1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "fs.h" 10 #include "messages.h" 11 #include "transaction.h" 12 #include "disk-io.h" 13 #include "print-tree.h" 14 #include "qgroup.h" 15 #include "space-info.h" 16 #include "accessors.h" 17 #include "root-tree.h" 18 #include "orphan.h" 19 20 /* 21 * Read a root item from the tree. In case we detect a root item smaller then 22 * sizeof(root_item), we know it's an old version of the root structure and 23 * initialize all new fields to zero. The same happens if we detect mismatching 24 * generation numbers as then we know the root was once mounted with an older 25 * kernel that was not aware of the root item structure change. 26 */ 27 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 28 struct btrfs_root_item *item) 29 { 30 u32 len; 31 int need_reset = 0; 32 33 len = btrfs_item_size(eb, slot); 34 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 35 min_t(u32, len, sizeof(*item))); 36 if (len < sizeof(*item)) 37 need_reset = 1; 38 if (!need_reset && btrfs_root_generation(item) 39 != btrfs_root_generation_v2(item)) { 40 if (btrfs_root_generation_v2(item) != 0) { 41 btrfs_warn(eb->fs_info, 42 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 43 } 44 need_reset = 1; 45 } 46 if (need_reset) { 47 /* Clear all members from generation_v2 onwards. */ 48 memset_startat(item, 0, generation_v2); 49 generate_random_guid(item->uuid); 50 } 51 } 52 53 /* 54 * btrfs_find_root - lookup the root by the key. 55 * root: the root of the root tree 56 * search_key: the key to search 57 * path: the path we search 58 * root_item: the root item of the tree we look for 59 * root_key: the root key of the tree we look for 60 * 61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 62 * of the search key, just lookup the root with the highest offset for a 63 * given objectid. 64 * 65 * If we find something return 0, otherwise > 0, < 0 on error. 66 */ 67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 68 struct btrfs_path *path, struct btrfs_root_item *root_item, 69 struct btrfs_key *root_key) 70 { 71 struct btrfs_key found_key; 72 struct extent_buffer *l; 73 int ret; 74 int slot; 75 76 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 77 if (ret < 0) 78 return ret; 79 80 if (search_key->offset != -1ULL) { /* the search key is exact */ 81 if (ret > 0) 82 goto out; 83 } else { 84 BUG_ON(ret == 0); /* Logical error */ 85 if (path->slots[0] == 0) 86 goto out; 87 path->slots[0]--; 88 ret = 0; 89 } 90 91 l = path->nodes[0]; 92 slot = path->slots[0]; 93 94 btrfs_item_key_to_cpu(l, &found_key, slot); 95 if (found_key.objectid != search_key->objectid || 96 found_key.type != BTRFS_ROOT_ITEM_KEY) { 97 ret = 1; 98 goto out; 99 } 100 101 if (root_item) 102 btrfs_read_root_item(l, slot, root_item); 103 if (root_key) 104 memcpy(root_key, &found_key, sizeof(found_key)); 105 out: 106 btrfs_release_path(path); 107 return ret; 108 } 109 110 void btrfs_set_root_node(struct btrfs_root_item *item, 111 struct extent_buffer *node) 112 { 113 btrfs_set_root_bytenr(item, node->start); 114 btrfs_set_root_level(item, btrfs_header_level(node)); 115 btrfs_set_root_generation(item, btrfs_header_generation(node)); 116 } 117 118 /* 119 * copy the data in 'item' into the btree 120 */ 121 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 122 *root, struct btrfs_key *key, struct btrfs_root_item 123 *item) 124 { 125 struct btrfs_fs_info *fs_info = root->fs_info; 126 struct btrfs_path *path; 127 struct extent_buffer *l; 128 int ret; 129 int slot; 130 unsigned long ptr; 131 u32 old_len; 132 133 path = btrfs_alloc_path(); 134 if (!path) 135 return -ENOMEM; 136 137 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 138 if (ret < 0) 139 goto out; 140 141 if (ret > 0) { 142 btrfs_crit(fs_info, 143 "unable to find root key (%llu %u %llu) in tree %llu", 144 key->objectid, key->type, key->offset, 145 root->root_key.objectid); 146 ret = -EUCLEAN; 147 btrfs_abort_transaction(trans, ret); 148 goto out; 149 } 150 151 l = path->nodes[0]; 152 slot = path->slots[0]; 153 ptr = btrfs_item_ptr_offset(l, slot); 154 old_len = btrfs_item_size(l, slot); 155 156 /* 157 * If this is the first time we update the root item which originated 158 * from an older kernel, we need to enlarge the item size to make room 159 * for the added fields. 160 */ 161 if (old_len < sizeof(*item)) { 162 btrfs_release_path(path); 163 ret = btrfs_search_slot(trans, root, key, path, 164 -1, 1); 165 if (ret < 0) { 166 btrfs_abort_transaction(trans, ret); 167 goto out; 168 } 169 170 ret = btrfs_del_item(trans, root, path); 171 if (ret < 0) { 172 btrfs_abort_transaction(trans, ret); 173 goto out; 174 } 175 btrfs_release_path(path); 176 ret = btrfs_insert_empty_item(trans, root, path, 177 key, sizeof(*item)); 178 if (ret < 0) { 179 btrfs_abort_transaction(trans, ret); 180 goto out; 181 } 182 l = path->nodes[0]; 183 slot = path->slots[0]; 184 ptr = btrfs_item_ptr_offset(l, slot); 185 } 186 187 /* 188 * Update generation_v2 so at the next mount we know the new root 189 * fields are valid. 190 */ 191 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 192 193 write_extent_buffer(l, item, ptr, sizeof(*item)); 194 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 195 out: 196 btrfs_free_path(path); 197 return ret; 198 } 199 200 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 201 const struct btrfs_key *key, struct btrfs_root_item *item) 202 { 203 /* 204 * Make sure generation v1 and v2 match. See update_root for details. 205 */ 206 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 207 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 208 } 209 210 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 211 { 212 struct btrfs_root *tree_root = fs_info->tree_root; 213 struct extent_buffer *leaf; 214 struct btrfs_path *path; 215 struct btrfs_key key; 216 struct btrfs_root *root; 217 int err = 0; 218 int ret; 219 220 path = btrfs_alloc_path(); 221 if (!path) 222 return -ENOMEM; 223 224 key.objectid = BTRFS_ORPHAN_OBJECTID; 225 key.type = BTRFS_ORPHAN_ITEM_KEY; 226 key.offset = 0; 227 228 while (1) { 229 u64 root_objectid; 230 231 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 232 if (ret < 0) { 233 err = ret; 234 break; 235 } 236 237 leaf = path->nodes[0]; 238 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 239 ret = btrfs_next_leaf(tree_root, path); 240 if (ret < 0) 241 err = ret; 242 if (ret != 0) 243 break; 244 leaf = path->nodes[0]; 245 } 246 247 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 248 btrfs_release_path(path); 249 250 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 251 key.type != BTRFS_ORPHAN_ITEM_KEY) 252 break; 253 254 root_objectid = key.offset; 255 key.offset++; 256 257 root = btrfs_get_fs_root(fs_info, root_objectid, false); 258 err = PTR_ERR_OR_ZERO(root); 259 if (err && err != -ENOENT) { 260 break; 261 } else if (err == -ENOENT) { 262 struct btrfs_trans_handle *trans; 263 264 btrfs_release_path(path); 265 266 trans = btrfs_join_transaction(tree_root); 267 if (IS_ERR(trans)) { 268 err = PTR_ERR(trans); 269 btrfs_handle_fs_error(fs_info, err, 270 "Failed to start trans to delete orphan item"); 271 break; 272 } 273 err = btrfs_del_orphan_item(trans, tree_root, 274 root_objectid); 275 btrfs_end_transaction(trans); 276 if (err) { 277 btrfs_handle_fs_error(fs_info, err, 278 "Failed to delete root orphan item"); 279 break; 280 } 281 continue; 282 } 283 284 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 285 if (btrfs_root_refs(&root->root_item) == 0) { 286 struct btrfs_key drop_key; 287 288 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress); 289 /* 290 * If we have a non-zero drop_progress then we know we 291 * made it partly through deleting this snapshot, and 292 * thus we need to make sure we block any balance from 293 * happening until this snapshot is completely dropped. 294 */ 295 if (drop_key.objectid != 0 || drop_key.type != 0 || 296 drop_key.offset != 0) { 297 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 298 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 299 } 300 301 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 302 btrfs_add_dead_root(root); 303 } 304 btrfs_put_root(root); 305 } 306 307 btrfs_free_path(path); 308 return err; 309 } 310 311 /* drop the root item for 'key' from the tree root */ 312 int btrfs_del_root(struct btrfs_trans_handle *trans, 313 const struct btrfs_key *key) 314 { 315 struct btrfs_root *root = trans->fs_info->tree_root; 316 struct btrfs_path *path; 317 int ret; 318 319 path = btrfs_alloc_path(); 320 if (!path) 321 return -ENOMEM; 322 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 323 if (ret < 0) 324 goto out; 325 326 BUG_ON(ret != 0); 327 328 ret = btrfs_del_item(trans, root, path); 329 out: 330 btrfs_free_path(path); 331 return ret; 332 } 333 334 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 335 u64 ref_id, u64 dirid, u64 *sequence, 336 const struct fscrypt_str *name) 337 { 338 struct btrfs_root *tree_root = trans->fs_info->tree_root; 339 struct btrfs_path *path; 340 struct btrfs_root_ref *ref; 341 struct extent_buffer *leaf; 342 struct btrfs_key key; 343 unsigned long ptr; 344 int ret; 345 346 path = btrfs_alloc_path(); 347 if (!path) 348 return -ENOMEM; 349 350 key.objectid = root_id; 351 key.type = BTRFS_ROOT_BACKREF_KEY; 352 key.offset = ref_id; 353 again: 354 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 355 if (ret < 0) { 356 goto out; 357 } else if (ret == 0) { 358 leaf = path->nodes[0]; 359 ref = btrfs_item_ptr(leaf, path->slots[0], 360 struct btrfs_root_ref); 361 ptr = (unsigned long)(ref + 1); 362 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 363 (btrfs_root_ref_name_len(leaf, ref) != name->len) || 364 memcmp_extent_buffer(leaf, name->name, ptr, name->len)) { 365 ret = -ENOENT; 366 goto out; 367 } 368 *sequence = btrfs_root_ref_sequence(leaf, ref); 369 370 ret = btrfs_del_item(trans, tree_root, path); 371 if (ret) 372 goto out; 373 } else { 374 ret = -ENOENT; 375 goto out; 376 } 377 378 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 379 btrfs_release_path(path); 380 key.objectid = ref_id; 381 key.type = BTRFS_ROOT_REF_KEY; 382 key.offset = root_id; 383 goto again; 384 } 385 386 out: 387 btrfs_free_path(path); 388 return ret; 389 } 390 391 /* 392 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 393 * or BTRFS_ROOT_BACKREF_KEY. 394 * 395 * The dirid, sequence, name and name_len refer to the directory entry 396 * that is referencing the root. 397 * 398 * For a forward ref, the root_id is the id of the tree referencing 399 * the root and ref_id is the id of the subvol or snapshot. 400 * 401 * For a back ref the root_id is the id of the subvol or snapshot and 402 * ref_id is the id of the tree referencing it. 403 * 404 * Will return 0, -ENOMEM, or anything from the CoW path 405 */ 406 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 407 u64 ref_id, u64 dirid, u64 sequence, 408 const struct fscrypt_str *name) 409 { 410 struct btrfs_root *tree_root = trans->fs_info->tree_root; 411 struct btrfs_key key; 412 int ret; 413 struct btrfs_path *path; 414 struct btrfs_root_ref *ref; 415 struct extent_buffer *leaf; 416 unsigned long ptr; 417 418 path = btrfs_alloc_path(); 419 if (!path) 420 return -ENOMEM; 421 422 key.objectid = root_id; 423 key.type = BTRFS_ROOT_BACKREF_KEY; 424 key.offset = ref_id; 425 again: 426 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 427 sizeof(*ref) + name->len); 428 if (ret) { 429 btrfs_abort_transaction(trans, ret); 430 btrfs_free_path(path); 431 return ret; 432 } 433 434 leaf = path->nodes[0]; 435 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 436 btrfs_set_root_ref_dirid(leaf, ref, dirid); 437 btrfs_set_root_ref_sequence(leaf, ref, sequence); 438 btrfs_set_root_ref_name_len(leaf, ref, name->len); 439 ptr = (unsigned long)(ref + 1); 440 write_extent_buffer(leaf, name->name, ptr, name->len); 441 btrfs_mark_buffer_dirty(trans, leaf); 442 443 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 444 btrfs_release_path(path); 445 key.objectid = ref_id; 446 key.type = BTRFS_ROOT_REF_KEY; 447 key.offset = root_id; 448 goto again; 449 } 450 451 btrfs_free_path(path); 452 return 0; 453 } 454 455 /* 456 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 457 * for subvolumes. To work around this problem, we steal a bit from 458 * root_item->inode_item->flags, and use it to indicate if those fields 459 * have been properly initialized. 460 */ 461 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 462 { 463 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 464 465 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 466 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 467 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 468 btrfs_set_root_flags(root_item, 0); 469 btrfs_set_root_limit(root_item, 0); 470 } 471 } 472 473 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 474 struct btrfs_root *root) 475 { 476 struct btrfs_root_item *item = &root->root_item; 477 struct timespec64 ct; 478 479 ktime_get_real_ts64(&ct); 480 spin_lock(&root->root_item_lock); 481 btrfs_set_root_ctransid(item, trans->transid); 482 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 483 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 484 spin_unlock(&root->root_item_lock); 485 } 486 487 /* 488 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 489 * root: the root of the parent directory 490 * rsv: block reservation 491 * items: the number of items that we need do reservation 492 * use_global_rsv: allow fallback to the global block reservation 493 * 494 * This function is used to reserve the space for snapshot/subvolume 495 * creation and deletion. Those operations are different with the 496 * common file/directory operations, they change two fs/file trees 497 * and root tree, the number of items that the qgroup reserves is 498 * different with the free space reservation. So we can not use 499 * the space reservation mechanism in start_transaction(). 500 */ 501 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 502 struct btrfs_block_rsv *rsv, int items, 503 bool use_global_rsv) 504 { 505 u64 qgroup_num_bytes = 0; 506 u64 num_bytes; 507 int ret; 508 struct btrfs_fs_info *fs_info = root->fs_info; 509 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 510 511 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 512 /* One for parent inode, two for dir entries */ 513 qgroup_num_bytes = 3 * fs_info->nodesize; 514 ret = btrfs_qgroup_reserve_meta_prealloc(root, 515 qgroup_num_bytes, true, 516 false); 517 if (ret) 518 return ret; 519 } 520 521 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 522 rsv->space_info = btrfs_find_space_info(fs_info, 523 BTRFS_BLOCK_GROUP_METADATA); 524 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, 525 BTRFS_RESERVE_FLUSH_ALL); 526 527 if (ret == -ENOSPC && use_global_rsv) 528 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 529 530 if (ret && qgroup_num_bytes) 531 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 532 533 if (!ret) { 534 spin_lock(&rsv->lock); 535 rsv->qgroup_rsv_reserved += qgroup_num_bytes; 536 spin_unlock(&rsv->lock); 537 } 538 return ret; 539 } 540