xref: /openbmc/linux/fs/btrfs/root-tree.c (revision e1e0a9e6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/uuid.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 
25 /*
26  * Read a root item from the tree. In case we detect a root item smaller then
27  * sizeof(root_item), we know it's an old version of the root structure and
28  * initialize all new fields to zero. The same happens if we detect mismatching
29  * generation numbers as then we know the root was once mounted with an older
30  * kernel that was not aware of the root item structure change.
31  */
32 void btrfs_read_root_item(struct btrfs_root *root,
33 			 struct extent_buffer *eb, int slot,
34 			 struct btrfs_root_item *item)
35 {
36 	uuid_le uuid;
37 	int len;
38 	int need_reset = 0;
39 
40 	len = btrfs_item_size_nr(eb, slot);
41 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
42 			min_t(int, len, (int)sizeof(*item)));
43 	if (len < sizeof(*item))
44 		need_reset = 1;
45 	if (!need_reset && btrfs_root_generation(item)
46 		!= btrfs_root_generation_v2(item)) {
47 		if (btrfs_root_generation_v2(item) != 0) {
48 			printk(KERN_WARNING "btrfs: mismatching "
49 					"generation and generation_v2 "
50 					"found in root item. This root "
51 					"was probably mounted with an "
52 					"older kernel. Resetting all "
53 					"new fields.\n");
54 		}
55 		need_reset = 1;
56 	}
57 	if (need_reset) {
58 		memset(&item->generation_v2, 0,
59 			sizeof(*item) - offsetof(struct btrfs_root_item,
60 					generation_v2));
61 
62 		uuid_le_gen(&uuid);
63 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
64 	}
65 }
66 
67 /*
68  * lookup the root with the highest offset for a given objectid.  The key we do
69  * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
70  * on error.
71  */
72 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
73 			struct btrfs_root_item *item, struct btrfs_key *key)
74 {
75 	struct btrfs_path *path;
76 	struct btrfs_key search_key;
77 	struct btrfs_key found_key;
78 	struct extent_buffer *l;
79 	int ret;
80 	int slot;
81 
82 	search_key.objectid = objectid;
83 	search_key.type = BTRFS_ROOT_ITEM_KEY;
84 	search_key.offset = (u64)-1;
85 
86 	path = btrfs_alloc_path();
87 	if (!path)
88 		return -ENOMEM;
89 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
90 	if (ret < 0)
91 		goto out;
92 
93 	BUG_ON(ret == 0);
94 	if (path->slots[0] == 0) {
95 		ret = 1;
96 		goto out;
97 	}
98 	l = path->nodes[0];
99 	slot = path->slots[0] - 1;
100 	btrfs_item_key_to_cpu(l, &found_key, slot);
101 	if (found_key.objectid != objectid ||
102 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
103 		ret = 1;
104 		goto out;
105 	}
106 	if (item)
107 		btrfs_read_root_item(root, l, slot, item);
108 	if (key)
109 		memcpy(key, &found_key, sizeof(found_key));
110 
111 	ret = 0;
112 out:
113 	btrfs_free_path(path);
114 	return ret;
115 }
116 
117 void btrfs_set_root_node(struct btrfs_root_item *item,
118 			 struct extent_buffer *node)
119 {
120 	btrfs_set_root_bytenr(item, node->start);
121 	btrfs_set_root_level(item, btrfs_header_level(node));
122 	btrfs_set_root_generation(item, btrfs_header_generation(node));
123 }
124 
125 /*
126  * copy the data in 'item' into the btree
127  */
128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
129 		      *root, struct btrfs_key *key, struct btrfs_root_item
130 		      *item)
131 {
132 	struct btrfs_path *path;
133 	struct extent_buffer *l;
134 	int ret;
135 	int slot;
136 	unsigned long ptr;
137 	int old_len;
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
144 	if (ret < 0) {
145 		btrfs_abort_transaction(trans, root, ret);
146 		goto out;
147 	}
148 
149 	if (ret != 0) {
150 		btrfs_print_leaf(root, path->nodes[0]);
151 		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
152 		       (unsigned long long)key->objectid, key->type,
153 		       (unsigned long long)key->offset);
154 		BUG_ON(1);
155 	}
156 
157 	l = path->nodes[0];
158 	slot = path->slots[0];
159 	ptr = btrfs_item_ptr_offset(l, slot);
160 	old_len = btrfs_item_size_nr(l, slot);
161 
162 	/*
163 	 * If this is the first time we update the root item which originated
164 	 * from an older kernel, we need to enlarge the item size to make room
165 	 * for the added fields.
166 	 */
167 	if (old_len < sizeof(*item)) {
168 		btrfs_release_path(path);
169 		ret = btrfs_search_slot(trans, root, key, path,
170 				-1, 1);
171 		if (ret < 0) {
172 			btrfs_abort_transaction(trans, root, ret);
173 			goto out;
174 		}
175 
176 		ret = btrfs_del_item(trans, root, path);
177 		if (ret < 0) {
178 			btrfs_abort_transaction(trans, root, ret);
179 			goto out;
180 		}
181 		btrfs_release_path(path);
182 		ret = btrfs_insert_empty_item(trans, root, path,
183 				key, sizeof(*item));
184 		if (ret < 0) {
185 			btrfs_abort_transaction(trans, root, ret);
186 			goto out;
187 		}
188 		l = path->nodes[0];
189 		slot = path->slots[0];
190 		ptr = btrfs_item_ptr_offset(l, slot);
191 	}
192 
193 	/*
194 	 * Update generation_v2 so at the next mount we know the new root
195 	 * fields are valid.
196 	 */
197 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
198 
199 	write_extent_buffer(l, item, ptr, sizeof(*item));
200 	btrfs_mark_buffer_dirty(path->nodes[0]);
201 out:
202 	btrfs_free_path(path);
203 	return ret;
204 }
205 
206 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
207 		      struct btrfs_key *key, struct btrfs_root_item *item)
208 {
209 	/*
210 	 * Make sure generation v1 and v2 match. See update_root for details.
211 	 */
212 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
213 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
214 }
215 
216 /*
217  * at mount time we want to find all the old transaction snapshots that were in
218  * the process of being deleted if we crashed.  This is any root item with an
219  * offset lower than the latest root.  They need to be queued for deletion to
220  * finish what was happening when we crashed.
221  */
222 int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
223 {
224 	struct btrfs_root *dead_root;
225 	struct btrfs_root_item *ri;
226 	struct btrfs_key key;
227 	struct btrfs_key found_key;
228 	struct btrfs_path *path;
229 	int ret;
230 	u32 nritems;
231 	struct extent_buffer *leaf;
232 	int slot;
233 
234 	key.objectid = objectid;
235 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
236 	key.offset = 0;
237 	path = btrfs_alloc_path();
238 	if (!path)
239 		return -ENOMEM;
240 
241 again:
242 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
243 	if (ret < 0)
244 		goto err;
245 	while (1) {
246 		leaf = path->nodes[0];
247 		nritems = btrfs_header_nritems(leaf);
248 		slot = path->slots[0];
249 		if (slot >= nritems) {
250 			ret = btrfs_next_leaf(root, path);
251 			if (ret)
252 				break;
253 			leaf = path->nodes[0];
254 			nritems = btrfs_header_nritems(leaf);
255 			slot = path->slots[0];
256 		}
257 		btrfs_item_key_to_cpu(leaf, &key, slot);
258 		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
259 			goto next;
260 
261 		if (key.objectid < objectid)
262 			goto next;
263 
264 		if (key.objectid > objectid)
265 			break;
266 
267 		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
268 		if (btrfs_disk_root_refs(leaf, ri) != 0)
269 			goto next;
270 
271 		memcpy(&found_key, &key, sizeof(key));
272 		key.offset++;
273 		btrfs_release_path(path);
274 		dead_root =
275 			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
276 						    &found_key);
277 		if (IS_ERR(dead_root)) {
278 			ret = PTR_ERR(dead_root);
279 			goto err;
280 		}
281 
282 		ret = btrfs_add_dead_root(dead_root);
283 		if (ret)
284 			goto err;
285 		goto again;
286 next:
287 		slot++;
288 		path->slots[0]++;
289 	}
290 	ret = 0;
291 err:
292 	btrfs_free_path(path);
293 	return ret;
294 }
295 
296 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
297 {
298 	struct extent_buffer *leaf;
299 	struct btrfs_path *path;
300 	struct btrfs_key key;
301 	struct btrfs_key root_key;
302 	struct btrfs_root *root;
303 	int err = 0;
304 	int ret;
305 
306 	path = btrfs_alloc_path();
307 	if (!path)
308 		return -ENOMEM;
309 
310 	key.objectid = BTRFS_ORPHAN_OBJECTID;
311 	key.type = BTRFS_ORPHAN_ITEM_KEY;
312 	key.offset = 0;
313 
314 	root_key.type = BTRFS_ROOT_ITEM_KEY;
315 	root_key.offset = (u64)-1;
316 
317 	while (1) {
318 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
319 		if (ret < 0) {
320 			err = ret;
321 			break;
322 		}
323 
324 		leaf = path->nodes[0];
325 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
326 			ret = btrfs_next_leaf(tree_root, path);
327 			if (ret < 0)
328 				err = ret;
329 			if (ret != 0)
330 				break;
331 			leaf = path->nodes[0];
332 		}
333 
334 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
335 		btrfs_release_path(path);
336 
337 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
338 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
339 			break;
340 
341 		root_key.objectid = key.offset;
342 		key.offset++;
343 
344 		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
345 						  &root_key);
346 		if (!IS_ERR(root))
347 			continue;
348 
349 		ret = PTR_ERR(root);
350 		if (ret != -ENOENT) {
351 			err = ret;
352 			break;
353 		}
354 
355 		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
356 		if (ret) {
357 			err = ret;
358 			break;
359 		}
360 	}
361 
362 	btrfs_free_path(path);
363 	return err;
364 }
365 
366 /* drop the root item for 'key' from 'root' */
367 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
368 		   struct btrfs_key *key)
369 {
370 	struct btrfs_path *path;
371 	int ret;
372 	struct btrfs_root_item *ri;
373 	struct extent_buffer *leaf;
374 
375 	path = btrfs_alloc_path();
376 	if (!path)
377 		return -ENOMEM;
378 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
379 	if (ret < 0)
380 		goto out;
381 
382 	BUG_ON(ret != 0);
383 	leaf = path->nodes[0];
384 	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
385 
386 	ret = btrfs_del_item(trans, root, path);
387 out:
388 	btrfs_free_path(path);
389 	return ret;
390 }
391 
392 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
393 		       struct btrfs_root *tree_root,
394 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
395 		       const char *name, int name_len)
396 
397 {
398 	struct btrfs_path *path;
399 	struct btrfs_root_ref *ref;
400 	struct extent_buffer *leaf;
401 	struct btrfs_key key;
402 	unsigned long ptr;
403 	int err = 0;
404 	int ret;
405 
406 	path = btrfs_alloc_path();
407 	if (!path)
408 		return -ENOMEM;
409 
410 	key.objectid = root_id;
411 	key.type = BTRFS_ROOT_BACKREF_KEY;
412 	key.offset = ref_id;
413 again:
414 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
415 	BUG_ON(ret < 0);
416 	if (ret == 0) {
417 		leaf = path->nodes[0];
418 		ref = btrfs_item_ptr(leaf, path->slots[0],
419 				     struct btrfs_root_ref);
420 
421 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
422 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
423 		ptr = (unsigned long)(ref + 1);
424 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
425 		*sequence = btrfs_root_ref_sequence(leaf, ref);
426 
427 		ret = btrfs_del_item(trans, tree_root, path);
428 		if (ret) {
429 			err = ret;
430 			goto out;
431 		}
432 	} else
433 		err = -ENOENT;
434 
435 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
436 		btrfs_release_path(path);
437 		key.objectid = ref_id;
438 		key.type = BTRFS_ROOT_REF_KEY;
439 		key.offset = root_id;
440 		goto again;
441 	}
442 
443 out:
444 	btrfs_free_path(path);
445 	return err;
446 }
447 
448 int btrfs_find_root_ref(struct btrfs_root *tree_root,
449 		   struct btrfs_path *path,
450 		   u64 root_id, u64 ref_id)
451 {
452 	struct btrfs_key key;
453 	int ret;
454 
455 	key.objectid = root_id;
456 	key.type = BTRFS_ROOT_REF_KEY;
457 	key.offset = ref_id;
458 
459 	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
460 	return ret;
461 }
462 
463 /*
464  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
465  * or BTRFS_ROOT_BACKREF_KEY.
466  *
467  * The dirid, sequence, name and name_len refer to the directory entry
468  * that is referencing the root.
469  *
470  * For a forward ref, the root_id is the id of the tree referencing
471  * the root and ref_id is the id of the subvol  or snapshot.
472  *
473  * For a back ref the root_id is the id of the subvol or snapshot and
474  * ref_id is the id of the tree referencing it.
475  *
476  * Will return 0, -ENOMEM, or anything from the CoW path
477  */
478 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
479 		       struct btrfs_root *tree_root,
480 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
481 		       const char *name, int name_len)
482 {
483 	struct btrfs_key key;
484 	int ret;
485 	struct btrfs_path *path;
486 	struct btrfs_root_ref *ref;
487 	struct extent_buffer *leaf;
488 	unsigned long ptr;
489 
490 	path = btrfs_alloc_path();
491 	if (!path)
492 		return -ENOMEM;
493 
494 	key.objectid = root_id;
495 	key.type = BTRFS_ROOT_BACKREF_KEY;
496 	key.offset = ref_id;
497 again:
498 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
499 				      sizeof(*ref) + name_len);
500 	if (ret) {
501 		btrfs_abort_transaction(trans, tree_root, ret);
502 		btrfs_free_path(path);
503 		return ret;
504 	}
505 
506 	leaf = path->nodes[0];
507 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
508 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
509 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
510 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
511 	ptr = (unsigned long)(ref + 1);
512 	write_extent_buffer(leaf, name, ptr, name_len);
513 	btrfs_mark_buffer_dirty(leaf);
514 
515 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
516 		btrfs_release_path(path);
517 		key.objectid = ref_id;
518 		key.type = BTRFS_ROOT_REF_KEY;
519 		key.offset = root_id;
520 		goto again;
521 	}
522 
523 	btrfs_free_path(path);
524 	return 0;
525 }
526 
527 /*
528  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
529  * for subvolumes. To work around this problem, we steal a bit from
530  * root_item->inode_item->flags, and use it to indicate if those fields
531  * have been properly initialized.
532  */
533 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
534 {
535 	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
536 
537 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
538 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
539 		root_item->inode.flags = cpu_to_le64(inode_flags);
540 		root_item->flags = 0;
541 		root_item->byte_limit = 0;
542 	}
543 }
544 
545 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
546 			     struct btrfs_root *root)
547 {
548 	struct btrfs_root_item *item = &root->root_item;
549 	struct timespec ct = CURRENT_TIME;
550 
551 	spin_lock(&root->root_item_lock);
552 	item->ctransid = cpu_to_le64(trans->transid);
553 	item->ctime.sec = cpu_to_le64(ct.tv_sec);
554 	item->ctime.nsec = cpu_to_le32(ct.tv_nsec);
555 	spin_unlock(&root->root_item_lock);
556 }
557