsize; 2656 physical += sectorsize; 2657 } 2658 2659 WARN_ON(sblock->page_count == 0); 2660 for (index = 0; index < sblock->page_count; index++) { 2661 struct scrub_page *spage = sblock->pagev[index]; 2662 int ret; 2663 2664 ret = scrub_add_page_to_rd_bio(sctx, spage); 2665 if (ret) { 2666 scrub_block_put(sblock); 2667 return ret; 2668 } 2669 } 2670 2671 /* last one frees, either here or in bio completion for last page */ 2672 scrub_block_put(sblock); 2673 return 0; 2674 } 2675 2676 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2677 u64 logical, u32 len, 2678 u64 physical, struct btrfs_device *dev, 2679 u64 flags, u64 gen, int mirror_num) 2680 { 2681 struct scrub_ctx *sctx = sparity->sctx; 2682 int ret; 2683 u8 csum[BTRFS_CSUM_SIZE]; 2684 u32 blocksize; 2685 2686 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2687 scrub_parity_mark_sectors_error(sparity, logical, len); 2688 return 0; 2689 } 2690 2691 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2692 blocksize = sparity->stripe_len; 2693 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2694 blocksize = sparity->stripe_len; 2695 } else { 2696 blocksize = sctx->fs_info->sectorsize; 2697 WARN_ON(1); 2698 } 2699 2700 while (len) { 2701 u32 l = min(len, blocksize); 2702 int have_csum = 0; 2703 2704 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2705 /* push csums to sbio */ 2706 have_csum = scrub_find_csum(sctx, logical, csum); 2707 if (have_csum == 0) 2708 goto skip; 2709 } 2710 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2711 flags, gen, mirror_num, 2712 have_csum ? csum : NULL); 2713 if (ret) 2714 return ret; 2715 skip: 2716 len -= l; 2717 logical += l; 2718 physical += l; 2719 } 2720 return 0; 2721 } 2722 2723 /* 2724 * Given a physical address, this will calculate it's 2725 * logical offset. if this is a parity stripe, it will return 2726 * the most left data stripe's logical offset. 2727 * 2728 * return 0 if it is a data stripe, 1 means parity stripe. 2729 */ 2730 static int get_raid56_logic_offset(u64 physical, int num, 2731 struct map_lookup *map, u64 *offset, 2732 u64 *stripe_start) 2733 { 2734 int i; 2735 int j = 0; 2736 u64 stripe_nr; 2737 u64 last_offset; 2738 u32 stripe_index; 2739 u32 rot; 2740 const int data_stripes = nr_data_stripes(map); 2741 2742 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2743 if (stripe_start) 2744 *stripe_start = last_offset; 2745 2746 *offset = last_offset; 2747 for (i = 0; i < data_stripes; i++) { 2748 *offset = last_offset + i * map->stripe_len; 2749 2750 stripe_nr = div64_u64(*offset, map->stripe_len); 2751 stripe_nr = div_u64(stripe_nr, data_stripes); 2752 2753 /* Work out the disk rotation on this stripe-set */ 2754 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2755 /* calculate which stripe this data locates */ 2756 rot += i; 2757 stripe_index = rot % map->num_stripes; 2758 if (stripe_index == num) 2759 return 0; 2760 if (stripe_index < num) 2761 j++; 2762 } 2763 *offset = last_offset + j * map->stripe_len; 2764 return 1; 2765 } 2766 2767 static void scrub_free_parity(struct scrub_parity *sparity) 2768 { 2769 struct scrub_ctx *sctx = sparity->sctx; 2770 struct scrub_page *curr, *next; 2771 int nbits; 2772 2773 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2774 if (nbits) { 2775 spin_lock(&sctx->stat_lock); 2776 sctx->stat.read_errors += nbits; 2777 sctx->stat.uncorrectable_errors += nbits; 2778 spin_unlock(&sctx->stat_lock); 2779 } 2780 2781 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2782 list_del_init(&curr->list); 2783 scrub_page_put(curr); 2784 } 2785 2786 kfree(sparity); 2787 } 2788 2789 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2790 { 2791 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2792 work); 2793 struct scrub_ctx *sctx = sparity->sctx; 2794 2795 scrub_free_parity(sparity); 2796 scrub_pending_bio_dec(sctx); 2797 } 2798 2799 static void scrub_parity_bio_endio(struct bio *bio) 2800 { 2801 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2802 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2803 2804 if (bio->bi_status) 2805 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2806 sparity->nsectors); 2807 2808 bio_put(bio); 2809 2810 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, 2811 NULL); 2812 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2813 } 2814 2815 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2816 { 2817 struct scrub_ctx *sctx = sparity->sctx; 2818 struct btrfs_fs_info *fs_info = sctx->fs_info; 2819 struct bio *bio; 2820 struct btrfs_raid_bio *rbio; 2821 struct btrfs_io_context *bioc = NULL; 2822 u64 length; 2823 int ret; 2824 2825 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2826 sparity->nsectors)) 2827 goto out; 2828 2829 length = sparity->logic_end - sparity->logic_start; 2830 2831 btrfs_bio_counter_inc_blocked(fs_info); 2832 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2833 &length, &bioc); 2834 if (ret || !bioc || !bioc->raid_map) 2835 goto bioc_out; 2836 2837 bio = btrfs_bio_alloc(BIO_MAX_VECS); 2838 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2839 bio->bi_private = sparity; 2840 bio->bi_end_io = scrub_parity_bio_endio; 2841 2842 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length, 2843 sparity->scrub_dev, 2844 sparity->dbitmap, 2845 sparity->nsectors); 2846 if (!rbio) 2847 goto rbio_out; 2848 2849 scrub_pending_bio_inc(sctx); 2850 raid56_parity_submit_scrub_rbio(rbio); 2851 return; 2852 2853 rbio_out: 2854 bio_put(bio); 2855 bioc_out: 2856 btrfs_bio_counter_dec(fs_info); 2857 btrfs_put_bioc(bioc); 2858 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2859 sparity->nsectors); 2860 spin_lock(&sctx->stat_lock); 2861 sctx->stat.malloc_errors++; 2862 spin_unlock(&sctx->stat_lock); 2863 out: 2864 scrub_free_parity(sparity); 2865 } 2866 2867 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2868 { 2869 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2870 } 2871 2872 static void scrub_parity_get(struct scrub_parity *sparity) 2873 { 2874 refcount_inc(&sparity->refs); 2875 } 2876 2877 static void scrub_parity_put(struct scrub_parity *sparity) 2878 { 2879 if (!refcount_dec_and_test(&sparity->refs)) 2880 return; 2881 2882 scrub_parity_check_and_repair(sparity); 2883 } 2884 2885 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2886 struct map_lookup *map, 2887 struct btrfs_device *sdev, 2888 u64 logic_start, 2889 u64 logic_end) 2890 { 2891 struct btrfs_fs_info *fs_info = sctx->fs_info; 2892 struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start); 2893 struct btrfs_root *csum_root; 2894 struct btrfs_extent_item *extent; 2895 struct btrfs_io_context *bioc = NULL; 2896 struct btrfs_path *path; 2897 u64 flags; 2898 int ret; 2899 int slot; 2900 struct extent_buffer *l; 2901 struct btrfs_key key; 2902 u64 generation; 2903 u64 extent_logical; 2904 u64 extent_physical; 2905 /* Check the comment in scrub_stripe() for why u32 is enough here */ 2906 u32 extent_len; 2907 u64 mapped_length; 2908 struct btrfs_device *extent_dev; 2909 struct scrub_parity *sparity; 2910 int nsectors; 2911 int bitmap_len; 2912 int extent_mirror_num; 2913 int stop_loop = 0; 2914 2915 path = btrfs_alloc_path(); 2916 if (!path) { 2917 spin_lock(&sctx->stat_lock); 2918 sctx->stat.malloc_errors++; 2919 spin_unlock(&sctx->stat_lock); 2920 return -ENOMEM; 2921 } 2922 path->search_commit_root = 1; 2923 path->skip_locking = 1; 2924 2925 ASSERT(map->stripe_len <= U32_MAX); 2926 nsectors = map->stripe_len >> fs_info->sectorsize_bits; 2927 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2928 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2929 GFP_NOFS); 2930 if (!sparity) { 2931 spin_lock(&sctx->stat_lock); 2932 sctx->stat.malloc_errors++; 2933 spin_unlock(&sctx->stat_lock); 2934 btrfs_free_path(path); 2935 return -ENOMEM; 2936 } 2937 2938 ASSERT(map->stripe_len <= U32_MAX); 2939 sparity->stripe_len = map->stripe_len; 2940 sparity->nsectors = nsectors; 2941 sparity->sctx = sctx; 2942 sparity->scrub_dev = sdev; 2943 sparity->logic_start = logic_start; 2944 sparity->logic_end = logic_end; 2945 refcount_set(&sparity->refs, 1); 2946 INIT_LIST_HEAD(&sparity->spages); 2947 sparity->dbitmap = sparity->bitmap; 2948 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2949 2950 ret = 0; 2951 while (logic_start < logic_end) { 2952 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2953 key.type = BTRFS_METADATA_ITEM_KEY; 2954 else 2955 key.type = BTRFS_EXTENT_ITEM_KEY; 2956 key.objectid = logic_start; 2957 key.offset = (u64)-1; 2958 2959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2960 if (ret < 0) 2961 goto out; 2962 2963 if (ret > 0) { 2964 ret = btrfs_previous_extent_item(root, path, 0); 2965 if (ret < 0) 2966 goto out; 2967 if (ret > 0) { 2968 btrfs_release_path(path); 2969 ret = btrfs_search_slot(NULL, root, &key, 2970 path, 0, 0); 2971 if (ret < 0) 2972 goto out; 2973 } 2974 } 2975 2976 stop_loop = 0; 2977 while (1) { 2978 u64 bytes; 2979 2980 l = path->nodes[0]; 2981 slot = path->slots[0]; 2982 if (slot >= btrfs_header_nritems(l)) { 2983 ret = btrfs_next_leaf(root, path); 2984 if (ret == 0) 2985 continue; 2986 if (ret < 0) 2987 goto out; 2988 2989 stop_loop = 1; 2990 break; 2991 } 2992 btrfs_item_key_to_cpu(l, &key, slot); 2993 2994 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2995 key.type != BTRFS_METADATA_ITEM_KEY) 2996 goto next; 2997 2998 if (key.type == BTRFS_METADATA_ITEM_KEY) 2999 bytes = fs_info->nodesize; 3000 else 3001 bytes = key.offset; 3002 3003 if (key.objectid + bytes <= logic_start) 3004 goto next; 3005 3006 if (key.objectid >= logic_end) { 3007 stop_loop = 1; 3008 break; 3009 } 3010 3011 while (key.objectid >= logic_start + map->stripe_len) 3012 logic_start += map->stripe_len; 3013 3014 extent = btrfs_item_ptr(l, slot, 3015 struct btrfs_extent_item); 3016 flags = btrfs_extent_flags(l, extent); 3017 generation = btrfs_extent_generation(l, extent); 3018 3019 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3020 (key.objectid < logic_start || 3021 key.objectid + bytes > 3022 logic_start + map->stripe_len)) { 3023 btrfs_err(fs_info, 3024 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3025 key.objectid, logic_start); 3026 spin_lock(&sctx->stat_lock); 3027 sctx->stat.uncorrectable_errors++; 3028 spin_unlock(&sctx->stat_lock); 3029 goto next; 3030 } 3031 again: 3032 extent_logical = key.objectid; 3033 ASSERT(bytes <= U32_MAX); 3034 extent_len = bytes; 3035 3036 if (extent_logical < logic_start) { 3037 extent_len -= logic_start - extent_logical; 3038 extent_logical = logic_start; 3039 } 3040 3041 if (extent_logical + extent_len > 3042 logic_start + map->stripe_len) 3043 extent_len = logic_start + map->stripe_len - 3044 extent_logical; 3045 3046 scrub_parity_mark_sectors_data(sparity, extent_logical, 3047 extent_len); 3048 3049 mapped_length = extent_len; 3050 bioc = NULL; 3051 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3052 extent_logical, &mapped_length, &bioc, 3053 0); 3054 if (!ret) { 3055 if (!bioc || mapped_length < extent_len) 3056 ret = -EIO; 3057 } 3058 if (ret) { 3059 btrfs_put_bioc(bioc); 3060 goto out; 3061 } 3062 extent_physical = bioc->stripes[0].physical; 3063 extent_mirror_num = bioc->mirror_num; 3064 extent_dev = bioc->stripes[0].dev; 3065 btrfs_put_bioc(bioc); 3066 3067 csum_root = btrfs_csum_root(fs_info, extent_logical); 3068 ret = btrfs_lookup_csums_range(csum_root, 3069 extent_logical, 3070 extent_logical + extent_len - 1, 3071 &sctx->csum_list, 1); 3072 if (ret) 3073 goto out; 3074 3075 ret = scrub_extent_for_parity(sparity, extent_logical, 3076 extent_len, 3077 extent_physical, 3078 extent_dev, flags, 3079 generation, 3080 extent_mirror_num); 3081 3082 scrub_free_csums(sctx); 3083 3084 if (ret) 3085 goto out; 3086 3087 if (extent_logical + extent_len < 3088 key.objectid + bytes) { 3089 logic_start += map->stripe_len; 3090 3091 if (logic_start >= logic_end) { 3092 stop_loop = 1; 3093 break; 3094 } 3095 3096 if (logic_start < key.objectid + bytes) { 3097 cond_resched(); 3098 goto again; 3099 } 3100 } 3101 next: 3102 path->slots[0]++; 3103 } 3104 3105 btrfs_release_path(path); 3106 3107 if (stop_loop) 3108 break; 3109 3110 logic_start += map->stripe_len; 3111 } 3112 out: 3113 if (ret < 0) { 3114 ASSERT(logic_end - logic_start <= U32_MAX); 3115 scrub_parity_mark_sectors_error(sparity, logic_start, 3116 logic_end - logic_start); 3117 } 3118 scrub_parity_put(sparity); 3119 scrub_submit(sctx); 3120 mutex_lock(&sctx->wr_lock); 3121 scrub_wr_submit(sctx); 3122 mutex_unlock(&sctx->wr_lock); 3123 3124 btrfs_free_path(path); 3125 return ret < 0 ? ret : 0; 3126 } 3127 3128 static void sync_replace_for_zoned(struct scrub_ctx *sctx) 3129 { 3130 if (!btrfs_is_zoned(sctx->fs_info)) 3131 return; 3132 3133 sctx->flush_all_writes = true; 3134 scrub_submit(sctx); 3135 mutex_lock(&sctx->wr_lock); 3136 scrub_wr_submit(sctx); 3137 mutex_unlock(&sctx->wr_lock); 3138 3139 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3140 } 3141 3142 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 3143 u64 physical, u64 physical_end) 3144 { 3145 struct btrfs_fs_info *fs_info = sctx->fs_info; 3146 int ret = 0; 3147 3148 if (!btrfs_is_zoned(fs_info)) 3149 return 0; 3150 3151 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3152 3153 mutex_lock(&sctx->wr_lock); 3154 if (sctx->write_pointer < physical_end) { 3155 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 3156 physical, 3157 sctx->write_pointer); 3158 if (ret) 3159 btrfs_err(fs_info, 3160 "zoned: failed to recover write pointer"); 3161 } 3162 mutex_unlock(&sctx->wr_lock); 3163 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 3164 3165 return ret; 3166 } 3167 3168 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3169 struct btrfs_block_group *bg, 3170 struct map_lookup *map, 3171 struct btrfs_device *scrub_dev, 3172 int stripe_index, u64 dev_extent_len) 3173 { 3174 struct btrfs_path *path; 3175 struct btrfs_fs_info *fs_info = sctx->fs_info; 3176 struct btrfs_root *root; 3177 struct btrfs_root *csum_root; 3178 struct btrfs_extent_item *extent; 3179 struct blk_plug plug; 3180 const u64 chunk_logical = bg->start; 3181 u64 flags; 3182 int ret; 3183 int slot; 3184 u64 nstripes; 3185 struct extent_buffer *l; 3186 u64 physical; 3187 u64 logical; 3188 u64 logic_end; 3189 u64 physical_end; 3190 u64 generation; 3191 int mirror_num; 3192 struct btrfs_key key; 3193 u64 increment; 3194 u64 offset; 3195 u64 extent_logical; 3196 u64 extent_physical; 3197 /* 3198 * Unlike chunk length, extent length should never go beyond 3199 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here. 3200 */ 3201 u32 extent_len; 3202 u64 stripe_logical; 3203 u64 stripe_end; 3204 struct btrfs_device *extent_dev; 3205 int extent_mirror_num; 3206 int stop_loop = 0; 3207 3208 physical = map->stripes[stripe_index].physical; 3209 offset = 0; 3210 nstripes = div64_u64(dev_extent_len, map->stripe_len); 3211 mirror_num = 1; 3212 increment = map->stripe_len; 3213 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3214 offset = map->stripe_len * stripe_index; 3215 increment = map->stripe_len * map->num_stripes; 3216 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3217 int factor = map->num_stripes / map->sub_stripes; 3218 offset = map->stripe_len * (stripe_index / map->sub_stripes); 3219 increment = map->stripe_len * factor; 3220 mirror_num = stripe_index % map->sub_stripes + 1; 3221 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 3222 mirror_num = stripe_index % map->num_stripes + 1; 3223 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3224 mirror_num = stripe_index % map->num_stripes + 1; 3225 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3226 get_raid56_logic_offset(physical, stripe_index, map, &offset, 3227 NULL); 3228 increment = map->stripe_len * nr_data_stripes(map); 3229 } 3230 3231 path = btrfs_alloc_path(); 3232 if (!path) 3233 return -ENOMEM; 3234 3235 /* 3236 * work on commit root. The related disk blocks are static as 3237 * long as COW is applied. This means, it is save to rewrite 3238 * them to repair disk errors without any race conditions 3239 */ 3240 path->search_commit_root = 1; 3241 path->skip_locking = 1; 3242 path->reada = READA_FORWARD; 3243 3244 logical = chunk_logical + offset; 3245 physical_end = physical + nstripes * map->stripe_len; 3246 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3247 get_raid56_logic_offset(physical_end, stripe_index, 3248 map, &logic_end, NULL); 3249 logic_end += chunk_logical; 3250 } else { 3251 logic_end = logical + increment * nstripes; 3252 } 3253 wait_event(sctx->list_wait, 3254 atomic_read(&sctx->bios_in_flight) == 0); 3255 scrub_blocked_if_needed(fs_info); 3256 3257 root = btrfs_extent_root(fs_info, logical); 3258 csum_root = btrfs_csum_root(fs_info, logical); 3259 3260 /* 3261 * collect all data csums for the stripe to avoid seeking during 3262 * the scrub. This might currently (crc32) end up to be about 1MB 3263 */ 3264 blk_start_plug(&plug); 3265 3266 if (sctx->is_dev_replace && 3267 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 3268 mutex_lock(&sctx->wr_lock); 3269 sctx->write_pointer = physical; 3270 mutex_unlock(&sctx->wr_lock); 3271 sctx->flush_all_writes = true; 3272 } 3273 3274 /* 3275 * now find all extents for each stripe and scrub them 3276 */ 3277 ret = 0; 3278 while (physical < physical_end) { 3279 /* 3280 * canceled? 3281 */ 3282 if (atomic_read(&fs_info->scrub_cancel_req) || 3283 atomic_read(&sctx->cancel_req)) { 3284 ret = -ECANCELED; 3285 goto out; 3286 } 3287 /* 3288 * check to see if we have to pause 3289 */ 3290 if (atomic_read(&fs_info->scrub_pause_req)) { 3291 /* push queued extents */ 3292 sctx->flush_all_writes = true; 3293 scrub_submit(sctx); 3294 mutex_lock(&sctx->wr_lock); 3295 scrub_wr_submit(sctx); 3296 mutex_unlock(&sctx->wr_lock); 3297 wait_event(sctx->list_wait, 3298 atomic_read(&sctx->bios_in_flight) == 0); 3299 sctx->flush_all_writes = false; 3300 scrub_blocked_if_needed(fs_info); 3301 } 3302 3303 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3304 ret = get_raid56_logic_offset(physical, stripe_index, 3305 map, &logical, 3306 &stripe_logical); 3307 logical += chunk_logical; 3308 if (ret) { 3309 /* it is parity strip */ 3310 stripe_logical += chunk_logical; 3311 stripe_end = stripe_logical + increment; 3312 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3313 stripe_logical, 3314 stripe_end); 3315 if (ret) 3316 goto out; 3317 goto skip; 3318 } 3319 } 3320 3321 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3322 key.type = BTRFS_METADATA_ITEM_KEY; 3323 else 3324 key.type = BTRFS_EXTENT_ITEM_KEY; 3325 key.objectid = logical; 3326 key.offset = (u64)-1; 3327 3328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3329 if (ret < 0) 3330 goto out; 3331 3332 if (ret > 0) { 3333 ret = btrfs_previous_extent_item(root, path, 0); 3334 if (ret < 0) 3335 goto out; 3336 if (ret > 0) { 3337 /* there's no smaller item, so stick with the 3338 * larger one */ 3339 btrfs_release_path(path); 3340 ret = btrfs_search_slot(NULL, root, &key, 3341 path, 0, 0); 3342 if (ret < 0) 3343 goto out; 3344 } 3345 } 3346 3347 stop_loop = 0; 3348 while (1) { 3349 u64 bytes; 3350 3351 l = path->nodes[0]; 3352 slot = path->slots[0]; 3353 if (slot >= btrfs_header_nritems(l)) { 3354 ret = btrfs_next_leaf(root, path); 3355 if (ret == 0) 3356 continue; 3357 if (ret < 0) 3358 goto out; 3359 3360 stop_loop = 1; 3361 break; 3362 } 3363 btrfs_item_key_to_cpu(l, &key, slot); 3364 3365 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3366 key.type != BTRFS_METADATA_ITEM_KEY) 3367 goto next; 3368 3369 if (key.type == BTRFS_METADATA_ITEM_KEY) 3370 bytes = fs_info->nodesize; 3371 else 3372 bytes = key.offset; 3373 3374 if (key.objectid + bytes <= logical) 3375 goto next; 3376 3377 if (key.objectid >= logical + map->stripe_len) { 3378 /* out of this device extent */ 3379 if (key.objectid >= logic_end) 3380 stop_loop = 1; 3381 break; 3382 } 3383 3384 /* 3385 * If our block group was removed in the meanwhile, just 3386 * stop scrubbing since there is no point in continuing. 3387 * Continuing would prevent reusing its device extents 3388 * for new block groups for a long time. 3389 */ 3390 spin_lock(&bg->lock); 3391 if (bg->removed) { 3392 spin_unlock(&bg->lock); 3393 ret = 0; 3394 goto out; 3395 } 3396 spin_unlock(&bg->lock); 3397 3398 extent = btrfs_item_ptr(l, slot, 3399 struct btrfs_extent_item); 3400 flags = btrfs_extent_flags(l, extent); 3401 generation = btrfs_extent_generation(l, extent); 3402 3403 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3404 (key.objectid < logical || 3405 key.objectid + bytes > 3406 logical + map->stripe_len)) { 3407 btrfs_err(fs_info, 3408 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3409 key.objectid, logical); 3410 spin_lock(&sctx->stat_lock); 3411 sctx->stat.uncorrectable_errors++; 3412 spin_unlock(&sctx->stat_lock); 3413 goto next; 3414 } 3415 3416 again: 3417 extent_logical = key.objectid; 3418 ASSERT(bytes <= U32_MAX); 3419 extent_len = bytes; 3420 3421 /* 3422 * trim extent to this stripe 3423 */ 3424 if (extent_logical < logical) { 3425 extent_len -= logical - extent_logical; 3426 extent_logical = logical; 3427 } 3428 if (extent_logical + extent_len > 3429 logical + map->stripe_len) { 3430 extent_len = logical + map->stripe_len - 3431 extent_logical; 3432 } 3433 3434 extent_physical = extent_logical - logical + physical; 3435 extent_dev = scrub_dev; 3436 extent_mirror_num = mirror_num; 3437 if (sctx->is_dev_replace) 3438 scrub_remap_extent(fs_info, extent_logical, 3439 extent_len, &extent_physical, 3440 &extent_dev, 3441 &extent_mirror_num); 3442 3443 if (flags & BTRFS_EXTENT_FLAG_DATA) { 3444 ret = btrfs_lookup_csums_range(csum_root, 3445 extent_logical, 3446 extent_logical + extent_len - 1, 3447 &sctx->csum_list, 1); 3448 if (ret) 3449 goto out; 3450 } 3451 3452 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3453 extent_physical, extent_dev, flags, 3454 generation, extent_mirror_num, 3455 extent_logical - logical + physical); 3456 3457 scrub_free_csums(sctx); 3458 3459 if (ret) 3460 goto out; 3461 3462 if (sctx->is_dev_replace) 3463 sync_replace_for_zoned(sctx); 3464 3465 if (extent_logical + extent_len < 3466 key.objectid + bytes) { 3467 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3468 /* 3469 * loop until we find next data stripe 3470 * or we have finished all stripes. 3471 */ 3472 loop: 3473 physical += map->stripe_len; 3474 ret = get_raid56_logic_offset(physical, 3475 stripe_index, map, 3476 &logical, &stripe_logical); 3477 logical += chunk_logical; 3478 3479 if (ret && physical < physical_end) { 3480 stripe_logical += chunk_logical; 3481 stripe_end = stripe_logical + 3482 increment; 3483 ret = scrub_raid56_parity(sctx, 3484 map, scrub_dev, 3485 stripe_logical, 3486 stripe_end); 3487 if (ret) 3488 goto out; 3489 goto loop; 3490 } 3491 } else { 3492 physical += map->stripe_len; 3493 logical += increment; 3494 } 3495 if (logical < key.objectid + bytes) { 3496 cond_resched(); 3497 goto again; 3498 } 3499 3500 if (physical >= physical_end) { 3501 stop_loop = 1; 3502 break; 3503 } 3504 } 3505 next: 3506 path->slots[0]++; 3507 } 3508 btrfs_release_path(path); 3509 skip: 3510 logical += increment; 3511 physical += map->stripe_len; 3512 spin_lock(&sctx->stat_lock); 3513 if (stop_loop) 3514 sctx->stat.last_physical = map->stripes[stripe_index].physical + 3515 dev_extent_len; 3516 else 3517 sctx->stat.last_physical = physical; 3518 spin_unlock(&sctx->stat_lock); 3519 if (stop_loop) 3520 break; 3521 } 3522 out: 3523 /* push queued extents */ 3524 scrub_submit(sctx); 3525 mutex_lock(&sctx->wr_lock); 3526 scrub_wr_submit(sctx); 3527 mutex_unlock(&sctx->wr_lock); 3528 3529 blk_finish_plug(&plug); 3530 btrfs_free_path(path); 3531 3532 if (sctx->is_dev_replace && ret >= 0) { 3533 int ret2; 3534 3535 ret2 = sync_write_pointer_for_zoned(sctx, 3536 chunk_logical + offset, 3537 map->stripes[stripe_index].physical, 3538 physical_end); 3539 if (ret2) 3540 ret = ret2; 3541 } 3542 3543 return ret < 0 ? ret : 0; 3544 } 3545 3546 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3547 struct btrfs_block_group *bg, 3548 struct btrfs_device *scrub_dev, 3549 u64 dev_offset, 3550 u64 dev_extent_len) 3551 { 3552 struct btrfs_fs_info *fs_info = sctx->fs_info; 3553 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3554 struct map_lookup *map; 3555 struct extent_map *em; 3556 int i; 3557 int ret = 0; 3558 3559 read_lock(&map_tree->lock); 3560 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 3561 read_unlock(&map_tree->lock); 3562 3563 if (!em) { 3564 /* 3565 * Might have been an unused block group deleted by the cleaner 3566 * kthread or relocation. 3567 */ 3568 spin_lock(&bg->lock); 3569 if (!bg->removed) 3570 ret = -EINVAL; 3571 spin_unlock(&bg->lock); 3572 3573 return ret; 3574 } 3575 if (em->start != bg->start) 3576 goto out; 3577 if (em->len < dev_extent_len) 3578 goto out; 3579 3580 map = em->map_lookup; 3581 for (i = 0; i < map->num_stripes; ++i) { 3582 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3583 map->stripes[i].physical == dev_offset) { 3584 ret = scrub_stripe(sctx, bg, map, scrub_dev, i, 3585 dev_extent_len); 3586 if (ret) 3587 goto out; 3588 } 3589 } 3590 out: 3591 free_extent_map(em); 3592 3593 return ret; 3594 } 3595 3596 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 3597 struct btrfs_block_group *cache) 3598 { 3599 struct btrfs_fs_info *fs_info = cache->fs_info; 3600 struct btrfs_trans_handle *trans; 3601 3602 if (!btrfs_is_zoned(fs_info)) 3603 return 0; 3604 3605 btrfs_wait_block_group_reservations(cache); 3606 btrfs_wait_nocow_writers(cache); 3607 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 3608 3609 trans = btrfs_join_transaction(root); 3610 if (IS_ERR(trans)) 3611 return PTR_ERR(trans); 3612 return btrfs_commit_transaction(trans); 3613 } 3614 3615 static noinline_for_stack 3616 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3617 struct btrfs_device *scrub_dev, u64 start, u64 end) 3618 { 3619 struct btrfs_dev_extent *dev_extent = NULL; 3620 struct btrfs_path *path; 3621 struct btrfs_fs_info *fs_info = sctx->fs_info; 3622 struct btrfs_root *root = fs_info->dev_root; 3623 u64 chunk_offset; 3624 int ret = 0; 3625 int ro_set; 3626 int slot; 3627 struct extent_buffer *l; 3628 struct btrfs_key key; 3629 struct btrfs_key found_key; 3630 struct btrfs_block_group *cache; 3631 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3632 3633 path = btrfs_alloc_path(); 3634 if (!path) 3635 return -ENOMEM; 3636 3637 path->reada = READA_FORWARD; 3638 path->search_commit_root = 1; 3639 path->skip_locking = 1; 3640 3641 key.objectid = scrub_dev->devid; 3642 key.offset = 0ull; 3643 key.type = BTRFS_DEV_EXTENT_KEY; 3644 3645 while (1) { 3646 u64 dev_extent_len; 3647 3648 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3649 if (ret < 0) 3650 break; 3651 if (ret > 0) { 3652 if (path->slots[0] >= 3653 btrfs_header_nritems(path->nodes[0])) { 3654 ret = btrfs_next_leaf(root, path); 3655 if (ret < 0) 3656 break; 3657 if (ret > 0) { 3658 ret = 0; 3659 break; 3660 } 3661 } else { 3662 ret = 0; 3663 } 3664 } 3665 3666 l = path->nodes[0]; 3667 slot = path->slots[0]; 3668 3669 btrfs_item_key_to_cpu(l, &found_key, slot); 3670 3671 if (found_key.objectid != scrub_dev->devid) 3672 break; 3673 3674 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3675 break; 3676 3677 if (found_key.offset >= end) 3678 break; 3679 3680 if (found_key.offset < key.offset) 3681 break; 3682 3683 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3684 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 3685 3686 if (found_key.offset + dev_extent_len <= start) 3687 goto skip; 3688 3689 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3690 3691 /* 3692 * get a reference on the corresponding block group to prevent 3693 * the chunk from going away while we scrub it 3694 */ 3695 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3696 3697 /* some chunks are removed but not committed to disk yet, 3698 * continue scrubbing */ 3699 if (!cache) 3700 goto skip; 3701 3702 ASSERT(cache->start <= chunk_offset); 3703 /* 3704 * We are using the commit root to search for device extents, so 3705 * that means we could have found a device extent item from a 3706 * block group that was deleted in the current transaction. The 3707 * logical start offset of the deleted block group, stored at 3708 * @chunk_offset, might be part of the logical address range of 3709 * a new block group (which uses different physical extents). 3710 * In this case btrfs_lookup_block_group() has returned the new 3711 * block group, and its start address is less than @chunk_offset. 3712 * 3713 * We skip such new block groups, because it's pointless to 3714 * process them, as we won't find their extents because we search 3715 * for them using the commit root of the extent tree. For a device 3716 * replace it's also fine to skip it, we won't miss copying them 3717 * to the target device because we have the write duplication 3718 * setup through the regular write path (by btrfs_map_block()), 3719 * and we have committed a transaction when we started the device 3720 * replace, right after setting up the device replace state. 3721 */ 3722 if (cache->start < chunk_offset) { 3723 btrfs_put_block_group(cache); 3724 goto skip; 3725 } 3726 3727 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 3728 spin_lock(&cache->lock); 3729 if (!cache->to_copy) { 3730 spin_unlock(&cache->lock); 3731 btrfs_put_block_group(cache); 3732 goto skip; 3733 } 3734 spin_unlock(&cache->lock); 3735 } 3736 3737 /* 3738 * Make sure that while we are scrubbing the corresponding block 3739 * group doesn't get its logical address and its device extents 3740 * reused for another block group, which can possibly be of a 3741 * different type and different profile. We do this to prevent 3742 * false error detections and crashes due to bogus attempts to 3743 * repair extents. 3744 */ 3745 spin_lock(&cache->lock); 3746 if (cache->removed) { 3747 spin_unlock(&cache->lock); 3748 btrfs_put_block_group(cache); 3749 goto skip; 3750 } 3751 btrfs_freeze_block_group(cache); 3752 spin_unlock(&cache->lock); 3753 3754 /* 3755 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3756 * to avoid deadlock caused by: 3757 * btrfs_inc_block_group_ro() 3758 * -> btrfs_wait_for_commit() 3759 * -> btrfs_commit_transaction() 3760 * -> btrfs_scrub_pause() 3761 */ 3762 scrub_pause_on(fs_info); 3763 3764 /* 3765 * Don't do chunk preallocation for scrub. 3766 * 3767 * This is especially important for SYSTEM bgs, or we can hit 3768 * -EFBIG from btrfs_finish_chunk_alloc() like: 3769 * 1. The only SYSTEM bg is marked RO. 3770 * Since SYSTEM bg is small, that's pretty common. 3771 * 2. New SYSTEM bg will be allocated 3772 * Due to regular version will allocate new chunk. 3773 * 3. New SYSTEM bg is empty and will get cleaned up 3774 * Before cleanup really happens, it's marked RO again. 3775 * 4. Empty SYSTEM bg get scrubbed 3776 * We go back to 2. 3777 * 3778 * This can easily boost the amount of SYSTEM chunks if cleaner 3779 * thread can't be triggered fast enough, and use up all space 3780 * of btrfs_super_block::sys_chunk_array 3781 * 3782 * While for dev replace, we need to try our best to mark block 3783 * group RO, to prevent race between: 3784 * - Write duplication 3785 * Contains latest data 3786 * - Scrub copy 3787 * Contains data from commit tree 3788 * 3789 * If target block group is not marked RO, nocow writes can 3790 * be overwritten by scrub copy, causing data corruption. 3791 * So for dev-replace, it's not allowed to continue if a block 3792 * group is not RO. 3793 */ 3794 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3795 if (!ret && sctx->is_dev_replace) { 3796 ret = finish_extent_writes_for_zoned(root, cache); 3797 if (ret) { 3798 btrfs_dec_block_group_ro(cache); 3799 scrub_pause_off(fs_info); 3800 btrfs_put_block_group(cache); 3801 break; 3802 } 3803 } 3804 3805 if (ret == 0) { 3806 ro_set = 1; 3807 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 3808 /* 3809 * btrfs_inc_block_group_ro return -ENOSPC when it 3810 * failed in creating new chunk for metadata. 3811 * It is not a problem for scrub, because 3812 * metadata are always cowed, and our scrub paused 3813 * commit_transactions. 3814 */ 3815 ro_set = 0; 3816 } else if (ret == -ETXTBSY) { 3817 btrfs_warn(fs_info, 3818 "skipping scrub of block group %llu due to active swapfile", 3819 cache->start); 3820 scrub_pause_off(fs_info); 3821 ret = 0; 3822 goto skip_unfreeze; 3823 } else { 3824 btrfs_warn(fs_info, 3825 "failed setting block group ro: %d", ret); 3826 btrfs_unfreeze_block_group(cache); 3827 btrfs_put_block_group(cache); 3828 scrub_pause_off(fs_info); 3829 break; 3830 } 3831 3832 /* 3833 * Now the target block is marked RO, wait for nocow writes to 3834 * finish before dev-replace. 3835 * COW is fine, as COW never overwrites extents in commit tree. 3836 */ 3837 if (sctx->is_dev_replace) { 3838 btrfs_wait_nocow_writers(cache); 3839 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 3840 cache->length); 3841 } 3842 3843 scrub_pause_off(fs_info); 3844 down_write(&dev_replace->rwsem); 3845 dev_replace->cursor_right = found_key.offset + dev_extent_len; 3846 dev_replace->cursor_left = found_key.offset; 3847 dev_replace->item_needs_writeback = 1; 3848 up_write(&dev_replace->rwsem); 3849 3850 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 3851 dev_extent_len); 3852 3853 /* 3854 * flush, submit all pending read and write bios, afterwards 3855 * wait for them. 3856 * Note that in the dev replace case, a read request causes 3857 * write requests that are submitted in the read completion 3858 * worker. Therefore in the current situation, it is required 3859 * that all write requests are flushed, so that all read and 3860 * write requests are really completed when bios_in_flight 3861 * changes to 0. 3862 */ 3863 sctx->flush_all_writes = true; 3864 scrub_submit(sctx); 3865 mutex_lock(&sctx->wr_lock); 3866 scrub_wr_submit(sctx); 3867 mutex_unlock(&sctx->wr_lock); 3868 3869 wait_event(sctx->list_wait, 3870 atomic_read(&sctx->bios_in_flight) == 0); 3871 3872 scrub_pause_on(fs_info); 3873 3874 /* 3875 * must be called before we decrease @scrub_paused. 3876 * make sure we don't block transaction commit while 3877 * we are waiting pending workers finished. 3878 */ 3879 wait_event(sctx->list_wait, 3880 atomic_read(&sctx->workers_pending) == 0); 3881 sctx->flush_all_writes = false; 3882 3883 scrub_pause_off(fs_info); 3884 3885 if (sctx->is_dev_replace && 3886 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 3887 cache, found_key.offset)) 3888 ro_set = 0; 3889 3890 down_write(&dev_replace->rwsem); 3891 dev_replace->cursor_left = dev_replace->cursor_right; 3892 dev_replace->item_needs_writeback = 1; 3893 up_write(&dev_replace->rwsem); 3894 3895 if (ro_set) 3896 btrfs_dec_block_group_ro(cache); 3897 3898 /* 3899 * We might have prevented the cleaner kthread from deleting 3900 * this block group if it was already unused because we raced 3901 * and set it to RO mode first. So add it back to the unused 3902 * list, otherwise it might not ever be deleted unless a manual 3903 * balance is triggered or it becomes used and unused again. 3904 */ 3905 spin_lock(&cache->lock); 3906 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3907 cache->used == 0) { 3908 spin_unlock(&cache->lock); 3909 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 3910 btrfs_discard_queue_work(&fs_info->discard_ctl, 3911 cache); 3912 else 3913 btrfs_mark_bg_unused(cache); 3914 } else { 3915 spin_unlock(&cache->lock); 3916 } 3917 skip_unfreeze: 3918 btrfs_unfreeze_block_group(cache); 3919 btrfs_put_block_group(cache); 3920 if (ret) 3921 break; 3922 if (sctx->is_dev_replace && 3923 atomic64_read(&dev_replace->num_write_errors) > 0) { 3924 ret = -EIO; 3925 break; 3926 } 3927 if (sctx->stat.malloc_errors > 0) { 3928 ret = -ENOMEM; 3929 break; 3930 } 3931 skip: 3932 key.offset = found_key.offset + dev_extent_len; 3933 btrfs_release_path(path); 3934 } 3935 3936 btrfs_free_path(path); 3937 3938 return ret; 3939 } 3940 3941 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3942 struct btrfs_device *scrub_dev) 3943 { 3944 int i; 3945 u64 bytenr; 3946 u64 gen; 3947 int ret; 3948 struct btrfs_fs_info *fs_info = sctx->fs_info; 3949 3950 if (BTRFS_FS_ERROR(fs_info)) 3951 return -EROFS; 3952 3953 /* Seed devices of a new filesystem has their own generation. */ 3954 if (scrub_dev->fs_devices != fs_info->fs_devices) 3955 gen = scrub_dev->generation; 3956 else 3957 gen = fs_info->last_trans_committed; 3958 3959 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3960 bytenr = btrfs_sb_offset(i); 3961 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3962 scrub_dev->commit_total_bytes) 3963 break; 3964 if (!btrfs_check_super_location(scrub_dev, bytenr)) 3965 continue; 3966 3967 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3968 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3969 NULL, bytenr); 3970 if (ret) 3971 return ret; 3972 } 3973 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3974 3975 return 0; 3976 } 3977 3978 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 3979 { 3980 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 3981 &fs_info->scrub_lock)) { 3982 struct btrfs_workqueue *scrub_workers = NULL; 3983 struct btrfs_workqueue *scrub_wr_comp = NULL; 3984 struct btrfs_workqueue *scrub_parity = NULL; 3985 3986 scrub_workers = fs_info->scrub_workers; 3987 scrub_wr_comp = fs_info->scrub_wr_completion_workers; 3988 scrub_parity = fs_info->scrub_parity_workers; 3989 3990 fs_info->scrub_workers = NULL; 3991 fs_info->scrub_wr_completion_workers = NULL; 3992 fs_info->scrub_parity_workers = NULL; 3993 mutex_unlock(&fs_info->scrub_lock); 3994 3995 btrfs_destroy_workqueue(scrub_workers); 3996 btrfs_destroy_workqueue(scrub_wr_comp); 3997 btrfs_destroy_workqueue(scrub_parity); 3998 } 3999 } 4000 4001 /* 4002 * get a reference count on fs_info->scrub_workers. start worker if necessary 4003 */ 4004 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4005 int is_dev_replace) 4006 { 4007 struct btrfs_workqueue *scrub_workers = NULL; 4008 struct btrfs_workqueue *scrub_wr_comp = NULL; 4009 struct btrfs_workqueue *scrub_parity = NULL; 4010 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4011 int max_active = fs_info->thread_pool_size; 4012 int ret = -ENOMEM; 4013 4014 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 4015 return 0; 4016 4017 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags, 4018 is_dev_replace ? 1 : max_active, 4); 4019 if (!scrub_workers) 4020 goto fail_scrub_workers; 4021 4022 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4023 max_active, 2); 4024 if (!scrub_wr_comp) 4025 goto fail_scrub_wr_completion_workers; 4026 4027 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4028 max_active, 2); 4029 if (!scrub_parity) 4030 goto fail_scrub_parity_workers; 4031 4032 mutex_lock(&fs_info->scrub_lock); 4033 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 4034 ASSERT(fs_info->scrub_workers == NULL && 4035 fs_info->scrub_wr_completion_workers == NULL && 4036 fs_info->scrub_parity_workers == NULL); 4037 fs_info->scrub_workers = scrub_workers; 4038 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 4039 fs_info->scrub_parity_workers = scrub_parity; 4040 refcount_set(&fs_info->scrub_workers_refcnt, 1); 4041 mutex_unlock(&fs_info->scrub_lock); 4042 return 0; 4043 } 4044 /* Other thread raced in and created the workers for us */ 4045 refcount_inc(&fs_info->scrub_workers_refcnt); 4046 mutex_unlock(&fs_info->scrub_lock); 4047 4048 ret = 0; 4049 btrfs_destroy_workqueue(scrub_parity); 4050 fail_scrub_parity_workers: 4051 btrfs_destroy_workqueue(scrub_wr_comp); 4052 fail_scrub_wr_completion_workers: 4053 btrfs_destroy_workqueue(scrub_workers); 4054 fail_scrub_workers: 4055 return ret; 4056 } 4057 4058 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4059 u64 end, struct btrfs_scrub_progress *progress, 4060 int readonly, int is_dev_replace) 4061 { 4062 struct btrfs_dev_lookup_args args = { .devid = devid }; 4063 struct scrub_ctx *sctx; 4064 int ret; 4065 struct btrfs_device *dev; 4066 unsigned int nofs_flag; 4067 4068 if (btrfs_fs_closing(fs_info)) 4069 return -EAGAIN; 4070 4071 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4072 /* 4073 * in this case scrub is unable to calculate the checksum 4074 * the way scrub is implemented. Do not handle this 4075 * situation at all because it won't ever happen. 4076 */ 4077 btrfs_err(fs_info, 4078 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4079 fs_info->nodesize, 4080 BTRFS_STRIPE_LEN); 4081 return -EINVAL; 4082 } 4083 4084 if (fs_info->nodesize > 4085 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4086 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4087 /* 4088 * would exhaust the array bounds of pagev member in 4089 * struct scrub_block 4090 */ 4091 btrfs_err(fs_info, 4092 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4093 fs_info->nodesize, 4094 SCRUB_MAX_PAGES_PER_BLOCK, 4095 fs_info->sectorsize, 4096 SCRUB_MAX_PAGES_PER_BLOCK); 4097 return -EINVAL; 4098 } 4099 4100 /* Allocate outside of device_list_mutex */ 4101 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 4102 if (IS_ERR(sctx)) 4103 return PTR_ERR(sctx); 4104 4105 ret = scrub_workers_get(fs_info, is_dev_replace); 4106 if (ret) 4107 goto out_free_ctx; 4108 4109 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4110 dev = btrfs_find_device(fs_info->fs_devices, &args); 4111 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4112 !is_dev_replace)) { 4113 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4114 ret = -ENODEV; 4115 goto out; 4116 } 4117 4118 if (!is_dev_replace && !readonly && 4119 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4120 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4121 btrfs_err_in_rcu(fs_info, 4122 "scrub on devid %llu: filesystem on %s is not writable", 4123 devid, rcu_str_deref(dev->name)); 4124 ret = -EROFS; 4125 goto out; 4126 } 4127 4128 mutex_lock(&fs_info->scrub_lock); 4129 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4130 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4131 mutex_unlock(&fs_info->scrub_lock); 4132 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4133 ret = -EIO; 4134 goto out; 4135 } 4136 4137 down_read(&fs_info->dev_replace.rwsem); 4138 if (dev->scrub_ctx || 4139 (!is_dev_replace && 4140 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4141 up_read(&fs_info->dev_replace.rwsem); 4142 mutex_unlock(&fs_info->scrub_lock); 4143 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4144 ret = -EINPROGRESS; 4145 goto out; 4146 } 4147 up_read(&fs_info->dev_replace.rwsem); 4148 4149 sctx->readonly = readonly; 4150 dev->scrub_ctx = sctx; 4151 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4152 4153 /* 4154 * checking @scrub_pause_req here, we can avoid 4155 * race between committing transaction and scrubbing. 4156 */ 4157 __scrub_blocked_if_needed(fs_info); 4158 atomic_inc(&fs_info->scrubs_running); 4159 mutex_unlock(&fs_info->scrub_lock); 4160 4161 /* 4162 * In order to avoid deadlock with reclaim when there is a transaction 4163 * trying to pause scrub, make sure we use GFP_NOFS for all the 4164 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() 4165 * invoked by our callees. The pausing request is done when the 4166 * transaction commit starts, and it blocks the transaction until scrub 4167 * is paused (done at specific points at scrub_stripe() or right above 4168 * before incrementing fs_info->scrubs_running). 4169 */ 4170 nofs_flag = memalloc_nofs_save(); 4171 if (!is_dev_replace) { 4172 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 4173 /* 4174 * by holding device list mutex, we can 4175 * kick off writing super in log tree sync. 4176 */ 4177 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4178 ret = scrub_supers(sctx, dev); 4179 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4180 } 4181 4182 if (!ret) 4183 ret = scrub_enumerate_chunks(sctx, dev, start, end); 4184 memalloc_nofs_restore(nofs_flag); 4185 4186 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4187 atomic_dec(&fs_info->scrubs_running); 4188 wake_up(&fs_info->scrub_pause_wait); 4189 4190 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4191 4192 if (progress) 4193 memcpy(progress, &sctx->stat, sizeof(*progress)); 4194 4195 if (!is_dev_replace) 4196 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 4197 ret ? "not finished" : "finished", devid, ret); 4198 4199 mutex_lock(&fs_info->scrub_lock); 4200 dev->scrub_ctx = NULL; 4201 mutex_unlock(&fs_info->scrub_lock); 4202 4203 scrub_workers_put(fs_info); 4204 scrub_put_ctx(sctx); 4205 4206 return ret; 4207 out: 4208 scrub_workers_put(fs_info); 4209 out_free_ctx: 4210 scrub_free_ctx(sctx); 4211 4212 return ret; 4213 } 4214 4215 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4216 { 4217 mutex_lock(&fs_info->scrub_lock); 4218 atomic_inc(&fs_info->scrub_pause_req); 4219 while (atomic_read(&fs_info->scrubs_paused) != 4220 atomic_read(&fs_info->scrubs_running)) { 4221 mutex_unlock(&fs_info->scrub_lock); 4222 wait_event(fs_info->scrub_pause_wait, 4223 atomic_read(&fs_info->scrubs_paused) == 4224 atomic_read(&fs_info->scrubs_running)); 4225 mutex_lock(&fs_info->scrub_lock); 4226 } 4227 mutex_unlock(&fs_info->scrub_lock); 4228 } 4229 4230 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4231 { 4232 atomic_dec(&fs_info->scrub_pause_req); 4233 wake_up(&fs_info->scrub_pause_wait); 4234 } 4235 4236 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4237 { 4238 mutex_lock(&fs_info->scrub_lock); 4239 if (!atomic_read(&fs_info->scrubs_running)) { 4240 mutex_unlock(&fs_info->scrub_lock); 4241 return -ENOTCONN; 4242 } 4243 4244 atomic_inc(&fs_info->scrub_cancel_req); 4245 while (atomic_read(&fs_info->scrubs_running)) { 4246 mutex_unlock(&fs_info->scrub_lock); 4247 wait_event(fs_info->scrub_pause_wait, 4248 atomic_read(&fs_info->scrubs_running) == 0); 4249 mutex_lock(&fs_info->scrub_lock); 4250 } 4251 atomic_dec(&fs_info->scrub_cancel_req); 4252 mutex_unlock(&fs_info->scrub_lock); 4253 4254 return 0; 4255 } 4256 4257 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4258 { 4259 struct btrfs_fs_info *fs_info = dev->fs_info; 4260 struct scrub_ctx *sctx; 4261 4262 mutex_lock(&fs_info->scrub_lock); 4263 sctx = dev->scrub_ctx; 4264 if (!sctx) { 4265 mutex_unlock(&fs_info->scrub_lock); 4266 return -ENOTCONN; 4267 } 4268 atomic_inc(&sctx->cancel_req); 4269 while (dev->scrub_ctx) { 4270 mutex_unlock(&fs_info->scrub_lock); 4271 wait_event(fs_info->scrub_pause_wait, 4272 dev->scrub_ctx == NULL); 4273 mutex_lock(&fs_info->scrub_lock); 4274 } 4275 mutex_unlock(&fs_info->scrub_lock); 4276 4277 return 0; 4278 } 4279 4280 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4281 struct btrfs_scrub_progress *progress) 4282 { 4283 struct btrfs_dev_lookup_args args = { .devid = devid }; 4284 struct btrfs_device *dev; 4285 struct scrub_ctx *sctx = NULL; 4286 4287 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4288 dev = btrfs_find_device(fs_info->fs_devices, &args); 4289 if (dev) 4290 sctx = dev->scrub_ctx; 4291 if (sctx) 4292 memcpy(progress, &sctx->stat, sizeof(*progress)); 4293 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4294 4295 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4296 } 4297 4298 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4299 u64 extent_logical, u32 extent_len, 4300 u64 *extent_physical, 4301 struct btrfs_device **extent_dev, 4302 int *extent_mirror_num) 4303 { 4304 u64 mapped_length; 4305 struct btrfs_io_context *bioc = NULL; 4306 int ret; 4307 4308 mapped_length = extent_len; 4309 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4310 &mapped_length, &bioc, 0); 4311 if (ret || !bioc || mapped_length < extent_len || 4312 !bioc->stripes[0].dev->bdev) { 4313 btrfs_put_bioc(bioc); 4314 return; 4315 } 4316 4317 *extent_physical = bioc->stripes[0].physical; 4318 *extent_mirror_num = bioc->mirror_num; 4319 *extent_dev = bioc->stripes[0].dev; 4320 btrfs_put_bioc(bioc); 4321 } 4322