xref: /openbmc/linux/fs/btrfs/root-tree.c (revision ca79522c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/uuid.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 
25 /*
26  * Read a root item from the tree. In case we detect a root item smaller then
27  * sizeof(root_item), we know it's an old version of the root structure and
28  * initialize all new fields to zero. The same happens if we detect mismatching
29  * generation numbers as then we know the root was once mounted with an older
30  * kernel that was not aware of the root item structure change.
31  */
32 void btrfs_read_root_item(struct extent_buffer *eb, int slot,
33 			  struct btrfs_root_item *item)
34 {
35 	uuid_le uuid;
36 	int len;
37 	int need_reset = 0;
38 
39 	len = btrfs_item_size_nr(eb, slot);
40 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
41 			min_t(int, len, (int)sizeof(*item)));
42 	if (len < sizeof(*item))
43 		need_reset = 1;
44 	if (!need_reset && btrfs_root_generation(item)
45 		!= btrfs_root_generation_v2(item)) {
46 		if (btrfs_root_generation_v2(item) != 0) {
47 			printk(KERN_WARNING "btrfs: mismatching "
48 					"generation and generation_v2 "
49 					"found in root item. This root "
50 					"was probably mounted with an "
51 					"older kernel. Resetting all "
52 					"new fields.\n");
53 		}
54 		need_reset = 1;
55 	}
56 	if (need_reset) {
57 		memset(&item->generation_v2, 0,
58 			sizeof(*item) - offsetof(struct btrfs_root_item,
59 					generation_v2));
60 
61 		uuid_le_gen(&uuid);
62 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
63 	}
64 }
65 
66 /*
67  * lookup the root with the highest offset for a given objectid.  The key we do
68  * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
69  * on error.
70  */
71 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
72 			struct btrfs_root_item *item, struct btrfs_key *key)
73 {
74 	struct btrfs_path *path;
75 	struct btrfs_key search_key;
76 	struct btrfs_key found_key;
77 	struct extent_buffer *l;
78 	int ret;
79 	int slot;
80 
81 	search_key.objectid = objectid;
82 	search_key.type = BTRFS_ROOT_ITEM_KEY;
83 	search_key.offset = (u64)-1;
84 
85 	path = btrfs_alloc_path();
86 	if (!path)
87 		return -ENOMEM;
88 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
89 	if (ret < 0)
90 		goto out;
91 
92 	BUG_ON(ret == 0);
93 	if (path->slots[0] == 0) {
94 		ret = 1;
95 		goto out;
96 	}
97 	l = path->nodes[0];
98 	slot = path->slots[0] - 1;
99 	btrfs_item_key_to_cpu(l, &found_key, slot);
100 	if (found_key.objectid != objectid ||
101 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
102 		ret = 1;
103 		goto out;
104 	}
105 	if (item)
106 		btrfs_read_root_item(l, slot, item);
107 	if (key)
108 		memcpy(key, &found_key, sizeof(found_key));
109 
110 	ret = 0;
111 out:
112 	btrfs_free_path(path);
113 	return ret;
114 }
115 
116 void btrfs_set_root_node(struct btrfs_root_item *item,
117 			 struct extent_buffer *node)
118 {
119 	btrfs_set_root_bytenr(item, node->start);
120 	btrfs_set_root_level(item, btrfs_header_level(node));
121 	btrfs_set_root_generation(item, btrfs_header_generation(node));
122 }
123 
124 /*
125  * copy the data in 'item' into the btree
126  */
127 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
128 		      *root, struct btrfs_key *key, struct btrfs_root_item
129 		      *item)
130 {
131 	struct btrfs_path *path;
132 	struct extent_buffer *l;
133 	int ret;
134 	int slot;
135 	unsigned long ptr;
136 	int old_len;
137 
138 	path = btrfs_alloc_path();
139 	if (!path)
140 		return -ENOMEM;
141 
142 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
143 	if (ret < 0) {
144 		btrfs_abort_transaction(trans, root, ret);
145 		goto out;
146 	}
147 
148 	if (ret != 0) {
149 		btrfs_print_leaf(root, path->nodes[0]);
150 		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
151 		       (unsigned long long)key->objectid, key->type,
152 		       (unsigned long long)key->offset);
153 		BUG_ON(1);
154 	}
155 
156 	l = path->nodes[0];
157 	slot = path->slots[0];
158 	ptr = btrfs_item_ptr_offset(l, slot);
159 	old_len = btrfs_item_size_nr(l, slot);
160 
161 	/*
162 	 * If this is the first time we update the root item which originated
163 	 * from an older kernel, we need to enlarge the item size to make room
164 	 * for the added fields.
165 	 */
166 	if (old_len < sizeof(*item)) {
167 		btrfs_release_path(path);
168 		ret = btrfs_search_slot(trans, root, key, path,
169 				-1, 1);
170 		if (ret < 0) {
171 			btrfs_abort_transaction(trans, root, ret);
172 			goto out;
173 		}
174 
175 		ret = btrfs_del_item(trans, root, path);
176 		if (ret < 0) {
177 			btrfs_abort_transaction(trans, root, ret);
178 			goto out;
179 		}
180 		btrfs_release_path(path);
181 		ret = btrfs_insert_empty_item(trans, root, path,
182 				key, sizeof(*item));
183 		if (ret < 0) {
184 			btrfs_abort_transaction(trans, root, ret);
185 			goto out;
186 		}
187 		l = path->nodes[0];
188 		slot = path->slots[0];
189 		ptr = btrfs_item_ptr_offset(l, slot);
190 	}
191 
192 	/*
193 	 * Update generation_v2 so at the next mount we know the new root
194 	 * fields are valid.
195 	 */
196 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
197 
198 	write_extent_buffer(l, item, ptr, sizeof(*item));
199 	btrfs_mark_buffer_dirty(path->nodes[0]);
200 out:
201 	btrfs_free_path(path);
202 	return ret;
203 }
204 
205 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
206 		      struct btrfs_key *key, struct btrfs_root_item *item)
207 {
208 	/*
209 	 * Make sure generation v1 and v2 match. See update_root for details.
210 	 */
211 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
212 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
213 }
214 
215 /*
216  * at mount time we want to find all the old transaction snapshots that were in
217  * the process of being deleted if we crashed.  This is any root item with an
218  * offset lower than the latest root.  They need to be queued for deletion to
219  * finish what was happening when we crashed.
220  */
221 int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
222 {
223 	struct btrfs_root *dead_root;
224 	struct btrfs_root_item *ri;
225 	struct btrfs_key key;
226 	struct btrfs_key found_key;
227 	struct btrfs_path *path;
228 	int ret;
229 	u32 nritems;
230 	struct extent_buffer *leaf;
231 	int slot;
232 
233 	key.objectid = objectid;
234 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
235 	key.offset = 0;
236 	path = btrfs_alloc_path();
237 	if (!path)
238 		return -ENOMEM;
239 
240 again:
241 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
242 	if (ret < 0)
243 		goto err;
244 	while (1) {
245 		leaf = path->nodes[0];
246 		nritems = btrfs_header_nritems(leaf);
247 		slot = path->slots[0];
248 		if (slot >= nritems) {
249 			ret = btrfs_next_leaf(root, path);
250 			if (ret)
251 				break;
252 			leaf = path->nodes[0];
253 			nritems = btrfs_header_nritems(leaf);
254 			slot = path->slots[0];
255 		}
256 		btrfs_item_key_to_cpu(leaf, &key, slot);
257 		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
258 			goto next;
259 
260 		if (key.objectid < objectid)
261 			goto next;
262 
263 		if (key.objectid > objectid)
264 			break;
265 
266 		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
267 		if (btrfs_disk_root_refs(leaf, ri) != 0)
268 			goto next;
269 
270 		memcpy(&found_key, &key, sizeof(key));
271 		key.offset++;
272 		btrfs_release_path(path);
273 		dead_root =
274 			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
275 						    &found_key);
276 		if (IS_ERR(dead_root)) {
277 			ret = PTR_ERR(dead_root);
278 			goto err;
279 		}
280 
281 		ret = btrfs_add_dead_root(dead_root);
282 		if (ret)
283 			goto err;
284 		goto again;
285 next:
286 		slot++;
287 		path->slots[0]++;
288 	}
289 	ret = 0;
290 err:
291 	btrfs_free_path(path);
292 	return ret;
293 }
294 
295 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
296 {
297 	struct extent_buffer *leaf;
298 	struct btrfs_path *path;
299 	struct btrfs_key key;
300 	struct btrfs_key root_key;
301 	struct btrfs_root *root;
302 	int err = 0;
303 	int ret;
304 
305 	path = btrfs_alloc_path();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	key.objectid = BTRFS_ORPHAN_OBJECTID;
310 	key.type = BTRFS_ORPHAN_ITEM_KEY;
311 	key.offset = 0;
312 
313 	root_key.type = BTRFS_ROOT_ITEM_KEY;
314 	root_key.offset = (u64)-1;
315 
316 	while (1) {
317 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
318 		if (ret < 0) {
319 			err = ret;
320 			break;
321 		}
322 
323 		leaf = path->nodes[0];
324 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
325 			ret = btrfs_next_leaf(tree_root, path);
326 			if (ret < 0)
327 				err = ret;
328 			if (ret != 0)
329 				break;
330 			leaf = path->nodes[0];
331 		}
332 
333 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
334 		btrfs_release_path(path);
335 
336 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
337 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
338 			break;
339 
340 		root_key.objectid = key.offset;
341 		key.offset++;
342 
343 		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
344 						  &root_key);
345 		if (!IS_ERR(root))
346 			continue;
347 
348 		ret = PTR_ERR(root);
349 		if (ret != -ENOENT) {
350 			err = ret;
351 			break;
352 		}
353 
354 		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
355 		if (ret) {
356 			err = ret;
357 			break;
358 		}
359 	}
360 
361 	btrfs_free_path(path);
362 	return err;
363 }
364 
365 /* drop the root item for 'key' from 'root' */
366 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
367 		   struct btrfs_key *key)
368 {
369 	struct btrfs_path *path;
370 	int ret;
371 	struct btrfs_root_item *ri;
372 	struct extent_buffer *leaf;
373 
374 	path = btrfs_alloc_path();
375 	if (!path)
376 		return -ENOMEM;
377 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
378 	if (ret < 0)
379 		goto out;
380 
381 	BUG_ON(ret != 0);
382 	leaf = path->nodes[0];
383 	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
384 
385 	ret = btrfs_del_item(trans, root, path);
386 out:
387 	btrfs_free_path(path);
388 	return ret;
389 }
390 
391 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
392 		       struct btrfs_root *tree_root,
393 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
394 		       const char *name, int name_len)
395 
396 {
397 	struct btrfs_path *path;
398 	struct btrfs_root_ref *ref;
399 	struct extent_buffer *leaf;
400 	struct btrfs_key key;
401 	unsigned long ptr;
402 	int err = 0;
403 	int ret;
404 
405 	path = btrfs_alloc_path();
406 	if (!path)
407 		return -ENOMEM;
408 
409 	key.objectid = root_id;
410 	key.type = BTRFS_ROOT_BACKREF_KEY;
411 	key.offset = ref_id;
412 again:
413 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
414 	BUG_ON(ret < 0);
415 	if (ret == 0) {
416 		leaf = path->nodes[0];
417 		ref = btrfs_item_ptr(leaf, path->slots[0],
418 				     struct btrfs_root_ref);
419 
420 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
421 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
422 		ptr = (unsigned long)(ref + 1);
423 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
424 		*sequence = btrfs_root_ref_sequence(leaf, ref);
425 
426 		ret = btrfs_del_item(trans, tree_root, path);
427 		if (ret) {
428 			err = ret;
429 			goto out;
430 		}
431 	} else
432 		err = -ENOENT;
433 
434 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
435 		btrfs_release_path(path);
436 		key.objectid = ref_id;
437 		key.type = BTRFS_ROOT_REF_KEY;
438 		key.offset = root_id;
439 		goto again;
440 	}
441 
442 out:
443 	btrfs_free_path(path);
444 	return err;
445 }
446 
447 int btrfs_find_root_ref(struct btrfs_root *tree_root,
448 		   struct btrfs_path *path,
449 		   u64 root_id, u64 ref_id)
450 {
451 	struct btrfs_key key;
452 	int ret;
453 
454 	key.objectid = root_id;
455 	key.type = BTRFS_ROOT_REF_KEY;
456 	key.offset = ref_id;
457 
458 	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
459 	return ret;
460 }
461 
462 /*
463  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
464  * or BTRFS_ROOT_BACKREF_KEY.
465  *
466  * The dirid, sequence, name and name_len refer to the directory entry
467  * that is referencing the root.
468  *
469  * For a forward ref, the root_id is the id of the tree referencing
470  * the root and ref_id is the id of the subvol  or snapshot.
471  *
472  * For a back ref the root_id is the id of the subvol or snapshot and
473  * ref_id is the id of the tree referencing it.
474  *
475  * Will return 0, -ENOMEM, or anything from the CoW path
476  */
477 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
478 		       struct btrfs_root *tree_root,
479 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
480 		       const char *name, int name_len)
481 {
482 	struct btrfs_key key;
483 	int ret;
484 	struct btrfs_path *path;
485 	struct btrfs_root_ref *ref;
486 	struct extent_buffer *leaf;
487 	unsigned long ptr;
488 
489 	path = btrfs_alloc_path();
490 	if (!path)
491 		return -ENOMEM;
492 
493 	key.objectid = root_id;
494 	key.type = BTRFS_ROOT_BACKREF_KEY;
495 	key.offset = ref_id;
496 again:
497 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
498 				      sizeof(*ref) + name_len);
499 	if (ret) {
500 		btrfs_abort_transaction(trans, tree_root, ret);
501 		btrfs_free_path(path);
502 		return ret;
503 	}
504 
505 	leaf = path->nodes[0];
506 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
507 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
508 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
509 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
510 	ptr = (unsigned long)(ref + 1);
511 	write_extent_buffer(leaf, name, ptr, name_len);
512 	btrfs_mark_buffer_dirty(leaf);
513 
514 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
515 		btrfs_release_path(path);
516 		key.objectid = ref_id;
517 		key.type = BTRFS_ROOT_REF_KEY;
518 		key.offset = root_id;
519 		goto again;
520 	}
521 
522 	btrfs_free_path(path);
523 	return 0;
524 }
525 
526 /*
527  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
528  * for subvolumes. To work around this problem, we steal a bit from
529  * root_item->inode_item->flags, and use it to indicate if those fields
530  * have been properly initialized.
531  */
532 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
533 {
534 	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
535 
536 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
537 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
538 		root_item->inode.flags = cpu_to_le64(inode_flags);
539 		root_item->flags = 0;
540 		root_item->byte_limit = 0;
541 	}
542 }
543 
544 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
545 			     struct btrfs_root *root)
546 {
547 	struct btrfs_root_item *item = &root->root_item;
548 	struct timespec ct = CURRENT_TIME;
549 
550 	spin_lock(&root->root_item_lock);
551 	item->ctransid = cpu_to_le64(trans->transid);
552 	item->ctime.sec = cpu_to_le64(ct.tv_sec);
553 	item->ctime.nsec = cpu_to_le32(ct.tv_nsec);
554 	spin_unlock(&root->root_item_lock);
555 }
556