1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/err.h> 20 #include <linux/uuid.h> 21 #include "ctree.h" 22 #include "transaction.h" 23 #include "disk-io.h" 24 #include "print-tree.h" 25 26 /* 27 * Read a root item from the tree. In case we detect a root item smaller then 28 * sizeof(root_item), we know it's an old version of the root structure and 29 * initialize all new fields to zero. The same happens if we detect mismatching 30 * generation numbers as then we know the root was once mounted with an older 31 * kernel that was not aware of the root item structure change. 32 */ 33 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 34 struct btrfs_root_item *item) 35 { 36 uuid_le uuid; 37 int len; 38 int need_reset = 0; 39 40 len = btrfs_item_size_nr(eb, slot); 41 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 42 min_t(int, len, (int)sizeof(*item))); 43 if (len < sizeof(*item)) 44 need_reset = 1; 45 if (!need_reset && btrfs_root_generation(item) 46 != btrfs_root_generation_v2(item)) { 47 if (btrfs_root_generation_v2(item) != 0) { 48 printk(KERN_WARNING "BTRFS: mismatching " 49 "generation and generation_v2 " 50 "found in root item. This root " 51 "was probably mounted with an " 52 "older kernel. Resetting all " 53 "new fields.\n"); 54 } 55 need_reset = 1; 56 } 57 if (need_reset) { 58 memset(&item->generation_v2, 0, 59 sizeof(*item) - offsetof(struct btrfs_root_item, 60 generation_v2)); 61 62 uuid_le_gen(&uuid); 63 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 64 } 65 } 66 67 /* 68 * btrfs_find_root - lookup the root by the key. 69 * root: the root of the root tree 70 * search_key: the key to search 71 * path: the path we search 72 * root_item: the root item of the tree we look for 73 * root_key: the reak key of the tree we look for 74 * 75 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset 76 * of the search key, just lookup the root with the highest offset for a 77 * given objectid. 78 * 79 * If we find something return 0, otherwise > 0, < 0 on error. 80 */ 81 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key, 82 struct btrfs_path *path, struct btrfs_root_item *root_item, 83 struct btrfs_key *root_key) 84 { 85 struct btrfs_key found_key; 86 struct extent_buffer *l; 87 int ret; 88 int slot; 89 90 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 91 if (ret < 0) 92 return ret; 93 94 if (search_key->offset != -1ULL) { /* the search key is exact */ 95 if (ret > 0) 96 goto out; 97 } else { 98 BUG_ON(ret == 0); /* Logical error */ 99 if (path->slots[0] == 0) 100 goto out; 101 path->slots[0]--; 102 ret = 0; 103 } 104 105 l = path->nodes[0]; 106 slot = path->slots[0]; 107 108 btrfs_item_key_to_cpu(l, &found_key, slot); 109 if (found_key.objectid != search_key->objectid || 110 found_key.type != BTRFS_ROOT_ITEM_KEY) { 111 ret = 1; 112 goto out; 113 } 114 115 if (root_item) 116 btrfs_read_root_item(l, slot, root_item); 117 if (root_key) 118 memcpy(root_key, &found_key, sizeof(found_key)); 119 out: 120 btrfs_release_path(path); 121 return ret; 122 } 123 124 void btrfs_set_root_node(struct btrfs_root_item *item, 125 struct extent_buffer *node) 126 { 127 btrfs_set_root_bytenr(item, node->start); 128 btrfs_set_root_level(item, btrfs_header_level(node)); 129 btrfs_set_root_generation(item, btrfs_header_generation(node)); 130 } 131 132 /* 133 * copy the data in 'item' into the btree 134 */ 135 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 136 *root, struct btrfs_key *key, struct btrfs_root_item 137 *item) 138 { 139 struct btrfs_path *path; 140 struct extent_buffer *l; 141 int ret; 142 int slot; 143 unsigned long ptr; 144 int old_len; 145 146 path = btrfs_alloc_path(); 147 if (!path) 148 return -ENOMEM; 149 150 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 151 if (ret < 0) { 152 btrfs_abort_transaction(trans, root, ret); 153 goto out; 154 } 155 156 if (ret != 0) { 157 btrfs_print_leaf(root, path->nodes[0]); 158 btrfs_crit(root->fs_info, "unable to update root key %llu %u %llu", 159 key->objectid, key->type, key->offset); 160 BUG_ON(1); 161 } 162 163 l = path->nodes[0]; 164 slot = path->slots[0]; 165 ptr = btrfs_item_ptr_offset(l, slot); 166 old_len = btrfs_item_size_nr(l, slot); 167 168 /* 169 * If this is the first time we update the root item which originated 170 * from an older kernel, we need to enlarge the item size to make room 171 * for the added fields. 172 */ 173 if (old_len < sizeof(*item)) { 174 btrfs_release_path(path); 175 ret = btrfs_search_slot(trans, root, key, path, 176 -1, 1); 177 if (ret < 0) { 178 btrfs_abort_transaction(trans, root, ret); 179 goto out; 180 } 181 182 ret = btrfs_del_item(trans, root, path); 183 if (ret < 0) { 184 btrfs_abort_transaction(trans, root, ret); 185 goto out; 186 } 187 btrfs_release_path(path); 188 ret = btrfs_insert_empty_item(trans, root, path, 189 key, sizeof(*item)); 190 if (ret < 0) { 191 btrfs_abort_transaction(trans, root, ret); 192 goto out; 193 } 194 l = path->nodes[0]; 195 slot = path->slots[0]; 196 ptr = btrfs_item_ptr_offset(l, slot); 197 } 198 199 /* 200 * Update generation_v2 so at the next mount we know the new root 201 * fields are valid. 202 */ 203 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 204 205 write_extent_buffer(l, item, ptr, sizeof(*item)); 206 btrfs_mark_buffer_dirty(path->nodes[0]); 207 out: 208 btrfs_free_path(path); 209 return ret; 210 } 211 212 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 213 struct btrfs_key *key, struct btrfs_root_item *item) 214 { 215 /* 216 * Make sure generation v1 and v2 match. See update_root for details. 217 */ 218 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 219 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 220 } 221 222 int btrfs_find_orphan_roots(struct btrfs_root *tree_root) 223 { 224 struct extent_buffer *leaf; 225 struct btrfs_path *path; 226 struct btrfs_key key; 227 struct btrfs_key root_key; 228 struct btrfs_root *root; 229 int err = 0; 230 int ret; 231 bool can_recover = true; 232 233 if (tree_root->fs_info->sb->s_flags & MS_RDONLY) 234 can_recover = false; 235 236 path = btrfs_alloc_path(); 237 if (!path) 238 return -ENOMEM; 239 240 key.objectid = BTRFS_ORPHAN_OBJECTID; 241 key.type = BTRFS_ORPHAN_ITEM_KEY; 242 key.offset = 0; 243 244 root_key.type = BTRFS_ROOT_ITEM_KEY; 245 root_key.offset = (u64)-1; 246 247 while (1) { 248 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 249 if (ret < 0) { 250 err = ret; 251 break; 252 } 253 254 leaf = path->nodes[0]; 255 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 256 ret = btrfs_next_leaf(tree_root, path); 257 if (ret < 0) 258 err = ret; 259 if (ret != 0) 260 break; 261 leaf = path->nodes[0]; 262 } 263 264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 265 btrfs_release_path(path); 266 267 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 268 key.type != BTRFS_ORPHAN_ITEM_KEY) 269 break; 270 271 root_key.objectid = key.offset; 272 key.offset++; 273 274 root = btrfs_read_fs_root(tree_root, &root_key); 275 err = PTR_ERR_OR_ZERO(root); 276 if (err && err != -ENOENT) { 277 break; 278 } else if (err == -ENOENT) { 279 struct btrfs_trans_handle *trans; 280 281 btrfs_release_path(path); 282 283 trans = btrfs_join_transaction(tree_root); 284 if (IS_ERR(trans)) { 285 err = PTR_ERR(trans); 286 btrfs_error(tree_root->fs_info, err, 287 "Failed to start trans to delete " 288 "orphan item"); 289 break; 290 } 291 err = btrfs_del_orphan_item(trans, tree_root, 292 root_key.objectid); 293 btrfs_end_transaction(trans, tree_root); 294 if (err) { 295 btrfs_error(tree_root->fs_info, err, 296 "Failed to delete root orphan " 297 "item"); 298 break; 299 } 300 continue; 301 } 302 303 err = btrfs_init_fs_root(root); 304 if (err) { 305 btrfs_free_fs_root(root); 306 break; 307 } 308 309 root->orphan_item_inserted = 1; 310 311 err = btrfs_insert_fs_root(root->fs_info, root); 312 if (err) { 313 BUG_ON(err == -EEXIST); 314 btrfs_free_fs_root(root); 315 break; 316 } 317 318 if (btrfs_root_refs(&root->root_item) == 0) 319 btrfs_add_dead_root(root); 320 } 321 322 btrfs_free_path(path); 323 return err; 324 } 325 326 /* drop the root item for 'key' from 'root' */ 327 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 328 struct btrfs_key *key) 329 { 330 struct btrfs_path *path; 331 int ret; 332 333 path = btrfs_alloc_path(); 334 if (!path) 335 return -ENOMEM; 336 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 337 if (ret < 0) 338 goto out; 339 340 BUG_ON(ret != 0); 341 342 ret = btrfs_del_item(trans, root, path); 343 out: 344 btrfs_free_path(path); 345 return ret; 346 } 347 348 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 349 struct btrfs_root *tree_root, 350 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 351 const char *name, int name_len) 352 353 { 354 struct btrfs_path *path; 355 struct btrfs_root_ref *ref; 356 struct extent_buffer *leaf; 357 struct btrfs_key key; 358 unsigned long ptr; 359 int err = 0; 360 int ret; 361 362 path = btrfs_alloc_path(); 363 if (!path) 364 return -ENOMEM; 365 366 key.objectid = root_id; 367 key.type = BTRFS_ROOT_BACKREF_KEY; 368 key.offset = ref_id; 369 again: 370 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 371 BUG_ON(ret < 0); 372 if (ret == 0) { 373 leaf = path->nodes[0]; 374 ref = btrfs_item_ptr(leaf, path->slots[0], 375 struct btrfs_root_ref); 376 377 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 378 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 379 ptr = (unsigned long)(ref + 1); 380 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 381 *sequence = btrfs_root_ref_sequence(leaf, ref); 382 383 ret = btrfs_del_item(trans, tree_root, path); 384 if (ret) { 385 err = ret; 386 goto out; 387 } 388 } else 389 err = -ENOENT; 390 391 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 392 btrfs_release_path(path); 393 key.objectid = ref_id; 394 key.type = BTRFS_ROOT_REF_KEY; 395 key.offset = root_id; 396 goto again; 397 } 398 399 out: 400 btrfs_free_path(path); 401 return err; 402 } 403 404 /* 405 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 406 * or BTRFS_ROOT_BACKREF_KEY. 407 * 408 * The dirid, sequence, name and name_len refer to the directory entry 409 * that is referencing the root. 410 * 411 * For a forward ref, the root_id is the id of the tree referencing 412 * the root and ref_id is the id of the subvol or snapshot. 413 * 414 * For a back ref the root_id is the id of the subvol or snapshot and 415 * ref_id is the id of the tree referencing it. 416 * 417 * Will return 0, -ENOMEM, or anything from the CoW path 418 */ 419 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 420 struct btrfs_root *tree_root, 421 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 422 const char *name, int name_len) 423 { 424 struct btrfs_key key; 425 int ret; 426 struct btrfs_path *path; 427 struct btrfs_root_ref *ref; 428 struct extent_buffer *leaf; 429 unsigned long ptr; 430 431 path = btrfs_alloc_path(); 432 if (!path) 433 return -ENOMEM; 434 435 key.objectid = root_id; 436 key.type = BTRFS_ROOT_BACKREF_KEY; 437 key.offset = ref_id; 438 again: 439 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 440 sizeof(*ref) + name_len); 441 if (ret) { 442 btrfs_abort_transaction(trans, tree_root, ret); 443 btrfs_free_path(path); 444 return ret; 445 } 446 447 leaf = path->nodes[0]; 448 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 449 btrfs_set_root_ref_dirid(leaf, ref, dirid); 450 btrfs_set_root_ref_sequence(leaf, ref, sequence); 451 btrfs_set_root_ref_name_len(leaf, ref, name_len); 452 ptr = (unsigned long)(ref + 1); 453 write_extent_buffer(leaf, name, ptr, name_len); 454 btrfs_mark_buffer_dirty(leaf); 455 456 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 457 btrfs_release_path(path); 458 key.objectid = ref_id; 459 key.type = BTRFS_ROOT_REF_KEY; 460 key.offset = root_id; 461 goto again; 462 } 463 464 btrfs_free_path(path); 465 return 0; 466 } 467 468 /* 469 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 470 * for subvolumes. To work around this problem, we steal a bit from 471 * root_item->inode_item->flags, and use it to indicate if those fields 472 * have been properly initialized. 473 */ 474 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 475 { 476 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 477 478 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 479 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 480 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 481 btrfs_set_root_flags(root_item, 0); 482 btrfs_set_root_limit(root_item, 0); 483 } 484 } 485 486 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 487 struct btrfs_root *root) 488 { 489 struct btrfs_root_item *item = &root->root_item; 490 struct timespec ct = CURRENT_TIME; 491 492 spin_lock(&root->root_item_lock); 493 btrfs_set_root_ctransid(item, trans->transid); 494 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 495 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 496 spin_unlock(&root->root_item_lock); 497 } 498