1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "transaction.h" 10 #include "disk-io.h" 11 #include "print-tree.h" 12 #include "qgroup.h" 13 #include "space-info.h" 14 15 /* 16 * Read a root item from the tree. In case we detect a root item smaller then 17 * sizeof(root_item), we know it's an old version of the root structure and 18 * initialize all new fields to zero. The same happens if we detect mismatching 19 * generation numbers as then we know the root was once mounted with an older 20 * kernel that was not aware of the root item structure change. 21 */ 22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 23 struct btrfs_root_item *item) 24 { 25 u32 len; 26 int need_reset = 0; 27 28 len = btrfs_item_size_nr(eb, slot); 29 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 30 min_t(u32, len, sizeof(*item))); 31 if (len < sizeof(*item)) 32 need_reset = 1; 33 if (!need_reset && btrfs_root_generation(item) 34 != btrfs_root_generation_v2(item)) { 35 if (btrfs_root_generation_v2(item) != 0) { 36 btrfs_warn(eb->fs_info, 37 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 38 } 39 need_reset = 1; 40 } 41 if (need_reset) { 42 memset(&item->generation_v2, 0, 43 sizeof(*item) - offsetof(struct btrfs_root_item, 44 generation_v2)); 45 46 generate_random_guid(item->uuid); 47 } 48 } 49 50 /* 51 * btrfs_find_root - lookup the root by the key. 52 * root: the root of the root tree 53 * search_key: the key to search 54 * path: the path we search 55 * root_item: the root item of the tree we look for 56 * root_key: the root key of the tree we look for 57 * 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 59 * of the search key, just lookup the root with the highest offset for a 60 * given objectid. 61 * 62 * If we find something return 0, otherwise > 0, < 0 on error. 63 */ 64 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 65 struct btrfs_path *path, struct btrfs_root_item *root_item, 66 struct btrfs_key *root_key) 67 { 68 struct btrfs_key found_key; 69 struct extent_buffer *l; 70 int ret; 71 int slot; 72 73 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 74 if (ret < 0) 75 return ret; 76 77 if (search_key->offset != -1ULL) { /* the search key is exact */ 78 if (ret > 0) 79 goto out; 80 } else { 81 BUG_ON(ret == 0); /* Logical error */ 82 if (path->slots[0] == 0) 83 goto out; 84 path->slots[0]--; 85 ret = 0; 86 } 87 88 l = path->nodes[0]; 89 slot = path->slots[0]; 90 91 btrfs_item_key_to_cpu(l, &found_key, slot); 92 if (found_key.objectid != search_key->objectid || 93 found_key.type != BTRFS_ROOT_ITEM_KEY) { 94 ret = 1; 95 goto out; 96 } 97 98 if (root_item) 99 btrfs_read_root_item(l, slot, root_item); 100 if (root_key) 101 memcpy(root_key, &found_key, sizeof(found_key)); 102 out: 103 btrfs_release_path(path); 104 return ret; 105 } 106 107 void btrfs_set_root_node(struct btrfs_root_item *item, 108 struct extent_buffer *node) 109 { 110 btrfs_set_root_bytenr(item, node->start); 111 btrfs_set_root_level(item, btrfs_header_level(node)); 112 btrfs_set_root_generation(item, btrfs_header_generation(node)); 113 } 114 115 /* 116 * copy the data in 'item' into the btree 117 */ 118 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 119 *root, struct btrfs_key *key, struct btrfs_root_item 120 *item) 121 { 122 struct btrfs_fs_info *fs_info = root->fs_info; 123 struct btrfs_path *path; 124 struct extent_buffer *l; 125 int ret; 126 int slot; 127 unsigned long ptr; 128 u32 old_len; 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 135 if (ret < 0) 136 goto out; 137 138 if (ret > 0) { 139 btrfs_crit(fs_info, 140 "unable to find root key (%llu %u %llu) in tree %llu", 141 key->objectid, key->type, key->offset, 142 root->root_key.objectid); 143 ret = -EUCLEAN; 144 btrfs_abort_transaction(trans, ret); 145 goto out; 146 } 147 148 l = path->nodes[0]; 149 slot = path->slots[0]; 150 ptr = btrfs_item_ptr_offset(l, slot); 151 old_len = btrfs_item_size_nr(l, slot); 152 153 /* 154 * If this is the first time we update the root item which originated 155 * from an older kernel, we need to enlarge the item size to make room 156 * for the added fields. 157 */ 158 if (old_len < sizeof(*item)) { 159 btrfs_release_path(path); 160 ret = btrfs_search_slot(trans, root, key, path, 161 -1, 1); 162 if (ret < 0) { 163 btrfs_abort_transaction(trans, ret); 164 goto out; 165 } 166 167 ret = btrfs_del_item(trans, root, path); 168 if (ret < 0) { 169 btrfs_abort_transaction(trans, ret); 170 goto out; 171 } 172 btrfs_release_path(path); 173 ret = btrfs_insert_empty_item(trans, root, path, 174 key, sizeof(*item)); 175 if (ret < 0) { 176 btrfs_abort_transaction(trans, ret); 177 goto out; 178 } 179 l = path->nodes[0]; 180 slot = path->slots[0]; 181 ptr = btrfs_item_ptr_offset(l, slot); 182 } 183 184 /* 185 * Update generation_v2 so at the next mount we know the new root 186 * fields are valid. 187 */ 188 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 189 190 write_extent_buffer(l, item, ptr, sizeof(*item)); 191 btrfs_mark_buffer_dirty(path->nodes[0]); 192 out: 193 btrfs_free_path(path); 194 return ret; 195 } 196 197 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 198 const struct btrfs_key *key, struct btrfs_root_item *item) 199 { 200 /* 201 * Make sure generation v1 and v2 match. See update_root for details. 202 */ 203 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 204 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 205 } 206 207 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 208 { 209 struct btrfs_root *tree_root = fs_info->tree_root; 210 struct extent_buffer *leaf; 211 struct btrfs_path *path; 212 struct btrfs_key key; 213 struct btrfs_key root_key; 214 struct btrfs_root *root; 215 int err = 0; 216 int ret; 217 218 path = btrfs_alloc_path(); 219 if (!path) 220 return -ENOMEM; 221 222 key.objectid = BTRFS_ORPHAN_OBJECTID; 223 key.type = BTRFS_ORPHAN_ITEM_KEY; 224 key.offset = 0; 225 226 root_key.type = BTRFS_ROOT_ITEM_KEY; 227 root_key.offset = (u64)-1; 228 229 while (1) { 230 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 231 if (ret < 0) { 232 err = ret; 233 break; 234 } 235 236 leaf = path->nodes[0]; 237 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 238 ret = btrfs_next_leaf(tree_root, path); 239 if (ret < 0) 240 err = ret; 241 if (ret != 0) 242 break; 243 leaf = path->nodes[0]; 244 } 245 246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 247 btrfs_release_path(path); 248 249 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 250 key.type != BTRFS_ORPHAN_ITEM_KEY) 251 break; 252 253 root_key.objectid = key.offset; 254 key.offset++; 255 256 root = btrfs_get_fs_root(fs_info, &root_key, false); 257 err = PTR_ERR_OR_ZERO(root); 258 if (err && err != -ENOENT) { 259 break; 260 } else if (err == -ENOENT) { 261 struct btrfs_trans_handle *trans; 262 263 btrfs_release_path(path); 264 265 trans = btrfs_join_transaction(tree_root); 266 if (IS_ERR(trans)) { 267 err = PTR_ERR(trans); 268 btrfs_handle_fs_error(fs_info, err, 269 "Failed to start trans to delete orphan item"); 270 break; 271 } 272 err = btrfs_del_orphan_item(trans, tree_root, 273 root_key.objectid); 274 btrfs_end_transaction(trans); 275 if (err) { 276 btrfs_handle_fs_error(fs_info, err, 277 "Failed to delete root orphan item"); 278 break; 279 } 280 continue; 281 } 282 283 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)); 284 if (btrfs_root_refs(&root->root_item) == 0) { 285 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 286 btrfs_add_dead_root(root); 287 } 288 btrfs_put_root(root); 289 } 290 291 btrfs_free_path(path); 292 return err; 293 } 294 295 /* drop the root item for 'key' from the tree root */ 296 int btrfs_del_root(struct btrfs_trans_handle *trans, 297 const struct btrfs_key *key) 298 { 299 struct btrfs_root *root = trans->fs_info->tree_root; 300 struct btrfs_path *path; 301 int ret; 302 303 path = btrfs_alloc_path(); 304 if (!path) 305 return -ENOMEM; 306 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 307 if (ret < 0) 308 goto out; 309 310 BUG_ON(ret != 0); 311 312 ret = btrfs_del_item(trans, root, path); 313 out: 314 btrfs_free_path(path); 315 return ret; 316 } 317 318 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 319 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 320 int name_len) 321 322 { 323 struct btrfs_root *tree_root = trans->fs_info->tree_root; 324 struct btrfs_path *path; 325 struct btrfs_root_ref *ref; 326 struct extent_buffer *leaf; 327 struct btrfs_key key; 328 unsigned long ptr; 329 int err = 0; 330 int ret; 331 332 path = btrfs_alloc_path(); 333 if (!path) 334 return -ENOMEM; 335 336 key.objectid = root_id; 337 key.type = BTRFS_ROOT_BACKREF_KEY; 338 key.offset = ref_id; 339 again: 340 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 341 BUG_ON(ret < 0); 342 if (ret == 0) { 343 leaf = path->nodes[0]; 344 ref = btrfs_item_ptr(leaf, path->slots[0], 345 struct btrfs_root_ref); 346 ptr = (unsigned long)(ref + 1); 347 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) || 348 (btrfs_root_ref_name_len(leaf, ref) != name_len) || 349 memcmp_extent_buffer(leaf, name, ptr, name_len)) { 350 err = -ENOENT; 351 goto out; 352 } 353 *sequence = btrfs_root_ref_sequence(leaf, ref); 354 355 ret = btrfs_del_item(trans, tree_root, path); 356 if (ret) { 357 err = ret; 358 goto out; 359 } 360 } else 361 err = -ENOENT; 362 363 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 364 btrfs_release_path(path); 365 key.objectid = ref_id; 366 key.type = BTRFS_ROOT_REF_KEY; 367 key.offset = root_id; 368 goto again; 369 } 370 371 out: 372 btrfs_free_path(path); 373 return err; 374 } 375 376 /* 377 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 378 * or BTRFS_ROOT_BACKREF_KEY. 379 * 380 * The dirid, sequence, name and name_len refer to the directory entry 381 * that is referencing the root. 382 * 383 * For a forward ref, the root_id is the id of the tree referencing 384 * the root and ref_id is the id of the subvol or snapshot. 385 * 386 * For a back ref the root_id is the id of the subvol or snapshot and 387 * ref_id is the id of the tree referencing it. 388 * 389 * Will return 0, -ENOMEM, or anything from the CoW path 390 */ 391 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 392 u64 ref_id, u64 dirid, u64 sequence, const char *name, 393 int name_len) 394 { 395 struct btrfs_root *tree_root = trans->fs_info->tree_root; 396 struct btrfs_key key; 397 int ret; 398 struct btrfs_path *path; 399 struct btrfs_root_ref *ref; 400 struct extent_buffer *leaf; 401 unsigned long ptr; 402 403 path = btrfs_alloc_path(); 404 if (!path) 405 return -ENOMEM; 406 407 key.objectid = root_id; 408 key.type = BTRFS_ROOT_BACKREF_KEY; 409 key.offset = ref_id; 410 again: 411 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 412 sizeof(*ref) + name_len); 413 if (ret) { 414 btrfs_abort_transaction(trans, ret); 415 btrfs_free_path(path); 416 return ret; 417 } 418 419 leaf = path->nodes[0]; 420 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 421 btrfs_set_root_ref_dirid(leaf, ref, dirid); 422 btrfs_set_root_ref_sequence(leaf, ref, sequence); 423 btrfs_set_root_ref_name_len(leaf, ref, name_len); 424 ptr = (unsigned long)(ref + 1); 425 write_extent_buffer(leaf, name, ptr, name_len); 426 btrfs_mark_buffer_dirty(leaf); 427 428 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 429 btrfs_release_path(path); 430 key.objectid = ref_id; 431 key.type = BTRFS_ROOT_REF_KEY; 432 key.offset = root_id; 433 goto again; 434 } 435 436 btrfs_free_path(path); 437 return 0; 438 } 439 440 /* 441 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 442 * for subvolumes. To work around this problem, we steal a bit from 443 * root_item->inode_item->flags, and use it to indicate if those fields 444 * have been properly initialized. 445 */ 446 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 447 { 448 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 449 450 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 451 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 452 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 453 btrfs_set_root_flags(root_item, 0); 454 btrfs_set_root_limit(root_item, 0); 455 } 456 } 457 458 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 459 struct btrfs_root *root) 460 { 461 struct btrfs_root_item *item = &root->root_item; 462 struct timespec64 ct; 463 464 ktime_get_real_ts64(&ct); 465 spin_lock(&root->root_item_lock); 466 btrfs_set_root_ctransid(item, trans->transid); 467 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 468 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 469 spin_unlock(&root->root_item_lock); 470 } 471 472 /* 473 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 474 * root: the root of the parent directory 475 * rsv: block reservation 476 * items: the number of items that we need do reservation 477 * use_global_rsv: allow fallback to the global block reservation 478 * 479 * This function is used to reserve the space for snapshot/subvolume 480 * creation and deletion. Those operations are different with the 481 * common file/directory operations, they change two fs/file trees 482 * and root tree, the number of items that the qgroup reserves is 483 * different with the free space reservation. So we can not use 484 * the space reservation mechanism in start_transaction(). 485 */ 486 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 487 struct btrfs_block_rsv *rsv, int items, 488 bool use_global_rsv) 489 { 490 u64 qgroup_num_bytes = 0; 491 u64 num_bytes; 492 int ret; 493 struct btrfs_fs_info *fs_info = root->fs_info; 494 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 495 496 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 497 /* One for parent inode, two for dir entries */ 498 qgroup_num_bytes = 3 * fs_info->nodesize; 499 ret = btrfs_qgroup_reserve_meta_prealloc(root, 500 qgroup_num_bytes, true); 501 if (ret) 502 return ret; 503 } 504 505 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items); 506 rsv->space_info = btrfs_find_space_info(fs_info, 507 BTRFS_BLOCK_GROUP_METADATA); 508 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 509 BTRFS_RESERVE_FLUSH_ALL); 510 511 if (ret == -ENOSPC && use_global_rsv) 512 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 513 514 if (ret && qgroup_num_bytes) 515 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 516 517 return ret; 518 } 519 520 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 521 struct btrfs_block_rsv *rsv) 522 { 523 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 524 } 525