1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/uuid.h> 20 #include "ctree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 25 /* 26 * Read a root item from the tree. In case we detect a root item smaller then 27 * sizeof(root_item), we know it's an old version of the root structure and 28 * initialize all new fields to zero. The same happens if we detect mismatching 29 * generation numbers as then we know the root was once mounted with an older 30 * kernel that was not aware of the root item structure change. 31 */ 32 void btrfs_read_root_item(struct extent_buffer *eb, int slot, 33 struct btrfs_root_item *item) 34 { 35 uuid_le uuid; 36 int len; 37 int need_reset = 0; 38 39 len = btrfs_item_size_nr(eb, slot); 40 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 41 min_t(int, len, (int)sizeof(*item))); 42 if (len < sizeof(*item)) 43 need_reset = 1; 44 if (!need_reset && btrfs_root_generation(item) 45 != btrfs_root_generation_v2(item)) { 46 if (btrfs_root_generation_v2(item) != 0) { 47 printk(KERN_WARNING "btrfs: mismatching " 48 "generation and generation_v2 " 49 "found in root item. This root " 50 "was probably mounted with an " 51 "older kernel. Resetting all " 52 "new fields.\n"); 53 } 54 need_reset = 1; 55 } 56 if (need_reset) { 57 memset(&item->generation_v2, 0, 58 sizeof(*item) - offsetof(struct btrfs_root_item, 59 generation_v2)); 60 61 uuid_le_gen(&uuid); 62 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 63 } 64 } 65 66 /* 67 * lookup the root with the highest offset for a given objectid. The key we do 68 * find is copied into 'key'. If we find something return 0, otherwise 1, < 0 69 * on error. 70 */ 71 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, 72 struct btrfs_root_item *item, struct btrfs_key *key) 73 { 74 struct btrfs_path *path; 75 struct btrfs_key search_key; 76 struct btrfs_key found_key; 77 struct extent_buffer *l; 78 int ret; 79 int slot; 80 81 search_key.objectid = objectid; 82 search_key.type = BTRFS_ROOT_ITEM_KEY; 83 search_key.offset = (u64)-1; 84 85 path = btrfs_alloc_path(); 86 if (!path) 87 return -ENOMEM; 88 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 89 if (ret < 0) 90 goto out; 91 92 BUG_ON(ret == 0); 93 if (path->slots[0] == 0) { 94 ret = 1; 95 goto out; 96 } 97 l = path->nodes[0]; 98 slot = path->slots[0] - 1; 99 btrfs_item_key_to_cpu(l, &found_key, slot); 100 if (found_key.objectid != objectid || 101 found_key.type != BTRFS_ROOT_ITEM_KEY) { 102 ret = 1; 103 goto out; 104 } 105 if (item) 106 btrfs_read_root_item(l, slot, item); 107 if (key) 108 memcpy(key, &found_key, sizeof(found_key)); 109 110 ret = 0; 111 out: 112 btrfs_free_path(path); 113 return ret; 114 } 115 116 void btrfs_set_root_node(struct btrfs_root_item *item, 117 struct extent_buffer *node) 118 { 119 btrfs_set_root_bytenr(item, node->start); 120 btrfs_set_root_level(item, btrfs_header_level(node)); 121 btrfs_set_root_generation(item, btrfs_header_generation(node)); 122 } 123 124 /* 125 * copy the data in 'item' into the btree 126 */ 127 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 128 *root, struct btrfs_key *key, struct btrfs_root_item 129 *item) 130 { 131 struct btrfs_path *path; 132 struct extent_buffer *l; 133 int ret; 134 int slot; 135 unsigned long ptr; 136 int old_len; 137 138 path = btrfs_alloc_path(); 139 if (!path) 140 return -ENOMEM; 141 142 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 143 if (ret < 0) { 144 btrfs_abort_transaction(trans, root, ret); 145 goto out; 146 } 147 148 if (ret != 0) { 149 btrfs_print_leaf(root, path->nodes[0]); 150 printk(KERN_CRIT "unable to update root key %llu %u %llu\n", 151 (unsigned long long)key->objectid, key->type, 152 (unsigned long long)key->offset); 153 BUG_ON(1); 154 } 155 156 l = path->nodes[0]; 157 slot = path->slots[0]; 158 ptr = btrfs_item_ptr_offset(l, slot); 159 old_len = btrfs_item_size_nr(l, slot); 160 161 /* 162 * If this is the first time we update the root item which originated 163 * from an older kernel, we need to enlarge the item size to make room 164 * for the added fields. 165 */ 166 if (old_len < sizeof(*item)) { 167 btrfs_release_path(path); 168 ret = btrfs_search_slot(trans, root, key, path, 169 -1, 1); 170 if (ret < 0) { 171 btrfs_abort_transaction(trans, root, ret); 172 goto out; 173 } 174 175 ret = btrfs_del_item(trans, root, path); 176 if (ret < 0) { 177 btrfs_abort_transaction(trans, root, ret); 178 goto out; 179 } 180 btrfs_release_path(path); 181 ret = btrfs_insert_empty_item(trans, root, path, 182 key, sizeof(*item)); 183 if (ret < 0) { 184 btrfs_abort_transaction(trans, root, ret); 185 goto out; 186 } 187 l = path->nodes[0]; 188 slot = path->slots[0]; 189 ptr = btrfs_item_ptr_offset(l, slot); 190 } 191 192 /* 193 * Update generation_v2 so at the next mount we know the new root 194 * fields are valid. 195 */ 196 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 197 198 write_extent_buffer(l, item, ptr, sizeof(*item)); 199 btrfs_mark_buffer_dirty(path->nodes[0]); 200 out: 201 btrfs_free_path(path); 202 return ret; 203 } 204 205 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 206 struct btrfs_key *key, struct btrfs_root_item *item) 207 { 208 /* 209 * Make sure generation v1 and v2 match. See update_root for details. 210 */ 211 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 212 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 213 } 214 215 /* 216 * at mount time we want to find all the old transaction snapshots that were in 217 * the process of being deleted if we crashed. This is any root item with an 218 * offset lower than the latest root. They need to be queued for deletion to 219 * finish what was happening when we crashed. 220 */ 221 int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid) 222 { 223 struct btrfs_root *dead_root; 224 struct btrfs_root_item *ri; 225 struct btrfs_key key; 226 struct btrfs_key found_key; 227 struct btrfs_path *path; 228 int ret; 229 u32 nritems; 230 struct extent_buffer *leaf; 231 int slot; 232 233 key.objectid = objectid; 234 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 235 key.offset = 0; 236 path = btrfs_alloc_path(); 237 if (!path) 238 return -ENOMEM; 239 240 again: 241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 242 if (ret < 0) 243 goto err; 244 while (1) { 245 leaf = path->nodes[0]; 246 nritems = btrfs_header_nritems(leaf); 247 slot = path->slots[0]; 248 if (slot >= nritems) { 249 ret = btrfs_next_leaf(root, path); 250 if (ret) 251 break; 252 leaf = path->nodes[0]; 253 nritems = btrfs_header_nritems(leaf); 254 slot = path->slots[0]; 255 } 256 btrfs_item_key_to_cpu(leaf, &key, slot); 257 if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY) 258 goto next; 259 260 if (key.objectid < objectid) 261 goto next; 262 263 if (key.objectid > objectid) 264 break; 265 266 ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item); 267 if (btrfs_disk_root_refs(leaf, ri) != 0) 268 goto next; 269 270 memcpy(&found_key, &key, sizeof(key)); 271 key.offset++; 272 btrfs_release_path(path); 273 dead_root = 274 btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 275 &found_key); 276 if (IS_ERR(dead_root)) { 277 ret = PTR_ERR(dead_root); 278 goto err; 279 } 280 281 ret = btrfs_add_dead_root(dead_root); 282 if (ret) 283 goto err; 284 goto again; 285 next: 286 slot++; 287 path->slots[0]++; 288 } 289 ret = 0; 290 err: 291 btrfs_free_path(path); 292 return ret; 293 } 294 295 int btrfs_find_orphan_roots(struct btrfs_root *tree_root) 296 { 297 struct extent_buffer *leaf; 298 struct btrfs_path *path; 299 struct btrfs_key key; 300 struct btrfs_key root_key; 301 struct btrfs_root *root; 302 int err = 0; 303 int ret; 304 305 path = btrfs_alloc_path(); 306 if (!path) 307 return -ENOMEM; 308 309 key.objectid = BTRFS_ORPHAN_OBJECTID; 310 key.type = BTRFS_ORPHAN_ITEM_KEY; 311 key.offset = 0; 312 313 root_key.type = BTRFS_ROOT_ITEM_KEY; 314 root_key.offset = (u64)-1; 315 316 while (1) { 317 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 318 if (ret < 0) { 319 err = ret; 320 break; 321 } 322 323 leaf = path->nodes[0]; 324 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 325 ret = btrfs_next_leaf(tree_root, path); 326 if (ret < 0) 327 err = ret; 328 if (ret != 0) 329 break; 330 leaf = path->nodes[0]; 331 } 332 333 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 334 btrfs_release_path(path); 335 336 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 337 key.type != BTRFS_ORPHAN_ITEM_KEY) 338 break; 339 340 root_key.objectid = key.offset; 341 key.offset++; 342 343 root = btrfs_read_fs_root_no_name(tree_root->fs_info, 344 &root_key); 345 if (!IS_ERR(root)) 346 continue; 347 348 ret = PTR_ERR(root); 349 if (ret != -ENOENT) { 350 err = ret; 351 break; 352 } 353 354 ret = btrfs_find_dead_roots(tree_root, root_key.objectid); 355 if (ret) { 356 err = ret; 357 break; 358 } 359 } 360 361 btrfs_free_path(path); 362 return err; 363 } 364 365 /* drop the root item for 'key' from 'root' */ 366 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 367 struct btrfs_key *key) 368 { 369 struct btrfs_path *path; 370 int ret; 371 struct btrfs_root_item *ri; 372 struct extent_buffer *leaf; 373 374 path = btrfs_alloc_path(); 375 if (!path) 376 return -ENOMEM; 377 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 378 if (ret < 0) 379 goto out; 380 381 BUG_ON(ret != 0); 382 leaf = path->nodes[0]; 383 ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item); 384 385 ret = btrfs_del_item(trans, root, path); 386 out: 387 btrfs_free_path(path); 388 return ret; 389 } 390 391 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 392 struct btrfs_root *tree_root, 393 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 394 const char *name, int name_len) 395 396 { 397 struct btrfs_path *path; 398 struct btrfs_root_ref *ref; 399 struct extent_buffer *leaf; 400 struct btrfs_key key; 401 unsigned long ptr; 402 int err = 0; 403 int ret; 404 405 path = btrfs_alloc_path(); 406 if (!path) 407 return -ENOMEM; 408 409 key.objectid = root_id; 410 key.type = BTRFS_ROOT_BACKREF_KEY; 411 key.offset = ref_id; 412 again: 413 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 414 BUG_ON(ret < 0); 415 if (ret == 0) { 416 leaf = path->nodes[0]; 417 ref = btrfs_item_ptr(leaf, path->slots[0], 418 struct btrfs_root_ref); 419 420 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 421 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 422 ptr = (unsigned long)(ref + 1); 423 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 424 *sequence = btrfs_root_ref_sequence(leaf, ref); 425 426 ret = btrfs_del_item(trans, tree_root, path); 427 if (ret) { 428 err = ret; 429 goto out; 430 } 431 } else 432 err = -ENOENT; 433 434 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 435 btrfs_release_path(path); 436 key.objectid = ref_id; 437 key.type = BTRFS_ROOT_REF_KEY; 438 key.offset = root_id; 439 goto again; 440 } 441 442 out: 443 btrfs_free_path(path); 444 return err; 445 } 446 447 int btrfs_find_root_ref(struct btrfs_root *tree_root, 448 struct btrfs_path *path, 449 u64 root_id, u64 ref_id) 450 { 451 struct btrfs_key key; 452 int ret; 453 454 key.objectid = root_id; 455 key.type = BTRFS_ROOT_REF_KEY; 456 key.offset = ref_id; 457 458 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 459 return ret; 460 } 461 462 /* 463 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 464 * or BTRFS_ROOT_BACKREF_KEY. 465 * 466 * The dirid, sequence, name and name_len refer to the directory entry 467 * that is referencing the root. 468 * 469 * For a forward ref, the root_id is the id of the tree referencing 470 * the root and ref_id is the id of the subvol or snapshot. 471 * 472 * For a back ref the root_id is the id of the subvol or snapshot and 473 * ref_id is the id of the tree referencing it. 474 * 475 * Will return 0, -ENOMEM, or anything from the CoW path 476 */ 477 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 478 struct btrfs_root *tree_root, 479 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 480 const char *name, int name_len) 481 { 482 struct btrfs_key key; 483 int ret; 484 struct btrfs_path *path; 485 struct btrfs_root_ref *ref; 486 struct extent_buffer *leaf; 487 unsigned long ptr; 488 489 path = btrfs_alloc_path(); 490 if (!path) 491 return -ENOMEM; 492 493 key.objectid = root_id; 494 key.type = BTRFS_ROOT_BACKREF_KEY; 495 key.offset = ref_id; 496 again: 497 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 498 sizeof(*ref) + name_len); 499 if (ret) { 500 btrfs_abort_transaction(trans, tree_root, ret); 501 btrfs_free_path(path); 502 return ret; 503 } 504 505 leaf = path->nodes[0]; 506 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 507 btrfs_set_root_ref_dirid(leaf, ref, dirid); 508 btrfs_set_root_ref_sequence(leaf, ref, sequence); 509 btrfs_set_root_ref_name_len(leaf, ref, name_len); 510 ptr = (unsigned long)(ref + 1); 511 write_extent_buffer(leaf, name, ptr, name_len); 512 btrfs_mark_buffer_dirty(leaf); 513 514 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 515 btrfs_release_path(path); 516 key.objectid = ref_id; 517 key.type = BTRFS_ROOT_REF_KEY; 518 key.offset = root_id; 519 goto again; 520 } 521 522 btrfs_free_path(path); 523 return 0; 524 } 525 526 /* 527 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 528 * for subvolumes. To work around this problem, we steal a bit from 529 * root_item->inode_item->flags, and use it to indicate if those fields 530 * have been properly initialized. 531 */ 532 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 533 { 534 u64 inode_flags = le64_to_cpu(root_item->inode.flags); 535 536 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 537 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 538 root_item->inode.flags = cpu_to_le64(inode_flags); 539 root_item->flags = 0; 540 root_item->byte_limit = 0; 541 } 542 } 543 544 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 545 struct btrfs_root *root) 546 { 547 struct btrfs_root_item *item = &root->root_item; 548 struct timespec ct = CURRENT_TIME; 549 550 spin_lock(&root->root_item_lock); 551 item->ctransid = cpu_to_le64(trans->transid); 552 item->ctime.sec = cpu_to_le64(ct.tv_sec); 553 item->ctime.nsec = cpu_to_le32(ct.tv_nsec); 554 spin_unlock(&root->root_item_lock); 555 } 556