1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "transaction.h" 10 #include "disk-io.h" 11 #include "print-tree.h" 12 13 /* 14 * Read a root item from the tree. In case we detect a root item smaller then 15 * sizeof(root_item), we know it's an old version of the root structure and 16 * initialize all new fields to zero. The same happens if we detect mismatching 17 * generation numbers as then we know the root was once mounted with an older 18 * kernel that was not aware of the root item structure change. 19 */ 20 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 21 struct btrfs_root_item *item) 22 { 23 uuid_le uuid; 24 u32 len; 25 int need_reset = 0; 26 27 len = btrfs_item_size_nr(eb, slot); 28 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 29 min_t(u32, len, sizeof(*item))); 30 if (len < sizeof(*item)) 31 need_reset = 1; 32 if (!need_reset && btrfs_root_generation(item) 33 != btrfs_root_generation_v2(item)) { 34 if (btrfs_root_generation_v2(item) != 0) { 35 btrfs_warn(eb->fs_info, 36 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 37 } 38 need_reset = 1; 39 } 40 if (need_reset) { 41 memset(&item->generation_v2, 0, 42 sizeof(*item) - offsetof(struct btrfs_root_item, 43 generation_v2)); 44 45 uuid_le_gen(&uuid); 46 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 47 } 48 } 49 50 /* 51 * btrfs_find_root - lookup the root by the key. 52 * root: the root of the root tree 53 * search_key: the key to search 54 * path: the path we search 55 * root_item: the root item of the tree we look for 56 * root_key: the root key of the tree we look for 57 * 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 59 * of the search key, just lookup the root with the highest offset for a 60 * given objectid. 61 * 62 * If we find something return 0, otherwise > 0, < 0 on error. 63 */ 64 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 65 struct btrfs_path *path, struct btrfs_root_item *root_item, 66 struct btrfs_key *root_key) 67 { 68 struct btrfs_key found_key; 69 struct extent_buffer *l; 70 int ret; 71 int slot; 72 73 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 74 if (ret < 0) 75 return ret; 76 77 if (search_key->offset != -1ULL) { /* the search key is exact */ 78 if (ret > 0) 79 goto out; 80 } else { 81 BUG_ON(ret == 0); /* Logical error */ 82 if (path->slots[0] == 0) 83 goto out; 84 path->slots[0]--; 85 ret = 0; 86 } 87 88 l = path->nodes[0]; 89 slot = path->slots[0]; 90 91 btrfs_item_key_to_cpu(l, &found_key, slot); 92 if (found_key.objectid != search_key->objectid || 93 found_key.type != BTRFS_ROOT_ITEM_KEY) { 94 ret = 1; 95 goto out; 96 } 97 98 if (root_item) 99 btrfs_read_root_item(l, slot, root_item); 100 if (root_key) 101 memcpy(root_key, &found_key, sizeof(found_key)); 102 out: 103 btrfs_release_path(path); 104 return ret; 105 } 106 107 void btrfs_set_root_node(struct btrfs_root_item *item, 108 struct extent_buffer *node) 109 { 110 btrfs_set_root_bytenr(item, node->start); 111 btrfs_set_root_level(item, btrfs_header_level(node)); 112 btrfs_set_root_generation(item, btrfs_header_generation(node)); 113 } 114 115 /* 116 * copy the data in 'item' into the btree 117 */ 118 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 119 *root, struct btrfs_key *key, struct btrfs_root_item 120 *item) 121 { 122 struct btrfs_fs_info *fs_info = root->fs_info; 123 struct btrfs_path *path; 124 struct extent_buffer *l; 125 int ret; 126 int slot; 127 unsigned long ptr; 128 u32 old_len; 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 135 if (ret < 0) 136 goto out; 137 138 if (ret > 0) { 139 btrfs_crit(fs_info, 140 "unable to find root key (%llu %u %llu) in tree %llu", 141 key->objectid, key->type, key->offset, 142 root->root_key.objectid); 143 ret = -EUCLEAN; 144 btrfs_abort_transaction(trans, ret); 145 goto out; 146 } 147 148 l = path->nodes[0]; 149 slot = path->slots[0]; 150 ptr = btrfs_item_ptr_offset(l, slot); 151 old_len = btrfs_item_size_nr(l, slot); 152 153 /* 154 * If this is the first time we update the root item which originated 155 * from an older kernel, we need to enlarge the item size to make room 156 * for the added fields. 157 */ 158 if (old_len < sizeof(*item)) { 159 btrfs_release_path(path); 160 ret = btrfs_search_slot(trans, root, key, path, 161 -1, 1); 162 if (ret < 0) { 163 btrfs_abort_transaction(trans, ret); 164 goto out; 165 } 166 167 ret = btrfs_del_item(trans, root, path); 168 if (ret < 0) { 169 btrfs_abort_transaction(trans, ret); 170 goto out; 171 } 172 btrfs_release_path(path); 173 ret = btrfs_insert_empty_item(trans, root, path, 174 key, sizeof(*item)); 175 if (ret < 0) { 176 btrfs_abort_transaction(trans, ret); 177 goto out; 178 } 179 l = path->nodes[0]; 180 slot = path->slots[0]; 181 ptr = btrfs_item_ptr_offset(l, slot); 182 } 183 184 /* 185 * Update generation_v2 so at the next mount we know the new root 186 * fields are valid. 187 */ 188 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 189 190 write_extent_buffer(l, item, ptr, sizeof(*item)); 191 btrfs_mark_buffer_dirty(path->nodes[0]); 192 out: 193 btrfs_free_path(path); 194 return ret; 195 } 196 197 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 198 const struct btrfs_key *key, struct btrfs_root_item *item) 199 { 200 /* 201 * Make sure generation v1 and v2 match. See update_root for details. 202 */ 203 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 204 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 205 } 206 207 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 208 { 209 struct btrfs_root *tree_root = fs_info->tree_root; 210 struct extent_buffer *leaf; 211 struct btrfs_path *path; 212 struct btrfs_key key; 213 struct btrfs_key root_key; 214 struct btrfs_root *root; 215 int err = 0; 216 int ret; 217 218 path = btrfs_alloc_path(); 219 if (!path) 220 return -ENOMEM; 221 222 key.objectid = BTRFS_ORPHAN_OBJECTID; 223 key.type = BTRFS_ORPHAN_ITEM_KEY; 224 key.offset = 0; 225 226 root_key.type = BTRFS_ROOT_ITEM_KEY; 227 root_key.offset = (u64)-1; 228 229 while (1) { 230 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 231 if (ret < 0) { 232 err = ret; 233 break; 234 } 235 236 leaf = path->nodes[0]; 237 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 238 ret = btrfs_next_leaf(tree_root, path); 239 if (ret < 0) 240 err = ret; 241 if (ret != 0) 242 break; 243 leaf = path->nodes[0]; 244 } 245 246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 247 btrfs_release_path(path); 248 249 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 250 key.type != BTRFS_ORPHAN_ITEM_KEY) 251 break; 252 253 root_key.objectid = key.offset; 254 key.offset++; 255 256 /* 257 * The root might have been inserted already, as before we look 258 * for orphan roots, log replay might have happened, which 259 * triggers a transaction commit and qgroup accounting, which 260 * in turn reads and inserts fs roots while doing backref 261 * walking. 262 */ 263 root = btrfs_lookup_fs_root(fs_info, root_key.objectid); 264 if (root) { 265 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 266 &root->state)); 267 if (btrfs_root_refs(&root->root_item) == 0) { 268 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 269 btrfs_add_dead_root(root); 270 } 271 continue; 272 } 273 274 root = btrfs_read_fs_root(tree_root, &root_key); 275 err = PTR_ERR_OR_ZERO(root); 276 if (err && err != -ENOENT) { 277 break; 278 } else if (err == -ENOENT) { 279 struct btrfs_trans_handle *trans; 280 281 btrfs_release_path(path); 282 283 trans = btrfs_join_transaction(tree_root); 284 if (IS_ERR(trans)) { 285 err = PTR_ERR(trans); 286 btrfs_handle_fs_error(fs_info, err, 287 "Failed to start trans to delete orphan item"); 288 break; 289 } 290 err = btrfs_del_orphan_item(trans, tree_root, 291 root_key.objectid); 292 btrfs_end_transaction(trans); 293 if (err) { 294 btrfs_handle_fs_error(fs_info, err, 295 "Failed to delete root orphan item"); 296 break; 297 } 298 continue; 299 } 300 301 err = btrfs_init_fs_root(root); 302 if (err) { 303 btrfs_free_fs_root(root); 304 break; 305 } 306 307 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 308 309 err = btrfs_insert_fs_root(fs_info, root); 310 if (err) { 311 BUG_ON(err == -EEXIST); 312 btrfs_free_fs_root(root); 313 break; 314 } 315 316 if (btrfs_root_refs(&root->root_item) == 0) { 317 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 318 btrfs_add_dead_root(root); 319 } 320 } 321 322 btrfs_free_path(path); 323 return err; 324 } 325 326 /* drop the root item for 'key' from the tree root */ 327 int btrfs_del_root(struct btrfs_trans_handle *trans, 328 const struct btrfs_key *key) 329 { 330 struct btrfs_root *root = trans->fs_info->tree_root; 331 struct btrfs_path *path; 332 int ret; 333 334 path = btrfs_alloc_path(); 335 if (!path) 336 return -ENOMEM; 337 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 338 if (ret < 0) 339 goto out; 340 341 BUG_ON(ret != 0); 342 343 ret = btrfs_del_item(trans, root, path); 344 out: 345 btrfs_free_path(path); 346 return ret; 347 } 348 349 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 350 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 351 int name_len) 352 353 { 354 struct btrfs_root *tree_root = trans->fs_info->tree_root; 355 struct btrfs_path *path; 356 struct btrfs_root_ref *ref; 357 struct extent_buffer *leaf; 358 struct btrfs_key key; 359 unsigned long ptr; 360 int err = 0; 361 int ret; 362 363 path = btrfs_alloc_path(); 364 if (!path) 365 return -ENOMEM; 366 367 key.objectid = root_id; 368 key.type = BTRFS_ROOT_BACKREF_KEY; 369 key.offset = ref_id; 370 again: 371 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 372 BUG_ON(ret < 0); 373 if (ret == 0) { 374 leaf = path->nodes[0]; 375 ref = btrfs_item_ptr(leaf, path->slots[0], 376 struct btrfs_root_ref); 377 378 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 379 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 380 ptr = (unsigned long)(ref + 1); 381 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 382 *sequence = btrfs_root_ref_sequence(leaf, ref); 383 384 ret = btrfs_del_item(trans, tree_root, path); 385 if (ret) { 386 err = ret; 387 goto out; 388 } 389 } else 390 err = -ENOENT; 391 392 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 393 btrfs_release_path(path); 394 key.objectid = ref_id; 395 key.type = BTRFS_ROOT_REF_KEY; 396 key.offset = root_id; 397 goto again; 398 } 399 400 out: 401 btrfs_free_path(path); 402 return err; 403 } 404 405 /* 406 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 407 * or BTRFS_ROOT_BACKREF_KEY. 408 * 409 * The dirid, sequence, name and name_len refer to the directory entry 410 * that is referencing the root. 411 * 412 * For a forward ref, the root_id is the id of the tree referencing 413 * the root and ref_id is the id of the subvol or snapshot. 414 * 415 * For a back ref the root_id is the id of the subvol or snapshot and 416 * ref_id is the id of the tree referencing it. 417 * 418 * Will return 0, -ENOMEM, or anything from the CoW path 419 */ 420 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 421 u64 ref_id, u64 dirid, u64 sequence, const char *name, 422 int name_len) 423 { 424 struct btrfs_root *tree_root = trans->fs_info->tree_root; 425 struct btrfs_key key; 426 int ret; 427 struct btrfs_path *path; 428 struct btrfs_root_ref *ref; 429 struct extent_buffer *leaf; 430 unsigned long ptr; 431 432 path = btrfs_alloc_path(); 433 if (!path) 434 return -ENOMEM; 435 436 key.objectid = root_id; 437 key.type = BTRFS_ROOT_BACKREF_KEY; 438 key.offset = ref_id; 439 again: 440 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 441 sizeof(*ref) + name_len); 442 if (ret) { 443 btrfs_abort_transaction(trans, ret); 444 btrfs_free_path(path); 445 return ret; 446 } 447 448 leaf = path->nodes[0]; 449 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 450 btrfs_set_root_ref_dirid(leaf, ref, dirid); 451 btrfs_set_root_ref_sequence(leaf, ref, sequence); 452 btrfs_set_root_ref_name_len(leaf, ref, name_len); 453 ptr = (unsigned long)(ref + 1); 454 write_extent_buffer(leaf, name, ptr, name_len); 455 btrfs_mark_buffer_dirty(leaf); 456 457 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 458 btrfs_release_path(path); 459 key.objectid = ref_id; 460 key.type = BTRFS_ROOT_REF_KEY; 461 key.offset = root_id; 462 goto again; 463 } 464 465 btrfs_free_path(path); 466 return 0; 467 } 468 469 /* 470 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 471 * for subvolumes. To work around this problem, we steal a bit from 472 * root_item->inode_item->flags, and use it to indicate if those fields 473 * have been properly initialized. 474 */ 475 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 476 { 477 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 478 479 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 480 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 481 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 482 btrfs_set_root_flags(root_item, 0); 483 btrfs_set_root_limit(root_item, 0); 484 } 485 } 486 487 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 488 struct btrfs_root *root) 489 { 490 struct btrfs_root_item *item = &root->root_item; 491 struct timespec64 ct; 492 493 ktime_get_real_ts64(&ct); 494 spin_lock(&root->root_item_lock); 495 btrfs_set_root_ctransid(item, trans->transid); 496 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 497 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 498 spin_unlock(&root->root_item_lock); 499 } 500