xref: /openbmc/linux/fs/btrfs/root-tree.c (revision 4a3fad70)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/err.h>
20 #include <linux/uuid.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "print-tree.h"
25 
26 /*
27  * Read a root item from the tree. In case we detect a root item smaller then
28  * sizeof(root_item), we know it's an old version of the root structure and
29  * initialize all new fields to zero. The same happens if we detect mismatching
30  * generation numbers as then we know the root was once mounted with an older
31  * kernel that was not aware of the root item structure change.
32  */
33 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
34 				struct btrfs_root_item *item)
35 {
36 	uuid_le uuid;
37 	int len;
38 	int need_reset = 0;
39 
40 	len = btrfs_item_size_nr(eb, slot);
41 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
42 			min_t(int, len, (int)sizeof(*item)));
43 	if (len < sizeof(*item))
44 		need_reset = 1;
45 	if (!need_reset && btrfs_root_generation(item)
46 		!= btrfs_root_generation_v2(item)) {
47 		if (btrfs_root_generation_v2(item) != 0) {
48 			btrfs_warn(eb->fs_info,
49 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
50 		}
51 		need_reset = 1;
52 	}
53 	if (need_reset) {
54 		memset(&item->generation_v2, 0,
55 			sizeof(*item) - offsetof(struct btrfs_root_item,
56 					generation_v2));
57 
58 		uuid_le_gen(&uuid);
59 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
60 	}
61 }
62 
63 /*
64  * btrfs_find_root - lookup the root by the key.
65  * root: the root of the root tree
66  * search_key: the key to search
67  * path: the path we search
68  * root_item: the root item of the tree we look for
69  * root_key: the root key of the tree we look for
70  *
71  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
72  * of the search key, just lookup the root with the highest offset for a
73  * given objectid.
74  *
75  * If we find something return 0, otherwise > 0, < 0 on error.
76  */
77 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
78 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
79 		    struct btrfs_key *root_key)
80 {
81 	struct btrfs_key found_key;
82 	struct extent_buffer *l;
83 	int ret;
84 	int slot;
85 
86 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
87 	if (ret < 0)
88 		return ret;
89 
90 	if (search_key->offset != -1ULL) {	/* the search key is exact */
91 		if (ret > 0)
92 			goto out;
93 	} else {
94 		BUG_ON(ret == 0);		/* Logical error */
95 		if (path->slots[0] == 0)
96 			goto out;
97 		path->slots[0]--;
98 		ret = 0;
99 	}
100 
101 	l = path->nodes[0];
102 	slot = path->slots[0];
103 
104 	btrfs_item_key_to_cpu(l, &found_key, slot);
105 	if (found_key.objectid != search_key->objectid ||
106 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
107 		ret = 1;
108 		goto out;
109 	}
110 
111 	if (root_item)
112 		btrfs_read_root_item(l, slot, root_item);
113 	if (root_key)
114 		memcpy(root_key, &found_key, sizeof(found_key));
115 out:
116 	btrfs_release_path(path);
117 	return ret;
118 }
119 
120 void btrfs_set_root_node(struct btrfs_root_item *item,
121 			 struct extent_buffer *node)
122 {
123 	btrfs_set_root_bytenr(item, node->start);
124 	btrfs_set_root_level(item, btrfs_header_level(node));
125 	btrfs_set_root_generation(item, btrfs_header_generation(node));
126 }
127 
128 /*
129  * copy the data in 'item' into the btree
130  */
131 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
132 		      *root, struct btrfs_key *key, struct btrfs_root_item
133 		      *item)
134 {
135 	struct btrfs_fs_info *fs_info = root->fs_info;
136 	struct btrfs_path *path;
137 	struct extent_buffer *l;
138 	int ret;
139 	int slot;
140 	unsigned long ptr;
141 	u32 old_len;
142 
143 	path = btrfs_alloc_path();
144 	if (!path)
145 		return -ENOMEM;
146 
147 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
148 	if (ret < 0) {
149 		btrfs_abort_transaction(trans, ret);
150 		goto out;
151 	}
152 
153 	if (ret != 0) {
154 		btrfs_print_leaf(path->nodes[0]);
155 		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
156 			   key->objectid, key->type, key->offset);
157 		BUG_ON(1);
158 	}
159 
160 	l = path->nodes[0];
161 	slot = path->slots[0];
162 	ptr = btrfs_item_ptr_offset(l, slot);
163 	old_len = btrfs_item_size_nr(l, slot);
164 
165 	/*
166 	 * If this is the first time we update the root item which originated
167 	 * from an older kernel, we need to enlarge the item size to make room
168 	 * for the added fields.
169 	 */
170 	if (old_len < sizeof(*item)) {
171 		btrfs_release_path(path);
172 		ret = btrfs_search_slot(trans, root, key, path,
173 				-1, 1);
174 		if (ret < 0) {
175 			btrfs_abort_transaction(trans, ret);
176 			goto out;
177 		}
178 
179 		ret = btrfs_del_item(trans, root, path);
180 		if (ret < 0) {
181 			btrfs_abort_transaction(trans, ret);
182 			goto out;
183 		}
184 		btrfs_release_path(path);
185 		ret = btrfs_insert_empty_item(trans, root, path,
186 				key, sizeof(*item));
187 		if (ret < 0) {
188 			btrfs_abort_transaction(trans, ret);
189 			goto out;
190 		}
191 		l = path->nodes[0];
192 		slot = path->slots[0];
193 		ptr = btrfs_item_ptr_offset(l, slot);
194 	}
195 
196 	/*
197 	 * Update generation_v2 so at the next mount we know the new root
198 	 * fields are valid.
199 	 */
200 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
201 
202 	write_extent_buffer(l, item, ptr, sizeof(*item));
203 	btrfs_mark_buffer_dirty(path->nodes[0]);
204 out:
205 	btrfs_free_path(path);
206 	return ret;
207 }
208 
209 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
210 		      const struct btrfs_key *key, struct btrfs_root_item *item)
211 {
212 	/*
213 	 * Make sure generation v1 and v2 match. See update_root for details.
214 	 */
215 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
216 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
217 }
218 
219 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
220 {
221 	struct btrfs_root *tree_root = fs_info->tree_root;
222 	struct extent_buffer *leaf;
223 	struct btrfs_path *path;
224 	struct btrfs_key key;
225 	struct btrfs_key root_key;
226 	struct btrfs_root *root;
227 	int err = 0;
228 	int ret;
229 
230 	path = btrfs_alloc_path();
231 	if (!path)
232 		return -ENOMEM;
233 
234 	key.objectid = BTRFS_ORPHAN_OBJECTID;
235 	key.type = BTRFS_ORPHAN_ITEM_KEY;
236 	key.offset = 0;
237 
238 	root_key.type = BTRFS_ROOT_ITEM_KEY;
239 	root_key.offset = (u64)-1;
240 
241 	while (1) {
242 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
243 		if (ret < 0) {
244 			err = ret;
245 			break;
246 		}
247 
248 		leaf = path->nodes[0];
249 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
250 			ret = btrfs_next_leaf(tree_root, path);
251 			if (ret < 0)
252 				err = ret;
253 			if (ret != 0)
254 				break;
255 			leaf = path->nodes[0];
256 		}
257 
258 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
259 		btrfs_release_path(path);
260 
261 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
262 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
263 			break;
264 
265 		root_key.objectid = key.offset;
266 		key.offset++;
267 
268 		/*
269 		 * The root might have been inserted already, as before we look
270 		 * for orphan roots, log replay might have happened, which
271 		 * triggers a transaction commit and qgroup accounting, which
272 		 * in turn reads and inserts fs roots while doing backref
273 		 * walking.
274 		 */
275 		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
276 		if (root) {
277 			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
278 					  &root->state));
279 			if (btrfs_root_refs(&root->root_item) == 0)
280 				btrfs_add_dead_root(root);
281 			continue;
282 		}
283 
284 		root = btrfs_read_fs_root(tree_root, &root_key);
285 		err = PTR_ERR_OR_ZERO(root);
286 		if (err && err != -ENOENT) {
287 			break;
288 		} else if (err == -ENOENT) {
289 			struct btrfs_trans_handle *trans;
290 
291 			btrfs_release_path(path);
292 
293 			trans = btrfs_join_transaction(tree_root);
294 			if (IS_ERR(trans)) {
295 				err = PTR_ERR(trans);
296 				btrfs_handle_fs_error(fs_info, err,
297 					    "Failed to start trans to delete orphan item");
298 				break;
299 			}
300 			err = btrfs_del_orphan_item(trans, tree_root,
301 						    root_key.objectid);
302 			btrfs_end_transaction(trans);
303 			if (err) {
304 				btrfs_handle_fs_error(fs_info, err,
305 					    "Failed to delete root orphan item");
306 				break;
307 			}
308 			continue;
309 		}
310 
311 		err = btrfs_init_fs_root(root);
312 		if (err) {
313 			btrfs_free_fs_root(root);
314 			break;
315 		}
316 
317 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
318 
319 		err = btrfs_insert_fs_root(fs_info, root);
320 		if (err) {
321 			BUG_ON(err == -EEXIST);
322 			btrfs_free_fs_root(root);
323 			break;
324 		}
325 
326 		if (btrfs_root_refs(&root->root_item) == 0)
327 			btrfs_add_dead_root(root);
328 	}
329 
330 	btrfs_free_path(path);
331 	return err;
332 }
333 
334 /* drop the root item for 'key' from the tree root */
335 int btrfs_del_root(struct btrfs_trans_handle *trans,
336 		   struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
337 {
338 	struct btrfs_root *root = fs_info->tree_root;
339 	struct btrfs_path *path;
340 	int ret;
341 
342 	path = btrfs_alloc_path();
343 	if (!path)
344 		return -ENOMEM;
345 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
346 	if (ret < 0)
347 		goto out;
348 
349 	BUG_ON(ret != 0);
350 
351 	ret = btrfs_del_item(trans, root, path);
352 out:
353 	btrfs_free_path(path);
354 	return ret;
355 }
356 
357 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
358 		       struct btrfs_fs_info *fs_info,
359 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
360 		       const char *name, int name_len)
361 
362 {
363 	struct btrfs_root *tree_root = fs_info->tree_root;
364 	struct btrfs_path *path;
365 	struct btrfs_root_ref *ref;
366 	struct extent_buffer *leaf;
367 	struct btrfs_key key;
368 	unsigned long ptr;
369 	int err = 0;
370 	int ret;
371 
372 	path = btrfs_alloc_path();
373 	if (!path)
374 		return -ENOMEM;
375 
376 	key.objectid = root_id;
377 	key.type = BTRFS_ROOT_BACKREF_KEY;
378 	key.offset = ref_id;
379 again:
380 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
381 	BUG_ON(ret < 0);
382 	if (ret == 0) {
383 		leaf = path->nodes[0];
384 		ref = btrfs_item_ptr(leaf, path->slots[0],
385 				     struct btrfs_root_ref);
386 
387 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
388 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
389 		ptr = (unsigned long)(ref + 1);
390 		ret = btrfs_is_name_len_valid(leaf, path->slots[0], ptr,
391 					      name_len);
392 		if (!ret) {
393 			err = -EIO;
394 			goto out;
395 		}
396 
397 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
398 		*sequence = btrfs_root_ref_sequence(leaf, ref);
399 
400 		ret = btrfs_del_item(trans, tree_root, path);
401 		if (ret) {
402 			err = ret;
403 			goto out;
404 		}
405 	} else
406 		err = -ENOENT;
407 
408 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
409 		btrfs_release_path(path);
410 		key.objectid = ref_id;
411 		key.type = BTRFS_ROOT_REF_KEY;
412 		key.offset = root_id;
413 		goto again;
414 	}
415 
416 out:
417 	btrfs_free_path(path);
418 	return err;
419 }
420 
421 /*
422  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
423  * or BTRFS_ROOT_BACKREF_KEY.
424  *
425  * The dirid, sequence, name and name_len refer to the directory entry
426  * that is referencing the root.
427  *
428  * For a forward ref, the root_id is the id of the tree referencing
429  * the root and ref_id is the id of the subvol  or snapshot.
430  *
431  * For a back ref the root_id is the id of the subvol or snapshot and
432  * ref_id is the id of the tree referencing it.
433  *
434  * Will return 0, -ENOMEM, or anything from the CoW path
435  */
436 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
437 		       struct btrfs_fs_info *fs_info,
438 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
439 		       const char *name, int name_len)
440 {
441 	struct btrfs_root *tree_root = fs_info->tree_root;
442 	struct btrfs_key key;
443 	int ret;
444 	struct btrfs_path *path;
445 	struct btrfs_root_ref *ref;
446 	struct extent_buffer *leaf;
447 	unsigned long ptr;
448 
449 	path = btrfs_alloc_path();
450 	if (!path)
451 		return -ENOMEM;
452 
453 	key.objectid = root_id;
454 	key.type = BTRFS_ROOT_BACKREF_KEY;
455 	key.offset = ref_id;
456 again:
457 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
458 				      sizeof(*ref) + name_len);
459 	if (ret) {
460 		btrfs_abort_transaction(trans, ret);
461 		btrfs_free_path(path);
462 		return ret;
463 	}
464 
465 	leaf = path->nodes[0];
466 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
467 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
468 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
469 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
470 	ptr = (unsigned long)(ref + 1);
471 	write_extent_buffer(leaf, name, ptr, name_len);
472 	btrfs_mark_buffer_dirty(leaf);
473 
474 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
475 		btrfs_release_path(path);
476 		key.objectid = ref_id;
477 		key.type = BTRFS_ROOT_REF_KEY;
478 		key.offset = root_id;
479 		goto again;
480 	}
481 
482 	btrfs_free_path(path);
483 	return 0;
484 }
485 
486 /*
487  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
488  * for subvolumes. To work around this problem, we steal a bit from
489  * root_item->inode_item->flags, and use it to indicate if those fields
490  * have been properly initialized.
491  */
492 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
493 {
494 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
495 
496 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
497 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
498 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
499 		btrfs_set_root_flags(root_item, 0);
500 		btrfs_set_root_limit(root_item, 0);
501 	}
502 }
503 
504 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
505 			     struct btrfs_root *root)
506 {
507 	struct btrfs_root_item *item = &root->root_item;
508 	struct timespec ct;
509 
510 	ktime_get_real_ts(&ct);
511 	spin_lock(&root->root_item_lock);
512 	btrfs_set_root_ctransid(item, trans->transid);
513 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
514 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
515 	spin_unlock(&root->root_item_lock);
516 }
517