xref: /openbmc/linux/fs/btrfs/root-tree.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/uuid.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 
25 /*
26  * Read a root item from the tree. In case we detect a root item smaller then
27  * sizeof(root_item), we know it's an old version of the root structure and
28  * initialize all new fields to zero. The same happens if we detect mismatching
29  * generation numbers as then we know the root was once mounted with an older
30  * kernel that was not aware of the root item structure change.
31  */
32 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
33 				struct btrfs_root_item *item)
34 {
35 	uuid_le uuid;
36 	int len;
37 	int need_reset = 0;
38 
39 	len = btrfs_item_size_nr(eb, slot);
40 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
41 			min_t(int, len, (int)sizeof(*item)));
42 	if (len < sizeof(*item))
43 		need_reset = 1;
44 	if (!need_reset && btrfs_root_generation(item)
45 		!= btrfs_root_generation_v2(item)) {
46 		if (btrfs_root_generation_v2(item) != 0) {
47 			printk(KERN_WARNING "btrfs: mismatching "
48 					"generation and generation_v2 "
49 					"found in root item. This root "
50 					"was probably mounted with an "
51 					"older kernel. Resetting all "
52 					"new fields.\n");
53 		}
54 		need_reset = 1;
55 	}
56 	if (need_reset) {
57 		memset(&item->generation_v2, 0,
58 			sizeof(*item) - offsetof(struct btrfs_root_item,
59 					generation_v2));
60 
61 		uuid_le_gen(&uuid);
62 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
63 	}
64 }
65 
66 /*
67  * btrfs_find_root - lookup the root by the key.
68  * root: the root of the root tree
69  * search_key: the key to search
70  * path: the path we search
71  * root_item: the root item of the tree we look for
72  * root_key: the reak key of the tree we look for
73  *
74  * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
75  * of the search key, just lookup the root with the highest offset for a
76  * given objectid.
77  *
78  * If we find something return 0, otherwise > 0, < 0 on error.
79  */
80 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
81 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
82 		    struct btrfs_key *root_key)
83 {
84 	struct btrfs_key found_key;
85 	struct extent_buffer *l;
86 	int ret;
87 	int slot;
88 
89 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
90 	if (ret < 0)
91 		return ret;
92 
93 	if (search_key->offset != -1ULL) {	/* the search key is exact */
94 		if (ret > 0)
95 			goto out;
96 	} else {
97 		BUG_ON(ret == 0);		/* Logical error */
98 		if (path->slots[0] == 0)
99 			goto out;
100 		path->slots[0]--;
101 		ret = 0;
102 	}
103 
104 	l = path->nodes[0];
105 	slot = path->slots[0];
106 
107 	btrfs_item_key_to_cpu(l, &found_key, slot);
108 	if (found_key.objectid != search_key->objectid ||
109 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
110 		ret = 1;
111 		goto out;
112 	}
113 
114 	if (root_item)
115 		btrfs_read_root_item(l, slot, root_item);
116 	if (root_key)
117 		memcpy(root_key, &found_key, sizeof(found_key));
118 out:
119 	btrfs_release_path(path);
120 	return ret;
121 }
122 
123 void btrfs_set_root_node(struct btrfs_root_item *item,
124 			 struct extent_buffer *node)
125 {
126 	btrfs_set_root_bytenr(item, node->start);
127 	btrfs_set_root_level(item, btrfs_header_level(node));
128 	btrfs_set_root_generation(item, btrfs_header_generation(node));
129 }
130 
131 /*
132  * copy the data in 'item' into the btree
133  */
134 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
135 		      *root, struct btrfs_key *key, struct btrfs_root_item
136 		      *item)
137 {
138 	struct btrfs_path *path;
139 	struct extent_buffer *l;
140 	int ret;
141 	int slot;
142 	unsigned long ptr;
143 	int old_len;
144 
145 	path = btrfs_alloc_path();
146 	if (!path)
147 		return -ENOMEM;
148 
149 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
150 	if (ret < 0) {
151 		btrfs_abort_transaction(trans, root, ret);
152 		goto out;
153 	}
154 
155 	if (ret != 0) {
156 		btrfs_print_leaf(root, path->nodes[0]);
157 		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
158 		       key->objectid, key->type, key->offset);
159 		BUG_ON(1);
160 	}
161 
162 	l = path->nodes[0];
163 	slot = path->slots[0];
164 	ptr = btrfs_item_ptr_offset(l, slot);
165 	old_len = btrfs_item_size_nr(l, slot);
166 
167 	/*
168 	 * If this is the first time we update the root item which originated
169 	 * from an older kernel, we need to enlarge the item size to make room
170 	 * for the added fields.
171 	 */
172 	if (old_len < sizeof(*item)) {
173 		btrfs_release_path(path);
174 		ret = btrfs_search_slot(trans, root, key, path,
175 				-1, 1);
176 		if (ret < 0) {
177 			btrfs_abort_transaction(trans, root, ret);
178 			goto out;
179 		}
180 
181 		ret = btrfs_del_item(trans, root, path);
182 		if (ret < 0) {
183 			btrfs_abort_transaction(trans, root, ret);
184 			goto out;
185 		}
186 		btrfs_release_path(path);
187 		ret = btrfs_insert_empty_item(trans, root, path,
188 				key, sizeof(*item));
189 		if (ret < 0) {
190 			btrfs_abort_transaction(trans, root, ret);
191 			goto out;
192 		}
193 		l = path->nodes[0];
194 		slot = path->slots[0];
195 		ptr = btrfs_item_ptr_offset(l, slot);
196 	}
197 
198 	/*
199 	 * Update generation_v2 so at the next mount we know the new root
200 	 * fields are valid.
201 	 */
202 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
203 
204 	write_extent_buffer(l, item, ptr, sizeof(*item));
205 	btrfs_mark_buffer_dirty(path->nodes[0]);
206 out:
207 	btrfs_free_path(path);
208 	return ret;
209 }
210 
211 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
212 		      struct btrfs_key *key, struct btrfs_root_item *item)
213 {
214 	/*
215 	 * Make sure generation v1 and v2 match. See update_root for details.
216 	 */
217 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
218 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
219 }
220 
221 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
222 {
223 	struct extent_buffer *leaf;
224 	struct btrfs_path *path;
225 	struct btrfs_key key;
226 	struct btrfs_key root_key;
227 	struct btrfs_root *root;
228 	int err = 0;
229 	int ret;
230 	bool can_recover = true;
231 
232 	if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
233 		can_recover = false;
234 
235 	path = btrfs_alloc_path();
236 	if (!path)
237 		return -ENOMEM;
238 
239 	key.objectid = BTRFS_ORPHAN_OBJECTID;
240 	key.type = BTRFS_ORPHAN_ITEM_KEY;
241 	key.offset = 0;
242 
243 	root_key.type = BTRFS_ROOT_ITEM_KEY;
244 	root_key.offset = (u64)-1;
245 
246 	while (1) {
247 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
248 		if (ret < 0) {
249 			err = ret;
250 			break;
251 		}
252 
253 		leaf = path->nodes[0];
254 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
255 			ret = btrfs_next_leaf(tree_root, path);
256 			if (ret < 0)
257 				err = ret;
258 			if (ret != 0)
259 				break;
260 			leaf = path->nodes[0];
261 		}
262 
263 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
264 		btrfs_release_path(path);
265 
266 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
267 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
268 			break;
269 
270 		root_key.objectid = key.offset;
271 		key.offset++;
272 
273 		root = btrfs_read_fs_root(tree_root, &root_key);
274 		err = PTR_RET(root);
275 		if (err && err != -ENOENT) {
276 			break;
277 		} else if (err == -ENOENT) {
278 			struct btrfs_trans_handle *trans;
279 
280 			btrfs_release_path(path);
281 
282 			trans = btrfs_join_transaction(tree_root);
283 			if (IS_ERR(trans)) {
284 				err = PTR_ERR(trans);
285 				btrfs_error(tree_root->fs_info, err,
286 					    "Failed to start trans to delete "
287 					    "orphan item");
288 				break;
289 			}
290 			err = btrfs_del_orphan_item(trans, tree_root,
291 						    root_key.objectid);
292 			btrfs_end_transaction(trans, tree_root);
293 			if (err) {
294 				btrfs_error(tree_root->fs_info, err,
295 					    "Failed to delete root orphan "
296 					    "item");
297 				break;
298 			}
299 			continue;
300 		}
301 
302 		err = btrfs_init_fs_root(root);
303 		if (err) {
304 			btrfs_free_fs_root(root);
305 			break;
306 		}
307 
308 		root->orphan_item_inserted = 1;
309 
310 		err = btrfs_insert_fs_root(root->fs_info, root);
311 		if (err) {
312 			BUG_ON(err == -EEXIST);
313 			btrfs_free_fs_root(root);
314 			break;
315 		}
316 
317 		if (btrfs_root_refs(&root->root_item) == 0)
318 			btrfs_add_dead_root(root);
319 	}
320 
321 	btrfs_free_path(path);
322 	return err;
323 }
324 
325 /* drop the root item for 'key' from 'root' */
326 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
327 		   struct btrfs_key *key)
328 {
329 	struct btrfs_path *path;
330 	int ret;
331 
332 	path = btrfs_alloc_path();
333 	if (!path)
334 		return -ENOMEM;
335 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
336 	if (ret < 0)
337 		goto out;
338 
339 	BUG_ON(ret != 0);
340 
341 	ret = btrfs_del_item(trans, root, path);
342 out:
343 	btrfs_free_path(path);
344 	return ret;
345 }
346 
347 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
348 		       struct btrfs_root *tree_root,
349 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
350 		       const char *name, int name_len)
351 
352 {
353 	struct btrfs_path *path;
354 	struct btrfs_root_ref *ref;
355 	struct extent_buffer *leaf;
356 	struct btrfs_key key;
357 	unsigned long ptr;
358 	int err = 0;
359 	int ret;
360 
361 	path = btrfs_alloc_path();
362 	if (!path)
363 		return -ENOMEM;
364 
365 	key.objectid = root_id;
366 	key.type = BTRFS_ROOT_BACKREF_KEY;
367 	key.offset = ref_id;
368 again:
369 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
370 	BUG_ON(ret < 0);
371 	if (ret == 0) {
372 		leaf = path->nodes[0];
373 		ref = btrfs_item_ptr(leaf, path->slots[0],
374 				     struct btrfs_root_ref);
375 
376 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
377 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
378 		ptr = (unsigned long)(ref + 1);
379 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
380 		*sequence = btrfs_root_ref_sequence(leaf, ref);
381 
382 		ret = btrfs_del_item(trans, tree_root, path);
383 		if (ret) {
384 			err = ret;
385 			goto out;
386 		}
387 	} else
388 		err = -ENOENT;
389 
390 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
391 		btrfs_release_path(path);
392 		key.objectid = ref_id;
393 		key.type = BTRFS_ROOT_REF_KEY;
394 		key.offset = root_id;
395 		goto again;
396 	}
397 
398 out:
399 	btrfs_free_path(path);
400 	return err;
401 }
402 
403 int btrfs_find_root_ref(struct btrfs_root *tree_root,
404 		   struct btrfs_path *path,
405 		   u64 root_id, u64 ref_id)
406 {
407 	struct btrfs_key key;
408 	int ret;
409 
410 	key.objectid = root_id;
411 	key.type = BTRFS_ROOT_REF_KEY;
412 	key.offset = ref_id;
413 
414 	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
415 	return ret;
416 }
417 
418 /*
419  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
420  * or BTRFS_ROOT_BACKREF_KEY.
421  *
422  * The dirid, sequence, name and name_len refer to the directory entry
423  * that is referencing the root.
424  *
425  * For a forward ref, the root_id is the id of the tree referencing
426  * the root and ref_id is the id of the subvol  or snapshot.
427  *
428  * For a back ref the root_id is the id of the subvol or snapshot and
429  * ref_id is the id of the tree referencing it.
430  *
431  * Will return 0, -ENOMEM, or anything from the CoW path
432  */
433 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
434 		       struct btrfs_root *tree_root,
435 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
436 		       const char *name, int name_len)
437 {
438 	struct btrfs_key key;
439 	int ret;
440 	struct btrfs_path *path;
441 	struct btrfs_root_ref *ref;
442 	struct extent_buffer *leaf;
443 	unsigned long ptr;
444 
445 	path = btrfs_alloc_path();
446 	if (!path)
447 		return -ENOMEM;
448 
449 	key.objectid = root_id;
450 	key.type = BTRFS_ROOT_BACKREF_KEY;
451 	key.offset = ref_id;
452 again:
453 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
454 				      sizeof(*ref) + name_len);
455 	if (ret) {
456 		btrfs_abort_transaction(trans, tree_root, ret);
457 		btrfs_free_path(path);
458 		return ret;
459 	}
460 
461 	leaf = path->nodes[0];
462 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
463 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
464 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
465 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
466 	ptr = (unsigned long)(ref + 1);
467 	write_extent_buffer(leaf, name, ptr, name_len);
468 	btrfs_mark_buffer_dirty(leaf);
469 
470 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
471 		btrfs_release_path(path);
472 		key.objectid = ref_id;
473 		key.type = BTRFS_ROOT_REF_KEY;
474 		key.offset = root_id;
475 		goto again;
476 	}
477 
478 	btrfs_free_path(path);
479 	return 0;
480 }
481 
482 /*
483  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
484  * for subvolumes. To work around this problem, we steal a bit from
485  * root_item->inode_item->flags, and use it to indicate if those fields
486  * have been properly initialized.
487  */
488 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
489 {
490 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
491 
492 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
493 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
494 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
495 		btrfs_set_root_flags(root_item, 0);
496 		btrfs_set_root_limit(root_item, 0);
497 	}
498 }
499 
500 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
501 			     struct btrfs_root *root)
502 {
503 	struct btrfs_root_item *item = &root->root_item;
504 	struct timespec ct = CURRENT_TIME;
505 
506 	spin_lock(&root->root_item_lock);
507 	btrfs_set_root_ctransid(item, trans->transid);
508 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
509 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
510 	spin_unlock(&root->root_item_lock);
511 }
512