xref: /openbmc/linux/fs/btrfs/root-tree.c (revision 54525552)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include "ctree.h"
20 #include "transaction.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 
24 /*
25  *  search forward for a root, starting with objectid 'search_start'
26  *  if a root key is found, the objectid we find is filled into 'found_objectid'
27  *  and 0 is returned.  < 0 is returned on error, 1 if there is nothing
28  *  left in the tree.
29  */
30 int btrfs_search_root(struct btrfs_root *root, u64 search_start,
31 		      u64 *found_objectid)
32 {
33 	struct btrfs_path *path;
34 	struct btrfs_key search_key;
35 	int ret;
36 
37 	root = root->fs_info->tree_root;
38 	search_key.objectid = search_start;
39 	search_key.type = (u8)-1;
40 	search_key.offset = (u64)-1;
41 
42 	path = btrfs_alloc_path();
43 	BUG_ON(!path);
44 again:
45 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
46 	if (ret < 0)
47 		goto out;
48 	if (ret == 0) {
49 		ret = 1;
50 		goto out;
51 	}
52 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
53 		ret = btrfs_next_leaf(root, path);
54 		if (ret)
55 			goto out;
56 	}
57 	btrfs_item_key_to_cpu(path->nodes[0], &search_key, path->slots[0]);
58 	if (search_key.type != BTRFS_ROOT_ITEM_KEY) {
59 		search_key.offset++;
60 		btrfs_release_path(root, path);
61 		goto again;
62 	}
63 	ret = 0;
64 	*found_objectid = search_key.objectid;
65 
66 out:
67 	btrfs_free_path(path);
68 	return ret;
69 }
70 
71 /*
72  * lookup the root with the highest offset for a given objectid.  The key we do
73  * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
74  * on error.
75  */
76 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
77 			struct btrfs_root_item *item, struct btrfs_key *key)
78 {
79 	struct btrfs_path *path;
80 	struct btrfs_key search_key;
81 	struct btrfs_key found_key;
82 	struct extent_buffer *l;
83 	int ret;
84 	int slot;
85 
86 	search_key.objectid = objectid;
87 	search_key.type = BTRFS_ROOT_ITEM_KEY;
88 	search_key.offset = (u64)-1;
89 
90 	path = btrfs_alloc_path();
91 	if (!path)
92 		return -ENOMEM;
93 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
94 	if (ret < 0)
95 		goto out;
96 
97 	BUG_ON(ret == 0);
98 	if (path->slots[0] == 0) {
99 		ret = 1;
100 		goto out;
101 	}
102 	l = path->nodes[0];
103 	slot = path->slots[0] - 1;
104 	btrfs_item_key_to_cpu(l, &found_key, slot);
105 	if (found_key.objectid != objectid ||
106 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
107 		ret = 1;
108 		goto out;
109 	}
110 	if (item)
111 		read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
112 				   sizeof(*item));
113 	if (key)
114 		memcpy(key, &found_key, sizeof(found_key));
115 	ret = 0;
116 out:
117 	btrfs_free_path(path);
118 	return ret;
119 }
120 
121 int btrfs_set_root_node(struct btrfs_root_item *item,
122 			struct extent_buffer *node)
123 {
124 	btrfs_set_root_bytenr(item, node->start);
125 	btrfs_set_root_level(item, btrfs_header_level(node));
126 	btrfs_set_root_generation(item, btrfs_header_generation(node));
127 	return 0;
128 }
129 
130 /*
131  * copy the data in 'item' into the btree
132  */
133 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
134 		      *root, struct btrfs_key *key, struct btrfs_root_item
135 		      *item)
136 {
137 	struct btrfs_path *path;
138 	struct extent_buffer *l;
139 	int ret;
140 	int slot;
141 	unsigned long ptr;
142 
143 	path = btrfs_alloc_path();
144 	BUG_ON(!path);
145 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
146 	if (ret < 0)
147 		goto out;
148 
149 	if (ret != 0) {
150 		btrfs_print_leaf(root, path->nodes[0]);
151 		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
152 		       (unsigned long long)key->objectid, key->type,
153 		       (unsigned long long)key->offset);
154 		BUG_ON(1);
155 	}
156 
157 	l = path->nodes[0];
158 	slot = path->slots[0];
159 	ptr = btrfs_item_ptr_offset(l, slot);
160 	write_extent_buffer(l, item, ptr, sizeof(*item));
161 	btrfs_mark_buffer_dirty(path->nodes[0]);
162 out:
163 	btrfs_free_path(path);
164 	return ret;
165 }
166 
167 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
168 		      *root, struct btrfs_key *key, struct btrfs_root_item
169 		      *item)
170 {
171 	int ret;
172 	ret = btrfs_insert_item(trans, root, key, item, sizeof(*item));
173 	return ret;
174 }
175 
176 /*
177  * at mount time we want to find all the old transaction snapshots that were in
178  * the process of being deleted if we crashed.  This is any root item with an
179  * offset lower than the latest root.  They need to be queued for deletion to
180  * finish what was happening when we crashed.
181  */
182 int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
183 {
184 	struct btrfs_root *dead_root;
185 	struct btrfs_root_item *ri;
186 	struct btrfs_key key;
187 	struct btrfs_key found_key;
188 	struct btrfs_path *path;
189 	int ret;
190 	u32 nritems;
191 	struct extent_buffer *leaf;
192 	int slot;
193 
194 	key.objectid = objectid;
195 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
196 	key.offset = 0;
197 	path = btrfs_alloc_path();
198 	if (!path)
199 		return -ENOMEM;
200 
201 again:
202 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
203 	if (ret < 0)
204 		goto err;
205 	while (1) {
206 		leaf = path->nodes[0];
207 		nritems = btrfs_header_nritems(leaf);
208 		slot = path->slots[0];
209 		if (slot >= nritems) {
210 			ret = btrfs_next_leaf(root, path);
211 			if (ret)
212 				break;
213 			leaf = path->nodes[0];
214 			nritems = btrfs_header_nritems(leaf);
215 			slot = path->slots[0];
216 		}
217 		btrfs_item_key_to_cpu(leaf, &key, slot);
218 		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
219 			goto next;
220 
221 		if (key.objectid < objectid)
222 			goto next;
223 
224 		if (key.objectid > objectid)
225 			break;
226 
227 		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
228 		if (btrfs_disk_root_refs(leaf, ri) != 0)
229 			goto next;
230 
231 		memcpy(&found_key, &key, sizeof(key));
232 		key.offset++;
233 		btrfs_release_path(root, path);
234 		dead_root =
235 			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
236 						    &found_key);
237 		if (IS_ERR(dead_root)) {
238 			ret = PTR_ERR(dead_root);
239 			goto err;
240 		}
241 
242 		ret = btrfs_add_dead_root(dead_root);
243 		if (ret)
244 			goto err;
245 		goto again;
246 next:
247 		slot++;
248 		path->slots[0]++;
249 	}
250 	ret = 0;
251 err:
252 	btrfs_free_path(path);
253 	return ret;
254 }
255 
256 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
257 {
258 	struct extent_buffer *leaf;
259 	struct btrfs_path *path;
260 	struct btrfs_key key;
261 	struct btrfs_key root_key;
262 	struct btrfs_root *root;
263 	int err = 0;
264 	int ret;
265 
266 	path = btrfs_alloc_path();
267 	if (!path)
268 		return -ENOMEM;
269 
270 	key.objectid = BTRFS_ORPHAN_OBJECTID;
271 	key.type = BTRFS_ORPHAN_ITEM_KEY;
272 	key.offset = 0;
273 
274 	root_key.type = BTRFS_ROOT_ITEM_KEY;
275 	root_key.offset = (u64)-1;
276 
277 	while (1) {
278 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
279 		if (ret < 0) {
280 			err = ret;
281 			break;
282 		}
283 
284 		leaf = path->nodes[0];
285 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
286 			ret = btrfs_next_leaf(tree_root, path);
287 			if (ret < 0)
288 				err = ret;
289 			if (ret != 0)
290 				break;
291 			leaf = path->nodes[0];
292 		}
293 
294 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
295 		btrfs_release_path(tree_root, path);
296 
297 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
298 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
299 			break;
300 
301 		root_key.objectid = key.offset;
302 		key.offset++;
303 
304 		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
305 						  &root_key);
306 		if (!IS_ERR(root))
307 			continue;
308 
309 		ret = PTR_ERR(root);
310 		if (ret != -ENOENT) {
311 			err = ret;
312 			break;
313 		}
314 
315 		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
316 		if (ret) {
317 			err = ret;
318 			break;
319 		}
320 	}
321 
322 	btrfs_free_path(path);
323 	return err;
324 }
325 
326 /* drop the root item for 'key' from 'root' */
327 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
328 		   struct btrfs_key *key)
329 {
330 	struct btrfs_path *path;
331 	int ret;
332 	struct btrfs_root_item *ri;
333 	struct extent_buffer *leaf;
334 
335 	path = btrfs_alloc_path();
336 	if (!path)
337 		return -ENOMEM;
338 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
339 	if (ret < 0)
340 		goto out;
341 
342 	BUG_ON(ret != 0);
343 	leaf = path->nodes[0];
344 	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
345 
346 	ret = btrfs_del_item(trans, root, path);
347 out:
348 	btrfs_free_path(path);
349 	return ret;
350 }
351 
352 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
353 		       struct btrfs_root *tree_root,
354 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
355 		       const char *name, int name_len)
356 
357 {
358 	struct btrfs_path *path;
359 	struct btrfs_root_ref *ref;
360 	struct extent_buffer *leaf;
361 	struct btrfs_key key;
362 	unsigned long ptr;
363 	int err = 0;
364 	int ret;
365 
366 	path = btrfs_alloc_path();
367 	if (!path)
368 		return -ENOMEM;
369 
370 	key.objectid = root_id;
371 	key.type = BTRFS_ROOT_BACKREF_KEY;
372 	key.offset = ref_id;
373 again:
374 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
375 	BUG_ON(ret < 0);
376 	if (ret == 0) {
377 		leaf = path->nodes[0];
378 		ref = btrfs_item_ptr(leaf, path->slots[0],
379 				     struct btrfs_root_ref);
380 
381 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
382 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
383 		ptr = (unsigned long)(ref + 1);
384 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
385 		*sequence = btrfs_root_ref_sequence(leaf, ref);
386 
387 		ret = btrfs_del_item(trans, tree_root, path);
388 		BUG_ON(ret);
389 	} else
390 		err = -ENOENT;
391 
392 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
393 		btrfs_release_path(tree_root, path);
394 		key.objectid = ref_id;
395 		key.type = BTRFS_ROOT_REF_KEY;
396 		key.offset = root_id;
397 		goto again;
398 	}
399 
400 	btrfs_free_path(path);
401 	return err;
402 }
403 
404 int btrfs_find_root_ref(struct btrfs_root *tree_root,
405 		   struct btrfs_path *path,
406 		   u64 root_id, u64 ref_id)
407 {
408 	struct btrfs_key key;
409 	int ret;
410 
411 	key.objectid = root_id;
412 	key.type = BTRFS_ROOT_REF_KEY;
413 	key.offset = ref_id;
414 
415 	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
416 	return ret;
417 }
418 
419 /*
420  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
421  * or BTRFS_ROOT_BACKREF_KEY.
422  *
423  * The dirid, sequence, name and name_len refer to the directory entry
424  * that is referencing the root.
425  *
426  * For a forward ref, the root_id is the id of the tree referencing
427  * the root and ref_id is the id of the subvol  or snapshot.
428  *
429  * For a back ref the root_id is the id of the subvol or snapshot and
430  * ref_id is the id of the tree referencing it.
431  */
432 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
433 		       struct btrfs_root *tree_root,
434 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
435 		       const char *name, int name_len)
436 {
437 	struct btrfs_key key;
438 	int ret;
439 	struct btrfs_path *path;
440 	struct btrfs_root_ref *ref;
441 	struct extent_buffer *leaf;
442 	unsigned long ptr;
443 
444 	path = btrfs_alloc_path();
445 	if (!path)
446 		return -ENOMEM;
447 
448 	key.objectid = root_id;
449 	key.type = BTRFS_ROOT_BACKREF_KEY;
450 	key.offset = ref_id;
451 again:
452 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
453 				      sizeof(*ref) + name_len);
454 	BUG_ON(ret);
455 
456 	leaf = path->nodes[0];
457 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
458 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
459 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
460 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
461 	ptr = (unsigned long)(ref + 1);
462 	write_extent_buffer(leaf, name, ptr, name_len);
463 	btrfs_mark_buffer_dirty(leaf);
464 
465 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
466 		btrfs_release_path(tree_root, path);
467 		key.objectid = ref_id;
468 		key.type = BTRFS_ROOT_REF_KEY;
469 		key.offset = root_id;
470 		goto again;
471 	}
472 
473 	btrfs_free_path(path);
474 	return 0;
475 }
476 
477 /*
478  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
479  * for subvolumes. To work around this problem, we steal a bit from
480  * root_item->inode_item->flags, and use it to indicate if those fields
481  * have been properly initialized.
482  */
483 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
484 {
485 	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
486 
487 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
488 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
489 		root_item->inode.flags = cpu_to_le64(inode_flags);
490 		root_item->flags = 0;
491 		root_item->byte_limit = 0;
492 	}
493 }
494