xref: /openbmc/linux/fs/btrfs/root-tree.c (revision ee8a99bd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/uuid.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 
25 /*
26  * Read a root item from the tree. In case we detect a root item smaller then
27  * sizeof(root_item), we know it's an old version of the root structure and
28  * initialize all new fields to zero. The same happens if we detect mismatching
29  * generation numbers as then we know the root was once mounted with an older
30  * kernel that was not aware of the root item structure change.
31  */
32 void btrfs_read_root_item(struct extent_buffer *eb, int slot,
33 			  struct btrfs_root_item *item)
34 {
35 	uuid_le uuid;
36 	int len;
37 	int need_reset = 0;
38 
39 	len = btrfs_item_size_nr(eb, slot);
40 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
41 			min_t(int, len, (int)sizeof(*item)));
42 	if (len < sizeof(*item))
43 		need_reset = 1;
44 	if (!need_reset && btrfs_root_generation(item)
45 		!= btrfs_root_generation_v2(item)) {
46 		if (btrfs_root_generation_v2(item) != 0) {
47 			printk(KERN_WARNING "btrfs: mismatching "
48 					"generation and generation_v2 "
49 					"found in root item. This root "
50 					"was probably mounted with an "
51 					"older kernel. Resetting all "
52 					"new fields.\n");
53 		}
54 		need_reset = 1;
55 	}
56 	if (need_reset) {
57 		memset(&item->generation_v2, 0,
58 			sizeof(*item) - offsetof(struct btrfs_root_item,
59 					generation_v2));
60 
61 		uuid_le_gen(&uuid);
62 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
63 	}
64 }
65 
66 /*
67  * btrfs_find_root - lookup the root by the key.
68  * root: the root of the root tree
69  * search_key: the key to search
70  * path: the path we search
71  * root_item: the root item of the tree we look for
72  * root_key: the reak key of the tree we look for
73  *
74  * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
75  * of the search key, just lookup the root with the highest offset for a
76  * given objectid.
77  *
78  * If we find something return 0, otherwise > 0, < 0 on error.
79  */
80 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
81 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
82 		    struct btrfs_key *root_key)
83 {
84 	struct btrfs_key found_key;
85 	struct extent_buffer *l;
86 	int ret;
87 	int slot;
88 
89 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
90 	if (ret < 0)
91 		return ret;
92 
93 	if (search_key->offset != -1ULL) {	/* the search key is exact */
94 		if (ret > 0)
95 			goto out;
96 	} else {
97 		BUG_ON(ret == 0);		/* Logical error */
98 		if (path->slots[0] == 0)
99 			goto out;
100 		path->slots[0]--;
101 		ret = 0;
102 	}
103 
104 	l = path->nodes[0];
105 	slot = path->slots[0];
106 
107 	btrfs_item_key_to_cpu(l, &found_key, slot);
108 	if (found_key.objectid != search_key->objectid ||
109 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
110 		ret = 1;
111 		goto out;
112 	}
113 
114 	if (root_item)
115 		btrfs_read_root_item(l, slot, root_item);
116 	if (root_key)
117 		memcpy(root_key, &found_key, sizeof(found_key));
118 out:
119 	btrfs_release_path(path);
120 	return ret;
121 }
122 
123 void btrfs_set_root_node(struct btrfs_root_item *item,
124 			 struct extent_buffer *node)
125 {
126 	btrfs_set_root_bytenr(item, node->start);
127 	btrfs_set_root_level(item, btrfs_header_level(node));
128 	btrfs_set_root_generation(item, btrfs_header_generation(node));
129 }
130 
131 /*
132  * copy the data in 'item' into the btree
133  */
134 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
135 		      *root, struct btrfs_key *key, struct btrfs_root_item
136 		      *item)
137 {
138 	struct btrfs_path *path;
139 	struct extent_buffer *l;
140 	int ret;
141 	int slot;
142 	unsigned long ptr;
143 	int old_len;
144 
145 	path = btrfs_alloc_path();
146 	if (!path)
147 		return -ENOMEM;
148 
149 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
150 	if (ret < 0) {
151 		btrfs_abort_transaction(trans, root, ret);
152 		goto out;
153 	}
154 
155 	if (ret != 0) {
156 		btrfs_print_leaf(root, path->nodes[0]);
157 		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
158 		       (unsigned long long)key->objectid, key->type,
159 		       (unsigned long long)key->offset);
160 		BUG_ON(1);
161 	}
162 
163 	l = path->nodes[0];
164 	slot = path->slots[0];
165 	ptr = btrfs_item_ptr_offset(l, slot);
166 	old_len = btrfs_item_size_nr(l, slot);
167 
168 	/*
169 	 * If this is the first time we update the root item which originated
170 	 * from an older kernel, we need to enlarge the item size to make room
171 	 * for the added fields.
172 	 */
173 	if (old_len < sizeof(*item)) {
174 		btrfs_release_path(path);
175 		ret = btrfs_search_slot(trans, root, key, path,
176 				-1, 1);
177 		if (ret < 0) {
178 			btrfs_abort_transaction(trans, root, ret);
179 			goto out;
180 		}
181 
182 		ret = btrfs_del_item(trans, root, path);
183 		if (ret < 0) {
184 			btrfs_abort_transaction(trans, root, ret);
185 			goto out;
186 		}
187 		btrfs_release_path(path);
188 		ret = btrfs_insert_empty_item(trans, root, path,
189 				key, sizeof(*item));
190 		if (ret < 0) {
191 			btrfs_abort_transaction(trans, root, ret);
192 			goto out;
193 		}
194 		l = path->nodes[0];
195 		slot = path->slots[0];
196 		ptr = btrfs_item_ptr_offset(l, slot);
197 	}
198 
199 	/*
200 	 * Update generation_v2 so at the next mount we know the new root
201 	 * fields are valid.
202 	 */
203 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
204 
205 	write_extent_buffer(l, item, ptr, sizeof(*item));
206 	btrfs_mark_buffer_dirty(path->nodes[0]);
207 out:
208 	btrfs_free_path(path);
209 	return ret;
210 }
211 
212 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
213 		      struct btrfs_key *key, struct btrfs_root_item *item)
214 {
215 	/*
216 	 * Make sure generation v1 and v2 match. See update_root for details.
217 	 */
218 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
219 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
220 }
221 
222 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
223 {
224 	struct extent_buffer *leaf;
225 	struct btrfs_path *path;
226 	struct btrfs_key key;
227 	struct btrfs_key root_key;
228 	struct btrfs_root *root;
229 	int err = 0;
230 	int ret;
231 	bool can_recover = true;
232 
233 	if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
234 		can_recover = false;
235 
236 	path = btrfs_alloc_path();
237 	if (!path)
238 		return -ENOMEM;
239 
240 	key.objectid = BTRFS_ORPHAN_OBJECTID;
241 	key.type = BTRFS_ORPHAN_ITEM_KEY;
242 	key.offset = 0;
243 
244 	root_key.type = BTRFS_ROOT_ITEM_KEY;
245 	root_key.offset = (u64)-1;
246 
247 	while (1) {
248 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
249 		if (ret < 0) {
250 			err = ret;
251 			break;
252 		}
253 
254 		leaf = path->nodes[0];
255 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
256 			ret = btrfs_next_leaf(tree_root, path);
257 			if (ret < 0)
258 				err = ret;
259 			if (ret != 0)
260 				break;
261 			leaf = path->nodes[0];
262 		}
263 
264 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
265 		btrfs_release_path(path);
266 
267 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
268 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
269 			break;
270 
271 		root_key.objectid = key.offset;
272 		key.offset++;
273 
274 		root = btrfs_read_fs_root(tree_root, &root_key);
275 		err = PTR_RET(root);
276 		if (err && err != -ENOENT) {
277 			break;
278 		} else if (err == -ENOENT) {
279 			struct btrfs_trans_handle *trans;
280 
281 			btrfs_release_path(path);
282 
283 			trans = btrfs_join_transaction(tree_root);
284 			if (IS_ERR(trans)) {
285 				err = PTR_ERR(trans);
286 				btrfs_error(tree_root->fs_info, err,
287 					    "Failed to start trans to delete "
288 					    "orphan item");
289 				break;
290 			}
291 			err = btrfs_del_orphan_item(trans, tree_root,
292 						    root_key.objectid);
293 			btrfs_end_transaction(trans, tree_root);
294 			if (err) {
295 				btrfs_error(tree_root->fs_info, err,
296 					    "Failed to delete root orphan "
297 					    "item");
298 				break;
299 			}
300 			continue;
301 		}
302 
303 		if (btrfs_root_refs(&root->root_item) == 0) {
304 			btrfs_add_dead_root(root);
305 			continue;
306 		}
307 
308 		err = btrfs_init_fs_root(root);
309 		if (err) {
310 			btrfs_free_fs_root(root);
311 			break;
312 		}
313 
314 		root->orphan_item_inserted = 1;
315 
316 		err = btrfs_insert_fs_root(root->fs_info, root);
317 		if (err) {
318 			BUG_ON(err == -EEXIST);
319 			btrfs_free_fs_root(root);
320 			break;
321 		}
322 	}
323 
324 	btrfs_free_path(path);
325 	return err;
326 }
327 
328 /* drop the root item for 'key' from 'root' */
329 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
330 		   struct btrfs_key *key)
331 {
332 	struct btrfs_path *path;
333 	int ret;
334 
335 	path = btrfs_alloc_path();
336 	if (!path)
337 		return -ENOMEM;
338 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
339 	if (ret < 0)
340 		goto out;
341 
342 	BUG_ON(ret != 0);
343 
344 	ret = btrfs_del_item(trans, root, path);
345 out:
346 	btrfs_free_path(path);
347 	return ret;
348 }
349 
350 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
351 		       struct btrfs_root *tree_root,
352 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
353 		       const char *name, int name_len)
354 
355 {
356 	struct btrfs_path *path;
357 	struct btrfs_root_ref *ref;
358 	struct extent_buffer *leaf;
359 	struct btrfs_key key;
360 	unsigned long ptr;
361 	int err = 0;
362 	int ret;
363 
364 	path = btrfs_alloc_path();
365 	if (!path)
366 		return -ENOMEM;
367 
368 	key.objectid = root_id;
369 	key.type = BTRFS_ROOT_BACKREF_KEY;
370 	key.offset = ref_id;
371 again:
372 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
373 	BUG_ON(ret < 0);
374 	if (ret == 0) {
375 		leaf = path->nodes[0];
376 		ref = btrfs_item_ptr(leaf, path->slots[0],
377 				     struct btrfs_root_ref);
378 
379 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
380 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
381 		ptr = (unsigned long)(ref + 1);
382 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
383 		*sequence = btrfs_root_ref_sequence(leaf, ref);
384 
385 		ret = btrfs_del_item(trans, tree_root, path);
386 		if (ret) {
387 			err = ret;
388 			goto out;
389 		}
390 	} else
391 		err = -ENOENT;
392 
393 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
394 		btrfs_release_path(path);
395 		key.objectid = ref_id;
396 		key.type = BTRFS_ROOT_REF_KEY;
397 		key.offset = root_id;
398 		goto again;
399 	}
400 
401 out:
402 	btrfs_free_path(path);
403 	return err;
404 }
405 
406 int btrfs_find_root_ref(struct btrfs_root *tree_root,
407 		   struct btrfs_path *path,
408 		   u64 root_id, u64 ref_id)
409 {
410 	struct btrfs_key key;
411 	int ret;
412 
413 	key.objectid = root_id;
414 	key.type = BTRFS_ROOT_REF_KEY;
415 	key.offset = ref_id;
416 
417 	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
418 	return ret;
419 }
420 
421 /*
422  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
423  * or BTRFS_ROOT_BACKREF_KEY.
424  *
425  * The dirid, sequence, name and name_len refer to the directory entry
426  * that is referencing the root.
427  *
428  * For a forward ref, the root_id is the id of the tree referencing
429  * the root and ref_id is the id of the subvol  or snapshot.
430  *
431  * For a back ref the root_id is the id of the subvol or snapshot and
432  * ref_id is the id of the tree referencing it.
433  *
434  * Will return 0, -ENOMEM, or anything from the CoW path
435  */
436 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
437 		       struct btrfs_root *tree_root,
438 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
439 		       const char *name, int name_len)
440 {
441 	struct btrfs_key key;
442 	int ret;
443 	struct btrfs_path *path;
444 	struct btrfs_root_ref *ref;
445 	struct extent_buffer *leaf;
446 	unsigned long ptr;
447 
448 	path = btrfs_alloc_path();
449 	if (!path)
450 		return -ENOMEM;
451 
452 	key.objectid = root_id;
453 	key.type = BTRFS_ROOT_BACKREF_KEY;
454 	key.offset = ref_id;
455 again:
456 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
457 				      sizeof(*ref) + name_len);
458 	if (ret) {
459 		btrfs_abort_transaction(trans, tree_root, ret);
460 		btrfs_free_path(path);
461 		return ret;
462 	}
463 
464 	leaf = path->nodes[0];
465 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
466 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
467 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
468 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
469 	ptr = (unsigned long)(ref + 1);
470 	write_extent_buffer(leaf, name, ptr, name_len);
471 	btrfs_mark_buffer_dirty(leaf);
472 
473 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
474 		btrfs_release_path(path);
475 		key.objectid = ref_id;
476 		key.type = BTRFS_ROOT_REF_KEY;
477 		key.offset = root_id;
478 		goto again;
479 	}
480 
481 	btrfs_free_path(path);
482 	return 0;
483 }
484 
485 /*
486  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
487  * for subvolumes. To work around this problem, we steal a bit from
488  * root_item->inode_item->flags, and use it to indicate if those fields
489  * have been properly initialized.
490  */
491 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
492 {
493 	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
494 
495 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
496 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
497 		root_item->inode.flags = cpu_to_le64(inode_flags);
498 		root_item->flags = 0;
499 		root_item->byte_limit = 0;
500 	}
501 }
502 
503 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
504 			     struct btrfs_root *root)
505 {
506 	struct btrfs_root_item *item = &root->root_item;
507 	struct timespec ct = CURRENT_TIME;
508 
509 	spin_lock(&root->root_item_lock);
510 	item->ctransid = cpu_to_le64(trans->transid);
511 	item->ctime.sec = cpu_to_le64(ct.tv_sec);
512 	item->ctime.nsec = cpu_to_le32(ct.tv_nsec);
513 	spin_unlock(&root->root_item_lock);
514 }
515