1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/uuid.h> 20 #include "ctree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 25 /* 26 * Read a root item from the tree. In case we detect a root item smaller then 27 * sizeof(root_item), we know it's an old version of the root structure and 28 * initialize all new fields to zero. The same happens if we detect mismatching 29 * generation numbers as then we know the root was once mounted with an older 30 * kernel that was not aware of the root item structure change. 31 */ 32 void btrfs_read_root_item(struct extent_buffer *eb, int slot, 33 struct btrfs_root_item *item) 34 { 35 uuid_le uuid; 36 int len; 37 int need_reset = 0; 38 39 len = btrfs_item_size_nr(eb, slot); 40 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 41 min_t(int, len, (int)sizeof(*item))); 42 if (len < sizeof(*item)) 43 need_reset = 1; 44 if (!need_reset && btrfs_root_generation(item) 45 != btrfs_root_generation_v2(item)) { 46 if (btrfs_root_generation_v2(item) != 0) { 47 printk(KERN_WARNING "btrfs: mismatching " 48 "generation and generation_v2 " 49 "found in root item. This root " 50 "was probably mounted with an " 51 "older kernel. Resetting all " 52 "new fields.\n"); 53 } 54 need_reset = 1; 55 } 56 if (need_reset) { 57 memset(&item->generation_v2, 0, 58 sizeof(*item) - offsetof(struct btrfs_root_item, 59 generation_v2)); 60 61 uuid_le_gen(&uuid); 62 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 63 } 64 } 65 66 /* 67 * btrfs_find_root - lookup the root by the key. 68 * root: the root of the root tree 69 * search_key: the key to search 70 * path: the path we search 71 * root_item: the root item of the tree we look for 72 * root_key: the reak key of the tree we look for 73 * 74 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset 75 * of the search key, just lookup the root with the highest offset for a 76 * given objectid. 77 * 78 * If we find something return 0, otherwise > 0, < 0 on error. 79 */ 80 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key, 81 struct btrfs_path *path, struct btrfs_root_item *root_item, 82 struct btrfs_key *root_key) 83 { 84 struct btrfs_key found_key; 85 struct extent_buffer *l; 86 int ret; 87 int slot; 88 89 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 90 if (ret < 0) 91 return ret; 92 93 if (search_key->offset != -1ULL) { /* the search key is exact */ 94 if (ret > 0) 95 goto out; 96 } else { 97 BUG_ON(ret == 0); /* Logical error */ 98 if (path->slots[0] == 0) 99 goto out; 100 path->slots[0]--; 101 ret = 0; 102 } 103 104 l = path->nodes[0]; 105 slot = path->slots[0]; 106 107 btrfs_item_key_to_cpu(l, &found_key, slot); 108 if (found_key.objectid != search_key->objectid || 109 found_key.type != BTRFS_ROOT_ITEM_KEY) { 110 ret = 1; 111 goto out; 112 } 113 114 if (root_item) 115 btrfs_read_root_item(l, slot, root_item); 116 if (root_key) 117 memcpy(root_key, &found_key, sizeof(found_key)); 118 out: 119 btrfs_release_path(path); 120 return ret; 121 } 122 123 void btrfs_set_root_node(struct btrfs_root_item *item, 124 struct extent_buffer *node) 125 { 126 btrfs_set_root_bytenr(item, node->start); 127 btrfs_set_root_level(item, btrfs_header_level(node)); 128 btrfs_set_root_generation(item, btrfs_header_generation(node)); 129 } 130 131 /* 132 * copy the data in 'item' into the btree 133 */ 134 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 135 *root, struct btrfs_key *key, struct btrfs_root_item 136 *item) 137 { 138 struct btrfs_path *path; 139 struct extent_buffer *l; 140 int ret; 141 int slot; 142 unsigned long ptr; 143 int old_len; 144 145 path = btrfs_alloc_path(); 146 if (!path) 147 return -ENOMEM; 148 149 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 150 if (ret < 0) { 151 btrfs_abort_transaction(trans, root, ret); 152 goto out; 153 } 154 155 if (ret != 0) { 156 btrfs_print_leaf(root, path->nodes[0]); 157 printk(KERN_CRIT "unable to update root key %llu %u %llu\n", 158 (unsigned long long)key->objectid, key->type, 159 (unsigned long long)key->offset); 160 BUG_ON(1); 161 } 162 163 l = path->nodes[0]; 164 slot = path->slots[0]; 165 ptr = btrfs_item_ptr_offset(l, slot); 166 old_len = btrfs_item_size_nr(l, slot); 167 168 /* 169 * If this is the first time we update the root item which originated 170 * from an older kernel, we need to enlarge the item size to make room 171 * for the added fields. 172 */ 173 if (old_len < sizeof(*item)) { 174 btrfs_release_path(path); 175 ret = btrfs_search_slot(trans, root, key, path, 176 -1, 1); 177 if (ret < 0) { 178 btrfs_abort_transaction(trans, root, ret); 179 goto out; 180 } 181 182 ret = btrfs_del_item(trans, root, path); 183 if (ret < 0) { 184 btrfs_abort_transaction(trans, root, ret); 185 goto out; 186 } 187 btrfs_release_path(path); 188 ret = btrfs_insert_empty_item(trans, root, path, 189 key, sizeof(*item)); 190 if (ret < 0) { 191 btrfs_abort_transaction(trans, root, ret); 192 goto out; 193 } 194 l = path->nodes[0]; 195 slot = path->slots[0]; 196 ptr = btrfs_item_ptr_offset(l, slot); 197 } 198 199 /* 200 * Update generation_v2 so at the next mount we know the new root 201 * fields are valid. 202 */ 203 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 204 205 write_extent_buffer(l, item, ptr, sizeof(*item)); 206 btrfs_mark_buffer_dirty(path->nodes[0]); 207 out: 208 btrfs_free_path(path); 209 return ret; 210 } 211 212 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 213 struct btrfs_key *key, struct btrfs_root_item *item) 214 { 215 /* 216 * Make sure generation v1 and v2 match. See update_root for details. 217 */ 218 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 219 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 220 } 221 222 int btrfs_find_orphan_roots(struct btrfs_root *tree_root) 223 { 224 struct extent_buffer *leaf; 225 struct btrfs_path *path; 226 struct btrfs_key key; 227 struct btrfs_key root_key; 228 struct btrfs_root *root; 229 int err = 0; 230 int ret; 231 bool can_recover = true; 232 233 if (tree_root->fs_info->sb->s_flags & MS_RDONLY) 234 can_recover = false; 235 236 path = btrfs_alloc_path(); 237 if (!path) 238 return -ENOMEM; 239 240 key.objectid = BTRFS_ORPHAN_OBJECTID; 241 key.type = BTRFS_ORPHAN_ITEM_KEY; 242 key.offset = 0; 243 244 root_key.type = BTRFS_ROOT_ITEM_KEY; 245 root_key.offset = (u64)-1; 246 247 while (1) { 248 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 249 if (ret < 0) { 250 err = ret; 251 break; 252 } 253 254 leaf = path->nodes[0]; 255 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 256 ret = btrfs_next_leaf(tree_root, path); 257 if (ret < 0) 258 err = ret; 259 if (ret != 0) 260 break; 261 leaf = path->nodes[0]; 262 } 263 264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 265 btrfs_release_path(path); 266 267 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 268 key.type != BTRFS_ORPHAN_ITEM_KEY) 269 break; 270 271 root_key.objectid = key.offset; 272 key.offset++; 273 274 root = btrfs_read_fs_root(tree_root, &root_key); 275 err = PTR_RET(root); 276 if (err && err != -ENOENT) { 277 break; 278 } else if (err == -ENOENT) { 279 struct btrfs_trans_handle *trans; 280 281 btrfs_release_path(path); 282 283 trans = btrfs_join_transaction(tree_root); 284 if (IS_ERR(trans)) { 285 err = PTR_ERR(trans); 286 btrfs_error(tree_root->fs_info, err, 287 "Failed to start trans to delete " 288 "orphan item"); 289 break; 290 } 291 err = btrfs_del_orphan_item(trans, tree_root, 292 root_key.objectid); 293 btrfs_end_transaction(trans, tree_root); 294 if (err) { 295 btrfs_error(tree_root->fs_info, err, 296 "Failed to delete root orphan " 297 "item"); 298 break; 299 } 300 continue; 301 } 302 303 if (btrfs_root_refs(&root->root_item) == 0) { 304 btrfs_add_dead_root(root); 305 continue; 306 } 307 308 err = btrfs_init_fs_root(root); 309 if (err) { 310 btrfs_free_fs_root(root); 311 break; 312 } 313 314 root->orphan_item_inserted = 1; 315 316 err = btrfs_insert_fs_root(root->fs_info, root); 317 if (err) { 318 BUG_ON(err == -EEXIST); 319 btrfs_free_fs_root(root); 320 break; 321 } 322 } 323 324 btrfs_free_path(path); 325 return err; 326 } 327 328 /* drop the root item for 'key' from 'root' */ 329 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 330 struct btrfs_key *key) 331 { 332 struct btrfs_path *path; 333 int ret; 334 335 path = btrfs_alloc_path(); 336 if (!path) 337 return -ENOMEM; 338 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 339 if (ret < 0) 340 goto out; 341 342 BUG_ON(ret != 0); 343 344 ret = btrfs_del_item(trans, root, path); 345 out: 346 btrfs_free_path(path); 347 return ret; 348 } 349 350 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 351 struct btrfs_root *tree_root, 352 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 353 const char *name, int name_len) 354 355 { 356 struct btrfs_path *path; 357 struct btrfs_root_ref *ref; 358 struct extent_buffer *leaf; 359 struct btrfs_key key; 360 unsigned long ptr; 361 int err = 0; 362 int ret; 363 364 path = btrfs_alloc_path(); 365 if (!path) 366 return -ENOMEM; 367 368 key.objectid = root_id; 369 key.type = BTRFS_ROOT_BACKREF_KEY; 370 key.offset = ref_id; 371 again: 372 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 373 BUG_ON(ret < 0); 374 if (ret == 0) { 375 leaf = path->nodes[0]; 376 ref = btrfs_item_ptr(leaf, path->slots[0], 377 struct btrfs_root_ref); 378 379 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 380 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 381 ptr = (unsigned long)(ref + 1); 382 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 383 *sequence = btrfs_root_ref_sequence(leaf, ref); 384 385 ret = btrfs_del_item(trans, tree_root, path); 386 if (ret) { 387 err = ret; 388 goto out; 389 } 390 } else 391 err = -ENOENT; 392 393 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 394 btrfs_release_path(path); 395 key.objectid = ref_id; 396 key.type = BTRFS_ROOT_REF_KEY; 397 key.offset = root_id; 398 goto again; 399 } 400 401 out: 402 btrfs_free_path(path); 403 return err; 404 } 405 406 int btrfs_find_root_ref(struct btrfs_root *tree_root, 407 struct btrfs_path *path, 408 u64 root_id, u64 ref_id) 409 { 410 struct btrfs_key key; 411 int ret; 412 413 key.objectid = root_id; 414 key.type = BTRFS_ROOT_REF_KEY; 415 key.offset = ref_id; 416 417 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 418 return ret; 419 } 420 421 /* 422 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 423 * or BTRFS_ROOT_BACKREF_KEY. 424 * 425 * The dirid, sequence, name and name_len refer to the directory entry 426 * that is referencing the root. 427 * 428 * For a forward ref, the root_id is the id of the tree referencing 429 * the root and ref_id is the id of the subvol or snapshot. 430 * 431 * For a back ref the root_id is the id of the subvol or snapshot and 432 * ref_id is the id of the tree referencing it. 433 * 434 * Will return 0, -ENOMEM, or anything from the CoW path 435 */ 436 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 437 struct btrfs_root *tree_root, 438 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 439 const char *name, int name_len) 440 { 441 struct btrfs_key key; 442 int ret; 443 struct btrfs_path *path; 444 struct btrfs_root_ref *ref; 445 struct extent_buffer *leaf; 446 unsigned long ptr; 447 448 path = btrfs_alloc_path(); 449 if (!path) 450 return -ENOMEM; 451 452 key.objectid = root_id; 453 key.type = BTRFS_ROOT_BACKREF_KEY; 454 key.offset = ref_id; 455 again: 456 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 457 sizeof(*ref) + name_len); 458 if (ret) { 459 btrfs_abort_transaction(trans, tree_root, ret); 460 btrfs_free_path(path); 461 return ret; 462 } 463 464 leaf = path->nodes[0]; 465 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 466 btrfs_set_root_ref_dirid(leaf, ref, dirid); 467 btrfs_set_root_ref_sequence(leaf, ref, sequence); 468 btrfs_set_root_ref_name_len(leaf, ref, name_len); 469 ptr = (unsigned long)(ref + 1); 470 write_extent_buffer(leaf, name, ptr, name_len); 471 btrfs_mark_buffer_dirty(leaf); 472 473 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 474 btrfs_release_path(path); 475 key.objectid = ref_id; 476 key.type = BTRFS_ROOT_REF_KEY; 477 key.offset = root_id; 478 goto again; 479 } 480 481 btrfs_free_path(path); 482 return 0; 483 } 484 485 /* 486 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 487 * for subvolumes. To work around this problem, we steal a bit from 488 * root_item->inode_item->flags, and use it to indicate if those fields 489 * have been properly initialized. 490 */ 491 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 492 { 493 u64 inode_flags = le64_to_cpu(root_item->inode.flags); 494 495 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 496 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 497 root_item->inode.flags = cpu_to_le64(inode_flags); 498 root_item->flags = 0; 499 root_item->byte_limit = 0; 500 } 501 } 502 503 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 504 struct btrfs_root *root) 505 { 506 struct btrfs_root_item *item = &root->root_item; 507 struct timespec ct = CURRENT_TIME; 508 509 spin_lock(&root->root_item_lock); 510 item->ctransid = cpu_to_le64(trans->transid); 511 item->ctime.sec = cpu_to_le64(ct.tv_sec); 512 item->ctime.nsec = cpu_to_le32(ct.tv_nsec); 513 spin_unlock(&root->root_item_lock); 514 } 515