xref: /openbmc/linux/fs/btrfs/relocation.c (revision 9be08a27)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 
24 /*
25  * backref_node, mapping_node and tree_block start with this
26  */
27 struct tree_entry {
28 	struct rb_node rb_node;
29 	u64 bytenr;
30 };
31 
32 /*
33  * present a tree block in the backref cache
34  */
35 struct backref_node {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 
39 	u64 new_bytenr;
40 	/* objectid of tree block owner, can be not uptodate */
41 	u64 owner;
42 	/* link to pending, changed or detached list */
43 	struct list_head list;
44 	/* list of upper level blocks reference this block */
45 	struct list_head upper;
46 	/* list of child blocks in the cache */
47 	struct list_head lower;
48 	/* NULL if this node is not tree root */
49 	struct btrfs_root *root;
50 	/* extent buffer got by COW the block */
51 	struct extent_buffer *eb;
52 	/* level of tree block */
53 	unsigned int level:8;
54 	/* is the block in non-reference counted tree */
55 	unsigned int cowonly:1;
56 	/* 1 if no child node in the cache */
57 	unsigned int lowest:1;
58 	/* is the extent buffer locked */
59 	unsigned int locked:1;
60 	/* has the block been processed */
61 	unsigned int processed:1;
62 	/* have backrefs of this block been checked */
63 	unsigned int checked:1;
64 	/*
65 	 * 1 if corresponding block has been cowed but some upper
66 	 * level block pointers may not point to the new location
67 	 */
68 	unsigned int pending:1;
69 	/*
70 	 * 1 if the backref node isn't connected to any other
71 	 * backref node.
72 	 */
73 	unsigned int detached:1;
74 };
75 
76 /*
77  * present a block pointer in the backref cache
78  */
79 struct backref_edge {
80 	struct list_head list[2];
81 	struct backref_node *node[2];
82 };
83 
84 #define LOWER	0
85 #define UPPER	1
86 #define RELOCATION_RESERVED_NODES	256
87 
88 struct backref_cache {
89 	/* red black tree of all backref nodes in the cache */
90 	struct rb_root rb_root;
91 	/* for passing backref nodes to btrfs_reloc_cow_block */
92 	struct backref_node *path[BTRFS_MAX_LEVEL];
93 	/*
94 	 * list of blocks that have been cowed but some block
95 	 * pointers in upper level blocks may not reflect the
96 	 * new location
97 	 */
98 	struct list_head pending[BTRFS_MAX_LEVEL];
99 	/* list of backref nodes with no child node */
100 	struct list_head leaves;
101 	/* list of blocks that have been cowed in current transaction */
102 	struct list_head changed;
103 	/* list of detached backref node. */
104 	struct list_head detached;
105 
106 	u64 last_trans;
107 
108 	int nr_nodes;
109 	int nr_edges;
110 };
111 
112 /*
113  * map address of tree root to tree
114  */
115 struct mapping_node {
116 	struct rb_node rb_node;
117 	u64 bytenr;
118 	void *data;
119 };
120 
121 struct mapping_tree {
122 	struct rb_root rb_root;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * present a tree block to process
128  */
129 struct tree_block {
130 	struct rb_node rb_node;
131 	u64 bytenr;
132 	struct btrfs_key key;
133 	unsigned int level:8;
134 	unsigned int key_ready:1;
135 };
136 
137 #define MAX_EXTENTS 128
138 
139 struct file_extent_cluster {
140 	u64 start;
141 	u64 end;
142 	u64 boundary[MAX_EXTENTS];
143 	unsigned int nr;
144 };
145 
146 struct reloc_control {
147 	/* block group to relocate */
148 	struct btrfs_block_group_cache *block_group;
149 	/* extent tree */
150 	struct btrfs_root *extent_root;
151 	/* inode for moving data */
152 	struct inode *data_inode;
153 
154 	struct btrfs_block_rsv *block_rsv;
155 
156 	struct backref_cache backref_cache;
157 
158 	struct file_extent_cluster cluster;
159 	/* tree blocks have been processed */
160 	struct extent_io_tree processed_blocks;
161 	/* map start of tree root to corresponding reloc tree */
162 	struct mapping_tree reloc_root_tree;
163 	/* list of reloc trees */
164 	struct list_head reloc_roots;
165 	/* size of metadata reservation for merging reloc trees */
166 	u64 merging_rsv_size;
167 	/* size of relocated tree nodes */
168 	u64 nodes_relocated;
169 	/* reserved size for block group relocation*/
170 	u64 reserved_bytes;
171 
172 	u64 search_start;
173 	u64 extents_found;
174 
175 	unsigned int stage:8;
176 	unsigned int create_reloc_tree:1;
177 	unsigned int merge_reloc_tree:1;
178 	unsigned int found_file_extent:1;
179 };
180 
181 /* stages of data relocation */
182 #define MOVE_DATA_EXTENTS	0
183 #define UPDATE_DATA_PTRS	1
184 
185 static void remove_backref_node(struct backref_cache *cache,
186 				struct backref_node *node);
187 static void __mark_block_processed(struct reloc_control *rc,
188 				   struct backref_node *node);
189 
190 static void mapping_tree_init(struct mapping_tree *tree)
191 {
192 	tree->rb_root = RB_ROOT;
193 	spin_lock_init(&tree->lock);
194 }
195 
196 static void backref_cache_init(struct backref_cache *cache)
197 {
198 	int i;
199 	cache->rb_root = RB_ROOT;
200 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
201 		INIT_LIST_HEAD(&cache->pending[i]);
202 	INIT_LIST_HEAD(&cache->changed);
203 	INIT_LIST_HEAD(&cache->detached);
204 	INIT_LIST_HEAD(&cache->leaves);
205 }
206 
207 static void backref_cache_cleanup(struct backref_cache *cache)
208 {
209 	struct backref_node *node;
210 	int i;
211 
212 	while (!list_empty(&cache->detached)) {
213 		node = list_entry(cache->detached.next,
214 				  struct backref_node, list);
215 		remove_backref_node(cache, node);
216 	}
217 
218 	while (!list_empty(&cache->leaves)) {
219 		node = list_entry(cache->leaves.next,
220 				  struct backref_node, lower);
221 		remove_backref_node(cache, node);
222 	}
223 
224 	cache->last_trans = 0;
225 
226 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 		ASSERT(list_empty(&cache->pending[i]));
228 	ASSERT(list_empty(&cache->changed));
229 	ASSERT(list_empty(&cache->detached));
230 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
231 	ASSERT(!cache->nr_nodes);
232 	ASSERT(!cache->nr_edges);
233 }
234 
235 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
236 {
237 	struct backref_node *node;
238 
239 	node = kzalloc(sizeof(*node), GFP_NOFS);
240 	if (node) {
241 		INIT_LIST_HEAD(&node->list);
242 		INIT_LIST_HEAD(&node->upper);
243 		INIT_LIST_HEAD(&node->lower);
244 		RB_CLEAR_NODE(&node->rb_node);
245 		cache->nr_nodes++;
246 	}
247 	return node;
248 }
249 
250 static void free_backref_node(struct backref_cache *cache,
251 			      struct backref_node *node)
252 {
253 	if (node) {
254 		cache->nr_nodes--;
255 		kfree(node);
256 	}
257 }
258 
259 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
260 {
261 	struct backref_edge *edge;
262 
263 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
264 	if (edge)
265 		cache->nr_edges++;
266 	return edge;
267 }
268 
269 static void free_backref_edge(struct backref_cache *cache,
270 			      struct backref_edge *edge)
271 {
272 	if (edge) {
273 		cache->nr_edges--;
274 		kfree(edge);
275 	}
276 }
277 
278 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
279 				   struct rb_node *node)
280 {
281 	struct rb_node **p = &root->rb_node;
282 	struct rb_node *parent = NULL;
283 	struct tree_entry *entry;
284 
285 	while (*p) {
286 		parent = *p;
287 		entry = rb_entry(parent, struct tree_entry, rb_node);
288 
289 		if (bytenr < entry->bytenr)
290 			p = &(*p)->rb_left;
291 		else if (bytenr > entry->bytenr)
292 			p = &(*p)->rb_right;
293 		else
294 			return parent;
295 	}
296 
297 	rb_link_node(node, parent, p);
298 	rb_insert_color(node, root);
299 	return NULL;
300 }
301 
302 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
303 {
304 	struct rb_node *n = root->rb_node;
305 	struct tree_entry *entry;
306 
307 	while (n) {
308 		entry = rb_entry(n, struct tree_entry, rb_node);
309 
310 		if (bytenr < entry->bytenr)
311 			n = n->rb_left;
312 		else if (bytenr > entry->bytenr)
313 			n = n->rb_right;
314 		else
315 			return n;
316 	}
317 	return NULL;
318 }
319 
320 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321 {
322 
323 	struct btrfs_fs_info *fs_info = NULL;
324 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
325 					      rb_node);
326 	if (bnode->root)
327 		fs_info = bnode->root->fs_info;
328 	btrfs_panic(fs_info, errno,
329 		    "Inconsistency in backref cache found at offset %llu",
330 		    bytenr);
331 }
332 
333 /*
334  * walk up backref nodes until reach node presents tree root
335  */
336 static struct backref_node *walk_up_backref(struct backref_node *node,
337 					    struct backref_edge *edges[],
338 					    int *index)
339 {
340 	struct backref_edge *edge;
341 	int idx = *index;
342 
343 	while (!list_empty(&node->upper)) {
344 		edge = list_entry(node->upper.next,
345 				  struct backref_edge, list[LOWER]);
346 		edges[idx++] = edge;
347 		node = edge->node[UPPER];
348 	}
349 	BUG_ON(node->detached);
350 	*index = idx;
351 	return node;
352 }
353 
354 /*
355  * walk down backref nodes to find start of next reference path
356  */
357 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
358 					      int *index)
359 {
360 	struct backref_edge *edge;
361 	struct backref_node *lower;
362 	int idx = *index;
363 
364 	while (idx > 0) {
365 		edge = edges[idx - 1];
366 		lower = edge->node[LOWER];
367 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
368 			idx--;
369 			continue;
370 		}
371 		edge = list_entry(edge->list[LOWER].next,
372 				  struct backref_edge, list[LOWER]);
373 		edges[idx - 1] = edge;
374 		*index = idx;
375 		return edge->node[UPPER];
376 	}
377 	*index = 0;
378 	return NULL;
379 }
380 
381 static void unlock_node_buffer(struct backref_node *node)
382 {
383 	if (node->locked) {
384 		btrfs_tree_unlock(node->eb);
385 		node->locked = 0;
386 	}
387 }
388 
389 static void drop_node_buffer(struct backref_node *node)
390 {
391 	if (node->eb) {
392 		unlock_node_buffer(node);
393 		free_extent_buffer(node->eb);
394 		node->eb = NULL;
395 	}
396 }
397 
398 static void drop_backref_node(struct backref_cache *tree,
399 			      struct backref_node *node)
400 {
401 	BUG_ON(!list_empty(&node->upper));
402 
403 	drop_node_buffer(node);
404 	list_del(&node->list);
405 	list_del(&node->lower);
406 	if (!RB_EMPTY_NODE(&node->rb_node))
407 		rb_erase(&node->rb_node, &tree->rb_root);
408 	free_backref_node(tree, node);
409 }
410 
411 /*
412  * remove a backref node from the backref cache
413  */
414 static void remove_backref_node(struct backref_cache *cache,
415 				struct backref_node *node)
416 {
417 	struct backref_node *upper;
418 	struct backref_edge *edge;
419 
420 	if (!node)
421 		return;
422 
423 	BUG_ON(!node->lowest && !node->detached);
424 	while (!list_empty(&node->upper)) {
425 		edge = list_entry(node->upper.next, struct backref_edge,
426 				  list[LOWER]);
427 		upper = edge->node[UPPER];
428 		list_del(&edge->list[LOWER]);
429 		list_del(&edge->list[UPPER]);
430 		free_backref_edge(cache, edge);
431 
432 		if (RB_EMPTY_NODE(&upper->rb_node)) {
433 			BUG_ON(!list_empty(&node->upper));
434 			drop_backref_node(cache, node);
435 			node = upper;
436 			node->lowest = 1;
437 			continue;
438 		}
439 		/*
440 		 * add the node to leaf node list if no other
441 		 * child block cached.
442 		 */
443 		if (list_empty(&upper->lower)) {
444 			list_add_tail(&upper->lower, &cache->leaves);
445 			upper->lowest = 1;
446 		}
447 	}
448 
449 	drop_backref_node(cache, node);
450 }
451 
452 static void update_backref_node(struct backref_cache *cache,
453 				struct backref_node *node, u64 bytenr)
454 {
455 	struct rb_node *rb_node;
456 	rb_erase(&node->rb_node, &cache->rb_root);
457 	node->bytenr = bytenr;
458 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 	if (rb_node)
460 		backref_tree_panic(rb_node, -EEXIST, bytenr);
461 }
462 
463 /*
464  * update backref cache after a transaction commit
465  */
466 static int update_backref_cache(struct btrfs_trans_handle *trans,
467 				struct backref_cache *cache)
468 {
469 	struct backref_node *node;
470 	int level = 0;
471 
472 	if (cache->last_trans == 0) {
473 		cache->last_trans = trans->transid;
474 		return 0;
475 	}
476 
477 	if (cache->last_trans == trans->transid)
478 		return 0;
479 
480 	/*
481 	 * detached nodes are used to avoid unnecessary backref
482 	 * lookup. transaction commit changes the extent tree.
483 	 * so the detached nodes are no longer useful.
484 	 */
485 	while (!list_empty(&cache->detached)) {
486 		node = list_entry(cache->detached.next,
487 				  struct backref_node, list);
488 		remove_backref_node(cache, node);
489 	}
490 
491 	while (!list_empty(&cache->changed)) {
492 		node = list_entry(cache->changed.next,
493 				  struct backref_node, list);
494 		list_del_init(&node->list);
495 		BUG_ON(node->pending);
496 		update_backref_node(cache, node, node->new_bytenr);
497 	}
498 
499 	/*
500 	 * some nodes can be left in the pending list if there were
501 	 * errors during processing the pending nodes.
502 	 */
503 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
504 		list_for_each_entry(node, &cache->pending[level], list) {
505 			BUG_ON(!node->pending);
506 			if (node->bytenr == node->new_bytenr)
507 				continue;
508 			update_backref_node(cache, node, node->new_bytenr);
509 		}
510 	}
511 
512 	cache->last_trans = 0;
513 	return 1;
514 }
515 
516 
517 static int should_ignore_root(struct btrfs_root *root)
518 {
519 	struct btrfs_root *reloc_root;
520 
521 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 		return 0;
523 
524 	reloc_root = root->reloc_root;
525 	if (!reloc_root)
526 		return 0;
527 
528 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
529 	    root->fs_info->running_transaction->transid - 1)
530 		return 0;
531 	/*
532 	 * if there is reloc tree and it was created in previous
533 	 * transaction backref lookup can find the reloc tree,
534 	 * so backref node for the fs tree root is useless for
535 	 * relocation.
536 	 */
537 	return 1;
538 }
539 /*
540  * find reloc tree by address of tree root
541  */
542 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
543 					  u64 bytenr)
544 {
545 	struct rb_node *rb_node;
546 	struct mapping_node *node;
547 	struct btrfs_root *root = NULL;
548 
549 	spin_lock(&rc->reloc_root_tree.lock);
550 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
551 	if (rb_node) {
552 		node = rb_entry(rb_node, struct mapping_node, rb_node);
553 		root = (struct btrfs_root *)node->data;
554 	}
555 	spin_unlock(&rc->reloc_root_tree.lock);
556 	return root;
557 }
558 
559 static int is_cowonly_root(u64 root_objectid)
560 {
561 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
562 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
563 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
564 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
565 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 		return 1;
571 	return 0;
572 }
573 
574 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
575 					u64 root_objectid)
576 {
577 	struct btrfs_key key;
578 
579 	key.objectid = root_objectid;
580 	key.type = BTRFS_ROOT_ITEM_KEY;
581 	if (is_cowonly_root(root_objectid))
582 		key.offset = 0;
583 	else
584 		key.offset = (u64)-1;
585 
586 	return btrfs_get_fs_root(fs_info, &key, false);
587 }
588 
589 static noinline_for_stack
590 int find_inline_backref(struct extent_buffer *leaf, int slot,
591 			unsigned long *ptr, unsigned long *end)
592 {
593 	struct btrfs_key key;
594 	struct btrfs_extent_item *ei;
595 	struct btrfs_tree_block_info *bi;
596 	u32 item_size;
597 
598 	btrfs_item_key_to_cpu(leaf, &key, slot);
599 
600 	item_size = btrfs_item_size_nr(leaf, slot);
601 	if (item_size < sizeof(*ei)) {
602 		btrfs_print_v0_err(leaf->fs_info);
603 		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
604 		return 1;
605 	}
606 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
607 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
608 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
609 
610 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
611 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
612 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
613 		return 1;
614 	}
615 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
616 	    item_size <= sizeof(*ei)) {
617 		WARN_ON(item_size < sizeof(*ei));
618 		return 1;
619 	}
620 
621 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
622 		bi = (struct btrfs_tree_block_info *)(ei + 1);
623 		*ptr = (unsigned long)(bi + 1);
624 	} else {
625 		*ptr = (unsigned long)(ei + 1);
626 	}
627 	*end = (unsigned long)ei + item_size;
628 	return 0;
629 }
630 
631 /*
632  * build backref tree for a given tree block. root of the backref tree
633  * corresponds the tree block, leaves of the backref tree correspond
634  * roots of b-trees that reference the tree block.
635  *
636  * the basic idea of this function is check backrefs of a given block
637  * to find upper level blocks that reference the block, and then check
638  * backrefs of these upper level blocks recursively. the recursion stop
639  * when tree root is reached or backrefs for the block is cached.
640  *
641  * NOTE: if we find backrefs for a block are cached, we know backrefs
642  * for all upper level blocks that directly/indirectly reference the
643  * block are also cached.
644  */
645 static noinline_for_stack
646 struct backref_node *build_backref_tree(struct reloc_control *rc,
647 					struct btrfs_key *node_key,
648 					int level, u64 bytenr)
649 {
650 	struct backref_cache *cache = &rc->backref_cache;
651 	struct btrfs_path *path1;
652 	struct btrfs_path *path2;
653 	struct extent_buffer *eb;
654 	struct btrfs_root *root;
655 	struct backref_node *cur;
656 	struct backref_node *upper;
657 	struct backref_node *lower;
658 	struct backref_node *node = NULL;
659 	struct backref_node *exist = NULL;
660 	struct backref_edge *edge;
661 	struct rb_node *rb_node;
662 	struct btrfs_key key;
663 	unsigned long end;
664 	unsigned long ptr;
665 	LIST_HEAD(list);
666 	LIST_HEAD(useless);
667 	int cowonly;
668 	int ret;
669 	int err = 0;
670 	bool need_check = true;
671 
672 	path1 = btrfs_alloc_path();
673 	path2 = btrfs_alloc_path();
674 	if (!path1 || !path2) {
675 		err = -ENOMEM;
676 		goto out;
677 	}
678 	path1->reada = READA_FORWARD;
679 	path2->reada = READA_FORWARD;
680 
681 	node = alloc_backref_node(cache);
682 	if (!node) {
683 		err = -ENOMEM;
684 		goto out;
685 	}
686 
687 	node->bytenr = bytenr;
688 	node->level = level;
689 	node->lowest = 1;
690 	cur = node;
691 again:
692 	end = 0;
693 	ptr = 0;
694 	key.objectid = cur->bytenr;
695 	key.type = BTRFS_METADATA_ITEM_KEY;
696 	key.offset = (u64)-1;
697 
698 	path1->search_commit_root = 1;
699 	path1->skip_locking = 1;
700 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
701 				0, 0);
702 	if (ret < 0) {
703 		err = ret;
704 		goto out;
705 	}
706 	ASSERT(ret);
707 	ASSERT(path1->slots[0]);
708 
709 	path1->slots[0]--;
710 
711 	WARN_ON(cur->checked);
712 	if (!list_empty(&cur->upper)) {
713 		/*
714 		 * the backref was added previously when processing
715 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
716 		 */
717 		ASSERT(list_is_singular(&cur->upper));
718 		edge = list_entry(cur->upper.next, struct backref_edge,
719 				  list[LOWER]);
720 		ASSERT(list_empty(&edge->list[UPPER]));
721 		exist = edge->node[UPPER];
722 		/*
723 		 * add the upper level block to pending list if we need
724 		 * check its backrefs
725 		 */
726 		if (!exist->checked)
727 			list_add_tail(&edge->list[UPPER], &list);
728 	} else {
729 		exist = NULL;
730 	}
731 
732 	while (1) {
733 		cond_resched();
734 		eb = path1->nodes[0];
735 
736 		if (ptr >= end) {
737 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
738 				ret = btrfs_next_leaf(rc->extent_root, path1);
739 				if (ret < 0) {
740 					err = ret;
741 					goto out;
742 				}
743 				if (ret > 0)
744 					break;
745 				eb = path1->nodes[0];
746 			}
747 
748 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
749 			if (key.objectid != cur->bytenr) {
750 				WARN_ON(exist);
751 				break;
752 			}
753 
754 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
755 			    key.type == BTRFS_METADATA_ITEM_KEY) {
756 				ret = find_inline_backref(eb, path1->slots[0],
757 							  &ptr, &end);
758 				if (ret)
759 					goto next;
760 			}
761 		}
762 
763 		if (ptr < end) {
764 			/* update key for inline back ref */
765 			struct btrfs_extent_inline_ref *iref;
766 			int type;
767 			iref = (struct btrfs_extent_inline_ref *)ptr;
768 			type = btrfs_get_extent_inline_ref_type(eb, iref,
769 							BTRFS_REF_TYPE_BLOCK);
770 			if (type == BTRFS_REF_TYPE_INVALID) {
771 				err = -EUCLEAN;
772 				goto out;
773 			}
774 			key.type = type;
775 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
776 
777 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
778 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
779 		}
780 
781 		if (exist &&
782 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
783 		      exist->owner == key.offset) ||
784 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
785 		      exist->bytenr == key.offset))) {
786 			exist = NULL;
787 			goto next;
788 		}
789 
790 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
791 			if (key.objectid == key.offset) {
792 				/*
793 				 * only root blocks of reloc trees use
794 				 * backref of this type.
795 				 */
796 				root = find_reloc_root(rc, cur->bytenr);
797 				ASSERT(root);
798 				cur->root = root;
799 				break;
800 			}
801 
802 			edge = alloc_backref_edge(cache);
803 			if (!edge) {
804 				err = -ENOMEM;
805 				goto out;
806 			}
807 			rb_node = tree_search(&cache->rb_root, key.offset);
808 			if (!rb_node) {
809 				upper = alloc_backref_node(cache);
810 				if (!upper) {
811 					free_backref_edge(cache, edge);
812 					err = -ENOMEM;
813 					goto out;
814 				}
815 				upper->bytenr = key.offset;
816 				upper->level = cur->level + 1;
817 				/*
818 				 *  backrefs for the upper level block isn't
819 				 *  cached, add the block to pending list
820 				 */
821 				list_add_tail(&edge->list[UPPER], &list);
822 			} else {
823 				upper = rb_entry(rb_node, struct backref_node,
824 						 rb_node);
825 				ASSERT(upper->checked);
826 				INIT_LIST_HEAD(&edge->list[UPPER]);
827 			}
828 			list_add_tail(&edge->list[LOWER], &cur->upper);
829 			edge->node[LOWER] = cur;
830 			edge->node[UPPER] = upper;
831 
832 			goto next;
833 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
834 			err = -EINVAL;
835 			btrfs_print_v0_err(rc->extent_root->fs_info);
836 			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
837 					      NULL);
838 			goto out;
839 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
840 			goto next;
841 		}
842 
843 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
844 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
845 		if (IS_ERR(root)) {
846 			err = PTR_ERR(root);
847 			goto out;
848 		}
849 
850 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
851 			cur->cowonly = 1;
852 
853 		if (btrfs_root_level(&root->root_item) == cur->level) {
854 			/* tree root */
855 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
856 			       cur->bytenr);
857 			if (should_ignore_root(root))
858 				list_add(&cur->list, &useless);
859 			else
860 				cur->root = root;
861 			break;
862 		}
863 
864 		level = cur->level + 1;
865 
866 		/*
867 		 * searching the tree to find upper level blocks
868 		 * reference the block.
869 		 */
870 		path2->search_commit_root = 1;
871 		path2->skip_locking = 1;
872 		path2->lowest_level = level;
873 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
874 		path2->lowest_level = 0;
875 		if (ret < 0) {
876 			err = ret;
877 			goto out;
878 		}
879 		if (ret > 0 && path2->slots[level] > 0)
880 			path2->slots[level]--;
881 
882 		eb = path2->nodes[level];
883 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
884 		    cur->bytenr) {
885 			btrfs_err(root->fs_info,
886 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
887 				  cur->bytenr, level - 1, root->objectid,
888 				  node_key->objectid, node_key->type,
889 				  node_key->offset);
890 			err = -ENOENT;
891 			goto out;
892 		}
893 		lower = cur;
894 		need_check = true;
895 		for (; level < BTRFS_MAX_LEVEL; level++) {
896 			if (!path2->nodes[level]) {
897 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 				       lower->bytenr);
899 				if (should_ignore_root(root))
900 					list_add(&lower->list, &useless);
901 				else
902 					lower->root = root;
903 				break;
904 			}
905 
906 			edge = alloc_backref_edge(cache);
907 			if (!edge) {
908 				err = -ENOMEM;
909 				goto out;
910 			}
911 
912 			eb = path2->nodes[level];
913 			rb_node = tree_search(&cache->rb_root, eb->start);
914 			if (!rb_node) {
915 				upper = alloc_backref_node(cache);
916 				if (!upper) {
917 					free_backref_edge(cache, edge);
918 					err = -ENOMEM;
919 					goto out;
920 				}
921 				upper->bytenr = eb->start;
922 				upper->owner = btrfs_header_owner(eb);
923 				upper->level = lower->level + 1;
924 				if (!test_bit(BTRFS_ROOT_REF_COWS,
925 					      &root->state))
926 					upper->cowonly = 1;
927 
928 				/*
929 				 * if we know the block isn't shared
930 				 * we can void checking its backrefs.
931 				 */
932 				if (btrfs_block_can_be_shared(root, eb))
933 					upper->checked = 0;
934 				else
935 					upper->checked = 1;
936 
937 				/*
938 				 * add the block to pending list if we
939 				 * need check its backrefs, we only do this once
940 				 * while walking up a tree as we will catch
941 				 * anything else later on.
942 				 */
943 				if (!upper->checked && need_check) {
944 					need_check = false;
945 					list_add_tail(&edge->list[UPPER],
946 						      &list);
947 				} else {
948 					if (upper->checked)
949 						need_check = true;
950 					INIT_LIST_HEAD(&edge->list[UPPER]);
951 				}
952 			} else {
953 				upper = rb_entry(rb_node, struct backref_node,
954 						 rb_node);
955 				ASSERT(upper->checked);
956 				INIT_LIST_HEAD(&edge->list[UPPER]);
957 				if (!upper->owner)
958 					upper->owner = btrfs_header_owner(eb);
959 			}
960 			list_add_tail(&edge->list[LOWER], &lower->upper);
961 			edge->node[LOWER] = lower;
962 			edge->node[UPPER] = upper;
963 
964 			if (rb_node)
965 				break;
966 			lower = upper;
967 			upper = NULL;
968 		}
969 		btrfs_release_path(path2);
970 next:
971 		if (ptr < end) {
972 			ptr += btrfs_extent_inline_ref_size(key.type);
973 			if (ptr >= end) {
974 				WARN_ON(ptr > end);
975 				ptr = 0;
976 				end = 0;
977 			}
978 		}
979 		if (ptr >= end)
980 			path1->slots[0]++;
981 	}
982 	btrfs_release_path(path1);
983 
984 	cur->checked = 1;
985 	WARN_ON(exist);
986 
987 	/* the pending list isn't empty, take the first block to process */
988 	if (!list_empty(&list)) {
989 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
990 		list_del_init(&edge->list[UPPER]);
991 		cur = edge->node[UPPER];
992 		goto again;
993 	}
994 
995 	/*
996 	 * everything goes well, connect backref nodes and insert backref nodes
997 	 * into the cache.
998 	 */
999 	ASSERT(node->checked);
1000 	cowonly = node->cowonly;
1001 	if (!cowonly) {
1002 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1003 				      &node->rb_node);
1004 		if (rb_node)
1005 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1006 		list_add_tail(&node->lower, &cache->leaves);
1007 	}
1008 
1009 	list_for_each_entry(edge, &node->upper, list[LOWER])
1010 		list_add_tail(&edge->list[UPPER], &list);
1011 
1012 	while (!list_empty(&list)) {
1013 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1014 		list_del_init(&edge->list[UPPER]);
1015 		upper = edge->node[UPPER];
1016 		if (upper->detached) {
1017 			list_del(&edge->list[LOWER]);
1018 			lower = edge->node[LOWER];
1019 			free_backref_edge(cache, edge);
1020 			if (list_empty(&lower->upper))
1021 				list_add(&lower->list, &useless);
1022 			continue;
1023 		}
1024 
1025 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1026 			if (upper->lowest) {
1027 				list_del_init(&upper->lower);
1028 				upper->lowest = 0;
1029 			}
1030 
1031 			list_add_tail(&edge->list[UPPER], &upper->lower);
1032 			continue;
1033 		}
1034 
1035 		if (!upper->checked) {
1036 			/*
1037 			 * Still want to blow up for developers since this is a
1038 			 * logic bug.
1039 			 */
1040 			ASSERT(0);
1041 			err = -EINVAL;
1042 			goto out;
1043 		}
1044 		if (cowonly != upper->cowonly) {
1045 			ASSERT(0);
1046 			err = -EINVAL;
1047 			goto out;
1048 		}
1049 
1050 		if (!cowonly) {
1051 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1052 					      &upper->rb_node);
1053 			if (rb_node)
1054 				backref_tree_panic(rb_node, -EEXIST,
1055 						   upper->bytenr);
1056 		}
1057 
1058 		list_add_tail(&edge->list[UPPER], &upper->lower);
1059 
1060 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1061 			list_add_tail(&edge->list[UPPER], &list);
1062 	}
1063 	/*
1064 	 * process useless backref nodes. backref nodes for tree leaves
1065 	 * are deleted from the cache. backref nodes for upper level
1066 	 * tree blocks are left in the cache to avoid unnecessary backref
1067 	 * lookup.
1068 	 */
1069 	while (!list_empty(&useless)) {
1070 		upper = list_entry(useless.next, struct backref_node, list);
1071 		list_del_init(&upper->list);
1072 		ASSERT(list_empty(&upper->upper));
1073 		if (upper == node)
1074 			node = NULL;
1075 		if (upper->lowest) {
1076 			list_del_init(&upper->lower);
1077 			upper->lowest = 0;
1078 		}
1079 		while (!list_empty(&upper->lower)) {
1080 			edge = list_entry(upper->lower.next,
1081 					  struct backref_edge, list[UPPER]);
1082 			list_del(&edge->list[UPPER]);
1083 			list_del(&edge->list[LOWER]);
1084 			lower = edge->node[LOWER];
1085 			free_backref_edge(cache, edge);
1086 
1087 			if (list_empty(&lower->upper))
1088 				list_add(&lower->list, &useless);
1089 		}
1090 		__mark_block_processed(rc, upper);
1091 		if (upper->level > 0) {
1092 			list_add(&upper->list, &cache->detached);
1093 			upper->detached = 1;
1094 		} else {
1095 			rb_erase(&upper->rb_node, &cache->rb_root);
1096 			free_backref_node(cache, upper);
1097 		}
1098 	}
1099 out:
1100 	btrfs_free_path(path1);
1101 	btrfs_free_path(path2);
1102 	if (err) {
1103 		while (!list_empty(&useless)) {
1104 			lower = list_entry(useless.next,
1105 					   struct backref_node, list);
1106 			list_del_init(&lower->list);
1107 		}
1108 		while (!list_empty(&list)) {
1109 			edge = list_first_entry(&list, struct backref_edge,
1110 						list[UPPER]);
1111 			list_del(&edge->list[UPPER]);
1112 			list_del(&edge->list[LOWER]);
1113 			lower = edge->node[LOWER];
1114 			upper = edge->node[UPPER];
1115 			free_backref_edge(cache, edge);
1116 
1117 			/*
1118 			 * Lower is no longer linked to any upper backref nodes
1119 			 * and isn't in the cache, we can free it ourselves.
1120 			 */
1121 			if (list_empty(&lower->upper) &&
1122 			    RB_EMPTY_NODE(&lower->rb_node))
1123 				list_add(&lower->list, &useless);
1124 
1125 			if (!RB_EMPTY_NODE(&upper->rb_node))
1126 				continue;
1127 
1128 			/* Add this guy's upper edges to the list to process */
1129 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1130 				list_add_tail(&edge->list[UPPER], &list);
1131 			if (list_empty(&upper->upper))
1132 				list_add(&upper->list, &useless);
1133 		}
1134 
1135 		while (!list_empty(&useless)) {
1136 			lower = list_entry(useless.next,
1137 					   struct backref_node, list);
1138 			list_del_init(&lower->list);
1139 			if (lower == node)
1140 				node = NULL;
1141 			free_backref_node(cache, lower);
1142 		}
1143 
1144 		free_backref_node(cache, node);
1145 		return ERR_PTR(err);
1146 	}
1147 	ASSERT(!node || !node->detached);
1148 	return node;
1149 }
1150 
1151 /*
1152  * helper to add backref node for the newly created snapshot.
1153  * the backref node is created by cloning backref node that
1154  * corresponds to root of source tree
1155  */
1156 static int clone_backref_node(struct btrfs_trans_handle *trans,
1157 			      struct reloc_control *rc,
1158 			      struct btrfs_root *src,
1159 			      struct btrfs_root *dest)
1160 {
1161 	struct btrfs_root *reloc_root = src->reloc_root;
1162 	struct backref_cache *cache = &rc->backref_cache;
1163 	struct backref_node *node = NULL;
1164 	struct backref_node *new_node;
1165 	struct backref_edge *edge;
1166 	struct backref_edge *new_edge;
1167 	struct rb_node *rb_node;
1168 
1169 	if (cache->last_trans > 0)
1170 		update_backref_cache(trans, cache);
1171 
1172 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1173 	if (rb_node) {
1174 		node = rb_entry(rb_node, struct backref_node, rb_node);
1175 		if (node->detached)
1176 			node = NULL;
1177 		else
1178 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1179 	}
1180 
1181 	if (!node) {
1182 		rb_node = tree_search(&cache->rb_root,
1183 				      reloc_root->commit_root->start);
1184 		if (rb_node) {
1185 			node = rb_entry(rb_node, struct backref_node,
1186 					rb_node);
1187 			BUG_ON(node->detached);
1188 		}
1189 	}
1190 
1191 	if (!node)
1192 		return 0;
1193 
1194 	new_node = alloc_backref_node(cache);
1195 	if (!new_node)
1196 		return -ENOMEM;
1197 
1198 	new_node->bytenr = dest->node->start;
1199 	new_node->level = node->level;
1200 	new_node->lowest = node->lowest;
1201 	new_node->checked = 1;
1202 	new_node->root = dest;
1203 
1204 	if (!node->lowest) {
1205 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1206 			new_edge = alloc_backref_edge(cache);
1207 			if (!new_edge)
1208 				goto fail;
1209 
1210 			new_edge->node[UPPER] = new_node;
1211 			new_edge->node[LOWER] = edge->node[LOWER];
1212 			list_add_tail(&new_edge->list[UPPER],
1213 				      &new_node->lower);
1214 		}
1215 	} else {
1216 		list_add_tail(&new_node->lower, &cache->leaves);
1217 	}
1218 
1219 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1220 			      &new_node->rb_node);
1221 	if (rb_node)
1222 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1223 
1224 	if (!new_node->lowest) {
1225 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1226 			list_add_tail(&new_edge->list[LOWER],
1227 				      &new_edge->node[LOWER]->upper);
1228 		}
1229 	}
1230 	return 0;
1231 fail:
1232 	while (!list_empty(&new_node->lower)) {
1233 		new_edge = list_entry(new_node->lower.next,
1234 				      struct backref_edge, list[UPPER]);
1235 		list_del(&new_edge->list[UPPER]);
1236 		free_backref_edge(cache, new_edge);
1237 	}
1238 	free_backref_node(cache, new_node);
1239 	return -ENOMEM;
1240 }
1241 
1242 /*
1243  * helper to add 'address of tree root -> reloc tree' mapping
1244  */
1245 static int __must_check __add_reloc_root(struct btrfs_root *root)
1246 {
1247 	struct btrfs_fs_info *fs_info = root->fs_info;
1248 	struct rb_node *rb_node;
1249 	struct mapping_node *node;
1250 	struct reloc_control *rc = fs_info->reloc_ctl;
1251 
1252 	node = kmalloc(sizeof(*node), GFP_NOFS);
1253 	if (!node)
1254 		return -ENOMEM;
1255 
1256 	node->bytenr = root->node->start;
1257 	node->data = root;
1258 
1259 	spin_lock(&rc->reloc_root_tree.lock);
1260 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1261 			      node->bytenr, &node->rb_node);
1262 	spin_unlock(&rc->reloc_root_tree.lock);
1263 	if (rb_node) {
1264 		btrfs_panic(fs_info, -EEXIST,
1265 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1266 			    node->bytenr);
1267 	}
1268 
1269 	list_add_tail(&root->root_list, &rc->reloc_roots);
1270 	return 0;
1271 }
1272 
1273 /*
1274  * helper to delete the 'address of tree root -> reloc tree'
1275  * mapping
1276  */
1277 static void __del_reloc_root(struct btrfs_root *root)
1278 {
1279 	struct btrfs_fs_info *fs_info = root->fs_info;
1280 	struct rb_node *rb_node;
1281 	struct mapping_node *node = NULL;
1282 	struct reloc_control *rc = fs_info->reloc_ctl;
1283 
1284 	if (rc) {
1285 		spin_lock(&rc->reloc_root_tree.lock);
1286 		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1287 				      root->node->start);
1288 		if (rb_node) {
1289 			node = rb_entry(rb_node, struct mapping_node, rb_node);
1290 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1291 		}
1292 		spin_unlock(&rc->reloc_root_tree.lock);
1293 		if (!node)
1294 			return;
1295 		BUG_ON((struct btrfs_root *)node->data != root);
1296 	}
1297 
1298 	spin_lock(&fs_info->trans_lock);
1299 	list_del_init(&root->root_list);
1300 	spin_unlock(&fs_info->trans_lock);
1301 	kfree(node);
1302 }
1303 
1304 /*
1305  * helper to update the 'address of tree root -> reloc tree'
1306  * mapping
1307  */
1308 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1309 {
1310 	struct btrfs_fs_info *fs_info = root->fs_info;
1311 	struct rb_node *rb_node;
1312 	struct mapping_node *node = NULL;
1313 	struct reloc_control *rc = fs_info->reloc_ctl;
1314 
1315 	spin_lock(&rc->reloc_root_tree.lock);
1316 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1317 			      root->node->start);
1318 	if (rb_node) {
1319 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1320 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1321 	}
1322 	spin_unlock(&rc->reloc_root_tree.lock);
1323 
1324 	if (!node)
1325 		return 0;
1326 	BUG_ON((struct btrfs_root *)node->data != root);
1327 
1328 	spin_lock(&rc->reloc_root_tree.lock);
1329 	node->bytenr = new_bytenr;
1330 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1331 			      node->bytenr, &node->rb_node);
1332 	spin_unlock(&rc->reloc_root_tree.lock);
1333 	if (rb_node)
1334 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1335 	return 0;
1336 }
1337 
1338 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1339 					struct btrfs_root *root, u64 objectid)
1340 {
1341 	struct btrfs_fs_info *fs_info = root->fs_info;
1342 	struct btrfs_root *reloc_root;
1343 	struct extent_buffer *eb;
1344 	struct btrfs_root_item *root_item;
1345 	struct btrfs_key root_key;
1346 	int ret;
1347 
1348 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1349 	BUG_ON(!root_item);
1350 
1351 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1352 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1353 	root_key.offset = objectid;
1354 
1355 	if (root->root_key.objectid == objectid) {
1356 		u64 commit_root_gen;
1357 
1358 		/* called by btrfs_init_reloc_root */
1359 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1360 				      BTRFS_TREE_RELOC_OBJECTID);
1361 		BUG_ON(ret);
1362 		/*
1363 		 * Set the last_snapshot field to the generation of the commit
1364 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1365 		 * correctly (returns true) when the relocation root is created
1366 		 * either inside the critical section of a transaction commit
1367 		 * (through transaction.c:qgroup_account_snapshot()) and when
1368 		 * it's created before the transaction commit is started.
1369 		 */
1370 		commit_root_gen = btrfs_header_generation(root->commit_root);
1371 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1372 	} else {
1373 		/*
1374 		 * called by btrfs_reloc_post_snapshot_hook.
1375 		 * the source tree is a reloc tree, all tree blocks
1376 		 * modified after it was created have RELOC flag
1377 		 * set in their headers. so it's OK to not update
1378 		 * the 'last_snapshot'.
1379 		 */
1380 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1381 				      BTRFS_TREE_RELOC_OBJECTID);
1382 		BUG_ON(ret);
1383 	}
1384 
1385 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1386 	btrfs_set_root_bytenr(root_item, eb->start);
1387 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1388 	btrfs_set_root_generation(root_item, trans->transid);
1389 
1390 	if (root->root_key.objectid == objectid) {
1391 		btrfs_set_root_refs(root_item, 0);
1392 		memset(&root_item->drop_progress, 0,
1393 		       sizeof(struct btrfs_disk_key));
1394 		root_item->drop_level = 0;
1395 	}
1396 
1397 	btrfs_tree_unlock(eb);
1398 	free_extent_buffer(eb);
1399 
1400 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1401 				&root_key, root_item);
1402 	BUG_ON(ret);
1403 	kfree(root_item);
1404 
1405 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1406 	BUG_ON(IS_ERR(reloc_root));
1407 	reloc_root->last_trans = trans->transid;
1408 	return reloc_root;
1409 }
1410 
1411 /*
1412  * create reloc tree for a given fs tree. reloc tree is just a
1413  * snapshot of the fs tree with special root objectid.
1414  */
1415 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1416 			  struct btrfs_root *root)
1417 {
1418 	struct btrfs_fs_info *fs_info = root->fs_info;
1419 	struct btrfs_root *reloc_root;
1420 	struct reloc_control *rc = fs_info->reloc_ctl;
1421 	struct btrfs_block_rsv *rsv;
1422 	int clear_rsv = 0;
1423 	int ret;
1424 
1425 	if (root->reloc_root) {
1426 		reloc_root = root->reloc_root;
1427 		reloc_root->last_trans = trans->transid;
1428 		return 0;
1429 	}
1430 
1431 	if (!rc || !rc->create_reloc_tree ||
1432 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1433 		return 0;
1434 
1435 	if (!trans->reloc_reserved) {
1436 		rsv = trans->block_rsv;
1437 		trans->block_rsv = rc->block_rsv;
1438 		clear_rsv = 1;
1439 	}
1440 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1441 	if (clear_rsv)
1442 		trans->block_rsv = rsv;
1443 
1444 	ret = __add_reloc_root(reloc_root);
1445 	BUG_ON(ret < 0);
1446 	root->reloc_root = reloc_root;
1447 	return 0;
1448 }
1449 
1450 /*
1451  * update root item of reloc tree
1452  */
1453 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1454 			    struct btrfs_root *root)
1455 {
1456 	struct btrfs_fs_info *fs_info = root->fs_info;
1457 	struct btrfs_root *reloc_root;
1458 	struct btrfs_root_item *root_item;
1459 	int ret;
1460 
1461 	if (!root->reloc_root)
1462 		goto out;
1463 
1464 	reloc_root = root->reloc_root;
1465 	root_item = &reloc_root->root_item;
1466 
1467 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1468 	    btrfs_root_refs(root_item) == 0) {
1469 		root->reloc_root = NULL;
1470 		__del_reloc_root(reloc_root);
1471 	}
1472 
1473 	if (reloc_root->commit_root != reloc_root->node) {
1474 		btrfs_set_root_node(root_item, reloc_root->node);
1475 		free_extent_buffer(reloc_root->commit_root);
1476 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1477 	}
1478 
1479 	ret = btrfs_update_root(trans, fs_info->tree_root,
1480 				&reloc_root->root_key, root_item);
1481 	BUG_ON(ret);
1482 
1483 out:
1484 	return 0;
1485 }
1486 
1487 /*
1488  * helper to find first cached inode with inode number >= objectid
1489  * in a subvolume
1490  */
1491 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1492 {
1493 	struct rb_node *node;
1494 	struct rb_node *prev;
1495 	struct btrfs_inode *entry;
1496 	struct inode *inode;
1497 
1498 	spin_lock(&root->inode_lock);
1499 again:
1500 	node = root->inode_tree.rb_node;
1501 	prev = NULL;
1502 	while (node) {
1503 		prev = node;
1504 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1505 
1506 		if (objectid < btrfs_ino(entry))
1507 			node = node->rb_left;
1508 		else if (objectid > btrfs_ino(entry))
1509 			node = node->rb_right;
1510 		else
1511 			break;
1512 	}
1513 	if (!node) {
1514 		while (prev) {
1515 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1516 			if (objectid <= btrfs_ino(entry)) {
1517 				node = prev;
1518 				break;
1519 			}
1520 			prev = rb_next(prev);
1521 		}
1522 	}
1523 	while (node) {
1524 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1525 		inode = igrab(&entry->vfs_inode);
1526 		if (inode) {
1527 			spin_unlock(&root->inode_lock);
1528 			return inode;
1529 		}
1530 
1531 		objectid = btrfs_ino(entry) + 1;
1532 		if (cond_resched_lock(&root->inode_lock))
1533 			goto again;
1534 
1535 		node = rb_next(node);
1536 	}
1537 	spin_unlock(&root->inode_lock);
1538 	return NULL;
1539 }
1540 
1541 static int in_block_group(u64 bytenr,
1542 			  struct btrfs_block_group_cache *block_group)
1543 {
1544 	if (bytenr >= block_group->key.objectid &&
1545 	    bytenr < block_group->key.objectid + block_group->key.offset)
1546 		return 1;
1547 	return 0;
1548 }
1549 
1550 /*
1551  * get new location of data
1552  */
1553 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1554 			    u64 bytenr, u64 num_bytes)
1555 {
1556 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1557 	struct btrfs_path *path;
1558 	struct btrfs_file_extent_item *fi;
1559 	struct extent_buffer *leaf;
1560 	int ret;
1561 
1562 	path = btrfs_alloc_path();
1563 	if (!path)
1564 		return -ENOMEM;
1565 
1566 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1567 	ret = btrfs_lookup_file_extent(NULL, root, path,
1568 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1569 	if (ret < 0)
1570 		goto out;
1571 	if (ret > 0) {
1572 		ret = -ENOENT;
1573 		goto out;
1574 	}
1575 
1576 	leaf = path->nodes[0];
1577 	fi = btrfs_item_ptr(leaf, path->slots[0],
1578 			    struct btrfs_file_extent_item);
1579 
1580 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1581 	       btrfs_file_extent_compression(leaf, fi) ||
1582 	       btrfs_file_extent_encryption(leaf, fi) ||
1583 	       btrfs_file_extent_other_encoding(leaf, fi));
1584 
1585 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1586 		ret = -EINVAL;
1587 		goto out;
1588 	}
1589 
1590 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1591 	ret = 0;
1592 out:
1593 	btrfs_free_path(path);
1594 	return ret;
1595 }
1596 
1597 /*
1598  * update file extent items in the tree leaf to point to
1599  * the new locations.
1600  */
1601 static noinline_for_stack
1602 int replace_file_extents(struct btrfs_trans_handle *trans,
1603 			 struct reloc_control *rc,
1604 			 struct btrfs_root *root,
1605 			 struct extent_buffer *leaf)
1606 {
1607 	struct btrfs_fs_info *fs_info = root->fs_info;
1608 	struct btrfs_key key;
1609 	struct btrfs_file_extent_item *fi;
1610 	struct inode *inode = NULL;
1611 	u64 parent;
1612 	u64 bytenr;
1613 	u64 new_bytenr = 0;
1614 	u64 num_bytes;
1615 	u64 end;
1616 	u32 nritems;
1617 	u32 i;
1618 	int ret = 0;
1619 	int first = 1;
1620 	int dirty = 0;
1621 
1622 	if (rc->stage != UPDATE_DATA_PTRS)
1623 		return 0;
1624 
1625 	/* reloc trees always use full backref */
1626 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1627 		parent = leaf->start;
1628 	else
1629 		parent = 0;
1630 
1631 	nritems = btrfs_header_nritems(leaf);
1632 	for (i = 0; i < nritems; i++) {
1633 		cond_resched();
1634 		btrfs_item_key_to_cpu(leaf, &key, i);
1635 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1636 			continue;
1637 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1638 		if (btrfs_file_extent_type(leaf, fi) ==
1639 		    BTRFS_FILE_EXTENT_INLINE)
1640 			continue;
1641 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1642 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1643 		if (bytenr == 0)
1644 			continue;
1645 		if (!in_block_group(bytenr, rc->block_group))
1646 			continue;
1647 
1648 		/*
1649 		 * if we are modifying block in fs tree, wait for readpage
1650 		 * to complete and drop the extent cache
1651 		 */
1652 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1653 			if (first) {
1654 				inode = find_next_inode(root, key.objectid);
1655 				first = 0;
1656 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1657 				btrfs_add_delayed_iput(inode);
1658 				inode = find_next_inode(root, key.objectid);
1659 			}
1660 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1661 				end = key.offset +
1662 				      btrfs_file_extent_num_bytes(leaf, fi);
1663 				WARN_ON(!IS_ALIGNED(key.offset,
1664 						    fs_info->sectorsize));
1665 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1666 				end--;
1667 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1668 						      key.offset, end);
1669 				if (!ret)
1670 					continue;
1671 
1672 				btrfs_drop_extent_cache(BTRFS_I(inode),
1673 						key.offset,	end, 1);
1674 				unlock_extent(&BTRFS_I(inode)->io_tree,
1675 					      key.offset, end);
1676 			}
1677 		}
1678 
1679 		ret = get_new_location(rc->data_inode, &new_bytenr,
1680 				       bytenr, num_bytes);
1681 		if (ret) {
1682 			/*
1683 			 * Don't have to abort since we've not changed anything
1684 			 * in the file extent yet.
1685 			 */
1686 			break;
1687 		}
1688 
1689 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1690 		dirty = 1;
1691 
1692 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1693 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1694 					   num_bytes, parent,
1695 					   btrfs_header_owner(leaf),
1696 					   key.objectid, key.offset);
1697 		if (ret) {
1698 			btrfs_abort_transaction(trans, ret);
1699 			break;
1700 		}
1701 
1702 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1703 					parent, btrfs_header_owner(leaf),
1704 					key.objectid, key.offset);
1705 		if (ret) {
1706 			btrfs_abort_transaction(trans, ret);
1707 			break;
1708 		}
1709 	}
1710 	if (dirty)
1711 		btrfs_mark_buffer_dirty(leaf);
1712 	if (inode)
1713 		btrfs_add_delayed_iput(inode);
1714 	return ret;
1715 }
1716 
1717 static noinline_for_stack
1718 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1719 		     struct btrfs_path *path, int level)
1720 {
1721 	struct btrfs_disk_key key1;
1722 	struct btrfs_disk_key key2;
1723 	btrfs_node_key(eb, &key1, slot);
1724 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1725 	return memcmp(&key1, &key2, sizeof(key1));
1726 }
1727 
1728 /*
1729  * try to replace tree blocks in fs tree with the new blocks
1730  * in reloc tree. tree blocks haven't been modified since the
1731  * reloc tree was create can be replaced.
1732  *
1733  * if a block was replaced, level of the block + 1 is returned.
1734  * if no block got replaced, 0 is returned. if there are other
1735  * errors, a negative error number is returned.
1736  */
1737 static noinline_for_stack
1738 int replace_path(struct btrfs_trans_handle *trans,
1739 		 struct btrfs_root *dest, struct btrfs_root *src,
1740 		 struct btrfs_path *path, struct btrfs_key *next_key,
1741 		 int lowest_level, int max_level)
1742 {
1743 	struct btrfs_fs_info *fs_info = dest->fs_info;
1744 	struct extent_buffer *eb;
1745 	struct extent_buffer *parent;
1746 	struct btrfs_key key;
1747 	u64 old_bytenr;
1748 	u64 new_bytenr;
1749 	u64 old_ptr_gen;
1750 	u64 new_ptr_gen;
1751 	u64 last_snapshot;
1752 	u32 blocksize;
1753 	int cow = 0;
1754 	int level;
1755 	int ret;
1756 	int slot;
1757 
1758 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1759 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1760 
1761 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1762 again:
1763 	slot = path->slots[lowest_level];
1764 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1765 
1766 	eb = btrfs_lock_root_node(dest);
1767 	btrfs_set_lock_blocking(eb);
1768 	level = btrfs_header_level(eb);
1769 
1770 	if (level < lowest_level) {
1771 		btrfs_tree_unlock(eb);
1772 		free_extent_buffer(eb);
1773 		return 0;
1774 	}
1775 
1776 	if (cow) {
1777 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1778 		BUG_ON(ret);
1779 	}
1780 	btrfs_set_lock_blocking(eb);
1781 
1782 	if (next_key) {
1783 		next_key->objectid = (u64)-1;
1784 		next_key->type = (u8)-1;
1785 		next_key->offset = (u64)-1;
1786 	}
1787 
1788 	parent = eb;
1789 	while (1) {
1790 		struct btrfs_key first_key;
1791 
1792 		level = btrfs_header_level(parent);
1793 		BUG_ON(level < lowest_level);
1794 
1795 		ret = btrfs_bin_search(parent, &key, level, &slot);
1796 		if (ret && slot > 0)
1797 			slot--;
1798 
1799 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1800 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1801 
1802 		old_bytenr = btrfs_node_blockptr(parent, slot);
1803 		blocksize = fs_info->nodesize;
1804 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1805 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1806 
1807 		if (level <= max_level) {
1808 			eb = path->nodes[level];
1809 			new_bytenr = btrfs_node_blockptr(eb,
1810 							path->slots[level]);
1811 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1812 							path->slots[level]);
1813 		} else {
1814 			new_bytenr = 0;
1815 			new_ptr_gen = 0;
1816 		}
1817 
1818 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1819 			ret = level;
1820 			break;
1821 		}
1822 
1823 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1824 		    memcmp_node_keys(parent, slot, path, level)) {
1825 			if (level <= lowest_level) {
1826 				ret = 0;
1827 				break;
1828 			}
1829 
1830 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1831 					     level - 1, &first_key);
1832 			if (IS_ERR(eb)) {
1833 				ret = PTR_ERR(eb);
1834 				break;
1835 			} else if (!extent_buffer_uptodate(eb)) {
1836 				ret = -EIO;
1837 				free_extent_buffer(eb);
1838 				break;
1839 			}
1840 			btrfs_tree_lock(eb);
1841 			if (cow) {
1842 				ret = btrfs_cow_block(trans, dest, eb, parent,
1843 						      slot, &eb);
1844 				BUG_ON(ret);
1845 			}
1846 			btrfs_set_lock_blocking(eb);
1847 
1848 			btrfs_tree_unlock(parent);
1849 			free_extent_buffer(parent);
1850 
1851 			parent = eb;
1852 			continue;
1853 		}
1854 
1855 		if (!cow) {
1856 			btrfs_tree_unlock(parent);
1857 			free_extent_buffer(parent);
1858 			cow = 1;
1859 			goto again;
1860 		}
1861 
1862 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1863 				      path->slots[level]);
1864 		btrfs_release_path(path);
1865 
1866 		path->lowest_level = level;
1867 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1868 		path->lowest_level = 0;
1869 		BUG_ON(ret);
1870 
1871 		/*
1872 		 * Info qgroup to trace both subtrees.
1873 		 *
1874 		 * We must trace both trees.
1875 		 * 1) Tree reloc subtree
1876 		 *    If not traced, we will leak data numbers
1877 		 * 2) Fs subtree
1878 		 *    If not traced, we will double count old data
1879 		 *    and tree block numbers, if current trans doesn't free
1880 		 *    data reloc tree inode.
1881 		 */
1882 		ret = btrfs_qgroup_trace_subtree(trans, parent,
1883 				btrfs_header_generation(parent),
1884 				btrfs_header_level(parent));
1885 		if (ret < 0)
1886 			break;
1887 		ret = btrfs_qgroup_trace_subtree(trans, path->nodes[level],
1888 				btrfs_header_generation(path->nodes[level]),
1889 				btrfs_header_level(path->nodes[level]));
1890 		if (ret < 0)
1891 			break;
1892 
1893 		/*
1894 		 * swap blocks in fs tree and reloc tree.
1895 		 */
1896 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1897 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1898 		btrfs_mark_buffer_dirty(parent);
1899 
1900 		btrfs_set_node_blockptr(path->nodes[level],
1901 					path->slots[level], old_bytenr);
1902 		btrfs_set_node_ptr_generation(path->nodes[level],
1903 					      path->slots[level], old_ptr_gen);
1904 		btrfs_mark_buffer_dirty(path->nodes[level]);
1905 
1906 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1907 					blocksize, path->nodes[level]->start,
1908 					src->root_key.objectid, level - 1, 0);
1909 		BUG_ON(ret);
1910 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1911 					blocksize, 0, dest->root_key.objectid,
1912 					level - 1, 0);
1913 		BUG_ON(ret);
1914 
1915 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1916 					path->nodes[level]->start,
1917 					src->root_key.objectid, level - 1, 0);
1918 		BUG_ON(ret);
1919 
1920 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1921 					0, dest->root_key.objectid, level - 1,
1922 					0);
1923 		BUG_ON(ret);
1924 
1925 		btrfs_unlock_up_safe(path, 0);
1926 
1927 		ret = level;
1928 		break;
1929 	}
1930 	btrfs_tree_unlock(parent);
1931 	free_extent_buffer(parent);
1932 	return ret;
1933 }
1934 
1935 /*
1936  * helper to find next relocated block in reloc tree
1937  */
1938 static noinline_for_stack
1939 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1940 		       int *level)
1941 {
1942 	struct extent_buffer *eb;
1943 	int i;
1944 	u64 last_snapshot;
1945 	u32 nritems;
1946 
1947 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1948 
1949 	for (i = 0; i < *level; i++) {
1950 		free_extent_buffer(path->nodes[i]);
1951 		path->nodes[i] = NULL;
1952 	}
1953 
1954 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1955 		eb = path->nodes[i];
1956 		nritems = btrfs_header_nritems(eb);
1957 		while (path->slots[i] + 1 < nritems) {
1958 			path->slots[i]++;
1959 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1960 			    last_snapshot)
1961 				continue;
1962 
1963 			*level = i;
1964 			return 0;
1965 		}
1966 		free_extent_buffer(path->nodes[i]);
1967 		path->nodes[i] = NULL;
1968 	}
1969 	return 1;
1970 }
1971 
1972 /*
1973  * walk down reloc tree to find relocated block of lowest level
1974  */
1975 static noinline_for_stack
1976 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1977 			 int *level)
1978 {
1979 	struct btrfs_fs_info *fs_info = root->fs_info;
1980 	struct extent_buffer *eb = NULL;
1981 	int i;
1982 	u64 bytenr;
1983 	u64 ptr_gen = 0;
1984 	u64 last_snapshot;
1985 	u32 nritems;
1986 
1987 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1988 
1989 	for (i = *level; i > 0; i--) {
1990 		struct btrfs_key first_key;
1991 
1992 		eb = path->nodes[i];
1993 		nritems = btrfs_header_nritems(eb);
1994 		while (path->slots[i] < nritems) {
1995 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1996 			if (ptr_gen > last_snapshot)
1997 				break;
1998 			path->slots[i]++;
1999 		}
2000 		if (path->slots[i] >= nritems) {
2001 			if (i == *level)
2002 				break;
2003 			*level = i + 1;
2004 			return 0;
2005 		}
2006 		if (i == 1) {
2007 			*level = i;
2008 			return 0;
2009 		}
2010 
2011 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2012 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2013 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2014 				     &first_key);
2015 		if (IS_ERR(eb)) {
2016 			return PTR_ERR(eb);
2017 		} else if (!extent_buffer_uptodate(eb)) {
2018 			free_extent_buffer(eb);
2019 			return -EIO;
2020 		}
2021 		BUG_ON(btrfs_header_level(eb) != i - 1);
2022 		path->nodes[i - 1] = eb;
2023 		path->slots[i - 1] = 0;
2024 	}
2025 	return 1;
2026 }
2027 
2028 /*
2029  * invalidate extent cache for file extents whose key in range of
2030  * [min_key, max_key)
2031  */
2032 static int invalidate_extent_cache(struct btrfs_root *root,
2033 				   struct btrfs_key *min_key,
2034 				   struct btrfs_key *max_key)
2035 {
2036 	struct btrfs_fs_info *fs_info = root->fs_info;
2037 	struct inode *inode = NULL;
2038 	u64 objectid;
2039 	u64 start, end;
2040 	u64 ino;
2041 
2042 	objectid = min_key->objectid;
2043 	while (1) {
2044 		cond_resched();
2045 		iput(inode);
2046 
2047 		if (objectid > max_key->objectid)
2048 			break;
2049 
2050 		inode = find_next_inode(root, objectid);
2051 		if (!inode)
2052 			break;
2053 		ino = btrfs_ino(BTRFS_I(inode));
2054 
2055 		if (ino > max_key->objectid) {
2056 			iput(inode);
2057 			break;
2058 		}
2059 
2060 		objectid = ino + 1;
2061 		if (!S_ISREG(inode->i_mode))
2062 			continue;
2063 
2064 		if (unlikely(min_key->objectid == ino)) {
2065 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2066 				continue;
2067 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2068 				start = 0;
2069 			else {
2070 				start = min_key->offset;
2071 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2072 			}
2073 		} else {
2074 			start = 0;
2075 		}
2076 
2077 		if (unlikely(max_key->objectid == ino)) {
2078 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2079 				continue;
2080 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2081 				end = (u64)-1;
2082 			} else {
2083 				if (max_key->offset == 0)
2084 					continue;
2085 				end = max_key->offset;
2086 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2087 				end--;
2088 			}
2089 		} else {
2090 			end = (u64)-1;
2091 		}
2092 
2093 		/* the lock_extent waits for readpage to complete */
2094 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2095 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2096 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2097 	}
2098 	return 0;
2099 }
2100 
2101 static int find_next_key(struct btrfs_path *path, int level,
2102 			 struct btrfs_key *key)
2103 
2104 {
2105 	while (level < BTRFS_MAX_LEVEL) {
2106 		if (!path->nodes[level])
2107 			break;
2108 		if (path->slots[level] + 1 <
2109 		    btrfs_header_nritems(path->nodes[level])) {
2110 			btrfs_node_key_to_cpu(path->nodes[level], key,
2111 					      path->slots[level] + 1);
2112 			return 0;
2113 		}
2114 		level++;
2115 	}
2116 	return 1;
2117 }
2118 
2119 /*
2120  * merge the relocated tree blocks in reloc tree with corresponding
2121  * fs tree.
2122  */
2123 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2124 					       struct btrfs_root *root)
2125 {
2126 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2127 	LIST_HEAD(inode_list);
2128 	struct btrfs_key key;
2129 	struct btrfs_key next_key;
2130 	struct btrfs_trans_handle *trans = NULL;
2131 	struct btrfs_root *reloc_root;
2132 	struct btrfs_root_item *root_item;
2133 	struct btrfs_path *path;
2134 	struct extent_buffer *leaf;
2135 	int level;
2136 	int max_level;
2137 	int replaced = 0;
2138 	int ret;
2139 	int err = 0;
2140 	u32 min_reserved;
2141 
2142 	path = btrfs_alloc_path();
2143 	if (!path)
2144 		return -ENOMEM;
2145 	path->reada = READA_FORWARD;
2146 
2147 	reloc_root = root->reloc_root;
2148 	root_item = &reloc_root->root_item;
2149 
2150 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2151 		level = btrfs_root_level(root_item);
2152 		extent_buffer_get(reloc_root->node);
2153 		path->nodes[level] = reloc_root->node;
2154 		path->slots[level] = 0;
2155 	} else {
2156 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2157 
2158 		level = root_item->drop_level;
2159 		BUG_ON(level == 0);
2160 		path->lowest_level = level;
2161 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2162 		path->lowest_level = 0;
2163 		if (ret < 0) {
2164 			btrfs_free_path(path);
2165 			return ret;
2166 		}
2167 
2168 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2169 				      path->slots[level]);
2170 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2171 
2172 		btrfs_unlock_up_safe(path, 0);
2173 	}
2174 
2175 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2176 	memset(&next_key, 0, sizeof(next_key));
2177 
2178 	while (1) {
2179 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2180 					     BTRFS_RESERVE_FLUSH_ALL);
2181 		if (ret) {
2182 			err = ret;
2183 			goto out;
2184 		}
2185 		trans = btrfs_start_transaction(root, 0);
2186 		if (IS_ERR(trans)) {
2187 			err = PTR_ERR(trans);
2188 			trans = NULL;
2189 			goto out;
2190 		}
2191 		trans->block_rsv = rc->block_rsv;
2192 
2193 		replaced = 0;
2194 		max_level = level;
2195 
2196 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2197 		if (ret < 0) {
2198 			err = ret;
2199 			goto out;
2200 		}
2201 		if (ret > 0)
2202 			break;
2203 
2204 		if (!find_next_key(path, level, &key) &&
2205 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2206 			ret = 0;
2207 		} else {
2208 			ret = replace_path(trans, root, reloc_root, path,
2209 					   &next_key, level, max_level);
2210 		}
2211 		if (ret < 0) {
2212 			err = ret;
2213 			goto out;
2214 		}
2215 
2216 		if (ret > 0) {
2217 			level = ret;
2218 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2219 					      path->slots[level]);
2220 			replaced = 1;
2221 		}
2222 
2223 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2224 		if (ret > 0)
2225 			break;
2226 
2227 		BUG_ON(level == 0);
2228 		/*
2229 		 * save the merging progress in the drop_progress.
2230 		 * this is OK since root refs == 1 in this case.
2231 		 */
2232 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2233 			       path->slots[level]);
2234 		root_item->drop_level = level;
2235 
2236 		btrfs_end_transaction_throttle(trans);
2237 		trans = NULL;
2238 
2239 		btrfs_btree_balance_dirty(fs_info);
2240 
2241 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2242 			invalidate_extent_cache(root, &key, &next_key);
2243 	}
2244 
2245 	/*
2246 	 * handle the case only one block in the fs tree need to be
2247 	 * relocated and the block is tree root.
2248 	 */
2249 	leaf = btrfs_lock_root_node(root);
2250 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2251 	btrfs_tree_unlock(leaf);
2252 	free_extent_buffer(leaf);
2253 	if (ret < 0)
2254 		err = ret;
2255 out:
2256 	btrfs_free_path(path);
2257 
2258 	if (err == 0) {
2259 		memset(&root_item->drop_progress, 0,
2260 		       sizeof(root_item->drop_progress));
2261 		root_item->drop_level = 0;
2262 		btrfs_set_root_refs(root_item, 0);
2263 		btrfs_update_reloc_root(trans, root);
2264 	}
2265 
2266 	if (trans)
2267 		btrfs_end_transaction_throttle(trans);
2268 
2269 	btrfs_btree_balance_dirty(fs_info);
2270 
2271 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2272 		invalidate_extent_cache(root, &key, &next_key);
2273 
2274 	return err;
2275 }
2276 
2277 static noinline_for_stack
2278 int prepare_to_merge(struct reloc_control *rc, int err)
2279 {
2280 	struct btrfs_root *root = rc->extent_root;
2281 	struct btrfs_fs_info *fs_info = root->fs_info;
2282 	struct btrfs_root *reloc_root;
2283 	struct btrfs_trans_handle *trans;
2284 	LIST_HEAD(reloc_roots);
2285 	u64 num_bytes = 0;
2286 	int ret;
2287 
2288 	mutex_lock(&fs_info->reloc_mutex);
2289 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2290 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2291 	mutex_unlock(&fs_info->reloc_mutex);
2292 
2293 again:
2294 	if (!err) {
2295 		num_bytes = rc->merging_rsv_size;
2296 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2297 					  BTRFS_RESERVE_FLUSH_ALL);
2298 		if (ret)
2299 			err = ret;
2300 	}
2301 
2302 	trans = btrfs_join_transaction(rc->extent_root);
2303 	if (IS_ERR(trans)) {
2304 		if (!err)
2305 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2306 						num_bytes);
2307 		return PTR_ERR(trans);
2308 	}
2309 
2310 	if (!err) {
2311 		if (num_bytes != rc->merging_rsv_size) {
2312 			btrfs_end_transaction(trans);
2313 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2314 						num_bytes);
2315 			goto again;
2316 		}
2317 	}
2318 
2319 	rc->merge_reloc_tree = 1;
2320 
2321 	while (!list_empty(&rc->reloc_roots)) {
2322 		reloc_root = list_entry(rc->reloc_roots.next,
2323 					struct btrfs_root, root_list);
2324 		list_del_init(&reloc_root->root_list);
2325 
2326 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2327 		BUG_ON(IS_ERR(root));
2328 		BUG_ON(root->reloc_root != reloc_root);
2329 
2330 		/*
2331 		 * set reference count to 1, so btrfs_recover_relocation
2332 		 * knows it should resumes merging
2333 		 */
2334 		if (!err)
2335 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2336 		btrfs_update_reloc_root(trans, root);
2337 
2338 		list_add(&reloc_root->root_list, &reloc_roots);
2339 	}
2340 
2341 	list_splice(&reloc_roots, &rc->reloc_roots);
2342 
2343 	if (!err)
2344 		btrfs_commit_transaction(trans);
2345 	else
2346 		btrfs_end_transaction(trans);
2347 	return err;
2348 }
2349 
2350 static noinline_for_stack
2351 void free_reloc_roots(struct list_head *list)
2352 {
2353 	struct btrfs_root *reloc_root;
2354 
2355 	while (!list_empty(list)) {
2356 		reloc_root = list_entry(list->next, struct btrfs_root,
2357 					root_list);
2358 		__del_reloc_root(reloc_root);
2359 		free_extent_buffer(reloc_root->node);
2360 		free_extent_buffer(reloc_root->commit_root);
2361 		reloc_root->node = NULL;
2362 		reloc_root->commit_root = NULL;
2363 	}
2364 }
2365 
2366 static noinline_for_stack
2367 void merge_reloc_roots(struct reloc_control *rc)
2368 {
2369 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2370 	struct btrfs_root *root;
2371 	struct btrfs_root *reloc_root;
2372 	LIST_HEAD(reloc_roots);
2373 	int found = 0;
2374 	int ret = 0;
2375 again:
2376 	root = rc->extent_root;
2377 
2378 	/*
2379 	 * this serializes us with btrfs_record_root_in_transaction,
2380 	 * we have to make sure nobody is in the middle of
2381 	 * adding their roots to the list while we are
2382 	 * doing this splice
2383 	 */
2384 	mutex_lock(&fs_info->reloc_mutex);
2385 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2386 	mutex_unlock(&fs_info->reloc_mutex);
2387 
2388 	while (!list_empty(&reloc_roots)) {
2389 		found = 1;
2390 		reloc_root = list_entry(reloc_roots.next,
2391 					struct btrfs_root, root_list);
2392 
2393 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2394 			root = read_fs_root(fs_info,
2395 					    reloc_root->root_key.offset);
2396 			BUG_ON(IS_ERR(root));
2397 			BUG_ON(root->reloc_root != reloc_root);
2398 
2399 			ret = merge_reloc_root(rc, root);
2400 			if (ret) {
2401 				if (list_empty(&reloc_root->root_list))
2402 					list_add_tail(&reloc_root->root_list,
2403 						      &reloc_roots);
2404 				goto out;
2405 			}
2406 		} else {
2407 			list_del_init(&reloc_root->root_list);
2408 		}
2409 
2410 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2411 		if (ret < 0) {
2412 			if (list_empty(&reloc_root->root_list))
2413 				list_add_tail(&reloc_root->root_list,
2414 					      &reloc_roots);
2415 			goto out;
2416 		}
2417 	}
2418 
2419 	if (found) {
2420 		found = 0;
2421 		goto again;
2422 	}
2423 out:
2424 	if (ret) {
2425 		btrfs_handle_fs_error(fs_info, ret, NULL);
2426 		if (!list_empty(&reloc_roots))
2427 			free_reloc_roots(&reloc_roots);
2428 
2429 		/* new reloc root may be added */
2430 		mutex_lock(&fs_info->reloc_mutex);
2431 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2432 		mutex_unlock(&fs_info->reloc_mutex);
2433 		if (!list_empty(&reloc_roots))
2434 			free_reloc_roots(&reloc_roots);
2435 	}
2436 
2437 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2438 }
2439 
2440 static void free_block_list(struct rb_root *blocks)
2441 {
2442 	struct tree_block *block;
2443 	struct rb_node *rb_node;
2444 	while ((rb_node = rb_first(blocks))) {
2445 		block = rb_entry(rb_node, struct tree_block, rb_node);
2446 		rb_erase(rb_node, blocks);
2447 		kfree(block);
2448 	}
2449 }
2450 
2451 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2452 				      struct btrfs_root *reloc_root)
2453 {
2454 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2455 	struct btrfs_root *root;
2456 
2457 	if (reloc_root->last_trans == trans->transid)
2458 		return 0;
2459 
2460 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2461 	BUG_ON(IS_ERR(root));
2462 	BUG_ON(root->reloc_root != reloc_root);
2463 
2464 	return btrfs_record_root_in_trans(trans, root);
2465 }
2466 
2467 static noinline_for_stack
2468 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2469 				     struct reloc_control *rc,
2470 				     struct backref_node *node,
2471 				     struct backref_edge *edges[])
2472 {
2473 	struct backref_node *next;
2474 	struct btrfs_root *root;
2475 	int index = 0;
2476 
2477 	next = node;
2478 	while (1) {
2479 		cond_resched();
2480 		next = walk_up_backref(next, edges, &index);
2481 		root = next->root;
2482 		BUG_ON(!root);
2483 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2484 
2485 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2486 			record_reloc_root_in_trans(trans, root);
2487 			break;
2488 		}
2489 
2490 		btrfs_record_root_in_trans(trans, root);
2491 		root = root->reloc_root;
2492 
2493 		if (next->new_bytenr != root->node->start) {
2494 			BUG_ON(next->new_bytenr);
2495 			BUG_ON(!list_empty(&next->list));
2496 			next->new_bytenr = root->node->start;
2497 			next->root = root;
2498 			list_add_tail(&next->list,
2499 				      &rc->backref_cache.changed);
2500 			__mark_block_processed(rc, next);
2501 			break;
2502 		}
2503 
2504 		WARN_ON(1);
2505 		root = NULL;
2506 		next = walk_down_backref(edges, &index);
2507 		if (!next || next->level <= node->level)
2508 			break;
2509 	}
2510 	if (!root)
2511 		return NULL;
2512 
2513 	next = node;
2514 	/* setup backref node path for btrfs_reloc_cow_block */
2515 	while (1) {
2516 		rc->backref_cache.path[next->level] = next;
2517 		if (--index < 0)
2518 			break;
2519 		next = edges[index]->node[UPPER];
2520 	}
2521 	return root;
2522 }
2523 
2524 /*
2525  * select a tree root for relocation. return NULL if the block
2526  * is reference counted. we should use do_relocation() in this
2527  * case. return a tree root pointer if the block isn't reference
2528  * counted. return -ENOENT if the block is root of reloc tree.
2529  */
2530 static noinline_for_stack
2531 struct btrfs_root *select_one_root(struct backref_node *node)
2532 {
2533 	struct backref_node *next;
2534 	struct btrfs_root *root;
2535 	struct btrfs_root *fs_root = NULL;
2536 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2537 	int index = 0;
2538 
2539 	next = node;
2540 	while (1) {
2541 		cond_resched();
2542 		next = walk_up_backref(next, edges, &index);
2543 		root = next->root;
2544 		BUG_ON(!root);
2545 
2546 		/* no other choice for non-references counted tree */
2547 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2548 			return root;
2549 
2550 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2551 			fs_root = root;
2552 
2553 		if (next != node)
2554 			return NULL;
2555 
2556 		next = walk_down_backref(edges, &index);
2557 		if (!next || next->level <= node->level)
2558 			break;
2559 	}
2560 
2561 	if (!fs_root)
2562 		return ERR_PTR(-ENOENT);
2563 	return fs_root;
2564 }
2565 
2566 static noinline_for_stack
2567 u64 calcu_metadata_size(struct reloc_control *rc,
2568 			struct backref_node *node, int reserve)
2569 {
2570 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2571 	struct backref_node *next = node;
2572 	struct backref_edge *edge;
2573 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2574 	u64 num_bytes = 0;
2575 	int index = 0;
2576 
2577 	BUG_ON(reserve && node->processed);
2578 
2579 	while (next) {
2580 		cond_resched();
2581 		while (1) {
2582 			if (next->processed && (reserve || next != node))
2583 				break;
2584 
2585 			num_bytes += fs_info->nodesize;
2586 
2587 			if (list_empty(&next->upper))
2588 				break;
2589 
2590 			edge = list_entry(next->upper.next,
2591 					  struct backref_edge, list[LOWER]);
2592 			edges[index++] = edge;
2593 			next = edge->node[UPPER];
2594 		}
2595 		next = walk_down_backref(edges, &index);
2596 	}
2597 	return num_bytes;
2598 }
2599 
2600 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2601 				  struct reloc_control *rc,
2602 				  struct backref_node *node)
2603 {
2604 	struct btrfs_root *root = rc->extent_root;
2605 	struct btrfs_fs_info *fs_info = root->fs_info;
2606 	u64 num_bytes;
2607 	int ret;
2608 	u64 tmp;
2609 
2610 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2611 
2612 	trans->block_rsv = rc->block_rsv;
2613 	rc->reserved_bytes += num_bytes;
2614 
2615 	/*
2616 	 * We are under a transaction here so we can only do limited flushing.
2617 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2618 	 * transaction and try to refill when we can flush all the things.
2619 	 */
2620 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2621 				BTRFS_RESERVE_FLUSH_LIMIT);
2622 	if (ret) {
2623 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2624 		while (tmp <= rc->reserved_bytes)
2625 			tmp <<= 1;
2626 		/*
2627 		 * only one thread can access block_rsv at this point,
2628 		 * so we don't need hold lock to protect block_rsv.
2629 		 * we expand more reservation size here to allow enough
2630 		 * space for relocation and we will return eailer in
2631 		 * enospc case.
2632 		 */
2633 		rc->block_rsv->size = tmp + fs_info->nodesize *
2634 				      RELOCATION_RESERVED_NODES;
2635 		return -EAGAIN;
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 /*
2642  * relocate a block tree, and then update pointers in upper level
2643  * blocks that reference the block to point to the new location.
2644  *
2645  * if called by link_to_upper, the block has already been relocated.
2646  * in that case this function just updates pointers.
2647  */
2648 static int do_relocation(struct btrfs_trans_handle *trans,
2649 			 struct reloc_control *rc,
2650 			 struct backref_node *node,
2651 			 struct btrfs_key *key,
2652 			 struct btrfs_path *path, int lowest)
2653 {
2654 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2655 	struct backref_node *upper;
2656 	struct backref_edge *edge;
2657 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2658 	struct btrfs_root *root;
2659 	struct extent_buffer *eb;
2660 	u32 blocksize;
2661 	u64 bytenr;
2662 	u64 generation;
2663 	int slot;
2664 	int ret;
2665 	int err = 0;
2666 
2667 	BUG_ON(lowest && node->eb);
2668 
2669 	path->lowest_level = node->level + 1;
2670 	rc->backref_cache.path[node->level] = node;
2671 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2672 		struct btrfs_key first_key;
2673 
2674 		cond_resched();
2675 
2676 		upper = edge->node[UPPER];
2677 		root = select_reloc_root(trans, rc, upper, edges);
2678 		BUG_ON(!root);
2679 
2680 		if (upper->eb && !upper->locked) {
2681 			if (!lowest) {
2682 				ret = btrfs_bin_search(upper->eb, key,
2683 						       upper->level, &slot);
2684 				BUG_ON(ret);
2685 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2686 				if (node->eb->start == bytenr)
2687 					goto next;
2688 			}
2689 			drop_node_buffer(upper);
2690 		}
2691 
2692 		if (!upper->eb) {
2693 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694 			if (ret) {
2695 				if (ret < 0)
2696 					err = ret;
2697 				else
2698 					err = -ENOENT;
2699 
2700 				btrfs_release_path(path);
2701 				break;
2702 			}
2703 
2704 			if (!upper->eb) {
2705 				upper->eb = path->nodes[upper->level];
2706 				path->nodes[upper->level] = NULL;
2707 			} else {
2708 				BUG_ON(upper->eb != path->nodes[upper->level]);
2709 			}
2710 
2711 			upper->locked = 1;
2712 			path->locks[upper->level] = 0;
2713 
2714 			slot = path->slots[upper->level];
2715 			btrfs_release_path(path);
2716 		} else {
2717 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2718 					       &slot);
2719 			BUG_ON(ret);
2720 		}
2721 
2722 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2723 		if (lowest) {
2724 			if (bytenr != node->bytenr) {
2725 				btrfs_err(root->fs_info,
2726 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2727 					  bytenr, node->bytenr, slot,
2728 					  upper->eb->start);
2729 				err = -EIO;
2730 				goto next;
2731 			}
2732 		} else {
2733 			if (node->eb->start == bytenr)
2734 				goto next;
2735 		}
2736 
2737 		blocksize = root->fs_info->nodesize;
2738 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2739 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2740 		eb = read_tree_block(fs_info, bytenr, generation,
2741 				     upper->level - 1, &first_key);
2742 		if (IS_ERR(eb)) {
2743 			err = PTR_ERR(eb);
2744 			goto next;
2745 		} else if (!extent_buffer_uptodate(eb)) {
2746 			free_extent_buffer(eb);
2747 			err = -EIO;
2748 			goto next;
2749 		}
2750 		btrfs_tree_lock(eb);
2751 		btrfs_set_lock_blocking(eb);
2752 
2753 		if (!node->eb) {
2754 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2755 					      slot, &eb);
2756 			btrfs_tree_unlock(eb);
2757 			free_extent_buffer(eb);
2758 			if (ret < 0) {
2759 				err = ret;
2760 				goto next;
2761 			}
2762 			BUG_ON(node->eb != eb);
2763 		} else {
2764 			btrfs_set_node_blockptr(upper->eb, slot,
2765 						node->eb->start);
2766 			btrfs_set_node_ptr_generation(upper->eb, slot,
2767 						      trans->transid);
2768 			btrfs_mark_buffer_dirty(upper->eb);
2769 
2770 			ret = btrfs_inc_extent_ref(trans, root,
2771 						node->eb->start, blocksize,
2772 						upper->eb->start,
2773 						btrfs_header_owner(upper->eb),
2774 						node->level, 0);
2775 			BUG_ON(ret);
2776 
2777 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2778 			BUG_ON(ret);
2779 		}
2780 next:
2781 		if (!upper->pending)
2782 			drop_node_buffer(upper);
2783 		else
2784 			unlock_node_buffer(upper);
2785 		if (err)
2786 			break;
2787 	}
2788 
2789 	if (!err && node->pending) {
2790 		drop_node_buffer(node);
2791 		list_move_tail(&node->list, &rc->backref_cache.changed);
2792 		node->pending = 0;
2793 	}
2794 
2795 	path->lowest_level = 0;
2796 	BUG_ON(err == -ENOSPC);
2797 	return err;
2798 }
2799 
2800 static int link_to_upper(struct btrfs_trans_handle *trans,
2801 			 struct reloc_control *rc,
2802 			 struct backref_node *node,
2803 			 struct btrfs_path *path)
2804 {
2805 	struct btrfs_key key;
2806 
2807 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2808 	return do_relocation(trans, rc, node, &key, path, 0);
2809 }
2810 
2811 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2812 				struct reloc_control *rc,
2813 				struct btrfs_path *path, int err)
2814 {
2815 	LIST_HEAD(list);
2816 	struct backref_cache *cache = &rc->backref_cache;
2817 	struct backref_node *node;
2818 	int level;
2819 	int ret;
2820 
2821 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2822 		while (!list_empty(&cache->pending[level])) {
2823 			node = list_entry(cache->pending[level].next,
2824 					  struct backref_node, list);
2825 			list_move_tail(&node->list, &list);
2826 			BUG_ON(!node->pending);
2827 
2828 			if (!err) {
2829 				ret = link_to_upper(trans, rc, node, path);
2830 				if (ret < 0)
2831 					err = ret;
2832 			}
2833 		}
2834 		list_splice_init(&list, &cache->pending[level]);
2835 	}
2836 	return err;
2837 }
2838 
2839 static void mark_block_processed(struct reloc_control *rc,
2840 				 u64 bytenr, u32 blocksize)
2841 {
2842 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2843 			EXTENT_DIRTY);
2844 }
2845 
2846 static void __mark_block_processed(struct reloc_control *rc,
2847 				   struct backref_node *node)
2848 {
2849 	u32 blocksize;
2850 	if (node->level == 0 ||
2851 	    in_block_group(node->bytenr, rc->block_group)) {
2852 		blocksize = rc->extent_root->fs_info->nodesize;
2853 		mark_block_processed(rc, node->bytenr, blocksize);
2854 	}
2855 	node->processed = 1;
2856 }
2857 
2858 /*
2859  * mark a block and all blocks directly/indirectly reference the block
2860  * as processed.
2861  */
2862 static void update_processed_blocks(struct reloc_control *rc,
2863 				    struct backref_node *node)
2864 {
2865 	struct backref_node *next = node;
2866 	struct backref_edge *edge;
2867 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2868 	int index = 0;
2869 
2870 	while (next) {
2871 		cond_resched();
2872 		while (1) {
2873 			if (next->processed)
2874 				break;
2875 
2876 			__mark_block_processed(rc, next);
2877 
2878 			if (list_empty(&next->upper))
2879 				break;
2880 
2881 			edge = list_entry(next->upper.next,
2882 					  struct backref_edge, list[LOWER]);
2883 			edges[index++] = edge;
2884 			next = edge->node[UPPER];
2885 		}
2886 		next = walk_down_backref(edges, &index);
2887 	}
2888 }
2889 
2890 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2891 {
2892 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2893 
2894 	if (test_range_bit(&rc->processed_blocks, bytenr,
2895 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2896 		return 1;
2897 	return 0;
2898 }
2899 
2900 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2901 			      struct tree_block *block)
2902 {
2903 	struct extent_buffer *eb;
2904 
2905 	BUG_ON(block->key_ready);
2906 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2907 			     block->level, NULL);
2908 	if (IS_ERR(eb)) {
2909 		return PTR_ERR(eb);
2910 	} else if (!extent_buffer_uptodate(eb)) {
2911 		free_extent_buffer(eb);
2912 		return -EIO;
2913 	}
2914 	WARN_ON(btrfs_header_level(eb) != block->level);
2915 	if (block->level == 0)
2916 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2917 	else
2918 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2919 	free_extent_buffer(eb);
2920 	block->key_ready = 1;
2921 	return 0;
2922 }
2923 
2924 /*
2925  * helper function to relocate a tree block
2926  */
2927 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2928 				struct reloc_control *rc,
2929 				struct backref_node *node,
2930 				struct btrfs_key *key,
2931 				struct btrfs_path *path)
2932 {
2933 	struct btrfs_root *root;
2934 	int ret = 0;
2935 
2936 	if (!node)
2937 		return 0;
2938 
2939 	BUG_ON(node->processed);
2940 	root = select_one_root(node);
2941 	if (root == ERR_PTR(-ENOENT)) {
2942 		update_processed_blocks(rc, node);
2943 		goto out;
2944 	}
2945 
2946 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2947 		ret = reserve_metadata_space(trans, rc, node);
2948 		if (ret)
2949 			goto out;
2950 	}
2951 
2952 	if (root) {
2953 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2954 			BUG_ON(node->new_bytenr);
2955 			BUG_ON(!list_empty(&node->list));
2956 			btrfs_record_root_in_trans(trans, root);
2957 			root = root->reloc_root;
2958 			node->new_bytenr = root->node->start;
2959 			node->root = root;
2960 			list_add_tail(&node->list, &rc->backref_cache.changed);
2961 		} else {
2962 			path->lowest_level = node->level;
2963 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2964 			btrfs_release_path(path);
2965 			if (ret > 0)
2966 				ret = 0;
2967 		}
2968 		if (!ret)
2969 			update_processed_blocks(rc, node);
2970 	} else {
2971 		ret = do_relocation(trans, rc, node, key, path, 1);
2972 	}
2973 out:
2974 	if (ret || node->level == 0 || node->cowonly)
2975 		remove_backref_node(&rc->backref_cache, node);
2976 	return ret;
2977 }
2978 
2979 /*
2980  * relocate a list of blocks
2981  */
2982 static noinline_for_stack
2983 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2984 			 struct reloc_control *rc, struct rb_root *blocks)
2985 {
2986 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2987 	struct backref_node *node;
2988 	struct btrfs_path *path;
2989 	struct tree_block *block;
2990 	struct rb_node *rb_node;
2991 	int ret;
2992 	int err = 0;
2993 
2994 	path = btrfs_alloc_path();
2995 	if (!path) {
2996 		err = -ENOMEM;
2997 		goto out_free_blocks;
2998 	}
2999 
3000 	rb_node = rb_first(blocks);
3001 	while (rb_node) {
3002 		block = rb_entry(rb_node, struct tree_block, rb_node);
3003 		if (!block->key_ready)
3004 			readahead_tree_block(fs_info, block->bytenr);
3005 		rb_node = rb_next(rb_node);
3006 	}
3007 
3008 	rb_node = rb_first(blocks);
3009 	while (rb_node) {
3010 		block = rb_entry(rb_node, struct tree_block, rb_node);
3011 		if (!block->key_ready) {
3012 			err = get_tree_block_key(fs_info, block);
3013 			if (err)
3014 				goto out_free_path;
3015 		}
3016 		rb_node = rb_next(rb_node);
3017 	}
3018 
3019 	rb_node = rb_first(blocks);
3020 	while (rb_node) {
3021 		block = rb_entry(rb_node, struct tree_block, rb_node);
3022 
3023 		node = build_backref_tree(rc, &block->key,
3024 					  block->level, block->bytenr);
3025 		if (IS_ERR(node)) {
3026 			err = PTR_ERR(node);
3027 			goto out;
3028 		}
3029 
3030 		ret = relocate_tree_block(trans, rc, node, &block->key,
3031 					  path);
3032 		if (ret < 0) {
3033 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3034 				err = ret;
3035 			goto out;
3036 		}
3037 		rb_node = rb_next(rb_node);
3038 	}
3039 out:
3040 	err = finish_pending_nodes(trans, rc, path, err);
3041 
3042 out_free_path:
3043 	btrfs_free_path(path);
3044 out_free_blocks:
3045 	free_block_list(blocks);
3046 	return err;
3047 }
3048 
3049 static noinline_for_stack
3050 int prealloc_file_extent_cluster(struct inode *inode,
3051 				 struct file_extent_cluster *cluster)
3052 {
3053 	u64 alloc_hint = 0;
3054 	u64 start;
3055 	u64 end;
3056 	u64 offset = BTRFS_I(inode)->index_cnt;
3057 	u64 num_bytes;
3058 	int nr = 0;
3059 	int ret = 0;
3060 	u64 prealloc_start = cluster->start - offset;
3061 	u64 prealloc_end = cluster->end - offset;
3062 	u64 cur_offset;
3063 	struct extent_changeset *data_reserved = NULL;
3064 
3065 	BUG_ON(cluster->start != cluster->boundary[0]);
3066 	inode_lock(inode);
3067 
3068 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3069 					  prealloc_end + 1 - prealloc_start);
3070 	if (ret)
3071 		goto out;
3072 
3073 	cur_offset = prealloc_start;
3074 	while (nr < cluster->nr) {
3075 		start = cluster->boundary[nr] - offset;
3076 		if (nr + 1 < cluster->nr)
3077 			end = cluster->boundary[nr + 1] - 1 - offset;
3078 		else
3079 			end = cluster->end - offset;
3080 
3081 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3082 		num_bytes = end + 1 - start;
3083 		if (cur_offset < start)
3084 			btrfs_free_reserved_data_space(inode, data_reserved,
3085 					cur_offset, start - cur_offset);
3086 		ret = btrfs_prealloc_file_range(inode, 0, start,
3087 						num_bytes, num_bytes,
3088 						end + 1, &alloc_hint);
3089 		cur_offset = end + 1;
3090 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3091 		if (ret)
3092 			break;
3093 		nr++;
3094 	}
3095 	if (cur_offset < prealloc_end)
3096 		btrfs_free_reserved_data_space(inode, data_reserved,
3097 				cur_offset, prealloc_end + 1 - cur_offset);
3098 out:
3099 	inode_unlock(inode);
3100 	extent_changeset_free(data_reserved);
3101 	return ret;
3102 }
3103 
3104 static noinline_for_stack
3105 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3106 			 u64 block_start)
3107 {
3108 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3109 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3110 	struct extent_map *em;
3111 	int ret = 0;
3112 
3113 	em = alloc_extent_map();
3114 	if (!em)
3115 		return -ENOMEM;
3116 
3117 	em->start = start;
3118 	em->len = end + 1 - start;
3119 	em->block_len = em->len;
3120 	em->block_start = block_start;
3121 	em->bdev = fs_info->fs_devices->latest_bdev;
3122 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3123 
3124 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3125 	while (1) {
3126 		write_lock(&em_tree->lock);
3127 		ret = add_extent_mapping(em_tree, em, 0);
3128 		write_unlock(&em_tree->lock);
3129 		if (ret != -EEXIST) {
3130 			free_extent_map(em);
3131 			break;
3132 		}
3133 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3134 	}
3135 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3136 	return ret;
3137 }
3138 
3139 static int relocate_file_extent_cluster(struct inode *inode,
3140 					struct file_extent_cluster *cluster)
3141 {
3142 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3143 	u64 page_start;
3144 	u64 page_end;
3145 	u64 offset = BTRFS_I(inode)->index_cnt;
3146 	unsigned long index;
3147 	unsigned long last_index;
3148 	struct page *page;
3149 	struct file_ra_state *ra;
3150 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3151 	int nr = 0;
3152 	int ret = 0;
3153 
3154 	if (!cluster->nr)
3155 		return 0;
3156 
3157 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3158 	if (!ra)
3159 		return -ENOMEM;
3160 
3161 	ret = prealloc_file_extent_cluster(inode, cluster);
3162 	if (ret)
3163 		goto out;
3164 
3165 	file_ra_state_init(ra, inode->i_mapping);
3166 
3167 	ret = setup_extent_mapping(inode, cluster->start - offset,
3168 				   cluster->end - offset, cluster->start);
3169 	if (ret)
3170 		goto out;
3171 
3172 	index = (cluster->start - offset) >> PAGE_SHIFT;
3173 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3174 	while (index <= last_index) {
3175 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3176 				PAGE_SIZE);
3177 		if (ret)
3178 			goto out;
3179 
3180 		page = find_lock_page(inode->i_mapping, index);
3181 		if (!page) {
3182 			page_cache_sync_readahead(inode->i_mapping,
3183 						  ra, NULL, index,
3184 						  last_index + 1 - index);
3185 			page = find_or_create_page(inode->i_mapping, index,
3186 						   mask);
3187 			if (!page) {
3188 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3189 							PAGE_SIZE, true);
3190 				ret = -ENOMEM;
3191 				goto out;
3192 			}
3193 		}
3194 
3195 		if (PageReadahead(page)) {
3196 			page_cache_async_readahead(inode->i_mapping,
3197 						   ra, NULL, page, index,
3198 						   last_index + 1 - index);
3199 		}
3200 
3201 		if (!PageUptodate(page)) {
3202 			btrfs_readpage(NULL, page);
3203 			lock_page(page);
3204 			if (!PageUptodate(page)) {
3205 				unlock_page(page);
3206 				put_page(page);
3207 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3208 							PAGE_SIZE, true);
3209 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3210 							       PAGE_SIZE, true);
3211 				ret = -EIO;
3212 				goto out;
3213 			}
3214 		}
3215 
3216 		page_start = page_offset(page);
3217 		page_end = page_start + PAGE_SIZE - 1;
3218 
3219 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3220 
3221 		set_page_extent_mapped(page);
3222 
3223 		if (nr < cluster->nr &&
3224 		    page_start + offset == cluster->boundary[nr]) {
3225 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3226 					page_start, page_end,
3227 					EXTENT_BOUNDARY);
3228 			nr++;
3229 		}
3230 
3231 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3232 						NULL, 0);
3233 		if (ret) {
3234 			unlock_page(page);
3235 			put_page(page);
3236 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3237 							 PAGE_SIZE, true);
3238 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3239 			                               PAGE_SIZE, true);
3240 
3241 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3242 					  page_start, page_end,
3243 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3244 			goto out;
3245 
3246 		}
3247 		set_page_dirty(page);
3248 
3249 		unlock_extent(&BTRFS_I(inode)->io_tree,
3250 			      page_start, page_end);
3251 		unlock_page(page);
3252 		put_page(page);
3253 
3254 		index++;
3255 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3256 					       false);
3257 		balance_dirty_pages_ratelimited(inode->i_mapping);
3258 		btrfs_throttle(fs_info);
3259 	}
3260 	WARN_ON(nr != cluster->nr);
3261 out:
3262 	kfree(ra);
3263 	return ret;
3264 }
3265 
3266 static noinline_for_stack
3267 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3268 			 struct file_extent_cluster *cluster)
3269 {
3270 	int ret;
3271 
3272 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3273 		ret = relocate_file_extent_cluster(inode, cluster);
3274 		if (ret)
3275 			return ret;
3276 		cluster->nr = 0;
3277 	}
3278 
3279 	if (!cluster->nr)
3280 		cluster->start = extent_key->objectid;
3281 	else
3282 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3283 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3284 	cluster->boundary[cluster->nr] = extent_key->objectid;
3285 	cluster->nr++;
3286 
3287 	if (cluster->nr >= MAX_EXTENTS) {
3288 		ret = relocate_file_extent_cluster(inode, cluster);
3289 		if (ret)
3290 			return ret;
3291 		cluster->nr = 0;
3292 	}
3293 	return 0;
3294 }
3295 
3296 /*
3297  * helper to add a tree block to the list.
3298  * the major work is getting the generation and level of the block
3299  */
3300 static int add_tree_block(struct reloc_control *rc,
3301 			  struct btrfs_key *extent_key,
3302 			  struct btrfs_path *path,
3303 			  struct rb_root *blocks)
3304 {
3305 	struct extent_buffer *eb;
3306 	struct btrfs_extent_item *ei;
3307 	struct btrfs_tree_block_info *bi;
3308 	struct tree_block *block;
3309 	struct rb_node *rb_node;
3310 	u32 item_size;
3311 	int level = -1;
3312 	u64 generation;
3313 
3314 	eb =  path->nodes[0];
3315 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3316 
3317 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3318 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3319 		ei = btrfs_item_ptr(eb, path->slots[0],
3320 				struct btrfs_extent_item);
3321 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3322 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3323 			level = btrfs_tree_block_level(eb, bi);
3324 		} else {
3325 			level = (int)extent_key->offset;
3326 		}
3327 		generation = btrfs_extent_generation(eb, ei);
3328 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3329 		btrfs_print_v0_err(eb->fs_info);
3330 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3331 		return -EINVAL;
3332 	} else {
3333 		BUG();
3334 	}
3335 
3336 	btrfs_release_path(path);
3337 
3338 	BUG_ON(level == -1);
3339 
3340 	block = kmalloc(sizeof(*block), GFP_NOFS);
3341 	if (!block)
3342 		return -ENOMEM;
3343 
3344 	block->bytenr = extent_key->objectid;
3345 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3346 	block->key.offset = generation;
3347 	block->level = level;
3348 	block->key_ready = 0;
3349 
3350 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3351 	if (rb_node)
3352 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3353 
3354 	return 0;
3355 }
3356 
3357 /*
3358  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3359  */
3360 static int __add_tree_block(struct reloc_control *rc,
3361 			    u64 bytenr, u32 blocksize,
3362 			    struct rb_root *blocks)
3363 {
3364 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3365 	struct btrfs_path *path;
3366 	struct btrfs_key key;
3367 	int ret;
3368 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3369 
3370 	if (tree_block_processed(bytenr, rc))
3371 		return 0;
3372 
3373 	if (tree_search(blocks, bytenr))
3374 		return 0;
3375 
3376 	path = btrfs_alloc_path();
3377 	if (!path)
3378 		return -ENOMEM;
3379 again:
3380 	key.objectid = bytenr;
3381 	if (skinny) {
3382 		key.type = BTRFS_METADATA_ITEM_KEY;
3383 		key.offset = (u64)-1;
3384 	} else {
3385 		key.type = BTRFS_EXTENT_ITEM_KEY;
3386 		key.offset = blocksize;
3387 	}
3388 
3389 	path->search_commit_root = 1;
3390 	path->skip_locking = 1;
3391 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3392 	if (ret < 0)
3393 		goto out;
3394 
3395 	if (ret > 0 && skinny) {
3396 		if (path->slots[0]) {
3397 			path->slots[0]--;
3398 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3399 					      path->slots[0]);
3400 			if (key.objectid == bytenr &&
3401 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3402 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3403 			      key.offset == blocksize)))
3404 				ret = 0;
3405 		}
3406 
3407 		if (ret) {
3408 			skinny = false;
3409 			btrfs_release_path(path);
3410 			goto again;
3411 		}
3412 	}
3413 	if (ret) {
3414 		ASSERT(ret == 1);
3415 		btrfs_print_leaf(path->nodes[0]);
3416 		btrfs_err(fs_info,
3417 	     "tree block extent item (%llu) is not found in extent tree",
3418 		     bytenr);
3419 		WARN_ON(1);
3420 		ret = -EINVAL;
3421 		goto out;
3422 	}
3423 
3424 	ret = add_tree_block(rc, &key, path, blocks);
3425 out:
3426 	btrfs_free_path(path);
3427 	return ret;
3428 }
3429 
3430 /*
3431  * helper to check if the block use full backrefs for pointers in it
3432  */
3433 static int block_use_full_backref(struct reloc_control *rc,
3434 				  struct extent_buffer *eb)
3435 {
3436 	u64 flags;
3437 	int ret;
3438 
3439 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3440 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3441 		return 1;
3442 
3443 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3444 				       eb->start, btrfs_header_level(eb), 1,
3445 				       NULL, &flags);
3446 	BUG_ON(ret);
3447 
3448 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3449 		ret = 1;
3450 	else
3451 		ret = 0;
3452 	return ret;
3453 }
3454 
3455 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3456 				    struct btrfs_block_group_cache *block_group,
3457 				    struct inode *inode,
3458 				    u64 ino)
3459 {
3460 	struct btrfs_key key;
3461 	struct btrfs_root *root = fs_info->tree_root;
3462 	struct btrfs_trans_handle *trans;
3463 	int ret = 0;
3464 
3465 	if (inode)
3466 		goto truncate;
3467 
3468 	key.objectid = ino;
3469 	key.type = BTRFS_INODE_ITEM_KEY;
3470 	key.offset = 0;
3471 
3472 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3473 	if (IS_ERR(inode))
3474 		return -ENOENT;
3475 
3476 truncate:
3477 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3478 						 &fs_info->global_block_rsv);
3479 	if (ret)
3480 		goto out;
3481 
3482 	trans = btrfs_join_transaction(root);
3483 	if (IS_ERR(trans)) {
3484 		ret = PTR_ERR(trans);
3485 		goto out;
3486 	}
3487 
3488 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3489 
3490 	btrfs_end_transaction(trans);
3491 	btrfs_btree_balance_dirty(fs_info);
3492 out:
3493 	iput(inode);
3494 	return ret;
3495 }
3496 
3497 /*
3498  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3499  * this function scans fs tree to find blocks reference the data extent
3500  */
3501 static int find_data_references(struct reloc_control *rc,
3502 				struct btrfs_key *extent_key,
3503 				struct extent_buffer *leaf,
3504 				struct btrfs_extent_data_ref *ref,
3505 				struct rb_root *blocks)
3506 {
3507 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3508 	struct btrfs_path *path;
3509 	struct tree_block *block;
3510 	struct btrfs_root *root;
3511 	struct btrfs_file_extent_item *fi;
3512 	struct rb_node *rb_node;
3513 	struct btrfs_key key;
3514 	u64 ref_root;
3515 	u64 ref_objectid;
3516 	u64 ref_offset;
3517 	u32 ref_count;
3518 	u32 nritems;
3519 	int err = 0;
3520 	int added = 0;
3521 	int counted;
3522 	int ret;
3523 
3524 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3525 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3526 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3527 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3528 
3529 	/*
3530 	 * This is an extent belonging to the free space cache, lets just delete
3531 	 * it and redo the search.
3532 	 */
3533 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3534 		ret = delete_block_group_cache(fs_info, rc->block_group,
3535 					       NULL, ref_objectid);
3536 		if (ret != -ENOENT)
3537 			return ret;
3538 		ret = 0;
3539 	}
3540 
3541 	path = btrfs_alloc_path();
3542 	if (!path)
3543 		return -ENOMEM;
3544 	path->reada = READA_FORWARD;
3545 
3546 	root = read_fs_root(fs_info, ref_root);
3547 	if (IS_ERR(root)) {
3548 		err = PTR_ERR(root);
3549 		goto out;
3550 	}
3551 
3552 	key.objectid = ref_objectid;
3553 	key.type = BTRFS_EXTENT_DATA_KEY;
3554 	if (ref_offset > ((u64)-1 << 32))
3555 		key.offset = 0;
3556 	else
3557 		key.offset = ref_offset;
3558 
3559 	path->search_commit_root = 1;
3560 	path->skip_locking = 1;
3561 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3562 	if (ret < 0) {
3563 		err = ret;
3564 		goto out;
3565 	}
3566 
3567 	leaf = path->nodes[0];
3568 	nritems = btrfs_header_nritems(leaf);
3569 	/*
3570 	 * the references in tree blocks that use full backrefs
3571 	 * are not counted in
3572 	 */
3573 	if (block_use_full_backref(rc, leaf))
3574 		counted = 0;
3575 	else
3576 		counted = 1;
3577 	rb_node = tree_search(blocks, leaf->start);
3578 	if (rb_node) {
3579 		if (counted)
3580 			added = 1;
3581 		else
3582 			path->slots[0] = nritems;
3583 	}
3584 
3585 	while (ref_count > 0) {
3586 		while (path->slots[0] >= nritems) {
3587 			ret = btrfs_next_leaf(root, path);
3588 			if (ret < 0) {
3589 				err = ret;
3590 				goto out;
3591 			}
3592 			if (WARN_ON(ret > 0))
3593 				goto out;
3594 
3595 			leaf = path->nodes[0];
3596 			nritems = btrfs_header_nritems(leaf);
3597 			added = 0;
3598 
3599 			if (block_use_full_backref(rc, leaf))
3600 				counted = 0;
3601 			else
3602 				counted = 1;
3603 			rb_node = tree_search(blocks, leaf->start);
3604 			if (rb_node) {
3605 				if (counted)
3606 					added = 1;
3607 				else
3608 					path->slots[0] = nritems;
3609 			}
3610 		}
3611 
3612 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3613 		if (WARN_ON(key.objectid != ref_objectid ||
3614 		    key.type != BTRFS_EXTENT_DATA_KEY))
3615 			break;
3616 
3617 		fi = btrfs_item_ptr(leaf, path->slots[0],
3618 				    struct btrfs_file_extent_item);
3619 
3620 		if (btrfs_file_extent_type(leaf, fi) ==
3621 		    BTRFS_FILE_EXTENT_INLINE)
3622 			goto next;
3623 
3624 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3625 		    extent_key->objectid)
3626 			goto next;
3627 
3628 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3629 		if (key.offset != ref_offset)
3630 			goto next;
3631 
3632 		if (counted)
3633 			ref_count--;
3634 		if (added)
3635 			goto next;
3636 
3637 		if (!tree_block_processed(leaf->start, rc)) {
3638 			block = kmalloc(sizeof(*block), GFP_NOFS);
3639 			if (!block) {
3640 				err = -ENOMEM;
3641 				break;
3642 			}
3643 			block->bytenr = leaf->start;
3644 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3645 			block->level = 0;
3646 			block->key_ready = 1;
3647 			rb_node = tree_insert(blocks, block->bytenr,
3648 					      &block->rb_node);
3649 			if (rb_node)
3650 				backref_tree_panic(rb_node, -EEXIST,
3651 						   block->bytenr);
3652 		}
3653 		if (counted)
3654 			added = 1;
3655 		else
3656 			path->slots[0] = nritems;
3657 next:
3658 		path->slots[0]++;
3659 
3660 	}
3661 out:
3662 	btrfs_free_path(path);
3663 	return err;
3664 }
3665 
3666 /*
3667  * helper to find all tree blocks that reference a given data extent
3668  */
3669 static noinline_for_stack
3670 int add_data_references(struct reloc_control *rc,
3671 			struct btrfs_key *extent_key,
3672 			struct btrfs_path *path,
3673 			struct rb_root *blocks)
3674 {
3675 	struct btrfs_key key;
3676 	struct extent_buffer *eb;
3677 	struct btrfs_extent_data_ref *dref;
3678 	struct btrfs_extent_inline_ref *iref;
3679 	unsigned long ptr;
3680 	unsigned long end;
3681 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3682 	int ret = 0;
3683 	int err = 0;
3684 
3685 	eb = path->nodes[0];
3686 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3687 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3688 	ptr += sizeof(struct btrfs_extent_item);
3689 
3690 	while (ptr < end) {
3691 		iref = (struct btrfs_extent_inline_ref *)ptr;
3692 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3693 							BTRFS_REF_TYPE_DATA);
3694 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3695 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3696 			ret = __add_tree_block(rc, key.offset, blocksize,
3697 					       blocks);
3698 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3699 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3700 			ret = find_data_references(rc, extent_key,
3701 						   eb, dref, blocks);
3702 		} else {
3703 			ret = -EUCLEAN;
3704 			btrfs_err(rc->extent_root->fs_info,
3705 		     "extent %llu slot %d has an invalid inline ref type",
3706 			     eb->start, path->slots[0]);
3707 		}
3708 		if (ret) {
3709 			err = ret;
3710 			goto out;
3711 		}
3712 		ptr += btrfs_extent_inline_ref_size(key.type);
3713 	}
3714 	WARN_ON(ptr > end);
3715 
3716 	while (1) {
3717 		cond_resched();
3718 		eb = path->nodes[0];
3719 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3720 			ret = btrfs_next_leaf(rc->extent_root, path);
3721 			if (ret < 0) {
3722 				err = ret;
3723 				break;
3724 			}
3725 			if (ret > 0)
3726 				break;
3727 			eb = path->nodes[0];
3728 		}
3729 
3730 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3731 		if (key.objectid != extent_key->objectid)
3732 			break;
3733 
3734 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3735 			ret = __add_tree_block(rc, key.offset, blocksize,
3736 					       blocks);
3737 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3738 			dref = btrfs_item_ptr(eb, path->slots[0],
3739 					      struct btrfs_extent_data_ref);
3740 			ret = find_data_references(rc, extent_key,
3741 						   eb, dref, blocks);
3742 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3743 			btrfs_print_v0_err(eb->fs_info);
3744 			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3745 			ret = -EINVAL;
3746 		} else {
3747 			ret = 0;
3748 		}
3749 		if (ret) {
3750 			err = ret;
3751 			break;
3752 		}
3753 		path->slots[0]++;
3754 	}
3755 out:
3756 	btrfs_release_path(path);
3757 	if (err)
3758 		free_block_list(blocks);
3759 	return err;
3760 }
3761 
3762 /*
3763  * helper to find next unprocessed extent
3764  */
3765 static noinline_for_stack
3766 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3767 		     struct btrfs_key *extent_key)
3768 {
3769 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3770 	struct btrfs_key key;
3771 	struct extent_buffer *leaf;
3772 	u64 start, end, last;
3773 	int ret;
3774 
3775 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3776 	while (1) {
3777 		cond_resched();
3778 		if (rc->search_start >= last) {
3779 			ret = 1;
3780 			break;
3781 		}
3782 
3783 		key.objectid = rc->search_start;
3784 		key.type = BTRFS_EXTENT_ITEM_KEY;
3785 		key.offset = 0;
3786 
3787 		path->search_commit_root = 1;
3788 		path->skip_locking = 1;
3789 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3790 					0, 0);
3791 		if (ret < 0)
3792 			break;
3793 next:
3794 		leaf = path->nodes[0];
3795 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3796 			ret = btrfs_next_leaf(rc->extent_root, path);
3797 			if (ret != 0)
3798 				break;
3799 			leaf = path->nodes[0];
3800 		}
3801 
3802 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3803 		if (key.objectid >= last) {
3804 			ret = 1;
3805 			break;
3806 		}
3807 
3808 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3809 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3810 			path->slots[0]++;
3811 			goto next;
3812 		}
3813 
3814 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3815 		    key.objectid + key.offset <= rc->search_start) {
3816 			path->slots[0]++;
3817 			goto next;
3818 		}
3819 
3820 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3821 		    key.objectid + fs_info->nodesize <=
3822 		    rc->search_start) {
3823 			path->slots[0]++;
3824 			goto next;
3825 		}
3826 
3827 		ret = find_first_extent_bit(&rc->processed_blocks,
3828 					    key.objectid, &start, &end,
3829 					    EXTENT_DIRTY, NULL);
3830 
3831 		if (ret == 0 && start <= key.objectid) {
3832 			btrfs_release_path(path);
3833 			rc->search_start = end + 1;
3834 		} else {
3835 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3836 				rc->search_start = key.objectid + key.offset;
3837 			else
3838 				rc->search_start = key.objectid +
3839 					fs_info->nodesize;
3840 			memcpy(extent_key, &key, sizeof(key));
3841 			return 0;
3842 		}
3843 	}
3844 	btrfs_release_path(path);
3845 	return ret;
3846 }
3847 
3848 static void set_reloc_control(struct reloc_control *rc)
3849 {
3850 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3851 
3852 	mutex_lock(&fs_info->reloc_mutex);
3853 	fs_info->reloc_ctl = rc;
3854 	mutex_unlock(&fs_info->reloc_mutex);
3855 }
3856 
3857 static void unset_reloc_control(struct reloc_control *rc)
3858 {
3859 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3860 
3861 	mutex_lock(&fs_info->reloc_mutex);
3862 	fs_info->reloc_ctl = NULL;
3863 	mutex_unlock(&fs_info->reloc_mutex);
3864 }
3865 
3866 static int check_extent_flags(u64 flags)
3867 {
3868 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3869 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3870 		return 1;
3871 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3872 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3873 		return 1;
3874 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3875 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3876 		return 1;
3877 	return 0;
3878 }
3879 
3880 static noinline_for_stack
3881 int prepare_to_relocate(struct reloc_control *rc)
3882 {
3883 	struct btrfs_trans_handle *trans;
3884 	int ret;
3885 
3886 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3887 					      BTRFS_BLOCK_RSV_TEMP);
3888 	if (!rc->block_rsv)
3889 		return -ENOMEM;
3890 
3891 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3892 	rc->search_start = rc->block_group->key.objectid;
3893 	rc->extents_found = 0;
3894 	rc->nodes_relocated = 0;
3895 	rc->merging_rsv_size = 0;
3896 	rc->reserved_bytes = 0;
3897 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3898 			      RELOCATION_RESERVED_NODES;
3899 	ret = btrfs_block_rsv_refill(rc->extent_root,
3900 				     rc->block_rsv, rc->block_rsv->size,
3901 				     BTRFS_RESERVE_FLUSH_ALL);
3902 	if (ret)
3903 		return ret;
3904 
3905 	rc->create_reloc_tree = 1;
3906 	set_reloc_control(rc);
3907 
3908 	trans = btrfs_join_transaction(rc->extent_root);
3909 	if (IS_ERR(trans)) {
3910 		unset_reloc_control(rc);
3911 		/*
3912 		 * extent tree is not a ref_cow tree and has no reloc_root to
3913 		 * cleanup.  And callers are responsible to free the above
3914 		 * block rsv.
3915 		 */
3916 		return PTR_ERR(trans);
3917 	}
3918 	btrfs_commit_transaction(trans);
3919 	return 0;
3920 }
3921 
3922 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3923 {
3924 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3925 	struct rb_root blocks = RB_ROOT;
3926 	struct btrfs_key key;
3927 	struct btrfs_trans_handle *trans = NULL;
3928 	struct btrfs_path *path;
3929 	struct btrfs_extent_item *ei;
3930 	u64 flags;
3931 	u32 item_size;
3932 	int ret;
3933 	int err = 0;
3934 	int progress = 0;
3935 
3936 	path = btrfs_alloc_path();
3937 	if (!path)
3938 		return -ENOMEM;
3939 	path->reada = READA_FORWARD;
3940 
3941 	ret = prepare_to_relocate(rc);
3942 	if (ret) {
3943 		err = ret;
3944 		goto out_free;
3945 	}
3946 
3947 	while (1) {
3948 		rc->reserved_bytes = 0;
3949 		ret = btrfs_block_rsv_refill(rc->extent_root,
3950 					rc->block_rsv, rc->block_rsv->size,
3951 					BTRFS_RESERVE_FLUSH_ALL);
3952 		if (ret) {
3953 			err = ret;
3954 			break;
3955 		}
3956 		progress++;
3957 		trans = btrfs_start_transaction(rc->extent_root, 0);
3958 		if (IS_ERR(trans)) {
3959 			err = PTR_ERR(trans);
3960 			trans = NULL;
3961 			break;
3962 		}
3963 restart:
3964 		if (update_backref_cache(trans, &rc->backref_cache)) {
3965 			btrfs_end_transaction(trans);
3966 			continue;
3967 		}
3968 
3969 		ret = find_next_extent(rc, path, &key);
3970 		if (ret < 0)
3971 			err = ret;
3972 		if (ret != 0)
3973 			break;
3974 
3975 		rc->extents_found++;
3976 
3977 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3978 				    struct btrfs_extent_item);
3979 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3980 		if (item_size >= sizeof(*ei)) {
3981 			flags = btrfs_extent_flags(path->nodes[0], ei);
3982 			ret = check_extent_flags(flags);
3983 			BUG_ON(ret);
3984 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3985 			err = -EINVAL;
3986 			btrfs_print_v0_err(trans->fs_info);
3987 			btrfs_abort_transaction(trans, err);
3988 			break;
3989 		} else {
3990 			BUG();
3991 		}
3992 
3993 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3994 			ret = add_tree_block(rc, &key, path, &blocks);
3995 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3996 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3997 			ret = add_data_references(rc, &key, path, &blocks);
3998 		} else {
3999 			btrfs_release_path(path);
4000 			ret = 0;
4001 		}
4002 		if (ret < 0) {
4003 			err = ret;
4004 			break;
4005 		}
4006 
4007 		if (!RB_EMPTY_ROOT(&blocks)) {
4008 			ret = relocate_tree_blocks(trans, rc, &blocks);
4009 			if (ret < 0) {
4010 				/*
4011 				 * if we fail to relocate tree blocks, force to update
4012 				 * backref cache when committing transaction.
4013 				 */
4014 				rc->backref_cache.last_trans = trans->transid - 1;
4015 
4016 				if (ret != -EAGAIN) {
4017 					err = ret;
4018 					break;
4019 				}
4020 				rc->extents_found--;
4021 				rc->search_start = key.objectid;
4022 			}
4023 		}
4024 
4025 		btrfs_end_transaction_throttle(trans);
4026 		btrfs_btree_balance_dirty(fs_info);
4027 		trans = NULL;
4028 
4029 		if (rc->stage == MOVE_DATA_EXTENTS &&
4030 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4031 			rc->found_file_extent = 1;
4032 			ret = relocate_data_extent(rc->data_inode,
4033 						   &key, &rc->cluster);
4034 			if (ret < 0) {
4035 				err = ret;
4036 				break;
4037 			}
4038 		}
4039 	}
4040 	if (trans && progress && err == -ENOSPC) {
4041 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4042 		if (ret == 1) {
4043 			err = 0;
4044 			progress = 0;
4045 			goto restart;
4046 		}
4047 	}
4048 
4049 	btrfs_release_path(path);
4050 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4051 
4052 	if (trans) {
4053 		btrfs_end_transaction_throttle(trans);
4054 		btrfs_btree_balance_dirty(fs_info);
4055 	}
4056 
4057 	if (!err) {
4058 		ret = relocate_file_extent_cluster(rc->data_inode,
4059 						   &rc->cluster);
4060 		if (ret < 0)
4061 			err = ret;
4062 	}
4063 
4064 	rc->create_reloc_tree = 0;
4065 	set_reloc_control(rc);
4066 
4067 	backref_cache_cleanup(&rc->backref_cache);
4068 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4069 
4070 	err = prepare_to_merge(rc, err);
4071 
4072 	merge_reloc_roots(rc);
4073 
4074 	rc->merge_reloc_tree = 0;
4075 	unset_reloc_control(rc);
4076 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4077 
4078 	/* get rid of pinned extents */
4079 	trans = btrfs_join_transaction(rc->extent_root);
4080 	if (IS_ERR(trans)) {
4081 		err = PTR_ERR(trans);
4082 		goto out_free;
4083 	}
4084 	btrfs_commit_transaction(trans);
4085 out_free:
4086 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4087 	btrfs_free_path(path);
4088 	return err;
4089 }
4090 
4091 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4092 				 struct btrfs_root *root, u64 objectid)
4093 {
4094 	struct btrfs_path *path;
4095 	struct btrfs_inode_item *item;
4096 	struct extent_buffer *leaf;
4097 	int ret;
4098 
4099 	path = btrfs_alloc_path();
4100 	if (!path)
4101 		return -ENOMEM;
4102 
4103 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4104 	if (ret)
4105 		goto out;
4106 
4107 	leaf = path->nodes[0];
4108 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4109 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4110 	btrfs_set_inode_generation(leaf, item, 1);
4111 	btrfs_set_inode_size(leaf, item, 0);
4112 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4113 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4114 					  BTRFS_INODE_PREALLOC);
4115 	btrfs_mark_buffer_dirty(leaf);
4116 out:
4117 	btrfs_free_path(path);
4118 	return ret;
4119 }
4120 
4121 /*
4122  * helper to create inode for data relocation.
4123  * the inode is in data relocation tree and its link count is 0
4124  */
4125 static noinline_for_stack
4126 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4127 				 struct btrfs_block_group_cache *group)
4128 {
4129 	struct inode *inode = NULL;
4130 	struct btrfs_trans_handle *trans;
4131 	struct btrfs_root *root;
4132 	struct btrfs_key key;
4133 	u64 objectid;
4134 	int err = 0;
4135 
4136 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4137 	if (IS_ERR(root))
4138 		return ERR_CAST(root);
4139 
4140 	trans = btrfs_start_transaction(root, 6);
4141 	if (IS_ERR(trans))
4142 		return ERR_CAST(trans);
4143 
4144 	err = btrfs_find_free_objectid(root, &objectid);
4145 	if (err)
4146 		goto out;
4147 
4148 	err = __insert_orphan_inode(trans, root, objectid);
4149 	BUG_ON(err);
4150 
4151 	key.objectid = objectid;
4152 	key.type = BTRFS_INODE_ITEM_KEY;
4153 	key.offset = 0;
4154 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4155 	BUG_ON(IS_ERR(inode));
4156 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4157 
4158 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4159 out:
4160 	btrfs_end_transaction(trans);
4161 	btrfs_btree_balance_dirty(fs_info);
4162 	if (err) {
4163 		if (inode)
4164 			iput(inode);
4165 		inode = ERR_PTR(err);
4166 	}
4167 	return inode;
4168 }
4169 
4170 static struct reloc_control *alloc_reloc_control(void)
4171 {
4172 	struct reloc_control *rc;
4173 
4174 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4175 	if (!rc)
4176 		return NULL;
4177 
4178 	INIT_LIST_HEAD(&rc->reloc_roots);
4179 	backref_cache_init(&rc->backref_cache);
4180 	mapping_tree_init(&rc->reloc_root_tree);
4181 	extent_io_tree_init(&rc->processed_blocks, NULL);
4182 	return rc;
4183 }
4184 
4185 /*
4186  * Print the block group being relocated
4187  */
4188 static void describe_relocation(struct btrfs_fs_info *fs_info,
4189 				struct btrfs_block_group_cache *block_group)
4190 {
4191 	char buf[128];		/* prefixed by a '|' that'll be dropped */
4192 	u64 flags = block_group->flags;
4193 
4194 	/* Shouldn't happen */
4195 	if (!flags) {
4196 		strcpy(buf, "|NONE");
4197 	} else {
4198 		char *bp = buf;
4199 
4200 #define DESCRIBE_FLAG(f, d) \
4201 		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4202 			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4203 			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4204 		}
4205 		DESCRIBE_FLAG(DATA,     "data");
4206 		DESCRIBE_FLAG(SYSTEM,   "system");
4207 		DESCRIBE_FLAG(METADATA, "metadata");
4208 		DESCRIBE_FLAG(RAID0,    "raid0");
4209 		DESCRIBE_FLAG(RAID1,    "raid1");
4210 		DESCRIBE_FLAG(DUP,      "dup");
4211 		DESCRIBE_FLAG(RAID10,   "raid10");
4212 		DESCRIBE_FLAG(RAID5,    "raid5");
4213 		DESCRIBE_FLAG(RAID6,    "raid6");
4214 		if (flags)
4215 			snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
4216 #undef DESCRIBE_FLAG
4217 	}
4218 
4219 	btrfs_info(fs_info,
4220 		   "relocating block group %llu flags %s",
4221 		   block_group->key.objectid, buf + 1);
4222 }
4223 
4224 /*
4225  * function to relocate all extents in a block group.
4226  */
4227 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4228 {
4229 	struct btrfs_root *extent_root = fs_info->extent_root;
4230 	struct reloc_control *rc;
4231 	struct inode *inode;
4232 	struct btrfs_path *path;
4233 	int ret;
4234 	int rw = 0;
4235 	int err = 0;
4236 
4237 	rc = alloc_reloc_control();
4238 	if (!rc)
4239 		return -ENOMEM;
4240 
4241 	rc->extent_root = extent_root;
4242 
4243 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4244 	BUG_ON(!rc->block_group);
4245 
4246 	ret = btrfs_inc_block_group_ro(rc->block_group);
4247 	if (ret) {
4248 		err = ret;
4249 		goto out;
4250 	}
4251 	rw = 1;
4252 
4253 	path = btrfs_alloc_path();
4254 	if (!path) {
4255 		err = -ENOMEM;
4256 		goto out;
4257 	}
4258 
4259 	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4260 	btrfs_free_path(path);
4261 
4262 	if (!IS_ERR(inode))
4263 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4264 	else
4265 		ret = PTR_ERR(inode);
4266 
4267 	if (ret && ret != -ENOENT) {
4268 		err = ret;
4269 		goto out;
4270 	}
4271 
4272 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4273 	if (IS_ERR(rc->data_inode)) {
4274 		err = PTR_ERR(rc->data_inode);
4275 		rc->data_inode = NULL;
4276 		goto out;
4277 	}
4278 
4279 	describe_relocation(fs_info, rc->block_group);
4280 
4281 	btrfs_wait_block_group_reservations(rc->block_group);
4282 	btrfs_wait_nocow_writers(rc->block_group);
4283 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4284 				 rc->block_group->key.objectid,
4285 				 rc->block_group->key.offset);
4286 
4287 	while (1) {
4288 		mutex_lock(&fs_info->cleaner_mutex);
4289 		ret = relocate_block_group(rc);
4290 		mutex_unlock(&fs_info->cleaner_mutex);
4291 		if (ret < 0) {
4292 			err = ret;
4293 			goto out;
4294 		}
4295 
4296 		if (rc->extents_found == 0)
4297 			break;
4298 
4299 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4300 
4301 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4302 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4303 						       (u64)-1);
4304 			if (ret) {
4305 				err = ret;
4306 				goto out;
4307 			}
4308 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4309 						 0, -1);
4310 			rc->stage = UPDATE_DATA_PTRS;
4311 		}
4312 	}
4313 
4314 	WARN_ON(rc->block_group->pinned > 0);
4315 	WARN_ON(rc->block_group->reserved > 0);
4316 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4317 out:
4318 	if (err && rw)
4319 		btrfs_dec_block_group_ro(rc->block_group);
4320 	iput(rc->data_inode);
4321 	btrfs_put_block_group(rc->block_group);
4322 	kfree(rc);
4323 	return err;
4324 }
4325 
4326 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4327 {
4328 	struct btrfs_fs_info *fs_info = root->fs_info;
4329 	struct btrfs_trans_handle *trans;
4330 	int ret, err;
4331 
4332 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4333 	if (IS_ERR(trans))
4334 		return PTR_ERR(trans);
4335 
4336 	memset(&root->root_item.drop_progress, 0,
4337 		sizeof(root->root_item.drop_progress));
4338 	root->root_item.drop_level = 0;
4339 	btrfs_set_root_refs(&root->root_item, 0);
4340 	ret = btrfs_update_root(trans, fs_info->tree_root,
4341 				&root->root_key, &root->root_item);
4342 
4343 	err = btrfs_end_transaction(trans);
4344 	if (err)
4345 		return err;
4346 	return ret;
4347 }
4348 
4349 /*
4350  * recover relocation interrupted by system crash.
4351  *
4352  * this function resumes merging reloc trees with corresponding fs trees.
4353  * this is important for keeping the sharing of tree blocks
4354  */
4355 int btrfs_recover_relocation(struct btrfs_root *root)
4356 {
4357 	struct btrfs_fs_info *fs_info = root->fs_info;
4358 	LIST_HEAD(reloc_roots);
4359 	struct btrfs_key key;
4360 	struct btrfs_root *fs_root;
4361 	struct btrfs_root *reloc_root;
4362 	struct btrfs_path *path;
4363 	struct extent_buffer *leaf;
4364 	struct reloc_control *rc = NULL;
4365 	struct btrfs_trans_handle *trans;
4366 	int ret;
4367 	int err = 0;
4368 
4369 	path = btrfs_alloc_path();
4370 	if (!path)
4371 		return -ENOMEM;
4372 	path->reada = READA_BACK;
4373 
4374 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4375 	key.type = BTRFS_ROOT_ITEM_KEY;
4376 	key.offset = (u64)-1;
4377 
4378 	while (1) {
4379 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4380 					path, 0, 0);
4381 		if (ret < 0) {
4382 			err = ret;
4383 			goto out;
4384 		}
4385 		if (ret > 0) {
4386 			if (path->slots[0] == 0)
4387 				break;
4388 			path->slots[0]--;
4389 		}
4390 		leaf = path->nodes[0];
4391 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4392 		btrfs_release_path(path);
4393 
4394 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4395 		    key.type != BTRFS_ROOT_ITEM_KEY)
4396 			break;
4397 
4398 		reloc_root = btrfs_read_fs_root(root, &key);
4399 		if (IS_ERR(reloc_root)) {
4400 			err = PTR_ERR(reloc_root);
4401 			goto out;
4402 		}
4403 
4404 		list_add(&reloc_root->root_list, &reloc_roots);
4405 
4406 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4407 			fs_root = read_fs_root(fs_info,
4408 					       reloc_root->root_key.offset);
4409 			if (IS_ERR(fs_root)) {
4410 				ret = PTR_ERR(fs_root);
4411 				if (ret != -ENOENT) {
4412 					err = ret;
4413 					goto out;
4414 				}
4415 				ret = mark_garbage_root(reloc_root);
4416 				if (ret < 0) {
4417 					err = ret;
4418 					goto out;
4419 				}
4420 			}
4421 		}
4422 
4423 		if (key.offset == 0)
4424 			break;
4425 
4426 		key.offset--;
4427 	}
4428 	btrfs_release_path(path);
4429 
4430 	if (list_empty(&reloc_roots))
4431 		goto out;
4432 
4433 	rc = alloc_reloc_control();
4434 	if (!rc) {
4435 		err = -ENOMEM;
4436 		goto out;
4437 	}
4438 
4439 	rc->extent_root = fs_info->extent_root;
4440 
4441 	set_reloc_control(rc);
4442 
4443 	trans = btrfs_join_transaction(rc->extent_root);
4444 	if (IS_ERR(trans)) {
4445 		unset_reloc_control(rc);
4446 		err = PTR_ERR(trans);
4447 		goto out_free;
4448 	}
4449 
4450 	rc->merge_reloc_tree = 1;
4451 
4452 	while (!list_empty(&reloc_roots)) {
4453 		reloc_root = list_entry(reloc_roots.next,
4454 					struct btrfs_root, root_list);
4455 		list_del(&reloc_root->root_list);
4456 
4457 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4458 			list_add_tail(&reloc_root->root_list,
4459 				      &rc->reloc_roots);
4460 			continue;
4461 		}
4462 
4463 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4464 		if (IS_ERR(fs_root)) {
4465 			err = PTR_ERR(fs_root);
4466 			goto out_free;
4467 		}
4468 
4469 		err = __add_reloc_root(reloc_root);
4470 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4471 		fs_root->reloc_root = reloc_root;
4472 	}
4473 
4474 	err = btrfs_commit_transaction(trans);
4475 	if (err)
4476 		goto out_free;
4477 
4478 	merge_reloc_roots(rc);
4479 
4480 	unset_reloc_control(rc);
4481 
4482 	trans = btrfs_join_transaction(rc->extent_root);
4483 	if (IS_ERR(trans)) {
4484 		err = PTR_ERR(trans);
4485 		goto out_free;
4486 	}
4487 	err = btrfs_commit_transaction(trans);
4488 out_free:
4489 	kfree(rc);
4490 out:
4491 	if (!list_empty(&reloc_roots))
4492 		free_reloc_roots(&reloc_roots);
4493 
4494 	btrfs_free_path(path);
4495 
4496 	if (err == 0) {
4497 		/* cleanup orphan inode in data relocation tree */
4498 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4499 		if (IS_ERR(fs_root))
4500 			err = PTR_ERR(fs_root);
4501 		else
4502 			err = btrfs_orphan_cleanup(fs_root);
4503 	}
4504 	return err;
4505 }
4506 
4507 /*
4508  * helper to add ordered checksum for data relocation.
4509  *
4510  * cloning checksum properly handles the nodatasum extents.
4511  * it also saves CPU time to re-calculate the checksum.
4512  */
4513 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4514 {
4515 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4516 	struct btrfs_ordered_sum *sums;
4517 	struct btrfs_ordered_extent *ordered;
4518 	int ret;
4519 	u64 disk_bytenr;
4520 	u64 new_bytenr;
4521 	LIST_HEAD(list);
4522 
4523 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4524 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4525 
4526 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4527 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4528 				       disk_bytenr + len - 1, &list, 0);
4529 	if (ret)
4530 		goto out;
4531 
4532 	while (!list_empty(&list)) {
4533 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4534 		list_del_init(&sums->list);
4535 
4536 		/*
4537 		 * We need to offset the new_bytenr based on where the csum is.
4538 		 * We need to do this because we will read in entire prealloc
4539 		 * extents but we may have written to say the middle of the
4540 		 * prealloc extent, so we need to make sure the csum goes with
4541 		 * the right disk offset.
4542 		 *
4543 		 * We can do this because the data reloc inode refers strictly
4544 		 * to the on disk bytes, so we don't have to worry about
4545 		 * disk_len vs real len like with real inodes since it's all
4546 		 * disk length.
4547 		 */
4548 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4549 		sums->bytenr = new_bytenr;
4550 
4551 		btrfs_add_ordered_sum(inode, ordered, sums);
4552 	}
4553 out:
4554 	btrfs_put_ordered_extent(ordered);
4555 	return ret;
4556 }
4557 
4558 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4559 			  struct btrfs_root *root, struct extent_buffer *buf,
4560 			  struct extent_buffer *cow)
4561 {
4562 	struct btrfs_fs_info *fs_info = root->fs_info;
4563 	struct reloc_control *rc;
4564 	struct backref_node *node;
4565 	int first_cow = 0;
4566 	int level;
4567 	int ret = 0;
4568 
4569 	rc = fs_info->reloc_ctl;
4570 	if (!rc)
4571 		return 0;
4572 
4573 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4574 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4575 
4576 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4577 		if (buf == root->node)
4578 			__update_reloc_root(root, cow->start);
4579 	}
4580 
4581 	level = btrfs_header_level(buf);
4582 	if (btrfs_header_generation(buf) <=
4583 	    btrfs_root_last_snapshot(&root->root_item))
4584 		first_cow = 1;
4585 
4586 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4587 	    rc->create_reloc_tree) {
4588 		WARN_ON(!first_cow && level == 0);
4589 
4590 		node = rc->backref_cache.path[level];
4591 		BUG_ON(node->bytenr != buf->start &&
4592 		       node->new_bytenr != buf->start);
4593 
4594 		drop_node_buffer(node);
4595 		extent_buffer_get(cow);
4596 		node->eb = cow;
4597 		node->new_bytenr = cow->start;
4598 
4599 		if (!node->pending) {
4600 			list_move_tail(&node->list,
4601 				       &rc->backref_cache.pending[level]);
4602 			node->pending = 1;
4603 		}
4604 
4605 		if (first_cow)
4606 			__mark_block_processed(rc, node);
4607 
4608 		if (first_cow && level > 0)
4609 			rc->nodes_relocated += buf->len;
4610 	}
4611 
4612 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4613 		ret = replace_file_extents(trans, rc, root, cow);
4614 	return ret;
4615 }
4616 
4617 /*
4618  * called before creating snapshot. it calculates metadata reservation
4619  * required for relocating tree blocks in the snapshot
4620  */
4621 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4622 			      u64 *bytes_to_reserve)
4623 {
4624 	struct btrfs_root *root;
4625 	struct reloc_control *rc;
4626 
4627 	root = pending->root;
4628 	if (!root->reloc_root)
4629 		return;
4630 
4631 	rc = root->fs_info->reloc_ctl;
4632 	if (!rc->merge_reloc_tree)
4633 		return;
4634 
4635 	root = root->reloc_root;
4636 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4637 	/*
4638 	 * relocation is in the stage of merging trees. the space
4639 	 * used by merging a reloc tree is twice the size of
4640 	 * relocated tree nodes in the worst case. half for cowing
4641 	 * the reloc tree, half for cowing the fs tree. the space
4642 	 * used by cowing the reloc tree will be freed after the
4643 	 * tree is dropped. if we create snapshot, cowing the fs
4644 	 * tree may use more space than it frees. so we need
4645 	 * reserve extra space.
4646 	 */
4647 	*bytes_to_reserve += rc->nodes_relocated;
4648 }
4649 
4650 /*
4651  * called after snapshot is created. migrate block reservation
4652  * and create reloc root for the newly created snapshot
4653  */
4654 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4655 			       struct btrfs_pending_snapshot *pending)
4656 {
4657 	struct btrfs_root *root = pending->root;
4658 	struct btrfs_root *reloc_root;
4659 	struct btrfs_root *new_root;
4660 	struct reloc_control *rc;
4661 	int ret;
4662 
4663 	if (!root->reloc_root)
4664 		return 0;
4665 
4666 	rc = root->fs_info->reloc_ctl;
4667 	rc->merging_rsv_size += rc->nodes_relocated;
4668 
4669 	if (rc->merge_reloc_tree) {
4670 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4671 					      rc->block_rsv,
4672 					      rc->nodes_relocated, 1);
4673 		if (ret)
4674 			return ret;
4675 	}
4676 
4677 	new_root = pending->snap;
4678 	reloc_root = create_reloc_root(trans, root->reloc_root,
4679 				       new_root->root_key.objectid);
4680 	if (IS_ERR(reloc_root))
4681 		return PTR_ERR(reloc_root);
4682 
4683 	ret = __add_reloc_root(reloc_root);
4684 	BUG_ON(ret < 0);
4685 	new_root->reloc_root = reloc_root;
4686 
4687 	if (rc->create_reloc_tree)
4688 		ret = clone_backref_node(trans, rc, root, reloc_root);
4689 	return ret;
4690 }
4691