1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 #define RELOCATION_RESERVED_NODES 256 98 99 struct backref_cache { 100 /* red black tree of all backref nodes in the cache */ 101 struct rb_root rb_root; 102 /* for passing backref nodes to btrfs_reloc_cow_block */ 103 struct backref_node *path[BTRFS_MAX_LEVEL]; 104 /* 105 * list of blocks that have been cowed but some block 106 * pointers in upper level blocks may not reflect the 107 * new location 108 */ 109 struct list_head pending[BTRFS_MAX_LEVEL]; 110 /* list of backref nodes with no child node */ 111 struct list_head leaves; 112 /* list of blocks that have been cowed in current transaction */ 113 struct list_head changed; 114 /* list of detached backref node. */ 115 struct list_head detached; 116 117 u64 last_trans; 118 119 int nr_nodes; 120 int nr_edges; 121 }; 122 123 /* 124 * map address of tree root to tree 125 */ 126 struct mapping_node { 127 struct rb_node rb_node; 128 u64 bytenr; 129 void *data; 130 }; 131 132 struct mapping_tree { 133 struct rb_root rb_root; 134 spinlock_t lock; 135 }; 136 137 /* 138 * present a tree block to process 139 */ 140 struct tree_block { 141 struct rb_node rb_node; 142 u64 bytenr; 143 struct btrfs_key key; 144 unsigned int level:8; 145 unsigned int key_ready:1; 146 }; 147 148 #define MAX_EXTENTS 128 149 150 struct file_extent_cluster { 151 u64 start; 152 u64 end; 153 u64 boundary[MAX_EXTENTS]; 154 unsigned int nr; 155 }; 156 157 struct reloc_control { 158 /* block group to relocate */ 159 struct btrfs_block_group_cache *block_group; 160 /* extent tree */ 161 struct btrfs_root *extent_root; 162 /* inode for moving data */ 163 struct inode *data_inode; 164 165 struct btrfs_block_rsv *block_rsv; 166 167 struct backref_cache backref_cache; 168 169 struct file_extent_cluster cluster; 170 /* tree blocks have been processed */ 171 struct extent_io_tree processed_blocks; 172 /* map start of tree root to corresponding reloc tree */ 173 struct mapping_tree reloc_root_tree; 174 /* list of reloc trees */ 175 struct list_head reloc_roots; 176 /* size of metadata reservation for merging reloc trees */ 177 u64 merging_rsv_size; 178 /* size of relocated tree nodes */ 179 u64 nodes_relocated; 180 /* reserved size for block group relocation*/ 181 u64 reserved_bytes; 182 183 u64 search_start; 184 u64 extents_found; 185 186 unsigned int stage:8; 187 unsigned int create_reloc_tree:1; 188 unsigned int merge_reloc_tree:1; 189 unsigned int found_file_extent:1; 190 }; 191 192 /* stages of data relocation */ 193 #define MOVE_DATA_EXTENTS 0 194 #define UPDATE_DATA_PTRS 1 195 196 static void remove_backref_node(struct backref_cache *cache, 197 struct backref_node *node); 198 static void __mark_block_processed(struct reloc_control *rc, 199 struct backref_node *node); 200 201 static void mapping_tree_init(struct mapping_tree *tree) 202 { 203 tree->rb_root = RB_ROOT; 204 spin_lock_init(&tree->lock); 205 } 206 207 static void backref_cache_init(struct backref_cache *cache) 208 { 209 int i; 210 cache->rb_root = RB_ROOT; 211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 212 INIT_LIST_HEAD(&cache->pending[i]); 213 INIT_LIST_HEAD(&cache->changed); 214 INIT_LIST_HEAD(&cache->detached); 215 INIT_LIST_HEAD(&cache->leaves); 216 } 217 218 static void backref_cache_cleanup(struct backref_cache *cache) 219 { 220 struct backref_node *node; 221 int i; 222 223 while (!list_empty(&cache->detached)) { 224 node = list_entry(cache->detached.next, 225 struct backref_node, list); 226 remove_backref_node(cache, node); 227 } 228 229 while (!list_empty(&cache->leaves)) { 230 node = list_entry(cache->leaves.next, 231 struct backref_node, lower); 232 remove_backref_node(cache, node); 233 } 234 235 cache->last_trans = 0; 236 237 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 238 BUG_ON(!list_empty(&cache->pending[i])); 239 BUG_ON(!list_empty(&cache->changed)); 240 BUG_ON(!list_empty(&cache->detached)); 241 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 242 BUG_ON(cache->nr_nodes); 243 BUG_ON(cache->nr_edges); 244 } 245 246 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 247 { 248 struct backref_node *node; 249 250 node = kzalloc(sizeof(*node), GFP_NOFS); 251 if (node) { 252 INIT_LIST_HEAD(&node->list); 253 INIT_LIST_HEAD(&node->upper); 254 INIT_LIST_HEAD(&node->lower); 255 RB_CLEAR_NODE(&node->rb_node); 256 cache->nr_nodes++; 257 } 258 return node; 259 } 260 261 static void free_backref_node(struct backref_cache *cache, 262 struct backref_node *node) 263 { 264 if (node) { 265 cache->nr_nodes--; 266 kfree(node); 267 } 268 } 269 270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 271 { 272 struct backref_edge *edge; 273 274 edge = kzalloc(sizeof(*edge), GFP_NOFS); 275 if (edge) 276 cache->nr_edges++; 277 return edge; 278 } 279 280 static void free_backref_edge(struct backref_cache *cache, 281 struct backref_edge *edge) 282 { 283 if (edge) { 284 cache->nr_edges--; 285 kfree(edge); 286 } 287 } 288 289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 290 struct rb_node *node) 291 { 292 struct rb_node **p = &root->rb_node; 293 struct rb_node *parent = NULL; 294 struct tree_entry *entry; 295 296 while (*p) { 297 parent = *p; 298 entry = rb_entry(parent, struct tree_entry, rb_node); 299 300 if (bytenr < entry->bytenr) 301 p = &(*p)->rb_left; 302 else if (bytenr > entry->bytenr) 303 p = &(*p)->rb_right; 304 else 305 return parent; 306 } 307 308 rb_link_node(node, parent, p); 309 rb_insert_color(node, root); 310 return NULL; 311 } 312 313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 314 { 315 struct rb_node *n = root->rb_node; 316 struct tree_entry *entry; 317 318 while (n) { 319 entry = rb_entry(n, struct tree_entry, rb_node); 320 321 if (bytenr < entry->bytenr) 322 n = n->rb_left; 323 else if (bytenr > entry->bytenr) 324 n = n->rb_right; 325 else 326 return n; 327 } 328 return NULL; 329 } 330 331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 332 { 333 334 struct btrfs_fs_info *fs_info = NULL; 335 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 336 rb_node); 337 if (bnode->root) 338 fs_info = bnode->root->fs_info; 339 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 340 "found at offset %llu", bytenr); 341 } 342 343 /* 344 * walk up backref nodes until reach node presents tree root 345 */ 346 static struct backref_node *walk_up_backref(struct backref_node *node, 347 struct backref_edge *edges[], 348 int *index) 349 { 350 struct backref_edge *edge; 351 int idx = *index; 352 353 while (!list_empty(&node->upper)) { 354 edge = list_entry(node->upper.next, 355 struct backref_edge, list[LOWER]); 356 edges[idx++] = edge; 357 node = edge->node[UPPER]; 358 } 359 BUG_ON(node->detached); 360 *index = idx; 361 return node; 362 } 363 364 /* 365 * walk down backref nodes to find start of next reference path 366 */ 367 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 368 int *index) 369 { 370 struct backref_edge *edge; 371 struct backref_node *lower; 372 int idx = *index; 373 374 while (idx > 0) { 375 edge = edges[idx - 1]; 376 lower = edge->node[LOWER]; 377 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 378 idx--; 379 continue; 380 } 381 edge = list_entry(edge->list[LOWER].next, 382 struct backref_edge, list[LOWER]); 383 edges[idx - 1] = edge; 384 *index = idx; 385 return edge->node[UPPER]; 386 } 387 *index = 0; 388 return NULL; 389 } 390 391 static void unlock_node_buffer(struct backref_node *node) 392 { 393 if (node->locked) { 394 btrfs_tree_unlock(node->eb); 395 node->locked = 0; 396 } 397 } 398 399 static void drop_node_buffer(struct backref_node *node) 400 { 401 if (node->eb) { 402 unlock_node_buffer(node); 403 free_extent_buffer(node->eb); 404 node->eb = NULL; 405 } 406 } 407 408 static void drop_backref_node(struct backref_cache *tree, 409 struct backref_node *node) 410 { 411 BUG_ON(!list_empty(&node->upper)); 412 413 drop_node_buffer(node); 414 list_del(&node->list); 415 list_del(&node->lower); 416 if (!RB_EMPTY_NODE(&node->rb_node)) 417 rb_erase(&node->rb_node, &tree->rb_root); 418 free_backref_node(tree, node); 419 } 420 421 /* 422 * remove a backref node from the backref cache 423 */ 424 static void remove_backref_node(struct backref_cache *cache, 425 struct backref_node *node) 426 { 427 struct backref_node *upper; 428 struct backref_edge *edge; 429 430 if (!node) 431 return; 432 433 BUG_ON(!node->lowest && !node->detached); 434 while (!list_empty(&node->upper)) { 435 edge = list_entry(node->upper.next, struct backref_edge, 436 list[LOWER]); 437 upper = edge->node[UPPER]; 438 list_del(&edge->list[LOWER]); 439 list_del(&edge->list[UPPER]); 440 free_backref_edge(cache, edge); 441 442 if (RB_EMPTY_NODE(&upper->rb_node)) { 443 BUG_ON(!list_empty(&node->upper)); 444 drop_backref_node(cache, node); 445 node = upper; 446 node->lowest = 1; 447 continue; 448 } 449 /* 450 * add the node to leaf node list if no other 451 * child block cached. 452 */ 453 if (list_empty(&upper->lower)) { 454 list_add_tail(&upper->lower, &cache->leaves); 455 upper->lowest = 1; 456 } 457 } 458 459 drop_backref_node(cache, node); 460 } 461 462 static void update_backref_node(struct backref_cache *cache, 463 struct backref_node *node, u64 bytenr) 464 { 465 struct rb_node *rb_node; 466 rb_erase(&node->rb_node, &cache->rb_root); 467 node->bytenr = bytenr; 468 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 469 if (rb_node) 470 backref_tree_panic(rb_node, -EEXIST, bytenr); 471 } 472 473 /* 474 * update backref cache after a transaction commit 475 */ 476 static int update_backref_cache(struct btrfs_trans_handle *trans, 477 struct backref_cache *cache) 478 { 479 struct backref_node *node; 480 int level = 0; 481 482 if (cache->last_trans == 0) { 483 cache->last_trans = trans->transid; 484 return 0; 485 } 486 487 if (cache->last_trans == trans->transid) 488 return 0; 489 490 /* 491 * detached nodes are used to avoid unnecessary backref 492 * lookup. transaction commit changes the extent tree. 493 * so the detached nodes are no longer useful. 494 */ 495 while (!list_empty(&cache->detached)) { 496 node = list_entry(cache->detached.next, 497 struct backref_node, list); 498 remove_backref_node(cache, node); 499 } 500 501 while (!list_empty(&cache->changed)) { 502 node = list_entry(cache->changed.next, 503 struct backref_node, list); 504 list_del_init(&node->list); 505 BUG_ON(node->pending); 506 update_backref_node(cache, node, node->new_bytenr); 507 } 508 509 /* 510 * some nodes can be left in the pending list if there were 511 * errors during processing the pending nodes. 512 */ 513 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 514 list_for_each_entry(node, &cache->pending[level], list) { 515 BUG_ON(!node->pending); 516 if (node->bytenr == node->new_bytenr) 517 continue; 518 update_backref_node(cache, node, node->new_bytenr); 519 } 520 } 521 522 cache->last_trans = 0; 523 return 1; 524 } 525 526 527 static int should_ignore_root(struct btrfs_root *root) 528 { 529 struct btrfs_root *reloc_root; 530 531 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 532 return 0; 533 534 reloc_root = root->reloc_root; 535 if (!reloc_root) 536 return 0; 537 538 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 539 root->fs_info->running_transaction->transid - 1) 540 return 0; 541 /* 542 * if there is reloc tree and it was created in previous 543 * transaction backref lookup can find the reloc tree, 544 * so backref node for the fs tree root is useless for 545 * relocation. 546 */ 547 return 1; 548 } 549 /* 550 * find reloc tree by address of tree root 551 */ 552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 553 u64 bytenr) 554 { 555 struct rb_node *rb_node; 556 struct mapping_node *node; 557 struct btrfs_root *root = NULL; 558 559 spin_lock(&rc->reloc_root_tree.lock); 560 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 561 if (rb_node) { 562 node = rb_entry(rb_node, struct mapping_node, rb_node); 563 root = (struct btrfs_root *)node->data; 564 } 565 spin_unlock(&rc->reloc_root_tree.lock); 566 return root; 567 } 568 569 static int is_cowonly_root(u64 root_objectid) 570 { 571 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 572 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 573 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 574 root_objectid == BTRFS_DEV_TREE_OBJECTID || 575 root_objectid == BTRFS_TREE_LOG_OBJECTID || 576 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 577 root_objectid == BTRFS_UUID_TREE_OBJECTID || 578 root_objectid == BTRFS_QUOTA_TREE_OBJECTID) 579 return 1; 580 return 0; 581 } 582 583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 584 u64 root_objectid) 585 { 586 struct btrfs_key key; 587 588 key.objectid = root_objectid; 589 key.type = BTRFS_ROOT_ITEM_KEY; 590 if (is_cowonly_root(root_objectid)) 591 key.offset = 0; 592 else 593 key.offset = (u64)-1; 594 595 return btrfs_get_fs_root(fs_info, &key, false); 596 } 597 598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 599 static noinline_for_stack 600 struct btrfs_root *find_tree_root(struct reloc_control *rc, 601 struct extent_buffer *leaf, 602 struct btrfs_extent_ref_v0 *ref0) 603 { 604 struct btrfs_root *root; 605 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 606 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 607 608 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 609 610 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 611 BUG_ON(IS_ERR(root)); 612 613 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 614 generation != btrfs_root_generation(&root->root_item)) 615 return NULL; 616 617 return root; 618 } 619 #endif 620 621 static noinline_for_stack 622 int find_inline_backref(struct extent_buffer *leaf, int slot, 623 unsigned long *ptr, unsigned long *end) 624 { 625 struct btrfs_key key; 626 struct btrfs_extent_item *ei; 627 struct btrfs_tree_block_info *bi; 628 u32 item_size; 629 630 btrfs_item_key_to_cpu(leaf, &key, slot); 631 632 item_size = btrfs_item_size_nr(leaf, slot); 633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 634 if (item_size < sizeof(*ei)) { 635 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 636 return 1; 637 } 638 #endif 639 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 640 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 641 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 642 643 if (key.type == BTRFS_EXTENT_ITEM_KEY && 644 item_size <= sizeof(*ei) + sizeof(*bi)) { 645 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 646 return 1; 647 } 648 if (key.type == BTRFS_METADATA_ITEM_KEY && 649 item_size <= sizeof(*ei)) { 650 WARN_ON(item_size < sizeof(*ei)); 651 return 1; 652 } 653 654 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 655 bi = (struct btrfs_tree_block_info *)(ei + 1); 656 *ptr = (unsigned long)(bi + 1); 657 } else { 658 *ptr = (unsigned long)(ei + 1); 659 } 660 *end = (unsigned long)ei + item_size; 661 return 0; 662 } 663 664 /* 665 * build backref tree for a given tree block. root of the backref tree 666 * corresponds the tree block, leaves of the backref tree correspond 667 * roots of b-trees that reference the tree block. 668 * 669 * the basic idea of this function is check backrefs of a given block 670 * to find upper level blocks that refernece the block, and then check 671 * bakcrefs of these upper level blocks recursively. the recursion stop 672 * when tree root is reached or backrefs for the block is cached. 673 * 674 * NOTE: if we find backrefs for a block are cached, we know backrefs 675 * for all upper level blocks that directly/indirectly reference the 676 * block are also cached. 677 */ 678 static noinline_for_stack 679 struct backref_node *build_backref_tree(struct reloc_control *rc, 680 struct btrfs_key *node_key, 681 int level, u64 bytenr) 682 { 683 struct backref_cache *cache = &rc->backref_cache; 684 struct btrfs_path *path1; 685 struct btrfs_path *path2; 686 struct extent_buffer *eb; 687 struct btrfs_root *root; 688 struct backref_node *cur; 689 struct backref_node *upper; 690 struct backref_node *lower; 691 struct backref_node *node = NULL; 692 struct backref_node *exist = NULL; 693 struct backref_edge *edge; 694 struct rb_node *rb_node; 695 struct btrfs_key key; 696 unsigned long end; 697 unsigned long ptr; 698 LIST_HEAD(list); 699 LIST_HEAD(useless); 700 int cowonly; 701 int ret; 702 int err = 0; 703 bool need_check = true; 704 705 path1 = btrfs_alloc_path(); 706 path2 = btrfs_alloc_path(); 707 if (!path1 || !path2) { 708 err = -ENOMEM; 709 goto out; 710 } 711 path1->reada = 1; 712 path2->reada = 2; 713 714 node = alloc_backref_node(cache); 715 if (!node) { 716 err = -ENOMEM; 717 goto out; 718 } 719 720 node->bytenr = bytenr; 721 node->level = level; 722 node->lowest = 1; 723 cur = node; 724 again: 725 end = 0; 726 ptr = 0; 727 key.objectid = cur->bytenr; 728 key.type = BTRFS_METADATA_ITEM_KEY; 729 key.offset = (u64)-1; 730 731 path1->search_commit_root = 1; 732 path1->skip_locking = 1; 733 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 734 0, 0); 735 if (ret < 0) { 736 err = ret; 737 goto out; 738 } 739 ASSERT(ret); 740 ASSERT(path1->slots[0]); 741 742 path1->slots[0]--; 743 744 WARN_ON(cur->checked); 745 if (!list_empty(&cur->upper)) { 746 /* 747 * the backref was added previously when processing 748 * backref of type BTRFS_TREE_BLOCK_REF_KEY 749 */ 750 ASSERT(list_is_singular(&cur->upper)); 751 edge = list_entry(cur->upper.next, struct backref_edge, 752 list[LOWER]); 753 ASSERT(list_empty(&edge->list[UPPER])); 754 exist = edge->node[UPPER]; 755 /* 756 * add the upper level block to pending list if we need 757 * check its backrefs 758 */ 759 if (!exist->checked) 760 list_add_tail(&edge->list[UPPER], &list); 761 } else { 762 exist = NULL; 763 } 764 765 while (1) { 766 cond_resched(); 767 eb = path1->nodes[0]; 768 769 if (ptr >= end) { 770 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 771 ret = btrfs_next_leaf(rc->extent_root, path1); 772 if (ret < 0) { 773 err = ret; 774 goto out; 775 } 776 if (ret > 0) 777 break; 778 eb = path1->nodes[0]; 779 } 780 781 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 782 if (key.objectid != cur->bytenr) { 783 WARN_ON(exist); 784 break; 785 } 786 787 if (key.type == BTRFS_EXTENT_ITEM_KEY || 788 key.type == BTRFS_METADATA_ITEM_KEY) { 789 ret = find_inline_backref(eb, path1->slots[0], 790 &ptr, &end); 791 if (ret) 792 goto next; 793 } 794 } 795 796 if (ptr < end) { 797 /* update key for inline back ref */ 798 struct btrfs_extent_inline_ref *iref; 799 iref = (struct btrfs_extent_inline_ref *)ptr; 800 key.type = btrfs_extent_inline_ref_type(eb, iref); 801 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 802 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 803 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 804 } 805 806 if (exist && 807 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 808 exist->owner == key.offset) || 809 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 810 exist->bytenr == key.offset))) { 811 exist = NULL; 812 goto next; 813 } 814 815 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 816 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 817 key.type == BTRFS_EXTENT_REF_V0_KEY) { 818 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 819 struct btrfs_extent_ref_v0 *ref0; 820 ref0 = btrfs_item_ptr(eb, path1->slots[0], 821 struct btrfs_extent_ref_v0); 822 if (key.objectid == key.offset) { 823 root = find_tree_root(rc, eb, ref0); 824 if (root && !should_ignore_root(root)) 825 cur->root = root; 826 else 827 list_add(&cur->list, &useless); 828 break; 829 } 830 if (is_cowonly_root(btrfs_ref_root_v0(eb, 831 ref0))) 832 cur->cowonly = 1; 833 } 834 #else 835 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 836 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 837 #endif 838 if (key.objectid == key.offset) { 839 /* 840 * only root blocks of reloc trees use 841 * backref of this type. 842 */ 843 root = find_reloc_root(rc, cur->bytenr); 844 ASSERT(root); 845 cur->root = root; 846 break; 847 } 848 849 edge = alloc_backref_edge(cache); 850 if (!edge) { 851 err = -ENOMEM; 852 goto out; 853 } 854 rb_node = tree_search(&cache->rb_root, key.offset); 855 if (!rb_node) { 856 upper = alloc_backref_node(cache); 857 if (!upper) { 858 free_backref_edge(cache, edge); 859 err = -ENOMEM; 860 goto out; 861 } 862 upper->bytenr = key.offset; 863 upper->level = cur->level + 1; 864 /* 865 * backrefs for the upper level block isn't 866 * cached, add the block to pending list 867 */ 868 list_add_tail(&edge->list[UPPER], &list); 869 } else { 870 upper = rb_entry(rb_node, struct backref_node, 871 rb_node); 872 ASSERT(upper->checked); 873 INIT_LIST_HEAD(&edge->list[UPPER]); 874 } 875 list_add_tail(&edge->list[LOWER], &cur->upper); 876 edge->node[LOWER] = cur; 877 edge->node[UPPER] = upper; 878 879 goto next; 880 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 881 goto next; 882 } 883 884 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 885 root = read_fs_root(rc->extent_root->fs_info, key.offset); 886 if (IS_ERR(root)) { 887 err = PTR_ERR(root); 888 goto out; 889 } 890 891 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 892 cur->cowonly = 1; 893 894 if (btrfs_root_level(&root->root_item) == cur->level) { 895 /* tree root */ 896 ASSERT(btrfs_root_bytenr(&root->root_item) == 897 cur->bytenr); 898 if (should_ignore_root(root)) 899 list_add(&cur->list, &useless); 900 else 901 cur->root = root; 902 break; 903 } 904 905 level = cur->level + 1; 906 907 /* 908 * searching the tree to find upper level blocks 909 * reference the block. 910 */ 911 path2->search_commit_root = 1; 912 path2->skip_locking = 1; 913 path2->lowest_level = level; 914 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 915 path2->lowest_level = 0; 916 if (ret < 0) { 917 err = ret; 918 goto out; 919 } 920 if (ret > 0 && path2->slots[level] > 0) 921 path2->slots[level]--; 922 923 eb = path2->nodes[level]; 924 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 925 cur->bytenr); 926 927 lower = cur; 928 need_check = true; 929 for (; level < BTRFS_MAX_LEVEL; level++) { 930 if (!path2->nodes[level]) { 931 ASSERT(btrfs_root_bytenr(&root->root_item) == 932 lower->bytenr); 933 if (should_ignore_root(root)) 934 list_add(&lower->list, &useless); 935 else 936 lower->root = root; 937 break; 938 } 939 940 edge = alloc_backref_edge(cache); 941 if (!edge) { 942 err = -ENOMEM; 943 goto out; 944 } 945 946 eb = path2->nodes[level]; 947 rb_node = tree_search(&cache->rb_root, eb->start); 948 if (!rb_node) { 949 upper = alloc_backref_node(cache); 950 if (!upper) { 951 free_backref_edge(cache, edge); 952 err = -ENOMEM; 953 goto out; 954 } 955 upper->bytenr = eb->start; 956 upper->owner = btrfs_header_owner(eb); 957 upper->level = lower->level + 1; 958 if (!test_bit(BTRFS_ROOT_REF_COWS, 959 &root->state)) 960 upper->cowonly = 1; 961 962 /* 963 * if we know the block isn't shared 964 * we can void checking its backrefs. 965 */ 966 if (btrfs_block_can_be_shared(root, eb)) 967 upper->checked = 0; 968 else 969 upper->checked = 1; 970 971 /* 972 * add the block to pending list if we 973 * need check its backrefs, we only do this once 974 * while walking up a tree as we will catch 975 * anything else later on. 976 */ 977 if (!upper->checked && need_check) { 978 need_check = false; 979 list_add_tail(&edge->list[UPPER], 980 &list); 981 } else { 982 if (upper->checked) 983 need_check = true; 984 INIT_LIST_HEAD(&edge->list[UPPER]); 985 } 986 } else { 987 upper = rb_entry(rb_node, struct backref_node, 988 rb_node); 989 ASSERT(upper->checked); 990 INIT_LIST_HEAD(&edge->list[UPPER]); 991 if (!upper->owner) 992 upper->owner = btrfs_header_owner(eb); 993 } 994 list_add_tail(&edge->list[LOWER], &lower->upper); 995 edge->node[LOWER] = lower; 996 edge->node[UPPER] = upper; 997 998 if (rb_node) 999 break; 1000 lower = upper; 1001 upper = NULL; 1002 } 1003 btrfs_release_path(path2); 1004 next: 1005 if (ptr < end) { 1006 ptr += btrfs_extent_inline_ref_size(key.type); 1007 if (ptr >= end) { 1008 WARN_ON(ptr > end); 1009 ptr = 0; 1010 end = 0; 1011 } 1012 } 1013 if (ptr >= end) 1014 path1->slots[0]++; 1015 } 1016 btrfs_release_path(path1); 1017 1018 cur->checked = 1; 1019 WARN_ON(exist); 1020 1021 /* the pending list isn't empty, take the first block to process */ 1022 if (!list_empty(&list)) { 1023 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1024 list_del_init(&edge->list[UPPER]); 1025 cur = edge->node[UPPER]; 1026 goto again; 1027 } 1028 1029 /* 1030 * everything goes well, connect backref nodes and insert backref nodes 1031 * into the cache. 1032 */ 1033 ASSERT(node->checked); 1034 cowonly = node->cowonly; 1035 if (!cowonly) { 1036 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1037 &node->rb_node); 1038 if (rb_node) 1039 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1040 list_add_tail(&node->lower, &cache->leaves); 1041 } 1042 1043 list_for_each_entry(edge, &node->upper, list[LOWER]) 1044 list_add_tail(&edge->list[UPPER], &list); 1045 1046 while (!list_empty(&list)) { 1047 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1048 list_del_init(&edge->list[UPPER]); 1049 upper = edge->node[UPPER]; 1050 if (upper->detached) { 1051 list_del(&edge->list[LOWER]); 1052 lower = edge->node[LOWER]; 1053 free_backref_edge(cache, edge); 1054 if (list_empty(&lower->upper)) 1055 list_add(&lower->list, &useless); 1056 continue; 1057 } 1058 1059 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1060 if (upper->lowest) { 1061 list_del_init(&upper->lower); 1062 upper->lowest = 0; 1063 } 1064 1065 list_add_tail(&edge->list[UPPER], &upper->lower); 1066 continue; 1067 } 1068 1069 if (!upper->checked) { 1070 /* 1071 * Still want to blow up for developers since this is a 1072 * logic bug. 1073 */ 1074 ASSERT(0); 1075 err = -EINVAL; 1076 goto out; 1077 } 1078 if (cowonly != upper->cowonly) { 1079 ASSERT(0); 1080 err = -EINVAL; 1081 goto out; 1082 } 1083 1084 if (!cowonly) { 1085 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1086 &upper->rb_node); 1087 if (rb_node) 1088 backref_tree_panic(rb_node, -EEXIST, 1089 upper->bytenr); 1090 } 1091 1092 list_add_tail(&edge->list[UPPER], &upper->lower); 1093 1094 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1095 list_add_tail(&edge->list[UPPER], &list); 1096 } 1097 /* 1098 * process useless backref nodes. backref nodes for tree leaves 1099 * are deleted from the cache. backref nodes for upper level 1100 * tree blocks are left in the cache to avoid unnecessary backref 1101 * lookup. 1102 */ 1103 while (!list_empty(&useless)) { 1104 upper = list_entry(useless.next, struct backref_node, list); 1105 list_del_init(&upper->list); 1106 ASSERT(list_empty(&upper->upper)); 1107 if (upper == node) 1108 node = NULL; 1109 if (upper->lowest) { 1110 list_del_init(&upper->lower); 1111 upper->lowest = 0; 1112 } 1113 while (!list_empty(&upper->lower)) { 1114 edge = list_entry(upper->lower.next, 1115 struct backref_edge, list[UPPER]); 1116 list_del(&edge->list[UPPER]); 1117 list_del(&edge->list[LOWER]); 1118 lower = edge->node[LOWER]; 1119 free_backref_edge(cache, edge); 1120 1121 if (list_empty(&lower->upper)) 1122 list_add(&lower->list, &useless); 1123 } 1124 __mark_block_processed(rc, upper); 1125 if (upper->level > 0) { 1126 list_add(&upper->list, &cache->detached); 1127 upper->detached = 1; 1128 } else { 1129 rb_erase(&upper->rb_node, &cache->rb_root); 1130 free_backref_node(cache, upper); 1131 } 1132 } 1133 out: 1134 btrfs_free_path(path1); 1135 btrfs_free_path(path2); 1136 if (err) { 1137 while (!list_empty(&useless)) { 1138 lower = list_entry(useless.next, 1139 struct backref_node, list); 1140 list_del_init(&lower->list); 1141 } 1142 while (!list_empty(&list)) { 1143 edge = list_first_entry(&list, struct backref_edge, 1144 list[UPPER]); 1145 list_del(&edge->list[UPPER]); 1146 list_del(&edge->list[LOWER]); 1147 lower = edge->node[LOWER]; 1148 upper = edge->node[UPPER]; 1149 free_backref_edge(cache, edge); 1150 1151 /* 1152 * Lower is no longer linked to any upper backref nodes 1153 * and isn't in the cache, we can free it ourselves. 1154 */ 1155 if (list_empty(&lower->upper) && 1156 RB_EMPTY_NODE(&lower->rb_node)) 1157 list_add(&lower->list, &useless); 1158 1159 if (!RB_EMPTY_NODE(&upper->rb_node)) 1160 continue; 1161 1162 /* Add this guy's upper edges to the list to proces */ 1163 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1164 list_add_tail(&edge->list[UPPER], &list); 1165 if (list_empty(&upper->upper)) 1166 list_add(&upper->list, &useless); 1167 } 1168 1169 while (!list_empty(&useless)) { 1170 lower = list_entry(useless.next, 1171 struct backref_node, list); 1172 list_del_init(&lower->list); 1173 free_backref_node(cache, lower); 1174 } 1175 return ERR_PTR(err); 1176 } 1177 ASSERT(!node || !node->detached); 1178 return node; 1179 } 1180 1181 /* 1182 * helper to add backref node for the newly created snapshot. 1183 * the backref node is created by cloning backref node that 1184 * corresponds to root of source tree 1185 */ 1186 static int clone_backref_node(struct btrfs_trans_handle *trans, 1187 struct reloc_control *rc, 1188 struct btrfs_root *src, 1189 struct btrfs_root *dest) 1190 { 1191 struct btrfs_root *reloc_root = src->reloc_root; 1192 struct backref_cache *cache = &rc->backref_cache; 1193 struct backref_node *node = NULL; 1194 struct backref_node *new_node; 1195 struct backref_edge *edge; 1196 struct backref_edge *new_edge; 1197 struct rb_node *rb_node; 1198 1199 if (cache->last_trans > 0) 1200 update_backref_cache(trans, cache); 1201 1202 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1203 if (rb_node) { 1204 node = rb_entry(rb_node, struct backref_node, rb_node); 1205 if (node->detached) 1206 node = NULL; 1207 else 1208 BUG_ON(node->new_bytenr != reloc_root->node->start); 1209 } 1210 1211 if (!node) { 1212 rb_node = tree_search(&cache->rb_root, 1213 reloc_root->commit_root->start); 1214 if (rb_node) { 1215 node = rb_entry(rb_node, struct backref_node, 1216 rb_node); 1217 BUG_ON(node->detached); 1218 } 1219 } 1220 1221 if (!node) 1222 return 0; 1223 1224 new_node = alloc_backref_node(cache); 1225 if (!new_node) 1226 return -ENOMEM; 1227 1228 new_node->bytenr = dest->node->start; 1229 new_node->level = node->level; 1230 new_node->lowest = node->lowest; 1231 new_node->checked = 1; 1232 new_node->root = dest; 1233 1234 if (!node->lowest) { 1235 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1236 new_edge = alloc_backref_edge(cache); 1237 if (!new_edge) 1238 goto fail; 1239 1240 new_edge->node[UPPER] = new_node; 1241 new_edge->node[LOWER] = edge->node[LOWER]; 1242 list_add_tail(&new_edge->list[UPPER], 1243 &new_node->lower); 1244 } 1245 } else { 1246 list_add_tail(&new_node->lower, &cache->leaves); 1247 } 1248 1249 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1250 &new_node->rb_node); 1251 if (rb_node) 1252 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1253 1254 if (!new_node->lowest) { 1255 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1256 list_add_tail(&new_edge->list[LOWER], 1257 &new_edge->node[LOWER]->upper); 1258 } 1259 } 1260 return 0; 1261 fail: 1262 while (!list_empty(&new_node->lower)) { 1263 new_edge = list_entry(new_node->lower.next, 1264 struct backref_edge, list[UPPER]); 1265 list_del(&new_edge->list[UPPER]); 1266 free_backref_edge(cache, new_edge); 1267 } 1268 free_backref_node(cache, new_node); 1269 return -ENOMEM; 1270 } 1271 1272 /* 1273 * helper to add 'address of tree root -> reloc tree' mapping 1274 */ 1275 static int __must_check __add_reloc_root(struct btrfs_root *root) 1276 { 1277 struct rb_node *rb_node; 1278 struct mapping_node *node; 1279 struct reloc_control *rc = root->fs_info->reloc_ctl; 1280 1281 node = kmalloc(sizeof(*node), GFP_NOFS); 1282 if (!node) 1283 return -ENOMEM; 1284 1285 node->bytenr = root->node->start; 1286 node->data = root; 1287 1288 spin_lock(&rc->reloc_root_tree.lock); 1289 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1290 node->bytenr, &node->rb_node); 1291 spin_unlock(&rc->reloc_root_tree.lock); 1292 if (rb_node) { 1293 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1294 "for start=%llu while inserting into relocation " 1295 "tree", node->bytenr); 1296 kfree(node); 1297 return -EEXIST; 1298 } 1299 1300 list_add_tail(&root->root_list, &rc->reloc_roots); 1301 return 0; 1302 } 1303 1304 /* 1305 * helper to delete the 'address of tree root -> reloc tree' 1306 * mapping 1307 */ 1308 static void __del_reloc_root(struct btrfs_root *root) 1309 { 1310 struct rb_node *rb_node; 1311 struct mapping_node *node = NULL; 1312 struct reloc_control *rc = root->fs_info->reloc_ctl; 1313 1314 spin_lock(&rc->reloc_root_tree.lock); 1315 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1316 root->node->start); 1317 if (rb_node) { 1318 node = rb_entry(rb_node, struct mapping_node, rb_node); 1319 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1320 } 1321 spin_unlock(&rc->reloc_root_tree.lock); 1322 1323 if (!node) 1324 return; 1325 BUG_ON((struct btrfs_root *)node->data != root); 1326 1327 spin_lock(&root->fs_info->trans_lock); 1328 list_del_init(&root->root_list); 1329 spin_unlock(&root->fs_info->trans_lock); 1330 kfree(node); 1331 } 1332 1333 /* 1334 * helper to update the 'address of tree root -> reloc tree' 1335 * mapping 1336 */ 1337 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1338 { 1339 struct rb_node *rb_node; 1340 struct mapping_node *node = NULL; 1341 struct reloc_control *rc = root->fs_info->reloc_ctl; 1342 1343 spin_lock(&rc->reloc_root_tree.lock); 1344 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1345 root->node->start); 1346 if (rb_node) { 1347 node = rb_entry(rb_node, struct mapping_node, rb_node); 1348 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1349 } 1350 spin_unlock(&rc->reloc_root_tree.lock); 1351 1352 if (!node) 1353 return 0; 1354 BUG_ON((struct btrfs_root *)node->data != root); 1355 1356 spin_lock(&rc->reloc_root_tree.lock); 1357 node->bytenr = new_bytenr; 1358 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1359 node->bytenr, &node->rb_node); 1360 spin_unlock(&rc->reloc_root_tree.lock); 1361 if (rb_node) 1362 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1363 return 0; 1364 } 1365 1366 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1367 struct btrfs_root *root, u64 objectid) 1368 { 1369 struct btrfs_root *reloc_root; 1370 struct extent_buffer *eb; 1371 struct btrfs_root_item *root_item; 1372 struct btrfs_key root_key; 1373 u64 last_snap = 0; 1374 int ret; 1375 1376 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1377 BUG_ON(!root_item); 1378 1379 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1380 root_key.type = BTRFS_ROOT_ITEM_KEY; 1381 root_key.offset = objectid; 1382 1383 if (root->root_key.objectid == objectid) { 1384 /* called by btrfs_init_reloc_root */ 1385 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1386 BTRFS_TREE_RELOC_OBJECTID); 1387 BUG_ON(ret); 1388 1389 last_snap = btrfs_root_last_snapshot(&root->root_item); 1390 btrfs_set_root_last_snapshot(&root->root_item, 1391 trans->transid - 1); 1392 } else { 1393 /* 1394 * called by btrfs_reloc_post_snapshot_hook. 1395 * the source tree is a reloc tree, all tree blocks 1396 * modified after it was created have RELOC flag 1397 * set in their headers. so it's OK to not update 1398 * the 'last_snapshot'. 1399 */ 1400 ret = btrfs_copy_root(trans, root, root->node, &eb, 1401 BTRFS_TREE_RELOC_OBJECTID); 1402 BUG_ON(ret); 1403 } 1404 1405 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1406 btrfs_set_root_bytenr(root_item, eb->start); 1407 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1408 btrfs_set_root_generation(root_item, trans->transid); 1409 1410 if (root->root_key.objectid == objectid) { 1411 btrfs_set_root_refs(root_item, 0); 1412 memset(&root_item->drop_progress, 0, 1413 sizeof(struct btrfs_disk_key)); 1414 root_item->drop_level = 0; 1415 /* 1416 * abuse rtransid, it is safe because it is impossible to 1417 * receive data into a relocation tree. 1418 */ 1419 btrfs_set_root_rtransid(root_item, last_snap); 1420 btrfs_set_root_otransid(root_item, trans->transid); 1421 } 1422 1423 btrfs_tree_unlock(eb); 1424 free_extent_buffer(eb); 1425 1426 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1427 &root_key, root_item); 1428 BUG_ON(ret); 1429 kfree(root_item); 1430 1431 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1432 BUG_ON(IS_ERR(reloc_root)); 1433 reloc_root->last_trans = trans->transid; 1434 return reloc_root; 1435 } 1436 1437 /* 1438 * create reloc tree for a given fs tree. reloc tree is just a 1439 * snapshot of the fs tree with special root objectid. 1440 */ 1441 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1442 struct btrfs_root *root) 1443 { 1444 struct btrfs_root *reloc_root; 1445 struct reloc_control *rc = root->fs_info->reloc_ctl; 1446 struct btrfs_block_rsv *rsv; 1447 int clear_rsv = 0; 1448 int ret; 1449 1450 if (root->reloc_root) { 1451 reloc_root = root->reloc_root; 1452 reloc_root->last_trans = trans->transid; 1453 return 0; 1454 } 1455 1456 if (!rc || !rc->create_reloc_tree || 1457 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1458 return 0; 1459 1460 if (!trans->reloc_reserved) { 1461 rsv = trans->block_rsv; 1462 trans->block_rsv = rc->block_rsv; 1463 clear_rsv = 1; 1464 } 1465 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1466 if (clear_rsv) 1467 trans->block_rsv = rsv; 1468 1469 ret = __add_reloc_root(reloc_root); 1470 BUG_ON(ret < 0); 1471 root->reloc_root = reloc_root; 1472 return 0; 1473 } 1474 1475 /* 1476 * update root item of reloc tree 1477 */ 1478 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1479 struct btrfs_root *root) 1480 { 1481 struct btrfs_root *reloc_root; 1482 struct btrfs_root_item *root_item; 1483 int ret; 1484 1485 if (!root->reloc_root) 1486 goto out; 1487 1488 reloc_root = root->reloc_root; 1489 root_item = &reloc_root->root_item; 1490 1491 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1492 btrfs_root_refs(root_item) == 0) { 1493 root->reloc_root = NULL; 1494 __del_reloc_root(reloc_root); 1495 } 1496 1497 if (reloc_root->commit_root != reloc_root->node) { 1498 btrfs_set_root_node(root_item, reloc_root->node); 1499 free_extent_buffer(reloc_root->commit_root); 1500 reloc_root->commit_root = btrfs_root_node(reloc_root); 1501 } 1502 1503 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1504 &reloc_root->root_key, root_item); 1505 BUG_ON(ret); 1506 1507 out: 1508 return 0; 1509 } 1510 1511 /* 1512 * helper to find first cached inode with inode number >= objectid 1513 * in a subvolume 1514 */ 1515 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1516 { 1517 struct rb_node *node; 1518 struct rb_node *prev; 1519 struct btrfs_inode *entry; 1520 struct inode *inode; 1521 1522 spin_lock(&root->inode_lock); 1523 again: 1524 node = root->inode_tree.rb_node; 1525 prev = NULL; 1526 while (node) { 1527 prev = node; 1528 entry = rb_entry(node, struct btrfs_inode, rb_node); 1529 1530 if (objectid < btrfs_ino(&entry->vfs_inode)) 1531 node = node->rb_left; 1532 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1533 node = node->rb_right; 1534 else 1535 break; 1536 } 1537 if (!node) { 1538 while (prev) { 1539 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1540 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1541 node = prev; 1542 break; 1543 } 1544 prev = rb_next(prev); 1545 } 1546 } 1547 while (node) { 1548 entry = rb_entry(node, struct btrfs_inode, rb_node); 1549 inode = igrab(&entry->vfs_inode); 1550 if (inode) { 1551 spin_unlock(&root->inode_lock); 1552 return inode; 1553 } 1554 1555 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1556 if (cond_resched_lock(&root->inode_lock)) 1557 goto again; 1558 1559 node = rb_next(node); 1560 } 1561 spin_unlock(&root->inode_lock); 1562 return NULL; 1563 } 1564 1565 static int in_block_group(u64 bytenr, 1566 struct btrfs_block_group_cache *block_group) 1567 { 1568 if (bytenr >= block_group->key.objectid && 1569 bytenr < block_group->key.objectid + block_group->key.offset) 1570 return 1; 1571 return 0; 1572 } 1573 1574 /* 1575 * get new location of data 1576 */ 1577 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1578 u64 bytenr, u64 num_bytes) 1579 { 1580 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1581 struct btrfs_path *path; 1582 struct btrfs_file_extent_item *fi; 1583 struct extent_buffer *leaf; 1584 int ret; 1585 1586 path = btrfs_alloc_path(); 1587 if (!path) 1588 return -ENOMEM; 1589 1590 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1591 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1592 bytenr, 0); 1593 if (ret < 0) 1594 goto out; 1595 if (ret > 0) { 1596 ret = -ENOENT; 1597 goto out; 1598 } 1599 1600 leaf = path->nodes[0]; 1601 fi = btrfs_item_ptr(leaf, path->slots[0], 1602 struct btrfs_file_extent_item); 1603 1604 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1605 btrfs_file_extent_compression(leaf, fi) || 1606 btrfs_file_extent_encryption(leaf, fi) || 1607 btrfs_file_extent_other_encoding(leaf, fi)); 1608 1609 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1610 ret = -EINVAL; 1611 goto out; 1612 } 1613 1614 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1615 ret = 0; 1616 out: 1617 btrfs_free_path(path); 1618 return ret; 1619 } 1620 1621 /* 1622 * update file extent items in the tree leaf to point to 1623 * the new locations. 1624 */ 1625 static noinline_for_stack 1626 int replace_file_extents(struct btrfs_trans_handle *trans, 1627 struct reloc_control *rc, 1628 struct btrfs_root *root, 1629 struct extent_buffer *leaf) 1630 { 1631 struct btrfs_key key; 1632 struct btrfs_file_extent_item *fi; 1633 struct inode *inode = NULL; 1634 u64 parent; 1635 u64 bytenr; 1636 u64 new_bytenr = 0; 1637 u64 num_bytes; 1638 u64 end; 1639 u32 nritems; 1640 u32 i; 1641 int ret = 0; 1642 int first = 1; 1643 int dirty = 0; 1644 1645 if (rc->stage != UPDATE_DATA_PTRS) 1646 return 0; 1647 1648 /* reloc trees always use full backref */ 1649 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1650 parent = leaf->start; 1651 else 1652 parent = 0; 1653 1654 nritems = btrfs_header_nritems(leaf); 1655 for (i = 0; i < nritems; i++) { 1656 cond_resched(); 1657 btrfs_item_key_to_cpu(leaf, &key, i); 1658 if (key.type != BTRFS_EXTENT_DATA_KEY) 1659 continue; 1660 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1661 if (btrfs_file_extent_type(leaf, fi) == 1662 BTRFS_FILE_EXTENT_INLINE) 1663 continue; 1664 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1665 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1666 if (bytenr == 0) 1667 continue; 1668 if (!in_block_group(bytenr, rc->block_group)) 1669 continue; 1670 1671 /* 1672 * if we are modifying block in fs tree, wait for readpage 1673 * to complete and drop the extent cache 1674 */ 1675 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1676 if (first) { 1677 inode = find_next_inode(root, key.objectid); 1678 first = 0; 1679 } else if (inode && btrfs_ino(inode) < key.objectid) { 1680 btrfs_add_delayed_iput(inode); 1681 inode = find_next_inode(root, key.objectid); 1682 } 1683 if (inode && btrfs_ino(inode) == key.objectid) { 1684 end = key.offset + 1685 btrfs_file_extent_num_bytes(leaf, fi); 1686 WARN_ON(!IS_ALIGNED(key.offset, 1687 root->sectorsize)); 1688 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1689 end--; 1690 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1691 key.offset, end); 1692 if (!ret) 1693 continue; 1694 1695 btrfs_drop_extent_cache(inode, key.offset, end, 1696 1); 1697 unlock_extent(&BTRFS_I(inode)->io_tree, 1698 key.offset, end); 1699 } 1700 } 1701 1702 ret = get_new_location(rc->data_inode, &new_bytenr, 1703 bytenr, num_bytes); 1704 if (ret) { 1705 /* 1706 * Don't have to abort since we've not changed anything 1707 * in the file extent yet. 1708 */ 1709 break; 1710 } 1711 1712 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1713 dirty = 1; 1714 1715 key.offset -= btrfs_file_extent_offset(leaf, fi); 1716 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1717 num_bytes, parent, 1718 btrfs_header_owner(leaf), 1719 key.objectid, key.offset, 1); 1720 if (ret) { 1721 btrfs_abort_transaction(trans, root, ret); 1722 break; 1723 } 1724 1725 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1726 parent, btrfs_header_owner(leaf), 1727 key.objectid, key.offset, 1); 1728 if (ret) { 1729 btrfs_abort_transaction(trans, root, ret); 1730 break; 1731 } 1732 } 1733 if (dirty) 1734 btrfs_mark_buffer_dirty(leaf); 1735 if (inode) 1736 btrfs_add_delayed_iput(inode); 1737 return ret; 1738 } 1739 1740 static noinline_for_stack 1741 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1742 struct btrfs_path *path, int level) 1743 { 1744 struct btrfs_disk_key key1; 1745 struct btrfs_disk_key key2; 1746 btrfs_node_key(eb, &key1, slot); 1747 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1748 return memcmp(&key1, &key2, sizeof(key1)); 1749 } 1750 1751 /* 1752 * try to replace tree blocks in fs tree with the new blocks 1753 * in reloc tree. tree blocks haven't been modified since the 1754 * reloc tree was create can be replaced. 1755 * 1756 * if a block was replaced, level of the block + 1 is returned. 1757 * if no block got replaced, 0 is returned. if there are other 1758 * errors, a negative error number is returned. 1759 */ 1760 static noinline_for_stack 1761 int replace_path(struct btrfs_trans_handle *trans, 1762 struct btrfs_root *dest, struct btrfs_root *src, 1763 struct btrfs_path *path, struct btrfs_key *next_key, 1764 int lowest_level, int max_level) 1765 { 1766 struct extent_buffer *eb; 1767 struct extent_buffer *parent; 1768 struct btrfs_key key; 1769 u64 old_bytenr; 1770 u64 new_bytenr; 1771 u64 old_ptr_gen; 1772 u64 new_ptr_gen; 1773 u64 last_snapshot; 1774 u32 blocksize; 1775 int cow = 0; 1776 int level; 1777 int ret; 1778 int slot; 1779 1780 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1781 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1782 1783 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1784 again: 1785 slot = path->slots[lowest_level]; 1786 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1787 1788 eb = btrfs_lock_root_node(dest); 1789 btrfs_set_lock_blocking(eb); 1790 level = btrfs_header_level(eb); 1791 1792 if (level < lowest_level) { 1793 btrfs_tree_unlock(eb); 1794 free_extent_buffer(eb); 1795 return 0; 1796 } 1797 1798 if (cow) { 1799 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1800 BUG_ON(ret); 1801 } 1802 btrfs_set_lock_blocking(eb); 1803 1804 if (next_key) { 1805 next_key->objectid = (u64)-1; 1806 next_key->type = (u8)-1; 1807 next_key->offset = (u64)-1; 1808 } 1809 1810 parent = eb; 1811 while (1) { 1812 level = btrfs_header_level(parent); 1813 BUG_ON(level < lowest_level); 1814 1815 ret = btrfs_bin_search(parent, &key, level, &slot); 1816 if (ret && slot > 0) 1817 slot--; 1818 1819 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1820 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1821 1822 old_bytenr = btrfs_node_blockptr(parent, slot); 1823 blocksize = dest->nodesize; 1824 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1825 1826 if (level <= max_level) { 1827 eb = path->nodes[level]; 1828 new_bytenr = btrfs_node_blockptr(eb, 1829 path->slots[level]); 1830 new_ptr_gen = btrfs_node_ptr_generation(eb, 1831 path->slots[level]); 1832 } else { 1833 new_bytenr = 0; 1834 new_ptr_gen = 0; 1835 } 1836 1837 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1838 ret = level; 1839 break; 1840 } 1841 1842 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1843 memcmp_node_keys(parent, slot, path, level)) { 1844 if (level <= lowest_level) { 1845 ret = 0; 1846 break; 1847 } 1848 1849 eb = read_tree_block(dest, old_bytenr, old_ptr_gen); 1850 if (!eb || !extent_buffer_uptodate(eb)) { 1851 ret = (!eb) ? -ENOMEM : -EIO; 1852 free_extent_buffer(eb); 1853 break; 1854 } 1855 btrfs_tree_lock(eb); 1856 if (cow) { 1857 ret = btrfs_cow_block(trans, dest, eb, parent, 1858 slot, &eb); 1859 BUG_ON(ret); 1860 } 1861 btrfs_set_lock_blocking(eb); 1862 1863 btrfs_tree_unlock(parent); 1864 free_extent_buffer(parent); 1865 1866 parent = eb; 1867 continue; 1868 } 1869 1870 if (!cow) { 1871 btrfs_tree_unlock(parent); 1872 free_extent_buffer(parent); 1873 cow = 1; 1874 goto again; 1875 } 1876 1877 btrfs_node_key_to_cpu(path->nodes[level], &key, 1878 path->slots[level]); 1879 btrfs_release_path(path); 1880 1881 path->lowest_level = level; 1882 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1883 path->lowest_level = 0; 1884 BUG_ON(ret); 1885 1886 /* 1887 * swap blocks in fs tree and reloc tree. 1888 */ 1889 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1890 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1891 btrfs_mark_buffer_dirty(parent); 1892 1893 btrfs_set_node_blockptr(path->nodes[level], 1894 path->slots[level], old_bytenr); 1895 btrfs_set_node_ptr_generation(path->nodes[level], 1896 path->slots[level], old_ptr_gen); 1897 btrfs_mark_buffer_dirty(path->nodes[level]); 1898 1899 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1900 path->nodes[level]->start, 1901 src->root_key.objectid, level - 1, 0, 1902 1); 1903 BUG_ON(ret); 1904 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1905 0, dest->root_key.objectid, level - 1, 1906 0, 1); 1907 BUG_ON(ret); 1908 1909 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1910 path->nodes[level]->start, 1911 src->root_key.objectid, level - 1, 0, 1912 1); 1913 BUG_ON(ret); 1914 1915 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1916 0, dest->root_key.objectid, level - 1, 1917 0, 1); 1918 BUG_ON(ret); 1919 1920 btrfs_unlock_up_safe(path, 0); 1921 1922 ret = level; 1923 break; 1924 } 1925 btrfs_tree_unlock(parent); 1926 free_extent_buffer(parent); 1927 return ret; 1928 } 1929 1930 /* 1931 * helper to find next relocated block in reloc tree 1932 */ 1933 static noinline_for_stack 1934 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1935 int *level) 1936 { 1937 struct extent_buffer *eb; 1938 int i; 1939 u64 last_snapshot; 1940 u32 nritems; 1941 1942 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1943 1944 for (i = 0; i < *level; i++) { 1945 free_extent_buffer(path->nodes[i]); 1946 path->nodes[i] = NULL; 1947 } 1948 1949 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1950 eb = path->nodes[i]; 1951 nritems = btrfs_header_nritems(eb); 1952 while (path->slots[i] + 1 < nritems) { 1953 path->slots[i]++; 1954 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1955 last_snapshot) 1956 continue; 1957 1958 *level = i; 1959 return 0; 1960 } 1961 free_extent_buffer(path->nodes[i]); 1962 path->nodes[i] = NULL; 1963 } 1964 return 1; 1965 } 1966 1967 /* 1968 * walk down reloc tree to find relocated block of lowest level 1969 */ 1970 static noinline_for_stack 1971 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1972 int *level) 1973 { 1974 struct extent_buffer *eb = NULL; 1975 int i; 1976 u64 bytenr; 1977 u64 ptr_gen = 0; 1978 u64 last_snapshot; 1979 u32 nritems; 1980 1981 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1982 1983 for (i = *level; i > 0; i--) { 1984 eb = path->nodes[i]; 1985 nritems = btrfs_header_nritems(eb); 1986 while (path->slots[i] < nritems) { 1987 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1988 if (ptr_gen > last_snapshot) 1989 break; 1990 path->slots[i]++; 1991 } 1992 if (path->slots[i] >= nritems) { 1993 if (i == *level) 1994 break; 1995 *level = i + 1; 1996 return 0; 1997 } 1998 if (i == 1) { 1999 *level = i; 2000 return 0; 2001 } 2002 2003 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2004 eb = read_tree_block(root, bytenr, ptr_gen); 2005 if (!eb || !extent_buffer_uptodate(eb)) { 2006 free_extent_buffer(eb); 2007 return -EIO; 2008 } 2009 BUG_ON(btrfs_header_level(eb) != i - 1); 2010 path->nodes[i - 1] = eb; 2011 path->slots[i - 1] = 0; 2012 } 2013 return 1; 2014 } 2015 2016 /* 2017 * invalidate extent cache for file extents whose key in range of 2018 * [min_key, max_key) 2019 */ 2020 static int invalidate_extent_cache(struct btrfs_root *root, 2021 struct btrfs_key *min_key, 2022 struct btrfs_key *max_key) 2023 { 2024 struct inode *inode = NULL; 2025 u64 objectid; 2026 u64 start, end; 2027 u64 ino; 2028 2029 objectid = min_key->objectid; 2030 while (1) { 2031 cond_resched(); 2032 iput(inode); 2033 2034 if (objectid > max_key->objectid) 2035 break; 2036 2037 inode = find_next_inode(root, objectid); 2038 if (!inode) 2039 break; 2040 ino = btrfs_ino(inode); 2041 2042 if (ino > max_key->objectid) { 2043 iput(inode); 2044 break; 2045 } 2046 2047 objectid = ino + 1; 2048 if (!S_ISREG(inode->i_mode)) 2049 continue; 2050 2051 if (unlikely(min_key->objectid == ino)) { 2052 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2053 continue; 2054 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2055 start = 0; 2056 else { 2057 start = min_key->offset; 2058 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2059 } 2060 } else { 2061 start = 0; 2062 } 2063 2064 if (unlikely(max_key->objectid == ino)) { 2065 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2066 continue; 2067 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2068 end = (u64)-1; 2069 } else { 2070 if (max_key->offset == 0) 2071 continue; 2072 end = max_key->offset; 2073 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2074 end--; 2075 } 2076 } else { 2077 end = (u64)-1; 2078 } 2079 2080 /* the lock_extent waits for readpage to complete */ 2081 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2082 btrfs_drop_extent_cache(inode, start, end, 1); 2083 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2084 } 2085 return 0; 2086 } 2087 2088 static int find_next_key(struct btrfs_path *path, int level, 2089 struct btrfs_key *key) 2090 2091 { 2092 while (level < BTRFS_MAX_LEVEL) { 2093 if (!path->nodes[level]) 2094 break; 2095 if (path->slots[level] + 1 < 2096 btrfs_header_nritems(path->nodes[level])) { 2097 btrfs_node_key_to_cpu(path->nodes[level], key, 2098 path->slots[level] + 1); 2099 return 0; 2100 } 2101 level++; 2102 } 2103 return 1; 2104 } 2105 2106 /* 2107 * merge the relocated tree blocks in reloc tree with corresponding 2108 * fs tree. 2109 */ 2110 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2111 struct btrfs_root *root) 2112 { 2113 LIST_HEAD(inode_list); 2114 struct btrfs_key key; 2115 struct btrfs_key next_key; 2116 struct btrfs_trans_handle *trans = NULL; 2117 struct btrfs_root *reloc_root; 2118 struct btrfs_root_item *root_item; 2119 struct btrfs_path *path; 2120 struct extent_buffer *leaf; 2121 int level; 2122 int max_level; 2123 int replaced = 0; 2124 int ret; 2125 int err = 0; 2126 u32 min_reserved; 2127 2128 path = btrfs_alloc_path(); 2129 if (!path) 2130 return -ENOMEM; 2131 path->reada = 1; 2132 2133 reloc_root = root->reloc_root; 2134 root_item = &reloc_root->root_item; 2135 2136 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2137 level = btrfs_root_level(root_item); 2138 extent_buffer_get(reloc_root->node); 2139 path->nodes[level] = reloc_root->node; 2140 path->slots[level] = 0; 2141 } else { 2142 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2143 2144 level = root_item->drop_level; 2145 BUG_ON(level == 0); 2146 path->lowest_level = level; 2147 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2148 path->lowest_level = 0; 2149 if (ret < 0) { 2150 btrfs_free_path(path); 2151 return ret; 2152 } 2153 2154 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2155 path->slots[level]); 2156 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2157 2158 btrfs_unlock_up_safe(path, 0); 2159 } 2160 2161 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2162 memset(&next_key, 0, sizeof(next_key)); 2163 2164 while (1) { 2165 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2166 BTRFS_RESERVE_FLUSH_ALL); 2167 if (ret) { 2168 err = ret; 2169 goto out; 2170 } 2171 trans = btrfs_start_transaction(root, 0); 2172 if (IS_ERR(trans)) { 2173 err = PTR_ERR(trans); 2174 trans = NULL; 2175 goto out; 2176 } 2177 trans->block_rsv = rc->block_rsv; 2178 2179 replaced = 0; 2180 max_level = level; 2181 2182 ret = walk_down_reloc_tree(reloc_root, path, &level); 2183 if (ret < 0) { 2184 err = ret; 2185 goto out; 2186 } 2187 if (ret > 0) 2188 break; 2189 2190 if (!find_next_key(path, level, &key) && 2191 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2192 ret = 0; 2193 } else { 2194 ret = replace_path(trans, root, reloc_root, path, 2195 &next_key, level, max_level); 2196 } 2197 if (ret < 0) { 2198 err = ret; 2199 goto out; 2200 } 2201 2202 if (ret > 0) { 2203 level = ret; 2204 btrfs_node_key_to_cpu(path->nodes[level], &key, 2205 path->slots[level]); 2206 replaced = 1; 2207 } 2208 2209 ret = walk_up_reloc_tree(reloc_root, path, &level); 2210 if (ret > 0) 2211 break; 2212 2213 BUG_ON(level == 0); 2214 /* 2215 * save the merging progress in the drop_progress. 2216 * this is OK since root refs == 1 in this case. 2217 */ 2218 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2219 path->slots[level]); 2220 root_item->drop_level = level; 2221 2222 btrfs_end_transaction_throttle(trans, root); 2223 trans = NULL; 2224 2225 btrfs_btree_balance_dirty(root); 2226 2227 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2228 invalidate_extent_cache(root, &key, &next_key); 2229 } 2230 2231 /* 2232 * handle the case only one block in the fs tree need to be 2233 * relocated and the block is tree root. 2234 */ 2235 leaf = btrfs_lock_root_node(root); 2236 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2237 btrfs_tree_unlock(leaf); 2238 free_extent_buffer(leaf); 2239 if (ret < 0) 2240 err = ret; 2241 out: 2242 btrfs_free_path(path); 2243 2244 if (err == 0) { 2245 memset(&root_item->drop_progress, 0, 2246 sizeof(root_item->drop_progress)); 2247 root_item->drop_level = 0; 2248 btrfs_set_root_refs(root_item, 0); 2249 btrfs_update_reloc_root(trans, root); 2250 } 2251 2252 if (trans) 2253 btrfs_end_transaction_throttle(trans, root); 2254 2255 btrfs_btree_balance_dirty(root); 2256 2257 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2258 invalidate_extent_cache(root, &key, &next_key); 2259 2260 return err; 2261 } 2262 2263 static noinline_for_stack 2264 int prepare_to_merge(struct reloc_control *rc, int err) 2265 { 2266 struct btrfs_root *root = rc->extent_root; 2267 struct btrfs_root *reloc_root; 2268 struct btrfs_trans_handle *trans; 2269 LIST_HEAD(reloc_roots); 2270 u64 num_bytes = 0; 2271 int ret; 2272 2273 mutex_lock(&root->fs_info->reloc_mutex); 2274 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2275 rc->merging_rsv_size += rc->nodes_relocated * 2; 2276 mutex_unlock(&root->fs_info->reloc_mutex); 2277 2278 again: 2279 if (!err) { 2280 num_bytes = rc->merging_rsv_size; 2281 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2282 BTRFS_RESERVE_FLUSH_ALL); 2283 if (ret) 2284 err = ret; 2285 } 2286 2287 trans = btrfs_join_transaction(rc->extent_root); 2288 if (IS_ERR(trans)) { 2289 if (!err) 2290 btrfs_block_rsv_release(rc->extent_root, 2291 rc->block_rsv, num_bytes); 2292 return PTR_ERR(trans); 2293 } 2294 2295 if (!err) { 2296 if (num_bytes != rc->merging_rsv_size) { 2297 btrfs_end_transaction(trans, rc->extent_root); 2298 btrfs_block_rsv_release(rc->extent_root, 2299 rc->block_rsv, num_bytes); 2300 goto again; 2301 } 2302 } 2303 2304 rc->merge_reloc_tree = 1; 2305 2306 while (!list_empty(&rc->reloc_roots)) { 2307 reloc_root = list_entry(rc->reloc_roots.next, 2308 struct btrfs_root, root_list); 2309 list_del_init(&reloc_root->root_list); 2310 2311 root = read_fs_root(reloc_root->fs_info, 2312 reloc_root->root_key.offset); 2313 BUG_ON(IS_ERR(root)); 2314 BUG_ON(root->reloc_root != reloc_root); 2315 2316 /* 2317 * set reference count to 1, so btrfs_recover_relocation 2318 * knows it should resumes merging 2319 */ 2320 if (!err) 2321 btrfs_set_root_refs(&reloc_root->root_item, 1); 2322 btrfs_update_reloc_root(trans, root); 2323 2324 list_add(&reloc_root->root_list, &reloc_roots); 2325 } 2326 2327 list_splice(&reloc_roots, &rc->reloc_roots); 2328 2329 if (!err) 2330 btrfs_commit_transaction(trans, rc->extent_root); 2331 else 2332 btrfs_end_transaction(trans, rc->extent_root); 2333 return err; 2334 } 2335 2336 static noinline_for_stack 2337 void free_reloc_roots(struct list_head *list) 2338 { 2339 struct btrfs_root *reloc_root; 2340 2341 while (!list_empty(list)) { 2342 reloc_root = list_entry(list->next, struct btrfs_root, 2343 root_list); 2344 __del_reloc_root(reloc_root); 2345 } 2346 } 2347 2348 static noinline_for_stack 2349 void merge_reloc_roots(struct reloc_control *rc) 2350 { 2351 struct btrfs_root *root; 2352 struct btrfs_root *reloc_root; 2353 u64 last_snap; 2354 u64 otransid; 2355 u64 objectid; 2356 LIST_HEAD(reloc_roots); 2357 int found = 0; 2358 int ret = 0; 2359 again: 2360 root = rc->extent_root; 2361 2362 /* 2363 * this serializes us with btrfs_record_root_in_transaction, 2364 * we have to make sure nobody is in the middle of 2365 * adding their roots to the list while we are 2366 * doing this splice 2367 */ 2368 mutex_lock(&root->fs_info->reloc_mutex); 2369 list_splice_init(&rc->reloc_roots, &reloc_roots); 2370 mutex_unlock(&root->fs_info->reloc_mutex); 2371 2372 while (!list_empty(&reloc_roots)) { 2373 found = 1; 2374 reloc_root = list_entry(reloc_roots.next, 2375 struct btrfs_root, root_list); 2376 2377 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2378 root = read_fs_root(reloc_root->fs_info, 2379 reloc_root->root_key.offset); 2380 BUG_ON(IS_ERR(root)); 2381 BUG_ON(root->reloc_root != reloc_root); 2382 2383 ret = merge_reloc_root(rc, root); 2384 if (ret) { 2385 if (list_empty(&reloc_root->root_list)) 2386 list_add_tail(&reloc_root->root_list, 2387 &reloc_roots); 2388 goto out; 2389 } 2390 } else { 2391 list_del_init(&reloc_root->root_list); 2392 } 2393 2394 /* 2395 * we keep the old last snapshod transid in rtranid when we 2396 * created the relocation tree. 2397 */ 2398 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2399 otransid = btrfs_root_otransid(&reloc_root->root_item); 2400 objectid = reloc_root->root_key.offset; 2401 2402 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2403 if (ret < 0) { 2404 if (list_empty(&reloc_root->root_list)) 2405 list_add_tail(&reloc_root->root_list, 2406 &reloc_roots); 2407 goto out; 2408 } 2409 } 2410 2411 if (found) { 2412 found = 0; 2413 goto again; 2414 } 2415 out: 2416 if (ret) { 2417 btrfs_std_error(root->fs_info, ret); 2418 if (!list_empty(&reloc_roots)) 2419 free_reloc_roots(&reloc_roots); 2420 2421 /* new reloc root may be added */ 2422 mutex_lock(&root->fs_info->reloc_mutex); 2423 list_splice_init(&rc->reloc_roots, &reloc_roots); 2424 mutex_unlock(&root->fs_info->reloc_mutex); 2425 if (!list_empty(&reloc_roots)) 2426 free_reloc_roots(&reloc_roots); 2427 } 2428 2429 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2430 } 2431 2432 static void free_block_list(struct rb_root *blocks) 2433 { 2434 struct tree_block *block; 2435 struct rb_node *rb_node; 2436 while ((rb_node = rb_first(blocks))) { 2437 block = rb_entry(rb_node, struct tree_block, rb_node); 2438 rb_erase(rb_node, blocks); 2439 kfree(block); 2440 } 2441 } 2442 2443 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2444 struct btrfs_root *reloc_root) 2445 { 2446 struct btrfs_root *root; 2447 2448 if (reloc_root->last_trans == trans->transid) 2449 return 0; 2450 2451 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2452 BUG_ON(IS_ERR(root)); 2453 BUG_ON(root->reloc_root != reloc_root); 2454 2455 return btrfs_record_root_in_trans(trans, root); 2456 } 2457 2458 static noinline_for_stack 2459 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2460 struct reloc_control *rc, 2461 struct backref_node *node, 2462 struct backref_edge *edges[]) 2463 { 2464 struct backref_node *next; 2465 struct btrfs_root *root; 2466 int index = 0; 2467 2468 next = node; 2469 while (1) { 2470 cond_resched(); 2471 next = walk_up_backref(next, edges, &index); 2472 root = next->root; 2473 BUG_ON(!root); 2474 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2475 2476 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2477 record_reloc_root_in_trans(trans, root); 2478 break; 2479 } 2480 2481 btrfs_record_root_in_trans(trans, root); 2482 root = root->reloc_root; 2483 2484 if (next->new_bytenr != root->node->start) { 2485 BUG_ON(next->new_bytenr); 2486 BUG_ON(!list_empty(&next->list)); 2487 next->new_bytenr = root->node->start; 2488 next->root = root; 2489 list_add_tail(&next->list, 2490 &rc->backref_cache.changed); 2491 __mark_block_processed(rc, next); 2492 break; 2493 } 2494 2495 WARN_ON(1); 2496 root = NULL; 2497 next = walk_down_backref(edges, &index); 2498 if (!next || next->level <= node->level) 2499 break; 2500 } 2501 if (!root) 2502 return NULL; 2503 2504 next = node; 2505 /* setup backref node path for btrfs_reloc_cow_block */ 2506 while (1) { 2507 rc->backref_cache.path[next->level] = next; 2508 if (--index < 0) 2509 break; 2510 next = edges[index]->node[UPPER]; 2511 } 2512 return root; 2513 } 2514 2515 /* 2516 * select a tree root for relocation. return NULL if the block 2517 * is reference counted. we should use do_relocation() in this 2518 * case. return a tree root pointer if the block isn't reference 2519 * counted. return -ENOENT if the block is root of reloc tree. 2520 */ 2521 static noinline_for_stack 2522 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2523 struct backref_node *node) 2524 { 2525 struct backref_node *next; 2526 struct btrfs_root *root; 2527 struct btrfs_root *fs_root = NULL; 2528 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2529 int index = 0; 2530 2531 next = node; 2532 while (1) { 2533 cond_resched(); 2534 next = walk_up_backref(next, edges, &index); 2535 root = next->root; 2536 BUG_ON(!root); 2537 2538 /* no other choice for non-references counted tree */ 2539 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2540 return root; 2541 2542 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2543 fs_root = root; 2544 2545 if (next != node) 2546 return NULL; 2547 2548 next = walk_down_backref(edges, &index); 2549 if (!next || next->level <= node->level) 2550 break; 2551 } 2552 2553 if (!fs_root) 2554 return ERR_PTR(-ENOENT); 2555 return fs_root; 2556 } 2557 2558 static noinline_for_stack 2559 u64 calcu_metadata_size(struct reloc_control *rc, 2560 struct backref_node *node, int reserve) 2561 { 2562 struct backref_node *next = node; 2563 struct backref_edge *edge; 2564 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2565 u64 num_bytes = 0; 2566 int index = 0; 2567 2568 BUG_ON(reserve && node->processed); 2569 2570 while (next) { 2571 cond_resched(); 2572 while (1) { 2573 if (next->processed && (reserve || next != node)) 2574 break; 2575 2576 num_bytes += rc->extent_root->nodesize; 2577 2578 if (list_empty(&next->upper)) 2579 break; 2580 2581 edge = list_entry(next->upper.next, 2582 struct backref_edge, list[LOWER]); 2583 edges[index++] = edge; 2584 next = edge->node[UPPER]; 2585 } 2586 next = walk_down_backref(edges, &index); 2587 } 2588 return num_bytes; 2589 } 2590 2591 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2592 struct reloc_control *rc, 2593 struct backref_node *node) 2594 { 2595 struct btrfs_root *root = rc->extent_root; 2596 u64 num_bytes; 2597 int ret; 2598 u64 tmp; 2599 2600 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2601 2602 trans->block_rsv = rc->block_rsv; 2603 rc->reserved_bytes += num_bytes; 2604 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2605 BTRFS_RESERVE_FLUSH_ALL); 2606 if (ret) { 2607 if (ret == -EAGAIN) { 2608 tmp = rc->extent_root->nodesize * 2609 RELOCATION_RESERVED_NODES; 2610 while (tmp <= rc->reserved_bytes) 2611 tmp <<= 1; 2612 /* 2613 * only one thread can access block_rsv at this point, 2614 * so we don't need hold lock to protect block_rsv. 2615 * we expand more reservation size here to allow enough 2616 * space for relocation and we will return eailer in 2617 * enospc case. 2618 */ 2619 rc->block_rsv->size = tmp + rc->extent_root->nodesize * 2620 RELOCATION_RESERVED_NODES; 2621 } 2622 return ret; 2623 } 2624 2625 return 0; 2626 } 2627 2628 /* 2629 * relocate a block tree, and then update pointers in upper level 2630 * blocks that reference the block to point to the new location. 2631 * 2632 * if called by link_to_upper, the block has already been relocated. 2633 * in that case this function just updates pointers. 2634 */ 2635 static int do_relocation(struct btrfs_trans_handle *trans, 2636 struct reloc_control *rc, 2637 struct backref_node *node, 2638 struct btrfs_key *key, 2639 struct btrfs_path *path, int lowest) 2640 { 2641 struct backref_node *upper; 2642 struct backref_edge *edge; 2643 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2644 struct btrfs_root *root; 2645 struct extent_buffer *eb; 2646 u32 blocksize; 2647 u64 bytenr; 2648 u64 generation; 2649 int slot; 2650 int ret; 2651 int err = 0; 2652 2653 BUG_ON(lowest && node->eb); 2654 2655 path->lowest_level = node->level + 1; 2656 rc->backref_cache.path[node->level] = node; 2657 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2658 cond_resched(); 2659 2660 upper = edge->node[UPPER]; 2661 root = select_reloc_root(trans, rc, upper, edges); 2662 BUG_ON(!root); 2663 2664 if (upper->eb && !upper->locked) { 2665 if (!lowest) { 2666 ret = btrfs_bin_search(upper->eb, key, 2667 upper->level, &slot); 2668 BUG_ON(ret); 2669 bytenr = btrfs_node_blockptr(upper->eb, slot); 2670 if (node->eb->start == bytenr) 2671 goto next; 2672 } 2673 drop_node_buffer(upper); 2674 } 2675 2676 if (!upper->eb) { 2677 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2678 if (ret < 0) { 2679 err = ret; 2680 break; 2681 } 2682 BUG_ON(ret > 0); 2683 2684 if (!upper->eb) { 2685 upper->eb = path->nodes[upper->level]; 2686 path->nodes[upper->level] = NULL; 2687 } else { 2688 BUG_ON(upper->eb != path->nodes[upper->level]); 2689 } 2690 2691 upper->locked = 1; 2692 path->locks[upper->level] = 0; 2693 2694 slot = path->slots[upper->level]; 2695 btrfs_release_path(path); 2696 } else { 2697 ret = btrfs_bin_search(upper->eb, key, upper->level, 2698 &slot); 2699 BUG_ON(ret); 2700 } 2701 2702 bytenr = btrfs_node_blockptr(upper->eb, slot); 2703 if (lowest) { 2704 BUG_ON(bytenr != node->bytenr); 2705 } else { 2706 if (node->eb->start == bytenr) 2707 goto next; 2708 } 2709 2710 blocksize = root->nodesize; 2711 generation = btrfs_node_ptr_generation(upper->eb, slot); 2712 eb = read_tree_block(root, bytenr, generation); 2713 if (!eb || !extent_buffer_uptodate(eb)) { 2714 free_extent_buffer(eb); 2715 err = -EIO; 2716 goto next; 2717 } 2718 btrfs_tree_lock(eb); 2719 btrfs_set_lock_blocking(eb); 2720 2721 if (!node->eb) { 2722 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2723 slot, &eb); 2724 btrfs_tree_unlock(eb); 2725 free_extent_buffer(eb); 2726 if (ret < 0) { 2727 err = ret; 2728 goto next; 2729 } 2730 BUG_ON(node->eb != eb); 2731 } else { 2732 btrfs_set_node_blockptr(upper->eb, slot, 2733 node->eb->start); 2734 btrfs_set_node_ptr_generation(upper->eb, slot, 2735 trans->transid); 2736 btrfs_mark_buffer_dirty(upper->eb); 2737 2738 ret = btrfs_inc_extent_ref(trans, root, 2739 node->eb->start, blocksize, 2740 upper->eb->start, 2741 btrfs_header_owner(upper->eb), 2742 node->level, 0, 1); 2743 BUG_ON(ret); 2744 2745 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2746 BUG_ON(ret); 2747 } 2748 next: 2749 if (!upper->pending) 2750 drop_node_buffer(upper); 2751 else 2752 unlock_node_buffer(upper); 2753 if (err) 2754 break; 2755 } 2756 2757 if (!err && node->pending) { 2758 drop_node_buffer(node); 2759 list_move_tail(&node->list, &rc->backref_cache.changed); 2760 node->pending = 0; 2761 } 2762 2763 path->lowest_level = 0; 2764 BUG_ON(err == -ENOSPC); 2765 return err; 2766 } 2767 2768 static int link_to_upper(struct btrfs_trans_handle *trans, 2769 struct reloc_control *rc, 2770 struct backref_node *node, 2771 struct btrfs_path *path) 2772 { 2773 struct btrfs_key key; 2774 2775 btrfs_node_key_to_cpu(node->eb, &key, 0); 2776 return do_relocation(trans, rc, node, &key, path, 0); 2777 } 2778 2779 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2780 struct reloc_control *rc, 2781 struct btrfs_path *path, int err) 2782 { 2783 LIST_HEAD(list); 2784 struct backref_cache *cache = &rc->backref_cache; 2785 struct backref_node *node; 2786 int level; 2787 int ret; 2788 2789 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2790 while (!list_empty(&cache->pending[level])) { 2791 node = list_entry(cache->pending[level].next, 2792 struct backref_node, list); 2793 list_move_tail(&node->list, &list); 2794 BUG_ON(!node->pending); 2795 2796 if (!err) { 2797 ret = link_to_upper(trans, rc, node, path); 2798 if (ret < 0) 2799 err = ret; 2800 } 2801 } 2802 list_splice_init(&list, &cache->pending[level]); 2803 } 2804 return err; 2805 } 2806 2807 static void mark_block_processed(struct reloc_control *rc, 2808 u64 bytenr, u32 blocksize) 2809 { 2810 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2811 EXTENT_DIRTY, GFP_NOFS); 2812 } 2813 2814 static void __mark_block_processed(struct reloc_control *rc, 2815 struct backref_node *node) 2816 { 2817 u32 blocksize; 2818 if (node->level == 0 || 2819 in_block_group(node->bytenr, rc->block_group)) { 2820 blocksize = rc->extent_root->nodesize; 2821 mark_block_processed(rc, node->bytenr, blocksize); 2822 } 2823 node->processed = 1; 2824 } 2825 2826 /* 2827 * mark a block and all blocks directly/indirectly reference the block 2828 * as processed. 2829 */ 2830 static void update_processed_blocks(struct reloc_control *rc, 2831 struct backref_node *node) 2832 { 2833 struct backref_node *next = node; 2834 struct backref_edge *edge; 2835 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2836 int index = 0; 2837 2838 while (next) { 2839 cond_resched(); 2840 while (1) { 2841 if (next->processed) 2842 break; 2843 2844 __mark_block_processed(rc, next); 2845 2846 if (list_empty(&next->upper)) 2847 break; 2848 2849 edge = list_entry(next->upper.next, 2850 struct backref_edge, list[LOWER]); 2851 edges[index++] = edge; 2852 next = edge->node[UPPER]; 2853 } 2854 next = walk_down_backref(edges, &index); 2855 } 2856 } 2857 2858 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2859 { 2860 u32 blocksize = rc->extent_root->nodesize; 2861 2862 if (test_range_bit(&rc->processed_blocks, bytenr, 2863 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2864 return 1; 2865 return 0; 2866 } 2867 2868 static int get_tree_block_key(struct reloc_control *rc, 2869 struct tree_block *block) 2870 { 2871 struct extent_buffer *eb; 2872 2873 BUG_ON(block->key_ready); 2874 eb = read_tree_block(rc->extent_root, block->bytenr, 2875 block->key.offset); 2876 if (!eb || !extent_buffer_uptodate(eb)) { 2877 free_extent_buffer(eb); 2878 return -EIO; 2879 } 2880 WARN_ON(btrfs_header_level(eb) != block->level); 2881 if (block->level == 0) 2882 btrfs_item_key_to_cpu(eb, &block->key, 0); 2883 else 2884 btrfs_node_key_to_cpu(eb, &block->key, 0); 2885 free_extent_buffer(eb); 2886 block->key_ready = 1; 2887 return 0; 2888 } 2889 2890 /* 2891 * helper function to relocate a tree block 2892 */ 2893 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2894 struct reloc_control *rc, 2895 struct backref_node *node, 2896 struct btrfs_key *key, 2897 struct btrfs_path *path) 2898 { 2899 struct btrfs_root *root; 2900 int ret = 0; 2901 2902 if (!node) 2903 return 0; 2904 2905 BUG_ON(node->processed); 2906 root = select_one_root(trans, node); 2907 if (root == ERR_PTR(-ENOENT)) { 2908 update_processed_blocks(rc, node); 2909 goto out; 2910 } 2911 2912 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2913 ret = reserve_metadata_space(trans, rc, node); 2914 if (ret) 2915 goto out; 2916 } 2917 2918 if (root) { 2919 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2920 BUG_ON(node->new_bytenr); 2921 BUG_ON(!list_empty(&node->list)); 2922 btrfs_record_root_in_trans(trans, root); 2923 root = root->reloc_root; 2924 node->new_bytenr = root->node->start; 2925 node->root = root; 2926 list_add_tail(&node->list, &rc->backref_cache.changed); 2927 } else { 2928 path->lowest_level = node->level; 2929 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2930 btrfs_release_path(path); 2931 if (ret > 0) 2932 ret = 0; 2933 } 2934 if (!ret) 2935 update_processed_blocks(rc, node); 2936 } else { 2937 ret = do_relocation(trans, rc, node, key, path, 1); 2938 } 2939 out: 2940 if (ret || node->level == 0 || node->cowonly) 2941 remove_backref_node(&rc->backref_cache, node); 2942 return ret; 2943 } 2944 2945 /* 2946 * relocate a list of blocks 2947 */ 2948 static noinline_for_stack 2949 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2950 struct reloc_control *rc, struct rb_root *blocks) 2951 { 2952 struct backref_node *node; 2953 struct btrfs_path *path; 2954 struct tree_block *block; 2955 struct rb_node *rb_node; 2956 int ret; 2957 int err = 0; 2958 2959 path = btrfs_alloc_path(); 2960 if (!path) { 2961 err = -ENOMEM; 2962 goto out_free_blocks; 2963 } 2964 2965 rb_node = rb_first(blocks); 2966 while (rb_node) { 2967 block = rb_entry(rb_node, struct tree_block, rb_node); 2968 if (!block->key_ready) 2969 readahead_tree_block(rc->extent_root, block->bytenr); 2970 rb_node = rb_next(rb_node); 2971 } 2972 2973 rb_node = rb_first(blocks); 2974 while (rb_node) { 2975 block = rb_entry(rb_node, struct tree_block, rb_node); 2976 if (!block->key_ready) { 2977 err = get_tree_block_key(rc, block); 2978 if (err) 2979 goto out_free_path; 2980 } 2981 rb_node = rb_next(rb_node); 2982 } 2983 2984 rb_node = rb_first(blocks); 2985 while (rb_node) { 2986 block = rb_entry(rb_node, struct tree_block, rb_node); 2987 2988 node = build_backref_tree(rc, &block->key, 2989 block->level, block->bytenr); 2990 if (IS_ERR(node)) { 2991 err = PTR_ERR(node); 2992 goto out; 2993 } 2994 2995 ret = relocate_tree_block(trans, rc, node, &block->key, 2996 path); 2997 if (ret < 0) { 2998 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2999 err = ret; 3000 goto out; 3001 } 3002 rb_node = rb_next(rb_node); 3003 } 3004 out: 3005 err = finish_pending_nodes(trans, rc, path, err); 3006 3007 out_free_path: 3008 btrfs_free_path(path); 3009 out_free_blocks: 3010 free_block_list(blocks); 3011 return err; 3012 } 3013 3014 static noinline_for_stack 3015 int prealloc_file_extent_cluster(struct inode *inode, 3016 struct file_extent_cluster *cluster) 3017 { 3018 u64 alloc_hint = 0; 3019 u64 start; 3020 u64 end; 3021 u64 offset = BTRFS_I(inode)->index_cnt; 3022 u64 num_bytes; 3023 int nr = 0; 3024 int ret = 0; 3025 3026 BUG_ON(cluster->start != cluster->boundary[0]); 3027 mutex_lock(&inode->i_mutex); 3028 3029 ret = btrfs_check_data_free_space(inode, cluster->end + 3030 1 - cluster->start, 0); 3031 if (ret) 3032 goto out; 3033 3034 while (nr < cluster->nr) { 3035 start = cluster->boundary[nr] - offset; 3036 if (nr + 1 < cluster->nr) 3037 end = cluster->boundary[nr + 1] - 1 - offset; 3038 else 3039 end = cluster->end - offset; 3040 3041 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3042 num_bytes = end + 1 - start; 3043 ret = btrfs_prealloc_file_range(inode, 0, start, 3044 num_bytes, num_bytes, 3045 end + 1, &alloc_hint); 3046 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3047 if (ret) 3048 break; 3049 nr++; 3050 } 3051 btrfs_free_reserved_data_space(inode, cluster->end + 3052 1 - cluster->start); 3053 out: 3054 mutex_unlock(&inode->i_mutex); 3055 return ret; 3056 } 3057 3058 static noinline_for_stack 3059 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3060 u64 block_start) 3061 { 3062 struct btrfs_root *root = BTRFS_I(inode)->root; 3063 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3064 struct extent_map *em; 3065 int ret = 0; 3066 3067 em = alloc_extent_map(); 3068 if (!em) 3069 return -ENOMEM; 3070 3071 em->start = start; 3072 em->len = end + 1 - start; 3073 em->block_len = em->len; 3074 em->block_start = block_start; 3075 em->bdev = root->fs_info->fs_devices->latest_bdev; 3076 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3077 3078 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3079 while (1) { 3080 write_lock(&em_tree->lock); 3081 ret = add_extent_mapping(em_tree, em, 0); 3082 write_unlock(&em_tree->lock); 3083 if (ret != -EEXIST) { 3084 free_extent_map(em); 3085 break; 3086 } 3087 btrfs_drop_extent_cache(inode, start, end, 0); 3088 } 3089 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3090 return ret; 3091 } 3092 3093 static int relocate_file_extent_cluster(struct inode *inode, 3094 struct file_extent_cluster *cluster) 3095 { 3096 u64 page_start; 3097 u64 page_end; 3098 u64 offset = BTRFS_I(inode)->index_cnt; 3099 unsigned long index; 3100 unsigned long last_index; 3101 struct page *page; 3102 struct file_ra_state *ra; 3103 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3104 int nr = 0; 3105 int ret = 0; 3106 3107 if (!cluster->nr) 3108 return 0; 3109 3110 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3111 if (!ra) 3112 return -ENOMEM; 3113 3114 ret = prealloc_file_extent_cluster(inode, cluster); 3115 if (ret) 3116 goto out; 3117 3118 file_ra_state_init(ra, inode->i_mapping); 3119 3120 ret = setup_extent_mapping(inode, cluster->start - offset, 3121 cluster->end - offset, cluster->start); 3122 if (ret) 3123 goto out; 3124 3125 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3126 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3127 while (index <= last_index) { 3128 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3129 if (ret) 3130 goto out; 3131 3132 page = find_lock_page(inode->i_mapping, index); 3133 if (!page) { 3134 page_cache_sync_readahead(inode->i_mapping, 3135 ra, NULL, index, 3136 last_index + 1 - index); 3137 page = find_or_create_page(inode->i_mapping, index, 3138 mask); 3139 if (!page) { 3140 btrfs_delalloc_release_metadata(inode, 3141 PAGE_CACHE_SIZE); 3142 ret = -ENOMEM; 3143 goto out; 3144 } 3145 } 3146 3147 if (PageReadahead(page)) { 3148 page_cache_async_readahead(inode->i_mapping, 3149 ra, NULL, page, index, 3150 last_index + 1 - index); 3151 } 3152 3153 if (!PageUptodate(page)) { 3154 btrfs_readpage(NULL, page); 3155 lock_page(page); 3156 if (!PageUptodate(page)) { 3157 unlock_page(page); 3158 page_cache_release(page); 3159 btrfs_delalloc_release_metadata(inode, 3160 PAGE_CACHE_SIZE); 3161 ret = -EIO; 3162 goto out; 3163 } 3164 } 3165 3166 page_start = page_offset(page); 3167 page_end = page_start + PAGE_CACHE_SIZE - 1; 3168 3169 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3170 3171 set_page_extent_mapped(page); 3172 3173 if (nr < cluster->nr && 3174 page_start + offset == cluster->boundary[nr]) { 3175 set_extent_bits(&BTRFS_I(inode)->io_tree, 3176 page_start, page_end, 3177 EXTENT_BOUNDARY, GFP_NOFS); 3178 nr++; 3179 } 3180 3181 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3182 set_page_dirty(page); 3183 3184 unlock_extent(&BTRFS_I(inode)->io_tree, 3185 page_start, page_end); 3186 unlock_page(page); 3187 page_cache_release(page); 3188 3189 index++; 3190 balance_dirty_pages_ratelimited(inode->i_mapping); 3191 btrfs_throttle(BTRFS_I(inode)->root); 3192 } 3193 WARN_ON(nr != cluster->nr); 3194 out: 3195 kfree(ra); 3196 return ret; 3197 } 3198 3199 static noinline_for_stack 3200 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3201 struct file_extent_cluster *cluster) 3202 { 3203 int ret; 3204 3205 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3206 ret = relocate_file_extent_cluster(inode, cluster); 3207 if (ret) 3208 return ret; 3209 cluster->nr = 0; 3210 } 3211 3212 if (!cluster->nr) 3213 cluster->start = extent_key->objectid; 3214 else 3215 BUG_ON(cluster->nr >= MAX_EXTENTS); 3216 cluster->end = extent_key->objectid + extent_key->offset - 1; 3217 cluster->boundary[cluster->nr] = extent_key->objectid; 3218 cluster->nr++; 3219 3220 if (cluster->nr >= MAX_EXTENTS) { 3221 ret = relocate_file_extent_cluster(inode, cluster); 3222 if (ret) 3223 return ret; 3224 cluster->nr = 0; 3225 } 3226 return 0; 3227 } 3228 3229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3230 static int get_ref_objectid_v0(struct reloc_control *rc, 3231 struct btrfs_path *path, 3232 struct btrfs_key *extent_key, 3233 u64 *ref_objectid, int *path_change) 3234 { 3235 struct btrfs_key key; 3236 struct extent_buffer *leaf; 3237 struct btrfs_extent_ref_v0 *ref0; 3238 int ret; 3239 int slot; 3240 3241 leaf = path->nodes[0]; 3242 slot = path->slots[0]; 3243 while (1) { 3244 if (slot >= btrfs_header_nritems(leaf)) { 3245 ret = btrfs_next_leaf(rc->extent_root, path); 3246 if (ret < 0) 3247 return ret; 3248 BUG_ON(ret > 0); 3249 leaf = path->nodes[0]; 3250 slot = path->slots[0]; 3251 if (path_change) 3252 *path_change = 1; 3253 } 3254 btrfs_item_key_to_cpu(leaf, &key, slot); 3255 if (key.objectid != extent_key->objectid) 3256 return -ENOENT; 3257 3258 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3259 slot++; 3260 continue; 3261 } 3262 ref0 = btrfs_item_ptr(leaf, slot, 3263 struct btrfs_extent_ref_v0); 3264 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3265 break; 3266 } 3267 return 0; 3268 } 3269 #endif 3270 3271 /* 3272 * helper to add a tree block to the list. 3273 * the major work is getting the generation and level of the block 3274 */ 3275 static int add_tree_block(struct reloc_control *rc, 3276 struct btrfs_key *extent_key, 3277 struct btrfs_path *path, 3278 struct rb_root *blocks) 3279 { 3280 struct extent_buffer *eb; 3281 struct btrfs_extent_item *ei; 3282 struct btrfs_tree_block_info *bi; 3283 struct tree_block *block; 3284 struct rb_node *rb_node; 3285 u32 item_size; 3286 int level = -1; 3287 u64 generation; 3288 3289 eb = path->nodes[0]; 3290 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3291 3292 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3293 item_size >= sizeof(*ei) + sizeof(*bi)) { 3294 ei = btrfs_item_ptr(eb, path->slots[0], 3295 struct btrfs_extent_item); 3296 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3297 bi = (struct btrfs_tree_block_info *)(ei + 1); 3298 level = btrfs_tree_block_level(eb, bi); 3299 } else { 3300 level = (int)extent_key->offset; 3301 } 3302 generation = btrfs_extent_generation(eb, ei); 3303 } else { 3304 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3305 u64 ref_owner; 3306 int ret; 3307 3308 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3309 ret = get_ref_objectid_v0(rc, path, extent_key, 3310 &ref_owner, NULL); 3311 if (ret < 0) 3312 return ret; 3313 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3314 level = (int)ref_owner; 3315 /* FIXME: get real generation */ 3316 generation = 0; 3317 #else 3318 BUG(); 3319 #endif 3320 } 3321 3322 btrfs_release_path(path); 3323 3324 BUG_ON(level == -1); 3325 3326 block = kmalloc(sizeof(*block), GFP_NOFS); 3327 if (!block) 3328 return -ENOMEM; 3329 3330 block->bytenr = extent_key->objectid; 3331 block->key.objectid = rc->extent_root->nodesize; 3332 block->key.offset = generation; 3333 block->level = level; 3334 block->key_ready = 0; 3335 3336 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3337 if (rb_node) 3338 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3339 3340 return 0; 3341 } 3342 3343 /* 3344 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3345 */ 3346 static int __add_tree_block(struct reloc_control *rc, 3347 u64 bytenr, u32 blocksize, 3348 struct rb_root *blocks) 3349 { 3350 struct btrfs_path *path; 3351 struct btrfs_key key; 3352 int ret; 3353 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3354 SKINNY_METADATA); 3355 3356 if (tree_block_processed(bytenr, rc)) 3357 return 0; 3358 3359 if (tree_search(blocks, bytenr)) 3360 return 0; 3361 3362 path = btrfs_alloc_path(); 3363 if (!path) 3364 return -ENOMEM; 3365 again: 3366 key.objectid = bytenr; 3367 if (skinny) { 3368 key.type = BTRFS_METADATA_ITEM_KEY; 3369 key.offset = (u64)-1; 3370 } else { 3371 key.type = BTRFS_EXTENT_ITEM_KEY; 3372 key.offset = blocksize; 3373 } 3374 3375 path->search_commit_root = 1; 3376 path->skip_locking = 1; 3377 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3378 if (ret < 0) 3379 goto out; 3380 3381 if (ret > 0 && skinny) { 3382 if (path->slots[0]) { 3383 path->slots[0]--; 3384 btrfs_item_key_to_cpu(path->nodes[0], &key, 3385 path->slots[0]); 3386 if (key.objectid == bytenr && 3387 (key.type == BTRFS_METADATA_ITEM_KEY || 3388 (key.type == BTRFS_EXTENT_ITEM_KEY && 3389 key.offset == blocksize))) 3390 ret = 0; 3391 } 3392 3393 if (ret) { 3394 skinny = false; 3395 btrfs_release_path(path); 3396 goto again; 3397 } 3398 } 3399 BUG_ON(ret); 3400 3401 ret = add_tree_block(rc, &key, path, blocks); 3402 out: 3403 btrfs_free_path(path); 3404 return ret; 3405 } 3406 3407 /* 3408 * helper to check if the block use full backrefs for pointers in it 3409 */ 3410 static int block_use_full_backref(struct reloc_control *rc, 3411 struct extent_buffer *eb) 3412 { 3413 u64 flags; 3414 int ret; 3415 3416 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3417 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3418 return 1; 3419 3420 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3421 eb->start, btrfs_header_level(eb), 1, 3422 NULL, &flags); 3423 BUG_ON(ret); 3424 3425 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3426 ret = 1; 3427 else 3428 ret = 0; 3429 return ret; 3430 } 3431 3432 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3433 struct btrfs_block_group_cache *block_group, 3434 struct inode *inode, 3435 u64 ino) 3436 { 3437 struct btrfs_key key; 3438 struct btrfs_root *root = fs_info->tree_root; 3439 struct btrfs_trans_handle *trans; 3440 int ret = 0; 3441 3442 if (inode) 3443 goto truncate; 3444 3445 key.objectid = ino; 3446 key.type = BTRFS_INODE_ITEM_KEY; 3447 key.offset = 0; 3448 3449 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3450 if (IS_ERR(inode) || is_bad_inode(inode)) { 3451 if (!IS_ERR(inode)) 3452 iput(inode); 3453 return -ENOENT; 3454 } 3455 3456 truncate: 3457 ret = btrfs_check_trunc_cache_free_space(root, 3458 &fs_info->global_block_rsv); 3459 if (ret) 3460 goto out; 3461 3462 trans = btrfs_join_transaction(root); 3463 if (IS_ERR(trans)) { 3464 ret = PTR_ERR(trans); 3465 goto out; 3466 } 3467 3468 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode); 3469 3470 btrfs_end_transaction(trans, root); 3471 btrfs_btree_balance_dirty(root); 3472 out: 3473 iput(inode); 3474 return ret; 3475 } 3476 3477 /* 3478 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3479 * this function scans fs tree to find blocks reference the data extent 3480 */ 3481 static int find_data_references(struct reloc_control *rc, 3482 struct btrfs_key *extent_key, 3483 struct extent_buffer *leaf, 3484 struct btrfs_extent_data_ref *ref, 3485 struct rb_root *blocks) 3486 { 3487 struct btrfs_path *path; 3488 struct tree_block *block; 3489 struct btrfs_root *root; 3490 struct btrfs_file_extent_item *fi; 3491 struct rb_node *rb_node; 3492 struct btrfs_key key; 3493 u64 ref_root; 3494 u64 ref_objectid; 3495 u64 ref_offset; 3496 u32 ref_count; 3497 u32 nritems; 3498 int err = 0; 3499 int added = 0; 3500 int counted; 3501 int ret; 3502 3503 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3504 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3505 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3506 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3507 3508 /* 3509 * This is an extent belonging to the free space cache, lets just delete 3510 * it and redo the search. 3511 */ 3512 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3513 ret = delete_block_group_cache(rc->extent_root->fs_info, 3514 rc->block_group, 3515 NULL, ref_objectid); 3516 if (ret != -ENOENT) 3517 return ret; 3518 ret = 0; 3519 } 3520 3521 path = btrfs_alloc_path(); 3522 if (!path) 3523 return -ENOMEM; 3524 path->reada = 1; 3525 3526 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3527 if (IS_ERR(root)) { 3528 err = PTR_ERR(root); 3529 goto out; 3530 } 3531 3532 key.objectid = ref_objectid; 3533 key.type = BTRFS_EXTENT_DATA_KEY; 3534 if (ref_offset > ((u64)-1 << 32)) 3535 key.offset = 0; 3536 else 3537 key.offset = ref_offset; 3538 3539 path->search_commit_root = 1; 3540 path->skip_locking = 1; 3541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3542 if (ret < 0) { 3543 err = ret; 3544 goto out; 3545 } 3546 3547 leaf = path->nodes[0]; 3548 nritems = btrfs_header_nritems(leaf); 3549 /* 3550 * the references in tree blocks that use full backrefs 3551 * are not counted in 3552 */ 3553 if (block_use_full_backref(rc, leaf)) 3554 counted = 0; 3555 else 3556 counted = 1; 3557 rb_node = tree_search(blocks, leaf->start); 3558 if (rb_node) { 3559 if (counted) 3560 added = 1; 3561 else 3562 path->slots[0] = nritems; 3563 } 3564 3565 while (ref_count > 0) { 3566 while (path->slots[0] >= nritems) { 3567 ret = btrfs_next_leaf(root, path); 3568 if (ret < 0) { 3569 err = ret; 3570 goto out; 3571 } 3572 if (WARN_ON(ret > 0)) 3573 goto out; 3574 3575 leaf = path->nodes[0]; 3576 nritems = btrfs_header_nritems(leaf); 3577 added = 0; 3578 3579 if (block_use_full_backref(rc, leaf)) 3580 counted = 0; 3581 else 3582 counted = 1; 3583 rb_node = tree_search(blocks, leaf->start); 3584 if (rb_node) { 3585 if (counted) 3586 added = 1; 3587 else 3588 path->slots[0] = nritems; 3589 } 3590 } 3591 3592 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3593 if (WARN_ON(key.objectid != ref_objectid || 3594 key.type != BTRFS_EXTENT_DATA_KEY)) 3595 break; 3596 3597 fi = btrfs_item_ptr(leaf, path->slots[0], 3598 struct btrfs_file_extent_item); 3599 3600 if (btrfs_file_extent_type(leaf, fi) == 3601 BTRFS_FILE_EXTENT_INLINE) 3602 goto next; 3603 3604 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3605 extent_key->objectid) 3606 goto next; 3607 3608 key.offset -= btrfs_file_extent_offset(leaf, fi); 3609 if (key.offset != ref_offset) 3610 goto next; 3611 3612 if (counted) 3613 ref_count--; 3614 if (added) 3615 goto next; 3616 3617 if (!tree_block_processed(leaf->start, rc)) { 3618 block = kmalloc(sizeof(*block), GFP_NOFS); 3619 if (!block) { 3620 err = -ENOMEM; 3621 break; 3622 } 3623 block->bytenr = leaf->start; 3624 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3625 block->level = 0; 3626 block->key_ready = 1; 3627 rb_node = tree_insert(blocks, block->bytenr, 3628 &block->rb_node); 3629 if (rb_node) 3630 backref_tree_panic(rb_node, -EEXIST, 3631 block->bytenr); 3632 } 3633 if (counted) 3634 added = 1; 3635 else 3636 path->slots[0] = nritems; 3637 next: 3638 path->slots[0]++; 3639 3640 } 3641 out: 3642 btrfs_free_path(path); 3643 return err; 3644 } 3645 3646 /* 3647 * helper to find all tree blocks that reference a given data extent 3648 */ 3649 static noinline_for_stack 3650 int add_data_references(struct reloc_control *rc, 3651 struct btrfs_key *extent_key, 3652 struct btrfs_path *path, 3653 struct rb_root *blocks) 3654 { 3655 struct btrfs_key key; 3656 struct extent_buffer *eb; 3657 struct btrfs_extent_data_ref *dref; 3658 struct btrfs_extent_inline_ref *iref; 3659 unsigned long ptr; 3660 unsigned long end; 3661 u32 blocksize = rc->extent_root->nodesize; 3662 int ret = 0; 3663 int err = 0; 3664 3665 eb = path->nodes[0]; 3666 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3667 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3668 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3669 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3670 ptr = end; 3671 else 3672 #endif 3673 ptr += sizeof(struct btrfs_extent_item); 3674 3675 while (ptr < end) { 3676 iref = (struct btrfs_extent_inline_ref *)ptr; 3677 key.type = btrfs_extent_inline_ref_type(eb, iref); 3678 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3679 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3680 ret = __add_tree_block(rc, key.offset, blocksize, 3681 blocks); 3682 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3683 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3684 ret = find_data_references(rc, extent_key, 3685 eb, dref, blocks); 3686 } else { 3687 BUG(); 3688 } 3689 if (ret) { 3690 err = ret; 3691 goto out; 3692 } 3693 ptr += btrfs_extent_inline_ref_size(key.type); 3694 } 3695 WARN_ON(ptr > end); 3696 3697 while (1) { 3698 cond_resched(); 3699 eb = path->nodes[0]; 3700 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3701 ret = btrfs_next_leaf(rc->extent_root, path); 3702 if (ret < 0) { 3703 err = ret; 3704 break; 3705 } 3706 if (ret > 0) 3707 break; 3708 eb = path->nodes[0]; 3709 } 3710 3711 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3712 if (key.objectid != extent_key->objectid) 3713 break; 3714 3715 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3716 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3717 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3718 #else 3719 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3720 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3721 #endif 3722 ret = __add_tree_block(rc, key.offset, blocksize, 3723 blocks); 3724 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3725 dref = btrfs_item_ptr(eb, path->slots[0], 3726 struct btrfs_extent_data_ref); 3727 ret = find_data_references(rc, extent_key, 3728 eb, dref, blocks); 3729 } else { 3730 ret = 0; 3731 } 3732 if (ret) { 3733 err = ret; 3734 break; 3735 } 3736 path->slots[0]++; 3737 } 3738 out: 3739 btrfs_release_path(path); 3740 if (err) 3741 free_block_list(blocks); 3742 return err; 3743 } 3744 3745 /* 3746 * helper to find next unprocessed extent 3747 */ 3748 static noinline_for_stack 3749 int find_next_extent(struct btrfs_trans_handle *trans, 3750 struct reloc_control *rc, struct btrfs_path *path, 3751 struct btrfs_key *extent_key) 3752 { 3753 struct btrfs_key key; 3754 struct extent_buffer *leaf; 3755 u64 start, end, last; 3756 int ret; 3757 3758 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3759 while (1) { 3760 cond_resched(); 3761 if (rc->search_start >= last) { 3762 ret = 1; 3763 break; 3764 } 3765 3766 key.objectid = rc->search_start; 3767 key.type = BTRFS_EXTENT_ITEM_KEY; 3768 key.offset = 0; 3769 3770 path->search_commit_root = 1; 3771 path->skip_locking = 1; 3772 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3773 0, 0); 3774 if (ret < 0) 3775 break; 3776 next: 3777 leaf = path->nodes[0]; 3778 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3779 ret = btrfs_next_leaf(rc->extent_root, path); 3780 if (ret != 0) 3781 break; 3782 leaf = path->nodes[0]; 3783 } 3784 3785 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3786 if (key.objectid >= last) { 3787 ret = 1; 3788 break; 3789 } 3790 3791 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3792 key.type != BTRFS_METADATA_ITEM_KEY) { 3793 path->slots[0]++; 3794 goto next; 3795 } 3796 3797 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3798 key.objectid + key.offset <= rc->search_start) { 3799 path->slots[0]++; 3800 goto next; 3801 } 3802 3803 if (key.type == BTRFS_METADATA_ITEM_KEY && 3804 key.objectid + rc->extent_root->nodesize <= 3805 rc->search_start) { 3806 path->slots[0]++; 3807 goto next; 3808 } 3809 3810 ret = find_first_extent_bit(&rc->processed_blocks, 3811 key.objectid, &start, &end, 3812 EXTENT_DIRTY, NULL); 3813 3814 if (ret == 0 && start <= key.objectid) { 3815 btrfs_release_path(path); 3816 rc->search_start = end + 1; 3817 } else { 3818 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3819 rc->search_start = key.objectid + key.offset; 3820 else 3821 rc->search_start = key.objectid + 3822 rc->extent_root->nodesize; 3823 memcpy(extent_key, &key, sizeof(key)); 3824 return 0; 3825 } 3826 } 3827 btrfs_release_path(path); 3828 return ret; 3829 } 3830 3831 static void set_reloc_control(struct reloc_control *rc) 3832 { 3833 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3834 3835 mutex_lock(&fs_info->reloc_mutex); 3836 fs_info->reloc_ctl = rc; 3837 mutex_unlock(&fs_info->reloc_mutex); 3838 } 3839 3840 static void unset_reloc_control(struct reloc_control *rc) 3841 { 3842 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3843 3844 mutex_lock(&fs_info->reloc_mutex); 3845 fs_info->reloc_ctl = NULL; 3846 mutex_unlock(&fs_info->reloc_mutex); 3847 } 3848 3849 static int check_extent_flags(u64 flags) 3850 { 3851 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3852 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3853 return 1; 3854 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3855 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3856 return 1; 3857 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3858 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3859 return 1; 3860 return 0; 3861 } 3862 3863 static noinline_for_stack 3864 int prepare_to_relocate(struct reloc_control *rc) 3865 { 3866 struct btrfs_trans_handle *trans; 3867 3868 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3869 BTRFS_BLOCK_RSV_TEMP); 3870 if (!rc->block_rsv) 3871 return -ENOMEM; 3872 3873 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3874 rc->search_start = rc->block_group->key.objectid; 3875 rc->extents_found = 0; 3876 rc->nodes_relocated = 0; 3877 rc->merging_rsv_size = 0; 3878 rc->reserved_bytes = 0; 3879 rc->block_rsv->size = rc->extent_root->nodesize * 3880 RELOCATION_RESERVED_NODES; 3881 3882 rc->create_reloc_tree = 1; 3883 set_reloc_control(rc); 3884 3885 trans = btrfs_join_transaction(rc->extent_root); 3886 if (IS_ERR(trans)) { 3887 unset_reloc_control(rc); 3888 /* 3889 * extent tree is not a ref_cow tree and has no reloc_root to 3890 * cleanup. And callers are responsible to free the above 3891 * block rsv. 3892 */ 3893 return PTR_ERR(trans); 3894 } 3895 btrfs_commit_transaction(trans, rc->extent_root); 3896 return 0; 3897 } 3898 3899 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3900 { 3901 struct rb_root blocks = RB_ROOT; 3902 struct btrfs_key key; 3903 struct btrfs_trans_handle *trans = NULL; 3904 struct btrfs_path *path; 3905 struct btrfs_extent_item *ei; 3906 u64 flags; 3907 u32 item_size; 3908 int ret; 3909 int err = 0; 3910 int progress = 0; 3911 3912 path = btrfs_alloc_path(); 3913 if (!path) 3914 return -ENOMEM; 3915 path->reada = 1; 3916 3917 ret = prepare_to_relocate(rc); 3918 if (ret) { 3919 err = ret; 3920 goto out_free; 3921 } 3922 3923 while (1) { 3924 rc->reserved_bytes = 0; 3925 ret = btrfs_block_rsv_refill(rc->extent_root, 3926 rc->block_rsv, rc->block_rsv->size, 3927 BTRFS_RESERVE_FLUSH_ALL); 3928 if (ret) { 3929 err = ret; 3930 break; 3931 } 3932 progress++; 3933 trans = btrfs_start_transaction(rc->extent_root, 0); 3934 if (IS_ERR(trans)) { 3935 err = PTR_ERR(trans); 3936 trans = NULL; 3937 break; 3938 } 3939 restart: 3940 if (update_backref_cache(trans, &rc->backref_cache)) { 3941 btrfs_end_transaction(trans, rc->extent_root); 3942 continue; 3943 } 3944 3945 ret = find_next_extent(trans, rc, path, &key); 3946 if (ret < 0) 3947 err = ret; 3948 if (ret != 0) 3949 break; 3950 3951 rc->extents_found++; 3952 3953 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3954 struct btrfs_extent_item); 3955 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3956 if (item_size >= sizeof(*ei)) { 3957 flags = btrfs_extent_flags(path->nodes[0], ei); 3958 ret = check_extent_flags(flags); 3959 BUG_ON(ret); 3960 3961 } else { 3962 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3963 u64 ref_owner; 3964 int path_change = 0; 3965 3966 BUG_ON(item_size != 3967 sizeof(struct btrfs_extent_item_v0)); 3968 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3969 &path_change); 3970 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3971 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3972 else 3973 flags = BTRFS_EXTENT_FLAG_DATA; 3974 3975 if (path_change) { 3976 btrfs_release_path(path); 3977 3978 path->search_commit_root = 1; 3979 path->skip_locking = 1; 3980 ret = btrfs_search_slot(NULL, rc->extent_root, 3981 &key, path, 0, 0); 3982 if (ret < 0) { 3983 err = ret; 3984 break; 3985 } 3986 BUG_ON(ret > 0); 3987 } 3988 #else 3989 BUG(); 3990 #endif 3991 } 3992 3993 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3994 ret = add_tree_block(rc, &key, path, &blocks); 3995 } else if (rc->stage == UPDATE_DATA_PTRS && 3996 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3997 ret = add_data_references(rc, &key, path, &blocks); 3998 } else { 3999 btrfs_release_path(path); 4000 ret = 0; 4001 } 4002 if (ret < 0) { 4003 err = ret; 4004 break; 4005 } 4006 4007 if (!RB_EMPTY_ROOT(&blocks)) { 4008 ret = relocate_tree_blocks(trans, rc, &blocks); 4009 if (ret < 0) { 4010 /* 4011 * if we fail to relocate tree blocks, force to update 4012 * backref cache when committing transaction. 4013 */ 4014 rc->backref_cache.last_trans = trans->transid - 1; 4015 4016 if (ret != -EAGAIN) { 4017 err = ret; 4018 break; 4019 } 4020 rc->extents_found--; 4021 rc->search_start = key.objectid; 4022 } 4023 } 4024 4025 btrfs_end_transaction_throttle(trans, rc->extent_root); 4026 btrfs_btree_balance_dirty(rc->extent_root); 4027 trans = NULL; 4028 4029 if (rc->stage == MOVE_DATA_EXTENTS && 4030 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4031 rc->found_file_extent = 1; 4032 ret = relocate_data_extent(rc->data_inode, 4033 &key, &rc->cluster); 4034 if (ret < 0) { 4035 err = ret; 4036 break; 4037 } 4038 } 4039 } 4040 if (trans && progress && err == -ENOSPC) { 4041 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4042 rc->block_group->flags); 4043 if (ret == 0) { 4044 err = 0; 4045 progress = 0; 4046 goto restart; 4047 } 4048 } 4049 4050 btrfs_release_path(path); 4051 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4052 GFP_NOFS); 4053 4054 if (trans) { 4055 btrfs_end_transaction_throttle(trans, rc->extent_root); 4056 btrfs_btree_balance_dirty(rc->extent_root); 4057 } 4058 4059 if (!err) { 4060 ret = relocate_file_extent_cluster(rc->data_inode, 4061 &rc->cluster); 4062 if (ret < 0) 4063 err = ret; 4064 } 4065 4066 rc->create_reloc_tree = 0; 4067 set_reloc_control(rc); 4068 4069 backref_cache_cleanup(&rc->backref_cache); 4070 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4071 4072 err = prepare_to_merge(rc, err); 4073 4074 merge_reloc_roots(rc); 4075 4076 rc->merge_reloc_tree = 0; 4077 unset_reloc_control(rc); 4078 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4079 4080 /* get rid of pinned extents */ 4081 trans = btrfs_join_transaction(rc->extent_root); 4082 if (IS_ERR(trans)) 4083 err = PTR_ERR(trans); 4084 else 4085 btrfs_commit_transaction(trans, rc->extent_root); 4086 out_free: 4087 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4088 btrfs_free_path(path); 4089 return err; 4090 } 4091 4092 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4093 struct btrfs_root *root, u64 objectid) 4094 { 4095 struct btrfs_path *path; 4096 struct btrfs_inode_item *item; 4097 struct extent_buffer *leaf; 4098 int ret; 4099 4100 path = btrfs_alloc_path(); 4101 if (!path) 4102 return -ENOMEM; 4103 4104 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4105 if (ret) 4106 goto out; 4107 4108 leaf = path->nodes[0]; 4109 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4110 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4111 btrfs_set_inode_generation(leaf, item, 1); 4112 btrfs_set_inode_size(leaf, item, 0); 4113 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4114 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4115 BTRFS_INODE_PREALLOC); 4116 btrfs_mark_buffer_dirty(leaf); 4117 out: 4118 btrfs_free_path(path); 4119 return ret; 4120 } 4121 4122 /* 4123 * helper to create inode for data relocation. 4124 * the inode is in data relocation tree and its link count is 0 4125 */ 4126 static noinline_for_stack 4127 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4128 struct btrfs_block_group_cache *group) 4129 { 4130 struct inode *inode = NULL; 4131 struct btrfs_trans_handle *trans; 4132 struct btrfs_root *root; 4133 struct btrfs_key key; 4134 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4135 int err = 0; 4136 4137 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4138 if (IS_ERR(root)) 4139 return ERR_CAST(root); 4140 4141 trans = btrfs_start_transaction(root, 6); 4142 if (IS_ERR(trans)) 4143 return ERR_CAST(trans); 4144 4145 err = btrfs_find_free_objectid(root, &objectid); 4146 if (err) 4147 goto out; 4148 4149 err = __insert_orphan_inode(trans, root, objectid); 4150 BUG_ON(err); 4151 4152 key.objectid = objectid; 4153 key.type = BTRFS_INODE_ITEM_KEY; 4154 key.offset = 0; 4155 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4156 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4157 BTRFS_I(inode)->index_cnt = group->key.objectid; 4158 4159 err = btrfs_orphan_add(trans, inode); 4160 out: 4161 btrfs_end_transaction(trans, root); 4162 btrfs_btree_balance_dirty(root); 4163 if (err) { 4164 if (inode) 4165 iput(inode); 4166 inode = ERR_PTR(err); 4167 } 4168 return inode; 4169 } 4170 4171 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4172 { 4173 struct reloc_control *rc; 4174 4175 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4176 if (!rc) 4177 return NULL; 4178 4179 INIT_LIST_HEAD(&rc->reloc_roots); 4180 backref_cache_init(&rc->backref_cache); 4181 mapping_tree_init(&rc->reloc_root_tree); 4182 extent_io_tree_init(&rc->processed_blocks, 4183 fs_info->btree_inode->i_mapping); 4184 return rc; 4185 } 4186 4187 /* 4188 * function to relocate all extents in a block group. 4189 */ 4190 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4191 { 4192 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4193 struct reloc_control *rc; 4194 struct inode *inode; 4195 struct btrfs_path *path; 4196 int ret; 4197 int rw = 0; 4198 int err = 0; 4199 4200 rc = alloc_reloc_control(fs_info); 4201 if (!rc) 4202 return -ENOMEM; 4203 4204 rc->extent_root = extent_root; 4205 4206 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4207 BUG_ON(!rc->block_group); 4208 4209 if (!rc->block_group->ro) { 4210 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4211 if (ret) { 4212 err = ret; 4213 goto out; 4214 } 4215 rw = 1; 4216 } 4217 4218 path = btrfs_alloc_path(); 4219 if (!path) { 4220 err = -ENOMEM; 4221 goto out; 4222 } 4223 4224 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4225 path); 4226 btrfs_free_path(path); 4227 4228 if (!IS_ERR(inode)) 4229 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4230 else 4231 ret = PTR_ERR(inode); 4232 4233 if (ret && ret != -ENOENT) { 4234 err = ret; 4235 goto out; 4236 } 4237 4238 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4239 if (IS_ERR(rc->data_inode)) { 4240 err = PTR_ERR(rc->data_inode); 4241 rc->data_inode = NULL; 4242 goto out; 4243 } 4244 4245 btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu", 4246 rc->block_group->key.objectid, rc->block_group->flags); 4247 4248 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 4249 if (ret < 0) { 4250 err = ret; 4251 goto out; 4252 } 4253 btrfs_wait_ordered_roots(fs_info, -1); 4254 4255 while (1) { 4256 mutex_lock(&fs_info->cleaner_mutex); 4257 ret = relocate_block_group(rc); 4258 mutex_unlock(&fs_info->cleaner_mutex); 4259 if (ret < 0) { 4260 err = ret; 4261 goto out; 4262 } 4263 4264 if (rc->extents_found == 0) 4265 break; 4266 4267 btrfs_info(extent_root->fs_info, "found %llu extents", 4268 rc->extents_found); 4269 4270 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4271 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4272 (u64)-1); 4273 if (ret) { 4274 err = ret; 4275 goto out; 4276 } 4277 invalidate_mapping_pages(rc->data_inode->i_mapping, 4278 0, -1); 4279 rc->stage = UPDATE_DATA_PTRS; 4280 } 4281 } 4282 4283 WARN_ON(rc->block_group->pinned > 0); 4284 WARN_ON(rc->block_group->reserved > 0); 4285 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4286 out: 4287 if (err && rw) 4288 btrfs_set_block_group_rw(extent_root, rc->block_group); 4289 iput(rc->data_inode); 4290 btrfs_put_block_group(rc->block_group); 4291 kfree(rc); 4292 return err; 4293 } 4294 4295 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4296 { 4297 struct btrfs_trans_handle *trans; 4298 int ret, err; 4299 4300 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4301 if (IS_ERR(trans)) 4302 return PTR_ERR(trans); 4303 4304 memset(&root->root_item.drop_progress, 0, 4305 sizeof(root->root_item.drop_progress)); 4306 root->root_item.drop_level = 0; 4307 btrfs_set_root_refs(&root->root_item, 0); 4308 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4309 &root->root_key, &root->root_item); 4310 4311 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4312 if (err) 4313 return err; 4314 return ret; 4315 } 4316 4317 /* 4318 * recover relocation interrupted by system crash. 4319 * 4320 * this function resumes merging reloc trees with corresponding fs trees. 4321 * this is important for keeping the sharing of tree blocks 4322 */ 4323 int btrfs_recover_relocation(struct btrfs_root *root) 4324 { 4325 LIST_HEAD(reloc_roots); 4326 struct btrfs_key key; 4327 struct btrfs_root *fs_root; 4328 struct btrfs_root *reloc_root; 4329 struct btrfs_path *path; 4330 struct extent_buffer *leaf; 4331 struct reloc_control *rc = NULL; 4332 struct btrfs_trans_handle *trans; 4333 int ret; 4334 int err = 0; 4335 4336 path = btrfs_alloc_path(); 4337 if (!path) 4338 return -ENOMEM; 4339 path->reada = -1; 4340 4341 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4342 key.type = BTRFS_ROOT_ITEM_KEY; 4343 key.offset = (u64)-1; 4344 4345 while (1) { 4346 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4347 path, 0, 0); 4348 if (ret < 0) { 4349 err = ret; 4350 goto out; 4351 } 4352 if (ret > 0) { 4353 if (path->slots[0] == 0) 4354 break; 4355 path->slots[0]--; 4356 } 4357 leaf = path->nodes[0]; 4358 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4359 btrfs_release_path(path); 4360 4361 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4362 key.type != BTRFS_ROOT_ITEM_KEY) 4363 break; 4364 4365 reloc_root = btrfs_read_fs_root(root, &key); 4366 if (IS_ERR(reloc_root)) { 4367 err = PTR_ERR(reloc_root); 4368 goto out; 4369 } 4370 4371 list_add(&reloc_root->root_list, &reloc_roots); 4372 4373 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4374 fs_root = read_fs_root(root->fs_info, 4375 reloc_root->root_key.offset); 4376 if (IS_ERR(fs_root)) { 4377 ret = PTR_ERR(fs_root); 4378 if (ret != -ENOENT) { 4379 err = ret; 4380 goto out; 4381 } 4382 ret = mark_garbage_root(reloc_root); 4383 if (ret < 0) { 4384 err = ret; 4385 goto out; 4386 } 4387 } 4388 } 4389 4390 if (key.offset == 0) 4391 break; 4392 4393 key.offset--; 4394 } 4395 btrfs_release_path(path); 4396 4397 if (list_empty(&reloc_roots)) 4398 goto out; 4399 4400 rc = alloc_reloc_control(root->fs_info); 4401 if (!rc) { 4402 err = -ENOMEM; 4403 goto out; 4404 } 4405 4406 rc->extent_root = root->fs_info->extent_root; 4407 4408 set_reloc_control(rc); 4409 4410 trans = btrfs_join_transaction(rc->extent_root); 4411 if (IS_ERR(trans)) { 4412 unset_reloc_control(rc); 4413 err = PTR_ERR(trans); 4414 goto out_free; 4415 } 4416 4417 rc->merge_reloc_tree = 1; 4418 4419 while (!list_empty(&reloc_roots)) { 4420 reloc_root = list_entry(reloc_roots.next, 4421 struct btrfs_root, root_list); 4422 list_del(&reloc_root->root_list); 4423 4424 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4425 list_add_tail(&reloc_root->root_list, 4426 &rc->reloc_roots); 4427 continue; 4428 } 4429 4430 fs_root = read_fs_root(root->fs_info, 4431 reloc_root->root_key.offset); 4432 if (IS_ERR(fs_root)) { 4433 err = PTR_ERR(fs_root); 4434 goto out_free; 4435 } 4436 4437 err = __add_reloc_root(reloc_root); 4438 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4439 fs_root->reloc_root = reloc_root; 4440 } 4441 4442 err = btrfs_commit_transaction(trans, rc->extent_root); 4443 if (err) 4444 goto out_free; 4445 4446 merge_reloc_roots(rc); 4447 4448 unset_reloc_control(rc); 4449 4450 trans = btrfs_join_transaction(rc->extent_root); 4451 if (IS_ERR(trans)) 4452 err = PTR_ERR(trans); 4453 else 4454 err = btrfs_commit_transaction(trans, rc->extent_root); 4455 out_free: 4456 kfree(rc); 4457 out: 4458 if (!list_empty(&reloc_roots)) 4459 free_reloc_roots(&reloc_roots); 4460 4461 btrfs_free_path(path); 4462 4463 if (err == 0) { 4464 /* cleanup orphan inode in data relocation tree */ 4465 fs_root = read_fs_root(root->fs_info, 4466 BTRFS_DATA_RELOC_TREE_OBJECTID); 4467 if (IS_ERR(fs_root)) 4468 err = PTR_ERR(fs_root); 4469 else 4470 err = btrfs_orphan_cleanup(fs_root); 4471 } 4472 return err; 4473 } 4474 4475 /* 4476 * helper to add ordered checksum for data relocation. 4477 * 4478 * cloning checksum properly handles the nodatasum extents. 4479 * it also saves CPU time to re-calculate the checksum. 4480 */ 4481 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4482 { 4483 struct btrfs_ordered_sum *sums; 4484 struct btrfs_ordered_extent *ordered; 4485 struct btrfs_root *root = BTRFS_I(inode)->root; 4486 int ret; 4487 u64 disk_bytenr; 4488 u64 new_bytenr; 4489 LIST_HEAD(list); 4490 4491 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4492 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4493 4494 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4495 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4496 disk_bytenr + len - 1, &list, 0); 4497 if (ret) 4498 goto out; 4499 4500 while (!list_empty(&list)) { 4501 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4502 list_del_init(&sums->list); 4503 4504 /* 4505 * We need to offset the new_bytenr based on where the csum is. 4506 * We need to do this because we will read in entire prealloc 4507 * extents but we may have written to say the middle of the 4508 * prealloc extent, so we need to make sure the csum goes with 4509 * the right disk offset. 4510 * 4511 * We can do this because the data reloc inode refers strictly 4512 * to the on disk bytes, so we don't have to worry about 4513 * disk_len vs real len like with real inodes since it's all 4514 * disk length. 4515 */ 4516 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4517 sums->bytenr = new_bytenr; 4518 4519 btrfs_add_ordered_sum(inode, ordered, sums); 4520 } 4521 out: 4522 btrfs_put_ordered_extent(ordered); 4523 return ret; 4524 } 4525 4526 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4527 struct btrfs_root *root, struct extent_buffer *buf, 4528 struct extent_buffer *cow) 4529 { 4530 struct reloc_control *rc; 4531 struct backref_node *node; 4532 int first_cow = 0; 4533 int level; 4534 int ret = 0; 4535 4536 rc = root->fs_info->reloc_ctl; 4537 if (!rc) 4538 return 0; 4539 4540 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4541 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4542 4543 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4544 if (buf == root->node) 4545 __update_reloc_root(root, cow->start); 4546 } 4547 4548 level = btrfs_header_level(buf); 4549 if (btrfs_header_generation(buf) <= 4550 btrfs_root_last_snapshot(&root->root_item)) 4551 first_cow = 1; 4552 4553 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4554 rc->create_reloc_tree) { 4555 WARN_ON(!first_cow && level == 0); 4556 4557 node = rc->backref_cache.path[level]; 4558 BUG_ON(node->bytenr != buf->start && 4559 node->new_bytenr != buf->start); 4560 4561 drop_node_buffer(node); 4562 extent_buffer_get(cow); 4563 node->eb = cow; 4564 node->new_bytenr = cow->start; 4565 4566 if (!node->pending) { 4567 list_move_tail(&node->list, 4568 &rc->backref_cache.pending[level]); 4569 node->pending = 1; 4570 } 4571 4572 if (first_cow) 4573 __mark_block_processed(rc, node); 4574 4575 if (first_cow && level > 0) 4576 rc->nodes_relocated += buf->len; 4577 } 4578 4579 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4580 ret = replace_file_extents(trans, rc, root, cow); 4581 return ret; 4582 } 4583 4584 /* 4585 * called before creating snapshot. it calculates metadata reservation 4586 * requried for relocating tree blocks in the snapshot 4587 */ 4588 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4589 struct btrfs_pending_snapshot *pending, 4590 u64 *bytes_to_reserve) 4591 { 4592 struct btrfs_root *root; 4593 struct reloc_control *rc; 4594 4595 root = pending->root; 4596 if (!root->reloc_root) 4597 return; 4598 4599 rc = root->fs_info->reloc_ctl; 4600 if (!rc->merge_reloc_tree) 4601 return; 4602 4603 root = root->reloc_root; 4604 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4605 /* 4606 * relocation is in the stage of merging trees. the space 4607 * used by merging a reloc tree is twice the size of 4608 * relocated tree nodes in the worst case. half for cowing 4609 * the reloc tree, half for cowing the fs tree. the space 4610 * used by cowing the reloc tree will be freed after the 4611 * tree is dropped. if we create snapshot, cowing the fs 4612 * tree may use more space than it frees. so we need 4613 * reserve extra space. 4614 */ 4615 *bytes_to_reserve += rc->nodes_relocated; 4616 } 4617 4618 /* 4619 * called after snapshot is created. migrate block reservation 4620 * and create reloc root for the newly created snapshot 4621 */ 4622 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4623 struct btrfs_pending_snapshot *pending) 4624 { 4625 struct btrfs_root *root = pending->root; 4626 struct btrfs_root *reloc_root; 4627 struct btrfs_root *new_root; 4628 struct reloc_control *rc; 4629 int ret; 4630 4631 if (!root->reloc_root) 4632 return 0; 4633 4634 rc = root->fs_info->reloc_ctl; 4635 rc->merging_rsv_size += rc->nodes_relocated; 4636 4637 if (rc->merge_reloc_tree) { 4638 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4639 rc->block_rsv, 4640 rc->nodes_relocated); 4641 if (ret) 4642 return ret; 4643 } 4644 4645 new_root = pending->snap; 4646 reloc_root = create_reloc_root(trans, root->reloc_root, 4647 new_root->root_key.objectid); 4648 if (IS_ERR(reloc_root)) 4649 return PTR_ERR(reloc_root); 4650 4651 ret = __add_reloc_root(reloc_root); 4652 BUG_ON(ret < 0); 4653 new_root->reloc_root = reloc_root; 4654 4655 if (rc->create_reloc_tree) 4656 ret = clone_backref_node(trans, rc, root, reloc_root); 4657 return ret; 4658 } 4659