xref: /openbmc/linux/fs/btrfs/root-tree.c (revision f2a89d3b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/err.h>
20 #include <linux/uuid.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "print-tree.h"
25 
26 /*
27  * Read a root item from the tree. In case we detect a root item smaller then
28  * sizeof(root_item), we know it's an old version of the root structure and
29  * initialize all new fields to zero. The same happens if we detect mismatching
30  * generation numbers as then we know the root was once mounted with an older
31  * kernel that was not aware of the root item structure change.
32  */
33 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
34 				struct btrfs_root_item *item)
35 {
36 	uuid_le uuid;
37 	int len;
38 	int need_reset = 0;
39 
40 	len = btrfs_item_size_nr(eb, slot);
41 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
42 			min_t(int, len, (int)sizeof(*item)));
43 	if (len < sizeof(*item))
44 		need_reset = 1;
45 	if (!need_reset && btrfs_root_generation(item)
46 		!= btrfs_root_generation_v2(item)) {
47 		if (btrfs_root_generation_v2(item) != 0) {
48 			btrfs_warn(eb->fs_info,
49 					"mismatching "
50 					"generation and generation_v2 "
51 					"found in root item. This root "
52 					"was probably mounted with an "
53 					"older kernel. Resetting all "
54 					"new fields.");
55 		}
56 		need_reset = 1;
57 	}
58 	if (need_reset) {
59 		memset(&item->generation_v2, 0,
60 			sizeof(*item) - offsetof(struct btrfs_root_item,
61 					generation_v2));
62 
63 		uuid_le_gen(&uuid);
64 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
65 	}
66 }
67 
68 /*
69  * btrfs_find_root - lookup the root by the key.
70  * root: the root of the root tree
71  * search_key: the key to search
72  * path: the path we search
73  * root_item: the root item of the tree we look for
74  * root_key: the root key of the tree we look for
75  *
76  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
77  * of the search key, just lookup the root with the highest offset for a
78  * given objectid.
79  *
80  * If we find something return 0, otherwise > 0, < 0 on error.
81  */
82 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
83 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
84 		    struct btrfs_key *root_key)
85 {
86 	struct btrfs_key found_key;
87 	struct extent_buffer *l;
88 	int ret;
89 	int slot;
90 
91 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
92 	if (ret < 0)
93 		return ret;
94 
95 	if (search_key->offset != -1ULL) {	/* the search key is exact */
96 		if (ret > 0)
97 			goto out;
98 	} else {
99 		BUG_ON(ret == 0);		/* Logical error */
100 		if (path->slots[0] == 0)
101 			goto out;
102 		path->slots[0]--;
103 		ret = 0;
104 	}
105 
106 	l = path->nodes[0];
107 	slot = path->slots[0];
108 
109 	btrfs_item_key_to_cpu(l, &found_key, slot);
110 	if (found_key.objectid != search_key->objectid ||
111 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
112 		ret = 1;
113 		goto out;
114 	}
115 
116 	if (root_item)
117 		btrfs_read_root_item(l, slot, root_item);
118 	if (root_key)
119 		memcpy(root_key, &found_key, sizeof(found_key));
120 out:
121 	btrfs_release_path(path);
122 	return ret;
123 }
124 
125 void btrfs_set_root_node(struct btrfs_root_item *item,
126 			 struct extent_buffer *node)
127 {
128 	btrfs_set_root_bytenr(item, node->start);
129 	btrfs_set_root_level(item, btrfs_header_level(node));
130 	btrfs_set_root_generation(item, btrfs_header_generation(node));
131 }
132 
133 /*
134  * copy the data in 'item' into the btree
135  */
136 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
137 		      *root, struct btrfs_key *key, struct btrfs_root_item
138 		      *item)
139 {
140 	struct btrfs_path *path;
141 	struct extent_buffer *l;
142 	int ret;
143 	int slot;
144 	unsigned long ptr;
145 	u32 old_len;
146 
147 	path = btrfs_alloc_path();
148 	if (!path)
149 		return -ENOMEM;
150 
151 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
152 	if (ret < 0) {
153 		btrfs_abort_transaction(trans, ret);
154 		goto out;
155 	}
156 
157 	if (ret != 0) {
158 		btrfs_print_leaf(root, path->nodes[0]);
159 		btrfs_crit(root->fs_info, "unable to update root key %llu %u %llu",
160 		       key->objectid, key->type, key->offset);
161 		BUG_ON(1);
162 	}
163 
164 	l = path->nodes[0];
165 	slot = path->slots[0];
166 	ptr = btrfs_item_ptr_offset(l, slot);
167 	old_len = btrfs_item_size_nr(l, slot);
168 
169 	/*
170 	 * If this is the first time we update the root item which originated
171 	 * from an older kernel, we need to enlarge the item size to make room
172 	 * for the added fields.
173 	 */
174 	if (old_len < sizeof(*item)) {
175 		btrfs_release_path(path);
176 		ret = btrfs_search_slot(trans, root, key, path,
177 				-1, 1);
178 		if (ret < 0) {
179 			btrfs_abort_transaction(trans, ret);
180 			goto out;
181 		}
182 
183 		ret = btrfs_del_item(trans, root, path);
184 		if (ret < 0) {
185 			btrfs_abort_transaction(trans, ret);
186 			goto out;
187 		}
188 		btrfs_release_path(path);
189 		ret = btrfs_insert_empty_item(trans, root, path,
190 				key, sizeof(*item));
191 		if (ret < 0) {
192 			btrfs_abort_transaction(trans, ret);
193 			goto out;
194 		}
195 		l = path->nodes[0];
196 		slot = path->slots[0];
197 		ptr = btrfs_item_ptr_offset(l, slot);
198 	}
199 
200 	/*
201 	 * Update generation_v2 so at the next mount we know the new root
202 	 * fields are valid.
203 	 */
204 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
205 
206 	write_extent_buffer(l, item, ptr, sizeof(*item));
207 	btrfs_mark_buffer_dirty(path->nodes[0]);
208 out:
209 	btrfs_free_path(path);
210 	return ret;
211 }
212 
213 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
214 		      struct btrfs_key *key, struct btrfs_root_item *item)
215 {
216 	/*
217 	 * Make sure generation v1 and v2 match. See update_root for details.
218 	 */
219 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
220 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
221 }
222 
223 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
224 {
225 	struct extent_buffer *leaf;
226 	struct btrfs_path *path;
227 	struct btrfs_key key;
228 	struct btrfs_key root_key;
229 	struct btrfs_root *root;
230 	int err = 0;
231 	int ret;
232 	bool can_recover = true;
233 
234 	if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
235 		can_recover = false;
236 
237 	path = btrfs_alloc_path();
238 	if (!path)
239 		return -ENOMEM;
240 
241 	key.objectid = BTRFS_ORPHAN_OBJECTID;
242 	key.type = BTRFS_ORPHAN_ITEM_KEY;
243 	key.offset = 0;
244 
245 	root_key.type = BTRFS_ROOT_ITEM_KEY;
246 	root_key.offset = (u64)-1;
247 
248 	while (1) {
249 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
250 		if (ret < 0) {
251 			err = ret;
252 			break;
253 		}
254 
255 		leaf = path->nodes[0];
256 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
257 			ret = btrfs_next_leaf(tree_root, path);
258 			if (ret < 0)
259 				err = ret;
260 			if (ret != 0)
261 				break;
262 			leaf = path->nodes[0];
263 		}
264 
265 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
266 		btrfs_release_path(path);
267 
268 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
269 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
270 			break;
271 
272 		root_key.objectid = key.offset;
273 		key.offset++;
274 
275 		root = btrfs_read_fs_root(tree_root, &root_key);
276 		err = PTR_ERR_OR_ZERO(root);
277 		if (err && err != -ENOENT) {
278 			break;
279 		} else if (err == -ENOENT) {
280 			struct btrfs_trans_handle *trans;
281 
282 			btrfs_release_path(path);
283 
284 			trans = btrfs_join_transaction(tree_root);
285 			if (IS_ERR(trans)) {
286 				err = PTR_ERR(trans);
287 				btrfs_handle_fs_error(tree_root->fs_info, err,
288 					    "Failed to start trans to delete "
289 					    "orphan item");
290 				break;
291 			}
292 			err = btrfs_del_orphan_item(trans, tree_root,
293 						    root_key.objectid);
294 			btrfs_end_transaction(trans, tree_root);
295 			if (err) {
296 				btrfs_handle_fs_error(tree_root->fs_info, err,
297 					    "Failed to delete root orphan "
298 					    "item");
299 				break;
300 			}
301 			continue;
302 		}
303 
304 		err = btrfs_init_fs_root(root);
305 		if (err) {
306 			btrfs_free_fs_root(root);
307 			break;
308 		}
309 
310 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
311 
312 		err = btrfs_insert_fs_root(root->fs_info, root);
313 		/*
314 		 * The root might have been inserted already, as before we look
315 		 * for orphan roots, log replay might have happened, which
316 		 * triggers a transaction commit and qgroup accounting, which
317 		 * in turn reads and inserts fs roots while doing backref
318 		 * walking.
319 		 */
320 		if (err == -EEXIST)
321 			err = 0;
322 		if (err) {
323 			btrfs_free_fs_root(root);
324 			break;
325 		}
326 
327 		if (btrfs_root_refs(&root->root_item) == 0)
328 			btrfs_add_dead_root(root);
329 	}
330 
331 	btrfs_free_path(path);
332 	return err;
333 }
334 
335 /* drop the root item for 'key' from 'root' */
336 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
337 		   struct btrfs_key *key)
338 {
339 	struct btrfs_path *path;
340 	int ret;
341 
342 	path = btrfs_alloc_path();
343 	if (!path)
344 		return -ENOMEM;
345 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
346 	if (ret < 0)
347 		goto out;
348 
349 	BUG_ON(ret != 0);
350 
351 	ret = btrfs_del_item(trans, root, path);
352 out:
353 	btrfs_free_path(path);
354 	return ret;
355 }
356 
357 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
358 		       struct btrfs_root *tree_root,
359 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
360 		       const char *name, int name_len)
361 
362 {
363 	struct btrfs_path *path;
364 	struct btrfs_root_ref *ref;
365 	struct extent_buffer *leaf;
366 	struct btrfs_key key;
367 	unsigned long ptr;
368 	int err = 0;
369 	int ret;
370 
371 	path = btrfs_alloc_path();
372 	if (!path)
373 		return -ENOMEM;
374 
375 	key.objectid = root_id;
376 	key.type = BTRFS_ROOT_BACKREF_KEY;
377 	key.offset = ref_id;
378 again:
379 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
380 	BUG_ON(ret < 0);
381 	if (ret == 0) {
382 		leaf = path->nodes[0];
383 		ref = btrfs_item_ptr(leaf, path->slots[0],
384 				     struct btrfs_root_ref);
385 
386 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
387 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
388 		ptr = (unsigned long)(ref + 1);
389 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
390 		*sequence = btrfs_root_ref_sequence(leaf, ref);
391 
392 		ret = btrfs_del_item(trans, tree_root, path);
393 		if (ret) {
394 			err = ret;
395 			goto out;
396 		}
397 	} else
398 		err = -ENOENT;
399 
400 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
401 		btrfs_release_path(path);
402 		key.objectid = ref_id;
403 		key.type = BTRFS_ROOT_REF_KEY;
404 		key.offset = root_id;
405 		goto again;
406 	}
407 
408 out:
409 	btrfs_free_path(path);
410 	return err;
411 }
412 
413 /*
414  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
415  * or BTRFS_ROOT_BACKREF_KEY.
416  *
417  * The dirid, sequence, name and name_len refer to the directory entry
418  * that is referencing the root.
419  *
420  * For a forward ref, the root_id is the id of the tree referencing
421  * the root and ref_id is the id of the subvol  or snapshot.
422  *
423  * For a back ref the root_id is the id of the subvol or snapshot and
424  * ref_id is the id of the tree referencing it.
425  *
426  * Will return 0, -ENOMEM, or anything from the CoW path
427  */
428 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
429 		       struct btrfs_root *tree_root,
430 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
431 		       const char *name, int name_len)
432 {
433 	struct btrfs_key key;
434 	int ret;
435 	struct btrfs_path *path;
436 	struct btrfs_root_ref *ref;
437 	struct extent_buffer *leaf;
438 	unsigned long ptr;
439 
440 	path = btrfs_alloc_path();
441 	if (!path)
442 		return -ENOMEM;
443 
444 	key.objectid = root_id;
445 	key.type = BTRFS_ROOT_BACKREF_KEY;
446 	key.offset = ref_id;
447 again:
448 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
449 				      sizeof(*ref) + name_len);
450 	if (ret) {
451 		btrfs_abort_transaction(trans, ret);
452 		btrfs_free_path(path);
453 		return ret;
454 	}
455 
456 	leaf = path->nodes[0];
457 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
458 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
459 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
460 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
461 	ptr = (unsigned long)(ref + 1);
462 	write_extent_buffer(leaf, name, ptr, name_len);
463 	btrfs_mark_buffer_dirty(leaf);
464 
465 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
466 		btrfs_release_path(path);
467 		key.objectid = ref_id;
468 		key.type = BTRFS_ROOT_REF_KEY;
469 		key.offset = root_id;
470 		goto again;
471 	}
472 
473 	btrfs_free_path(path);
474 	return 0;
475 }
476 
477 /*
478  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
479  * for subvolumes. To work around this problem, we steal a bit from
480  * root_item->inode_item->flags, and use it to indicate if those fields
481  * have been properly initialized.
482  */
483 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
484 {
485 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
486 
487 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
488 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
489 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
490 		btrfs_set_root_flags(root_item, 0);
491 		btrfs_set_root_limit(root_item, 0);
492 	}
493 }
494 
495 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
496 			     struct btrfs_root *root)
497 {
498 	struct btrfs_root_item *item = &root->root_item;
499 	struct timespec ct = current_fs_time(root->fs_info->sb);
500 
501 	spin_lock(&root->root_item_lock);
502 	btrfs_set_root_ctransid(item, trans->transid);
503 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
504 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
505 	spin_unlock(&root->root_item_lock);
506 }
507