1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/uuid.h> 8 #include "ctree.h" 9 #include "transaction.h" 10 #include "disk-io.h" 11 #include "print-tree.h" 12 13 /* 14 * Read a root item from the tree. In case we detect a root item smaller then 15 * sizeof(root_item), we know it's an old version of the root structure and 16 * initialize all new fields to zero. The same happens if we detect mismatching 17 * generation numbers as then we know the root was once mounted with an older 18 * kernel that was not aware of the root item structure change. 19 */ 20 static void btrfs_read_root_item(struct extent_buffer *eb, int slot, 21 struct btrfs_root_item *item) 22 { 23 uuid_le uuid; 24 u32 len; 25 int need_reset = 0; 26 27 len = btrfs_item_size_nr(eb, slot); 28 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot), 29 min_t(u32, len, sizeof(*item))); 30 if (len < sizeof(*item)) 31 need_reset = 1; 32 if (!need_reset && btrfs_root_generation(item) 33 != btrfs_root_generation_v2(item)) { 34 if (btrfs_root_generation_v2(item) != 0) { 35 btrfs_warn(eb->fs_info, 36 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields."); 37 } 38 need_reset = 1; 39 } 40 if (need_reset) { 41 memset(&item->generation_v2, 0, 42 sizeof(*item) - offsetof(struct btrfs_root_item, 43 generation_v2)); 44 45 uuid_le_gen(&uuid); 46 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE); 47 } 48 } 49 50 /* 51 * btrfs_find_root - lookup the root by the key. 52 * root: the root of the root tree 53 * search_key: the key to search 54 * path: the path we search 55 * root_item: the root item of the tree we look for 56 * root_key: the root key of the tree we look for 57 * 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset 59 * of the search key, just lookup the root with the highest offset for a 60 * given objectid. 61 * 62 * If we find something return 0, otherwise > 0, < 0 on error. 63 */ 64 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 65 struct btrfs_path *path, struct btrfs_root_item *root_item, 66 struct btrfs_key *root_key) 67 { 68 struct btrfs_key found_key; 69 struct extent_buffer *l; 70 int ret; 71 int slot; 72 73 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0); 74 if (ret < 0) 75 return ret; 76 77 if (search_key->offset != -1ULL) { /* the search key is exact */ 78 if (ret > 0) 79 goto out; 80 } else { 81 BUG_ON(ret == 0); /* Logical error */ 82 if (path->slots[0] == 0) 83 goto out; 84 path->slots[0]--; 85 ret = 0; 86 } 87 88 l = path->nodes[0]; 89 slot = path->slots[0]; 90 91 btrfs_item_key_to_cpu(l, &found_key, slot); 92 if (found_key.objectid != search_key->objectid || 93 found_key.type != BTRFS_ROOT_ITEM_KEY) { 94 ret = 1; 95 goto out; 96 } 97 98 if (root_item) 99 btrfs_read_root_item(l, slot, root_item); 100 if (root_key) 101 memcpy(root_key, &found_key, sizeof(found_key)); 102 out: 103 btrfs_release_path(path); 104 return ret; 105 } 106 107 void btrfs_set_root_node(struct btrfs_root_item *item, 108 struct extent_buffer *node) 109 { 110 btrfs_set_root_bytenr(item, node->start); 111 btrfs_set_root_level(item, btrfs_header_level(node)); 112 btrfs_set_root_generation(item, btrfs_header_generation(node)); 113 } 114 115 /* 116 * copy the data in 'item' into the btree 117 */ 118 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root 119 *root, struct btrfs_key *key, struct btrfs_root_item 120 *item) 121 { 122 struct btrfs_fs_info *fs_info = root->fs_info; 123 struct btrfs_path *path; 124 struct extent_buffer *l; 125 int ret; 126 int slot; 127 unsigned long ptr; 128 u32 old_len; 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 135 if (ret < 0) { 136 btrfs_abort_transaction(trans, ret); 137 goto out; 138 } 139 140 if (ret != 0) { 141 btrfs_print_leaf(path->nodes[0]); 142 btrfs_crit(fs_info, "unable to update root key %llu %u %llu", 143 key->objectid, key->type, key->offset); 144 BUG_ON(1); 145 } 146 147 l = path->nodes[0]; 148 slot = path->slots[0]; 149 ptr = btrfs_item_ptr_offset(l, slot); 150 old_len = btrfs_item_size_nr(l, slot); 151 152 /* 153 * If this is the first time we update the root item which originated 154 * from an older kernel, we need to enlarge the item size to make room 155 * for the added fields. 156 */ 157 if (old_len < sizeof(*item)) { 158 btrfs_release_path(path); 159 ret = btrfs_search_slot(trans, root, key, path, 160 -1, 1); 161 if (ret < 0) { 162 btrfs_abort_transaction(trans, ret); 163 goto out; 164 } 165 166 ret = btrfs_del_item(trans, root, path); 167 if (ret < 0) { 168 btrfs_abort_transaction(trans, ret); 169 goto out; 170 } 171 btrfs_release_path(path); 172 ret = btrfs_insert_empty_item(trans, root, path, 173 key, sizeof(*item)); 174 if (ret < 0) { 175 btrfs_abort_transaction(trans, ret); 176 goto out; 177 } 178 l = path->nodes[0]; 179 slot = path->slots[0]; 180 ptr = btrfs_item_ptr_offset(l, slot); 181 } 182 183 /* 184 * Update generation_v2 so at the next mount we know the new root 185 * fields are valid. 186 */ 187 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 188 189 write_extent_buffer(l, item, ptr, sizeof(*item)); 190 btrfs_mark_buffer_dirty(path->nodes[0]); 191 out: 192 btrfs_free_path(path); 193 return ret; 194 } 195 196 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 197 const struct btrfs_key *key, struct btrfs_root_item *item) 198 { 199 /* 200 * Make sure generation v1 and v2 match. See update_root for details. 201 */ 202 btrfs_set_root_generation_v2(item, btrfs_root_generation(item)); 203 return btrfs_insert_item(trans, root, key, item, sizeof(*item)); 204 } 205 206 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info) 207 { 208 struct btrfs_root *tree_root = fs_info->tree_root; 209 struct extent_buffer *leaf; 210 struct btrfs_path *path; 211 struct btrfs_key key; 212 struct btrfs_key root_key; 213 struct btrfs_root *root; 214 int err = 0; 215 int ret; 216 217 path = btrfs_alloc_path(); 218 if (!path) 219 return -ENOMEM; 220 221 key.objectid = BTRFS_ORPHAN_OBJECTID; 222 key.type = BTRFS_ORPHAN_ITEM_KEY; 223 key.offset = 0; 224 225 root_key.type = BTRFS_ROOT_ITEM_KEY; 226 root_key.offset = (u64)-1; 227 228 while (1) { 229 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 230 if (ret < 0) { 231 err = ret; 232 break; 233 } 234 235 leaf = path->nodes[0]; 236 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 237 ret = btrfs_next_leaf(tree_root, path); 238 if (ret < 0) 239 err = ret; 240 if (ret != 0) 241 break; 242 leaf = path->nodes[0]; 243 } 244 245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 246 btrfs_release_path(path); 247 248 if (key.objectid != BTRFS_ORPHAN_OBJECTID || 249 key.type != BTRFS_ORPHAN_ITEM_KEY) 250 break; 251 252 root_key.objectid = key.offset; 253 key.offset++; 254 255 /* 256 * The root might have been inserted already, as before we look 257 * for orphan roots, log replay might have happened, which 258 * triggers a transaction commit and qgroup accounting, which 259 * in turn reads and inserts fs roots while doing backref 260 * walking. 261 */ 262 root = btrfs_lookup_fs_root(fs_info, root_key.objectid); 263 if (root) { 264 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 265 &root->state)); 266 if (btrfs_root_refs(&root->root_item) == 0) { 267 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 268 btrfs_add_dead_root(root); 269 } 270 continue; 271 } 272 273 root = btrfs_read_fs_root(tree_root, &root_key); 274 err = PTR_ERR_OR_ZERO(root); 275 if (err && err != -ENOENT) { 276 break; 277 } else if (err == -ENOENT) { 278 struct btrfs_trans_handle *trans; 279 280 btrfs_release_path(path); 281 282 trans = btrfs_join_transaction(tree_root); 283 if (IS_ERR(trans)) { 284 err = PTR_ERR(trans); 285 btrfs_handle_fs_error(fs_info, err, 286 "Failed to start trans to delete orphan item"); 287 break; 288 } 289 err = btrfs_del_orphan_item(trans, tree_root, 290 root_key.objectid); 291 btrfs_end_transaction(trans); 292 if (err) { 293 btrfs_handle_fs_error(fs_info, err, 294 "Failed to delete root orphan item"); 295 break; 296 } 297 continue; 298 } 299 300 err = btrfs_init_fs_root(root); 301 if (err) { 302 btrfs_free_fs_root(root); 303 break; 304 } 305 306 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 307 308 err = btrfs_insert_fs_root(fs_info, root); 309 if (err) { 310 BUG_ON(err == -EEXIST); 311 btrfs_free_fs_root(root); 312 break; 313 } 314 315 if (btrfs_root_refs(&root->root_item) == 0) { 316 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 317 btrfs_add_dead_root(root); 318 } 319 } 320 321 btrfs_free_path(path); 322 return err; 323 } 324 325 /* drop the root item for 'key' from the tree root */ 326 int btrfs_del_root(struct btrfs_trans_handle *trans, 327 const struct btrfs_key *key) 328 { 329 struct btrfs_root *root = trans->fs_info->tree_root; 330 struct btrfs_path *path; 331 int ret; 332 333 path = btrfs_alloc_path(); 334 if (!path) 335 return -ENOMEM; 336 ret = btrfs_search_slot(trans, root, key, path, -1, 1); 337 if (ret < 0) 338 goto out; 339 340 BUG_ON(ret != 0); 341 342 ret = btrfs_del_item(trans, root, path); 343 out: 344 btrfs_free_path(path); 345 return ret; 346 } 347 348 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 349 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 350 int name_len) 351 352 { 353 struct btrfs_root *tree_root = trans->fs_info->tree_root; 354 struct btrfs_path *path; 355 struct btrfs_root_ref *ref; 356 struct extent_buffer *leaf; 357 struct btrfs_key key; 358 unsigned long ptr; 359 int err = 0; 360 int ret; 361 362 path = btrfs_alloc_path(); 363 if (!path) 364 return -ENOMEM; 365 366 key.objectid = root_id; 367 key.type = BTRFS_ROOT_BACKREF_KEY; 368 key.offset = ref_id; 369 again: 370 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 371 BUG_ON(ret < 0); 372 if (ret == 0) { 373 leaf = path->nodes[0]; 374 ref = btrfs_item_ptr(leaf, path->slots[0], 375 struct btrfs_root_ref); 376 377 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid); 378 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len); 379 ptr = (unsigned long)(ref + 1); 380 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len)); 381 *sequence = btrfs_root_ref_sequence(leaf, ref); 382 383 ret = btrfs_del_item(trans, tree_root, path); 384 if (ret) { 385 err = ret; 386 goto out; 387 } 388 } else 389 err = -ENOENT; 390 391 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 392 btrfs_release_path(path); 393 key.objectid = ref_id; 394 key.type = BTRFS_ROOT_REF_KEY; 395 key.offset = root_id; 396 goto again; 397 } 398 399 out: 400 btrfs_free_path(path); 401 return err; 402 } 403 404 /* 405 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY 406 * or BTRFS_ROOT_BACKREF_KEY. 407 * 408 * The dirid, sequence, name and name_len refer to the directory entry 409 * that is referencing the root. 410 * 411 * For a forward ref, the root_id is the id of the tree referencing 412 * the root and ref_id is the id of the subvol or snapshot. 413 * 414 * For a back ref the root_id is the id of the subvol or snapshot and 415 * ref_id is the id of the tree referencing it. 416 * 417 * Will return 0, -ENOMEM, or anything from the CoW path 418 */ 419 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 420 u64 ref_id, u64 dirid, u64 sequence, const char *name, 421 int name_len) 422 { 423 struct btrfs_root *tree_root = trans->fs_info->tree_root; 424 struct btrfs_key key; 425 int ret; 426 struct btrfs_path *path; 427 struct btrfs_root_ref *ref; 428 struct extent_buffer *leaf; 429 unsigned long ptr; 430 431 path = btrfs_alloc_path(); 432 if (!path) 433 return -ENOMEM; 434 435 key.objectid = root_id; 436 key.type = BTRFS_ROOT_BACKREF_KEY; 437 key.offset = ref_id; 438 again: 439 ret = btrfs_insert_empty_item(trans, tree_root, path, &key, 440 sizeof(*ref) + name_len); 441 if (ret) { 442 btrfs_abort_transaction(trans, ret); 443 btrfs_free_path(path); 444 return ret; 445 } 446 447 leaf = path->nodes[0]; 448 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 449 btrfs_set_root_ref_dirid(leaf, ref, dirid); 450 btrfs_set_root_ref_sequence(leaf, ref, sequence); 451 btrfs_set_root_ref_name_len(leaf, ref, name_len); 452 ptr = (unsigned long)(ref + 1); 453 write_extent_buffer(leaf, name, ptr, name_len); 454 btrfs_mark_buffer_dirty(leaf); 455 456 if (key.type == BTRFS_ROOT_BACKREF_KEY) { 457 btrfs_release_path(path); 458 key.objectid = ref_id; 459 key.type = BTRFS_ROOT_REF_KEY; 460 key.offset = root_id; 461 goto again; 462 } 463 464 btrfs_free_path(path); 465 return 0; 466 } 467 468 /* 469 * Old btrfs forgets to init root_item->flags and root_item->byte_limit 470 * for subvolumes. To work around this problem, we steal a bit from 471 * root_item->inode_item->flags, and use it to indicate if those fields 472 * have been properly initialized. 473 */ 474 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item) 475 { 476 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode); 477 478 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) { 479 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT; 480 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags); 481 btrfs_set_root_flags(root_item, 0); 482 btrfs_set_root_limit(root_item, 0); 483 } 484 } 485 486 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 487 struct btrfs_root *root) 488 { 489 struct btrfs_root_item *item = &root->root_item; 490 struct timespec64 ct; 491 492 ktime_get_real_ts64(&ct); 493 spin_lock(&root->root_item_lock); 494 btrfs_set_root_ctransid(item, trans->transid); 495 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec); 496 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec); 497 spin_unlock(&root->root_item_lock); 498 } 499