1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/uuid.h> 20 #include "ctree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 25 /* 26 * Read a root item from the tree. In case we detect a root item smaller then 27 * sizeof(root_item), we know it's an old version of the root structure and 28 * initialize all new fields to zero. The same happens if we detect mismatching 29 * generation numbers as then we know the root was once mounted with an older 30 * kernel that was not aware of the root item structure change. 31 */ 32 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 33 struct btrfs_root_item *item) 34 { 35 uuid_le uuid; 36 int len; 37 int need_reset = 0; 38 39 len = btrfs_item_size_nr(eb, slot); 40 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 41 min_t(int, len, (int)sizeof(*item))); 42 if (len < sizeof(*item)) 43 need_reset = 1; 44 if (!need_reset && btrfs_root_generation(item) 45 != btrfs_root_generation_v2(item)) { 46 if (btrfs_root_generation_v2(item) != 0) { 47 printk(KERN_WARNING "BTRFS: mismatching " 48 "generation and generation_v2 " 49 "found in root item. This root " 50 "was probably mounted with an " 51 "older kernel. Resetting all " 52 "new fields.\n"); 53 } 54 need_reset = 1; 55 } 56 if (need_reset) { 57 memset(&item->generation_v2, 0, 58 sizeof(*item) - offsetof(struct btrfs_root_item, 59 generation_v2)); 60 61 uuid_le_gen(&uuid); 62 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 63 } 64 } 65 66 /* 67 * btrfs_find_root - lookup the root by the key. 68 * root: the root of the root tree 69 * search_key: the key to search 70 * path: the path we search 71 * root_item: the root item of the tree we look for 72 * root_key: the reak key of the tree we look for 73 * 74 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset 75 * of the search key, just lookup the root with the highest offset for a 76 * given objectid. 77 * 78 * If we find something return 0, otherwise > 0, < 0 on error. 79 */ 80 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key, 81 struct btrfs_path *path, struct btrfs_root_item *root_item, 82 struct btrfs_key *root_key) 83 { 84 struct btrfs_key found_key; 85 struct extent_buffer *l; 86 int ret; 87 int slot; 88 89 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 90 if (ret < 0) 91 return ret; 92 93 if (search_key->offset != -1ULL) { /* the search key is exact */ 94 if (ret > 0) 95 goto out; 96 } else { 97 BUG_ON(ret == 0); /* Logical error */ 98 if (path->slots[0] == 0) 99 goto out; 100 path->slots[0]--; 101 ret = 0; 102 } 103 104 l = path->nodes[0]; 105 slot = path->slots[0]; 106 107 btrfs_item_key_to_cpu(l, &found_key, slot); 108 if (found_key.objectid != search_key->objectid || 109 found_key.type != BTRFS_ROOT_ITEM_KEY) { 110 ret = 1; 111 goto out; 112 } 113 114 if (root_item) 115 btrfs_read_root_item(l, slot, root_item); 116 if (root_key) 117 memcpy(root_key, &found_key, sizeof(found_key)); 118 out: 119 btrfs_release_path(path); 120 return ret; 121 } 122 123 void btrfs_set_root_node(struct btrfs_root_item *item, 124 struct extent_buffer *node) 125 { 126 btrfs_set_root_bytenr(item, node->start); 127 btrfs_set_root_level(item, btrfs_header_level(node)); 128 btrfs_set_root_generation(item, btrfs_header_generation(node)); 129 } 130 131 /* 132 * copy the data in 'item' into the btree 133 */ 134 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 135 *root, struct btrfs_key *key, struct btrfs_root_item 136 *item) 137 { 138 struct btrfs_path *path; 139 struct extent_buffer *l; 140 int ret; 141 int slot; 142 unsigned long ptr; 143 int old_len; 144 145 path = btrfs_alloc_path(); 146 if (!path) 147 return -ENOMEM; 148 149 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 150 if (ret < 0) { 151 btrfs_abort_transaction(trans, root, ret); 152 goto out; 153 } 154 155 if (ret != 0) { 156 btrfs_print_leaf(root, path->nodes[0]); 157 btrfs_crit(root->fs_info, "unable to update root key %llu %u %llu", 158 key->objectid, key->type, key->offset); 159 BUG_ON(1); 160 } 161 162 l = path->nodes[0]; 163 slot = path->slots[0]; 164 ptr = btrfs_item_ptr_offset(l, slot); 165 old_len = btrfs_item_size_nr(l, slot); 166 167 /* 168 * If this is the first time we update the root item which originated 169 * from an older kernel, we need to enlarge the item size to make room 170 * for the added fields. 171 */ 172 if (old_len < sizeof(*item)) { 173 btrfs_release_path(path); 174 ret = btrfs_search_slot(trans, root, key, path, 175 -1, 1); 176 if (ret < 0) { 177 btrfs_abort_transaction(trans, root, ret); 178 goto out; 179 } 180 181 ret = btrfs_del_item(trans, root, path); 182 if (ret < 0) { 183 btrfs_abort_transaction(trans, root, ret); 184 goto out; 185 } 186 btrfs_release_path(path); 187 ret = btrfs_insert_empty_item(trans, root, path, 188 key, sizeof(*item)); 189 if (ret < 0) { 190 btrfs_abort_transaction(trans, root, ret); 191 goto out; 192 } 193 l = path->nodes[0]; 194 slot = path->slots[0]; 195 ptr = btrfs_item_ptr_offset(l, slot); 196 } 197 198 /* 199 * Update generation_v2 so at the next mount we know the new root 200 * fields are valid. 201 */ 202 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 203 204 write_extent_buffer(l, item, ptr, sizeof(*item)); 205 btrfs_mark_buffer_dirty(path->nodes[0]); 206 out: 207 btrfs_free_path(path); 208 return ret; 209 } 210 211 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 212 struct btrfs_key *key, struct btrfs_root_item *item) 213 { 214 /* 215 * Make sure generation v1 and v2 match. See update_root for details. 216 */ 217 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 218 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 219 } 220 221 int btrfs_find_orphan_roots(struct btrfs_root *tree_root) 222 { 223 struct extent_buffer *leaf; 224 struct btrfs_path *path; 225 struct btrfs_key key; 226 struct btrfs_key root_key; 227 struct btrfs_root *root; 228 int err = 0; 229 int ret; 230 bool can_recover = true; 231 232 if (tree_root->fs_info->sb->s_flags & MS_RDONLY) 233 can_recover = false; 234 235 path = btrfs_alloc_path(); 236 if (!path) 237 return -ENOMEM; 238 239 key.objectid = BTRFS_ORPHAN_OBJECTID; 240 key.type = BTRFS_ORPHAN_ITEM_KEY; 241 key.offset = 0; 242 243 root_key.type = BTRFS_ROOT_ITEM_KEY; 244 root_key.offset = (u64)-1; 245 246 while (1) { 247 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 248 if (ret < 0) { 249 err = ret; 250 break; 251 } 252 253 leaf = path->nodes[0]; 254 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 255 ret = btrfs_next_leaf(tree_root, path); 256 if (ret < 0) 257 err = ret; 258 if (ret != 0) 259 break; 260 leaf = path->nodes[0]; 261 } 262 263 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 264 btrfs_release_path(path); 265 266 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 267 key.type != BTRFS_ORPHAN_ITEM_KEY) 268 break; 269 270 root_key.objectid = key.offset; 271 key.offset++; 272 273 root = btrfs_read_fs_root(tree_root, &root_key); 274 err = PTR_RET(root); 275 if (err && err != -ENOENT) { 276 break; 277 } else if (err == -ENOENT) { 278 struct btrfs_trans_handle *trans; 279 280 btrfs_release_path(path); 281 282 trans = btrfs_join_transaction(tree_root); 283 if (IS_ERR(trans)) { 284 err = PTR_ERR(trans); 285 btrfs_error(tree_root->fs_info, err, 286 "Failed to start trans to delete " 287 "orphan item"); 288 break; 289 } 290 err = btrfs_del_orphan_item(trans, tree_root, 291 root_key.objectid); 292 btrfs_end_transaction(trans, tree_root); 293 if (err) { 294 btrfs_error(tree_root->fs_info, err, 295 "Failed to delete root orphan " 296 "item"); 297 break; 298 } 299 continue; 300 } 301 302 err = btrfs_init_fs_root(root); 303 if (err) { 304 btrfs_free_fs_root(root); 305 break; 306 } 307 308 root->orphan_item_inserted = 1; 309 310 err = btrfs_insert_fs_root(root->fs_info, root); 311 if (err) { 312 BUG_ON(err == -EEXIST); 313 btrfs_free_fs_root(root); 314 break; 315 } 316 317 if (btrfs_root_refs(&root->root_item) == 0) 318 btrfs_add_dead_root(root); 319 } 320 321 btrfs_free_path(path); 322 return err; 323 } 324 325 /* drop the root item for 'key' from 'root' */ 326 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 327 struct btrfs_key *key) 328 { 329 struct btrfs_path *path; 330 int ret; 331 332 path = btrfs_alloc_path(); 333 if (!path) 334 return -ENOMEM; 335 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 336 if (ret < 0) 337 goto out; 338 339 BUG_ON(ret != 0); 340 341 ret = btrfs_del_item(trans, root, path); 342 out: 343 btrfs_free_path(path); 344 return ret; 345 } 346 347 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 348 struct btrfs_root *tree_root, 349 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 350 const char *name, int name_len) 351 352 { 353 struct btrfs_path *path; 354 struct btrfs_root_ref *ref; 355 struct extent_buffer *leaf; 356 struct btrfs_key key; 357 unsigned long ptr; 358 int err = 0; 359 int ret; 360 361 path = btrfs_alloc_path(); 362 if (!path) 363 return -ENOMEM; 364 365 key.objectid = root_id; 366 key.type = BTRFS_ROOT_BACKREF_KEY; 367 key.offset = ref_id; 368 again: 369 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 370 BUG_ON(ret < 0); 371 if (ret == 0) { 372 leaf = path->nodes[0]; 373 ref = btrfs_item_ptr(leaf, path->slots[0], 374 struct btrfs_root_ref); 375 376 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 377 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 378 ptr = (unsigned long)(ref + 1); 379 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 380 *sequence = btrfs_root_ref_sequence(leaf, ref); 381 382 ret = btrfs_del_item(trans, tree_root, path); 383 if (ret) { 384 err = ret; 385 goto out; 386 } 387 } else 388 err = -ENOENT; 389 390 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 391 btrfs_release_path(path); 392 key.objectid = ref_id; 393 key.type = BTRFS_ROOT_REF_KEY; 394 key.offset = root_id; 395 goto again; 396 } 397 398 out: 399 btrfs_free_path(path); 400 return err; 401 } 402 403 /* 404 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 405 * or BTRFS_ROOT_BACKREF_KEY. 406 * 407 * The dirid, sequence, name and name_len refer to the directory entry 408 * that is referencing the root. 409 * 410 * For a forward ref, the root_id is the id of the tree referencing 411 * the root and ref_id is the id of the subvol or snapshot. 412 * 413 * For a back ref the root_id is the id of the subvol or snapshot and 414 * ref_id is the id of the tree referencing it. 415 * 416 * Will return 0, -ENOMEM, or anything from the CoW path 417 */ 418 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 419 struct btrfs_root *tree_root, 420 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 421 const char *name, int name_len) 422 { 423 struct btrfs_key key; 424 int ret; 425 struct btrfs_path *path; 426 struct btrfs_root_ref *ref; 427 struct extent_buffer *leaf; 428 unsigned long ptr; 429 430 path = btrfs_alloc_path(); 431 if (!path) 432 return -ENOMEM; 433 434 key.objectid = root_id; 435 key.type = BTRFS_ROOT_BACKREF_KEY; 436 key.offset = ref_id; 437 again: 438 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 439 sizeof(*ref) + name_len); 440 if (ret) { 441 btrfs_abort_transaction(trans, tree_root, ret); 442 btrfs_free_path(path); 443 return ret; 444 } 445 446 leaf = path->nodes[0]; 447 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 448 btrfs_set_root_ref_dirid(leaf, ref, dirid); 449 btrfs_set_root_ref_sequence(leaf, ref, sequence); 450 btrfs_set_root_ref_name_len(leaf, ref, name_len); 451 ptr = (unsigned long)(ref + 1); 452 write_extent_buffer(leaf, name, ptr, name_len); 453 btrfs_mark_buffer_dirty(leaf); 454 455 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 456 btrfs_release_path(path); 457 key.objectid = ref_id; 458 key.type = BTRFS_ROOT_REF_KEY; 459 key.offset = root_id; 460 goto again; 461 } 462 463 btrfs_free_path(path); 464 return 0; 465 } 466 467 /* 468 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 469 * for subvolumes. To work around this problem, we steal a bit from 470 * root_item->inode_item->flags, and use it to indicate if those fields 471 * have been properly initialized. 472 */ 473 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 474 { 475 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 476 477 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 478 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 479 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 480 btrfs_set_root_flags(root_item, 0); 481 btrfs_set_root_limit(root_item, 0); 482 } 483 } 484 485 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 486 struct btrfs_root *root) 487 { 488 struct btrfs_root_item *item = &root->root_item; 489 struct timespec ct = CURRENT_TIME; 490 491 spin_lock(&root->root_item_lock); 492 btrfs_set_root_ctransid(item, trans->transid); 493 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 494 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 495 spin_unlock(&root->root_item_lock); 496 } 497