xref: /openbmc/linux/fs/btrfs/root-tree.c (revision 8bd1369b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "transaction.h"
10 #include "disk-io.h"
11 #include "print-tree.h"
12 
13 /*
14  * Read a root item from the tree. In case we detect a root item smaller then
15  * sizeof(root_item), we know it's an old version of the root structure and
16  * initialize all new fields to zero. The same happens if we detect mismatching
17  * generation numbers as then we know the root was once mounted with an older
18  * kernel that was not aware of the root item structure change.
19  */
20 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
21 				struct btrfs_root_item *item)
22 {
23 	uuid_le uuid;
24 	int len;
25 	int need_reset = 0;
26 
27 	len = btrfs_item_size_nr(eb, slot);
28 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
29 			min_t(int, len, (int)sizeof(*item)));
30 	if (len < sizeof(*item))
31 		need_reset = 1;
32 	if (!need_reset && btrfs_root_generation(item)
33 		!= btrfs_root_generation_v2(item)) {
34 		if (btrfs_root_generation_v2(item) != 0) {
35 			btrfs_warn(eb->fs_info,
36 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
37 		}
38 		need_reset = 1;
39 	}
40 	if (need_reset) {
41 		memset(&item->generation_v2, 0,
42 			sizeof(*item) - offsetof(struct btrfs_root_item,
43 					generation_v2));
44 
45 		uuid_le_gen(&uuid);
46 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
47 	}
48 }
49 
50 /*
51  * btrfs_find_root - lookup the root by the key.
52  * root: the root of the root tree
53  * search_key: the key to search
54  * path: the path we search
55  * root_item: the root item of the tree we look for
56  * root_key: the root key of the tree we look for
57  *
58  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
59  * of the search key, just lookup the root with the highest offset for a
60  * given objectid.
61  *
62  * If we find something return 0, otherwise > 0, < 0 on error.
63  */
64 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
65 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
66 		    struct btrfs_key *root_key)
67 {
68 	struct btrfs_key found_key;
69 	struct extent_buffer *l;
70 	int ret;
71 	int slot;
72 
73 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
74 	if (ret < 0)
75 		return ret;
76 
77 	if (search_key->offset != -1ULL) {	/* the search key is exact */
78 		if (ret > 0)
79 			goto out;
80 	} else {
81 		BUG_ON(ret == 0);		/* Logical error */
82 		if (path->slots[0] == 0)
83 			goto out;
84 		path->slots[0]--;
85 		ret = 0;
86 	}
87 
88 	l = path->nodes[0];
89 	slot = path->slots[0];
90 
91 	btrfs_item_key_to_cpu(l, &found_key, slot);
92 	if (found_key.objectid != search_key->objectid ||
93 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
94 		ret = 1;
95 		goto out;
96 	}
97 
98 	if (root_item)
99 		btrfs_read_root_item(l, slot, root_item);
100 	if (root_key)
101 		memcpy(root_key, &found_key, sizeof(found_key));
102 out:
103 	btrfs_release_path(path);
104 	return ret;
105 }
106 
107 void btrfs_set_root_node(struct btrfs_root_item *item,
108 			 struct extent_buffer *node)
109 {
110 	btrfs_set_root_bytenr(item, node->start);
111 	btrfs_set_root_level(item, btrfs_header_level(node));
112 	btrfs_set_root_generation(item, btrfs_header_generation(node));
113 }
114 
115 /*
116  * copy the data in 'item' into the btree
117  */
118 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119 		      *root, struct btrfs_key *key, struct btrfs_root_item
120 		      *item)
121 {
122 	struct btrfs_fs_info *fs_info = root->fs_info;
123 	struct btrfs_path *path;
124 	struct extent_buffer *l;
125 	int ret;
126 	int slot;
127 	unsigned long ptr;
128 	u32 old_len;
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135 	if (ret < 0) {
136 		btrfs_abort_transaction(trans, ret);
137 		goto out;
138 	}
139 
140 	if (ret != 0) {
141 		btrfs_print_leaf(path->nodes[0]);
142 		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
143 			   key->objectid, key->type, key->offset);
144 		BUG_ON(1);
145 	}
146 
147 	l = path->nodes[0];
148 	slot = path->slots[0];
149 	ptr = btrfs_item_ptr_offset(l, slot);
150 	old_len = btrfs_item_size_nr(l, slot);
151 
152 	/*
153 	 * If this is the first time we update the root item which originated
154 	 * from an older kernel, we need to enlarge the item size to make room
155 	 * for the added fields.
156 	 */
157 	if (old_len < sizeof(*item)) {
158 		btrfs_release_path(path);
159 		ret = btrfs_search_slot(trans, root, key, path,
160 				-1, 1);
161 		if (ret < 0) {
162 			btrfs_abort_transaction(trans, ret);
163 			goto out;
164 		}
165 
166 		ret = btrfs_del_item(trans, root, path);
167 		if (ret < 0) {
168 			btrfs_abort_transaction(trans, ret);
169 			goto out;
170 		}
171 		btrfs_release_path(path);
172 		ret = btrfs_insert_empty_item(trans, root, path,
173 				key, sizeof(*item));
174 		if (ret < 0) {
175 			btrfs_abort_transaction(trans, ret);
176 			goto out;
177 		}
178 		l = path->nodes[0];
179 		slot = path->slots[0];
180 		ptr = btrfs_item_ptr_offset(l, slot);
181 	}
182 
183 	/*
184 	 * Update generation_v2 so at the next mount we know the new root
185 	 * fields are valid.
186 	 */
187 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
188 
189 	write_extent_buffer(l, item, ptr, sizeof(*item));
190 	btrfs_mark_buffer_dirty(path->nodes[0]);
191 out:
192 	btrfs_free_path(path);
193 	return ret;
194 }
195 
196 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
197 		      const struct btrfs_key *key, struct btrfs_root_item *item)
198 {
199 	/*
200 	 * Make sure generation v1 and v2 match. See update_root for details.
201 	 */
202 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
203 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
204 }
205 
206 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
207 {
208 	struct btrfs_root *tree_root = fs_info->tree_root;
209 	struct extent_buffer *leaf;
210 	struct btrfs_path *path;
211 	struct btrfs_key key;
212 	struct btrfs_key root_key;
213 	struct btrfs_root *root;
214 	int err = 0;
215 	int ret;
216 
217 	path = btrfs_alloc_path();
218 	if (!path)
219 		return -ENOMEM;
220 
221 	key.objectid = BTRFS_ORPHAN_OBJECTID;
222 	key.type = BTRFS_ORPHAN_ITEM_KEY;
223 	key.offset = 0;
224 
225 	root_key.type = BTRFS_ROOT_ITEM_KEY;
226 	root_key.offset = (u64)-1;
227 
228 	while (1) {
229 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
230 		if (ret < 0) {
231 			err = ret;
232 			break;
233 		}
234 
235 		leaf = path->nodes[0];
236 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
237 			ret = btrfs_next_leaf(tree_root, path);
238 			if (ret < 0)
239 				err = ret;
240 			if (ret != 0)
241 				break;
242 			leaf = path->nodes[0];
243 		}
244 
245 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
246 		btrfs_release_path(path);
247 
248 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
249 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
250 			break;
251 
252 		root_key.objectid = key.offset;
253 		key.offset++;
254 
255 		/*
256 		 * The root might have been inserted already, as before we look
257 		 * for orphan roots, log replay might have happened, which
258 		 * triggers a transaction commit and qgroup accounting, which
259 		 * in turn reads and inserts fs roots while doing backref
260 		 * walking.
261 		 */
262 		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
263 		if (root) {
264 			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
265 					  &root->state));
266 			if (btrfs_root_refs(&root->root_item) == 0)
267 				btrfs_add_dead_root(root);
268 			continue;
269 		}
270 
271 		root = btrfs_read_fs_root(tree_root, &root_key);
272 		err = PTR_ERR_OR_ZERO(root);
273 		if (err && err != -ENOENT) {
274 			break;
275 		} else if (err == -ENOENT) {
276 			struct btrfs_trans_handle *trans;
277 
278 			btrfs_release_path(path);
279 
280 			trans = btrfs_join_transaction(tree_root);
281 			if (IS_ERR(trans)) {
282 				err = PTR_ERR(trans);
283 				btrfs_handle_fs_error(fs_info, err,
284 					    "Failed to start trans to delete orphan item");
285 				break;
286 			}
287 			err = btrfs_del_orphan_item(trans, tree_root,
288 						    root_key.objectid);
289 			btrfs_end_transaction(trans);
290 			if (err) {
291 				btrfs_handle_fs_error(fs_info, err,
292 					    "Failed to delete root orphan item");
293 				break;
294 			}
295 			continue;
296 		}
297 
298 		err = btrfs_init_fs_root(root);
299 		if (err) {
300 			btrfs_free_fs_root(root);
301 			break;
302 		}
303 
304 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
305 
306 		err = btrfs_insert_fs_root(fs_info, root);
307 		if (err) {
308 			BUG_ON(err == -EEXIST);
309 			btrfs_free_fs_root(root);
310 			break;
311 		}
312 
313 		if (btrfs_root_refs(&root->root_item) == 0)
314 			btrfs_add_dead_root(root);
315 	}
316 
317 	btrfs_free_path(path);
318 	return err;
319 }
320 
321 /* drop the root item for 'key' from the tree root */
322 int btrfs_del_root(struct btrfs_trans_handle *trans,
323 		   struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
324 {
325 	struct btrfs_root *root = fs_info->tree_root;
326 	struct btrfs_path *path;
327 	int ret;
328 
329 	path = btrfs_alloc_path();
330 	if (!path)
331 		return -ENOMEM;
332 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
333 	if (ret < 0)
334 		goto out;
335 
336 	BUG_ON(ret != 0);
337 
338 	ret = btrfs_del_item(trans, root, path);
339 out:
340 	btrfs_free_path(path);
341 	return ret;
342 }
343 
344 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
345 		       struct btrfs_fs_info *fs_info,
346 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
347 		       const char *name, int name_len)
348 
349 {
350 	struct btrfs_root *tree_root = fs_info->tree_root;
351 	struct btrfs_path *path;
352 	struct btrfs_root_ref *ref;
353 	struct extent_buffer *leaf;
354 	struct btrfs_key key;
355 	unsigned long ptr;
356 	int err = 0;
357 	int ret;
358 
359 	path = btrfs_alloc_path();
360 	if (!path)
361 		return -ENOMEM;
362 
363 	key.objectid = root_id;
364 	key.type = BTRFS_ROOT_BACKREF_KEY;
365 	key.offset = ref_id;
366 again:
367 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
368 	BUG_ON(ret < 0);
369 	if (ret == 0) {
370 		leaf = path->nodes[0];
371 		ref = btrfs_item_ptr(leaf, path->slots[0],
372 				     struct btrfs_root_ref);
373 
374 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
375 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
376 		ptr = (unsigned long)(ref + 1);
377 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
378 		*sequence = btrfs_root_ref_sequence(leaf, ref);
379 
380 		ret = btrfs_del_item(trans, tree_root, path);
381 		if (ret) {
382 			err = ret;
383 			goto out;
384 		}
385 	} else
386 		err = -ENOENT;
387 
388 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
389 		btrfs_release_path(path);
390 		key.objectid = ref_id;
391 		key.type = BTRFS_ROOT_REF_KEY;
392 		key.offset = root_id;
393 		goto again;
394 	}
395 
396 out:
397 	btrfs_free_path(path);
398 	return err;
399 }
400 
401 /*
402  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
403  * or BTRFS_ROOT_BACKREF_KEY.
404  *
405  * The dirid, sequence, name and name_len refer to the directory entry
406  * that is referencing the root.
407  *
408  * For a forward ref, the root_id is the id of the tree referencing
409  * the root and ref_id is the id of the subvol  or snapshot.
410  *
411  * For a back ref the root_id is the id of the subvol or snapshot and
412  * ref_id is the id of the tree referencing it.
413  *
414  * Will return 0, -ENOMEM, or anything from the CoW path
415  */
416 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
417 		       struct btrfs_fs_info *fs_info,
418 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
419 		       const char *name, int name_len)
420 {
421 	struct btrfs_root *tree_root = fs_info->tree_root;
422 	struct btrfs_key key;
423 	int ret;
424 	struct btrfs_path *path;
425 	struct btrfs_root_ref *ref;
426 	struct extent_buffer *leaf;
427 	unsigned long ptr;
428 
429 	path = btrfs_alloc_path();
430 	if (!path)
431 		return -ENOMEM;
432 
433 	key.objectid = root_id;
434 	key.type = BTRFS_ROOT_BACKREF_KEY;
435 	key.offset = ref_id;
436 again:
437 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
438 				      sizeof(*ref) + name_len);
439 	if (ret) {
440 		btrfs_abort_transaction(trans, ret);
441 		btrfs_free_path(path);
442 		return ret;
443 	}
444 
445 	leaf = path->nodes[0];
446 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
447 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
448 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
449 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
450 	ptr = (unsigned long)(ref + 1);
451 	write_extent_buffer(leaf, name, ptr, name_len);
452 	btrfs_mark_buffer_dirty(leaf);
453 
454 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
455 		btrfs_release_path(path);
456 		key.objectid = ref_id;
457 		key.type = BTRFS_ROOT_REF_KEY;
458 		key.offset = root_id;
459 		goto again;
460 	}
461 
462 	btrfs_free_path(path);
463 	return 0;
464 }
465 
466 /*
467  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
468  * for subvolumes. To work around this problem, we steal a bit from
469  * root_item->inode_item->flags, and use it to indicate if those fields
470  * have been properly initialized.
471  */
472 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
473 {
474 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
475 
476 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
477 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
478 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
479 		btrfs_set_root_flags(root_item, 0);
480 		btrfs_set_root_limit(root_item, 0);
481 	}
482 }
483 
484 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
485 			     struct btrfs_root *root)
486 {
487 	struct btrfs_root_item *item = &root->root_item;
488 	struct timespec64 ct;
489 
490 	ktime_get_real_ts64(&ct);
491 	spin_lock(&root->root_item_lock);
492 	btrfs_set_root_ctransid(item, trans->transid);
493 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
494 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
495 	spin_unlock(&root->root_item_lock);
496 }
497