1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "inode-map.h" 22 #include "qgroup.h" 23 #include "print-tree.h" 24 #include "delalloc-space.h" 25 #include "block-group.h" 26 #include "backref.h" 27 #include "misc.h" 28 29 /* 30 * Relocation overview 31 * 32 * [What does relocation do] 33 * 34 * The objective of relocation is to relocate all extents of the target block 35 * group to other block groups. 36 * This is utilized by resize (shrink only), profile converting, compacting 37 * space, or balance routine to spread chunks over devices. 38 * 39 * Before | After 40 * ------------------------------------------------------------------ 41 * BG A: 10 data extents | BG A: deleted 42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 44 * 45 * [How does relocation work] 46 * 47 * 1. Mark the target block group read-only 48 * New extents won't be allocated from the target block group. 49 * 50 * 2.1 Record each extent in the target block group 51 * To build a proper map of extents to be relocated. 52 * 53 * 2.2 Build data reloc tree and reloc trees 54 * Data reloc tree will contain an inode, recording all newly relocated 55 * data extents. 56 * There will be only one data reloc tree for one data block group. 57 * 58 * Reloc tree will be a special snapshot of its source tree, containing 59 * relocated tree blocks. 60 * Each tree referring to a tree block in target block group will get its 61 * reloc tree built. 62 * 63 * 2.3 Swap source tree with its corresponding reloc tree 64 * Each involved tree only refers to new extents after swap. 65 * 66 * 3. Cleanup reloc trees and data reloc tree. 67 * As old extents in the target block group are still referenced by reloc 68 * trees, we need to clean them up before really freeing the target block 69 * group. 70 * 71 * The main complexity is in steps 2.2 and 2.3. 72 * 73 * The entry point of relocation is relocate_block_group() function. 74 */ 75 76 #define RELOCATION_RESERVED_NODES 256 77 /* 78 * map address of tree root to tree 79 */ 80 struct mapping_node { 81 struct { 82 struct rb_node rb_node; 83 u64 bytenr; 84 }; /* Use rb_simle_node for search/insert */ 85 void *data; 86 }; 87 88 struct mapping_tree { 89 struct rb_root rb_root; 90 spinlock_t lock; 91 }; 92 93 /* 94 * present a tree block to process 95 */ 96 struct tree_block { 97 struct { 98 struct rb_node rb_node; 99 u64 bytenr; 100 }; /* Use rb_simple_node for search/insert */ 101 struct btrfs_key key; 102 unsigned int level:8; 103 unsigned int key_ready:1; 104 }; 105 106 #define MAX_EXTENTS 128 107 108 struct file_extent_cluster { 109 u64 start; 110 u64 end; 111 u64 boundary[MAX_EXTENTS]; 112 unsigned int nr; 113 }; 114 115 struct reloc_control { 116 /* block group to relocate */ 117 struct btrfs_block_group *block_group; 118 /* extent tree */ 119 struct btrfs_root *extent_root; 120 /* inode for moving data */ 121 struct inode *data_inode; 122 123 struct btrfs_block_rsv *block_rsv; 124 125 struct btrfs_backref_cache backref_cache; 126 127 struct file_extent_cluster cluster; 128 /* tree blocks have been processed */ 129 struct extent_io_tree processed_blocks; 130 /* map start of tree root to corresponding reloc tree */ 131 struct mapping_tree reloc_root_tree; 132 /* list of reloc trees */ 133 struct list_head reloc_roots; 134 /* list of subvolume trees that get relocated */ 135 struct list_head dirty_subvol_roots; 136 /* size of metadata reservation for merging reloc trees */ 137 u64 merging_rsv_size; 138 /* size of relocated tree nodes */ 139 u64 nodes_relocated; 140 /* reserved size for block group relocation*/ 141 u64 reserved_bytes; 142 143 u64 search_start; 144 u64 extents_found; 145 146 unsigned int stage:8; 147 unsigned int create_reloc_tree:1; 148 unsigned int merge_reloc_tree:1; 149 unsigned int found_file_extent:1; 150 }; 151 152 /* stages of data relocation */ 153 #define MOVE_DATA_EXTENTS 0 154 #define UPDATE_DATA_PTRS 1 155 156 static void mark_block_processed(struct reloc_control *rc, 157 struct btrfs_backref_node *node) 158 { 159 u32 blocksize; 160 161 if (node->level == 0 || 162 in_range(node->bytenr, rc->block_group->start, 163 rc->block_group->length)) { 164 blocksize = rc->extent_root->fs_info->nodesize; 165 set_extent_bits(&rc->processed_blocks, node->bytenr, 166 node->bytenr + blocksize - 1, EXTENT_DIRTY); 167 } 168 node->processed = 1; 169 } 170 171 172 static void mapping_tree_init(struct mapping_tree *tree) 173 { 174 tree->rb_root = RB_ROOT; 175 spin_lock_init(&tree->lock); 176 } 177 178 /* 179 * walk up backref nodes until reach node presents tree root 180 */ 181 static struct btrfs_backref_node *walk_up_backref( 182 struct btrfs_backref_node *node, 183 struct btrfs_backref_edge *edges[], int *index) 184 { 185 struct btrfs_backref_edge *edge; 186 int idx = *index; 187 188 while (!list_empty(&node->upper)) { 189 edge = list_entry(node->upper.next, 190 struct btrfs_backref_edge, list[LOWER]); 191 edges[idx++] = edge; 192 node = edge->node[UPPER]; 193 } 194 BUG_ON(node->detached); 195 *index = idx; 196 return node; 197 } 198 199 /* 200 * walk down backref nodes to find start of next reference path 201 */ 202 static struct btrfs_backref_node *walk_down_backref( 203 struct btrfs_backref_edge *edges[], int *index) 204 { 205 struct btrfs_backref_edge *edge; 206 struct btrfs_backref_node *lower; 207 int idx = *index; 208 209 while (idx > 0) { 210 edge = edges[idx - 1]; 211 lower = edge->node[LOWER]; 212 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 213 idx--; 214 continue; 215 } 216 edge = list_entry(edge->list[LOWER].next, 217 struct btrfs_backref_edge, list[LOWER]); 218 edges[idx - 1] = edge; 219 *index = idx; 220 return edge->node[UPPER]; 221 } 222 *index = 0; 223 return NULL; 224 } 225 226 static void update_backref_node(struct btrfs_backref_cache *cache, 227 struct btrfs_backref_node *node, u64 bytenr) 228 { 229 struct rb_node *rb_node; 230 rb_erase(&node->rb_node, &cache->rb_root); 231 node->bytenr = bytenr; 232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 233 if (rb_node) 234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 235 } 236 237 /* 238 * update backref cache after a transaction commit 239 */ 240 static int update_backref_cache(struct btrfs_trans_handle *trans, 241 struct btrfs_backref_cache *cache) 242 { 243 struct btrfs_backref_node *node; 244 int level = 0; 245 246 if (cache->last_trans == 0) { 247 cache->last_trans = trans->transid; 248 return 0; 249 } 250 251 if (cache->last_trans == trans->transid) 252 return 0; 253 254 /* 255 * detached nodes are used to avoid unnecessary backref 256 * lookup. transaction commit changes the extent tree. 257 * so the detached nodes are no longer useful. 258 */ 259 while (!list_empty(&cache->detached)) { 260 node = list_entry(cache->detached.next, 261 struct btrfs_backref_node, list); 262 btrfs_backref_cleanup_node(cache, node); 263 } 264 265 while (!list_empty(&cache->changed)) { 266 node = list_entry(cache->changed.next, 267 struct btrfs_backref_node, list); 268 list_del_init(&node->list); 269 BUG_ON(node->pending); 270 update_backref_node(cache, node, node->new_bytenr); 271 } 272 273 /* 274 * some nodes can be left in the pending list if there were 275 * errors during processing the pending nodes. 276 */ 277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 278 list_for_each_entry(node, &cache->pending[level], list) { 279 BUG_ON(!node->pending); 280 if (node->bytenr == node->new_bytenr) 281 continue; 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 } 285 286 cache->last_trans = 0; 287 return 1; 288 } 289 290 static bool reloc_root_is_dead(struct btrfs_root *root) 291 { 292 /* 293 * Pair with set_bit/clear_bit in clean_dirty_subvols and 294 * btrfs_update_reloc_root. We need to see the updated bit before 295 * trying to access reloc_root 296 */ 297 smp_rmb(); 298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 299 return true; 300 return false; 301 } 302 303 /* 304 * Check if this subvolume tree has valid reloc tree. 305 * 306 * Reloc tree after swap is considered dead, thus not considered as valid. 307 * This is enough for most callers, as they don't distinguish dead reloc root 308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 309 * special case. 310 */ 311 static bool have_reloc_root(struct btrfs_root *root) 312 { 313 if (reloc_root_is_dead(root)) 314 return false; 315 if (!root->reloc_root) 316 return false; 317 return true; 318 } 319 320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 321 { 322 struct btrfs_root *reloc_root; 323 324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 325 return 0; 326 327 /* This root has been merged with its reloc tree, we can ignore it */ 328 if (reloc_root_is_dead(root)) 329 return 1; 330 331 reloc_root = root->reloc_root; 332 if (!reloc_root) 333 return 0; 334 335 if (btrfs_header_generation(reloc_root->commit_root) == 336 root->fs_info->running_transaction->transid) 337 return 0; 338 /* 339 * if there is reloc tree and it was created in previous 340 * transaction backref lookup can find the reloc tree, 341 * so backref node for the fs tree root is useless for 342 * relocation. 343 */ 344 return 1; 345 } 346 347 /* 348 * find reloc tree by address of tree root 349 */ 350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 351 { 352 struct reloc_control *rc = fs_info->reloc_ctl; 353 struct rb_node *rb_node; 354 struct mapping_node *node; 355 struct btrfs_root *root = NULL; 356 357 ASSERT(rc); 358 spin_lock(&rc->reloc_root_tree.lock); 359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 360 if (rb_node) { 361 node = rb_entry(rb_node, struct mapping_node, rb_node); 362 root = (struct btrfs_root *)node->data; 363 } 364 spin_unlock(&rc->reloc_root_tree.lock); 365 return btrfs_grab_root(root); 366 } 367 368 /* 369 * For useless nodes, do two major clean ups: 370 * 371 * - Cleanup the children edges and nodes 372 * If child node is also orphan (no parent) during cleanup, then the child 373 * node will also be cleaned up. 374 * 375 * - Freeing up leaves (level 0), keeps nodes detached 376 * For nodes, the node is still cached as "detached" 377 * 378 * Return false if @node is not in the @useless_nodes list. 379 * Return true if @node is in the @useless_nodes list. 380 */ 381 static bool handle_useless_nodes(struct reloc_control *rc, 382 struct btrfs_backref_node *node) 383 { 384 struct btrfs_backref_cache *cache = &rc->backref_cache; 385 struct list_head *useless_node = &cache->useless_node; 386 bool ret = false; 387 388 while (!list_empty(useless_node)) { 389 struct btrfs_backref_node *cur; 390 391 cur = list_first_entry(useless_node, struct btrfs_backref_node, 392 list); 393 list_del_init(&cur->list); 394 395 /* Only tree root nodes can be added to @useless_nodes */ 396 ASSERT(list_empty(&cur->upper)); 397 398 if (cur == node) 399 ret = true; 400 401 /* The node is the lowest node */ 402 if (cur->lowest) { 403 list_del_init(&cur->lower); 404 cur->lowest = 0; 405 } 406 407 /* Cleanup the lower edges */ 408 while (!list_empty(&cur->lower)) { 409 struct btrfs_backref_edge *edge; 410 struct btrfs_backref_node *lower; 411 412 edge = list_entry(cur->lower.next, 413 struct btrfs_backref_edge, list[UPPER]); 414 list_del(&edge->list[UPPER]); 415 list_del(&edge->list[LOWER]); 416 lower = edge->node[LOWER]; 417 btrfs_backref_free_edge(cache, edge); 418 419 /* Child node is also orphan, queue for cleanup */ 420 if (list_empty(&lower->upper)) 421 list_add(&lower->list, useless_node); 422 } 423 /* Mark this block processed for relocation */ 424 mark_block_processed(rc, cur); 425 426 /* 427 * Backref nodes for tree leaves are deleted from the cache. 428 * Backref nodes for upper level tree blocks are left in the 429 * cache to avoid unnecessary backref lookup. 430 */ 431 if (cur->level > 0) { 432 list_add(&cur->list, &cache->detached); 433 cur->detached = 1; 434 } else { 435 rb_erase(&cur->rb_node, &cache->rb_root); 436 btrfs_backref_free_node(cache, cur); 437 } 438 } 439 return ret; 440 } 441 442 /* 443 * Build backref tree for a given tree block. Root of the backref tree 444 * corresponds the tree block, leaves of the backref tree correspond roots of 445 * b-trees that reference the tree block. 446 * 447 * The basic idea of this function is check backrefs of a given block to find 448 * upper level blocks that reference the block, and then check backrefs of 449 * these upper level blocks recursively. The recursion stops when tree root is 450 * reached or backrefs for the block is cached. 451 * 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 453 * all upper level blocks that directly/indirectly reference the block are also 454 * cached. 455 */ 456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 457 struct reloc_control *rc, struct btrfs_key *node_key, 458 int level, u64 bytenr) 459 { 460 struct btrfs_backref_iter *iter; 461 struct btrfs_backref_cache *cache = &rc->backref_cache; 462 /* For searching parent of TREE_BLOCK_REF */ 463 struct btrfs_path *path; 464 struct btrfs_backref_node *cur; 465 struct btrfs_backref_node *node = NULL; 466 struct btrfs_backref_edge *edge; 467 int ret; 468 int err = 0; 469 470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 471 if (!iter) 472 return ERR_PTR(-ENOMEM); 473 path = btrfs_alloc_path(); 474 if (!path) { 475 err = -ENOMEM; 476 goto out; 477 } 478 479 node = btrfs_backref_alloc_node(cache, bytenr, level); 480 if (!node) { 481 err = -ENOMEM; 482 goto out; 483 } 484 485 node->lowest = 1; 486 cur = node; 487 488 /* Breadth-first search to build backref cache */ 489 do { 490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 491 cur); 492 if (ret < 0) { 493 err = ret; 494 goto out; 495 } 496 edge = list_first_entry_or_null(&cache->pending_edge, 497 struct btrfs_backref_edge, list[UPPER]); 498 /* 499 * The pending list isn't empty, take the first block to 500 * process 501 */ 502 if (edge) { 503 list_del_init(&edge->list[UPPER]); 504 cur = edge->node[UPPER]; 505 } 506 } while (edge); 507 508 /* Finish the upper linkage of newly added edges/nodes */ 509 ret = btrfs_backref_finish_upper_links(cache, node); 510 if (ret < 0) { 511 err = ret; 512 goto out; 513 } 514 515 if (handle_useless_nodes(rc, node)) 516 node = NULL; 517 out: 518 btrfs_backref_iter_free(iter); 519 btrfs_free_path(path); 520 if (err) { 521 btrfs_backref_error_cleanup(cache, node); 522 return ERR_PTR(err); 523 } 524 ASSERT(!node || !node->detached); 525 ASSERT(list_empty(&cache->useless_node) && 526 list_empty(&cache->pending_edge)); 527 return node; 528 } 529 530 /* 531 * helper to add backref node for the newly created snapshot. 532 * the backref node is created by cloning backref node that 533 * corresponds to root of source tree 534 */ 535 static int clone_backref_node(struct btrfs_trans_handle *trans, 536 struct reloc_control *rc, 537 struct btrfs_root *src, 538 struct btrfs_root *dest) 539 { 540 struct btrfs_root *reloc_root = src->reloc_root; 541 struct btrfs_backref_cache *cache = &rc->backref_cache; 542 struct btrfs_backref_node *node = NULL; 543 struct btrfs_backref_node *new_node; 544 struct btrfs_backref_edge *edge; 545 struct btrfs_backref_edge *new_edge; 546 struct rb_node *rb_node; 547 548 if (cache->last_trans > 0) 549 update_backref_cache(trans, cache); 550 551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 552 if (rb_node) { 553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 554 if (node->detached) 555 node = NULL; 556 else 557 BUG_ON(node->new_bytenr != reloc_root->node->start); 558 } 559 560 if (!node) { 561 rb_node = rb_simple_search(&cache->rb_root, 562 reloc_root->commit_root->start); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct btrfs_backref_node, 565 rb_node); 566 BUG_ON(node->detached); 567 } 568 } 569 570 if (!node) 571 return 0; 572 573 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 574 node->level); 575 if (!new_node) 576 return -ENOMEM; 577 578 new_node->lowest = node->lowest; 579 new_node->checked = 1; 580 new_node->root = btrfs_grab_root(dest); 581 ASSERT(new_node->root); 582 583 if (!node->lowest) { 584 list_for_each_entry(edge, &node->lower, list[UPPER]) { 585 new_edge = btrfs_backref_alloc_edge(cache); 586 if (!new_edge) 587 goto fail; 588 589 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 590 new_node, LINK_UPPER); 591 } 592 } else { 593 list_add_tail(&new_node->lower, &cache->leaves); 594 } 595 596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 597 &new_node->rb_node); 598 if (rb_node) 599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 600 601 if (!new_node->lowest) { 602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 603 list_add_tail(&new_edge->list[LOWER], 604 &new_edge->node[LOWER]->upper); 605 } 606 } 607 return 0; 608 fail: 609 while (!list_empty(&new_node->lower)) { 610 new_edge = list_entry(new_node->lower.next, 611 struct btrfs_backref_edge, list[UPPER]); 612 list_del(&new_edge->list[UPPER]); 613 btrfs_backref_free_edge(cache, new_edge); 614 } 615 btrfs_backref_free_node(cache, new_node); 616 return -ENOMEM; 617 } 618 619 /* 620 * helper to add 'address of tree root -> reloc tree' mapping 621 */ 622 static int __must_check __add_reloc_root(struct btrfs_root *root) 623 { 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 struct rb_node *rb_node; 626 struct mapping_node *node; 627 struct reloc_control *rc = fs_info->reloc_ctl; 628 629 node = kmalloc(sizeof(*node), GFP_NOFS); 630 if (!node) 631 return -ENOMEM; 632 633 node->bytenr = root->commit_root->start; 634 node->data = root; 635 636 spin_lock(&rc->reloc_root_tree.lock); 637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 638 node->bytenr, &node->rb_node); 639 spin_unlock(&rc->reloc_root_tree.lock); 640 if (rb_node) { 641 btrfs_panic(fs_info, -EEXIST, 642 "Duplicate root found for start=%llu while inserting into relocation tree", 643 node->bytenr); 644 } 645 646 list_add_tail(&root->root_list, &rc->reloc_roots); 647 return 0; 648 } 649 650 /* 651 * helper to delete the 'address of tree root -> reloc tree' 652 * mapping 653 */ 654 static void __del_reloc_root(struct btrfs_root *root) 655 { 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct rb_node *rb_node; 658 struct mapping_node *node = NULL; 659 struct reloc_control *rc = fs_info->reloc_ctl; 660 bool put_ref = false; 661 662 if (rc && root->node) { 663 spin_lock(&rc->reloc_root_tree.lock); 664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 665 root->commit_root->start); 666 if (rb_node) { 667 node = rb_entry(rb_node, struct mapping_node, rb_node); 668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 669 RB_CLEAR_NODE(&node->rb_node); 670 } 671 spin_unlock(&rc->reloc_root_tree.lock); 672 if (!node) 673 return; 674 BUG_ON((struct btrfs_root *)node->data != root); 675 } 676 677 /* 678 * We only put the reloc root here if it's on the list. There's a lot 679 * of places where the pattern is to splice the rc->reloc_roots, process 680 * the reloc roots, and then add the reloc root back onto 681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 682 * list we don't want the reference being dropped, because the guy 683 * messing with the list is in charge of the reference. 684 */ 685 spin_lock(&fs_info->trans_lock); 686 if (!list_empty(&root->root_list)) { 687 put_ref = true; 688 list_del_init(&root->root_list); 689 } 690 spin_unlock(&fs_info->trans_lock); 691 if (put_ref) 692 btrfs_put_root(root); 693 kfree(node); 694 } 695 696 /* 697 * helper to update the 'address of tree root -> reloc tree' 698 * mapping 699 */ 700 static int __update_reloc_root(struct btrfs_root *root) 701 { 702 struct btrfs_fs_info *fs_info = root->fs_info; 703 struct rb_node *rb_node; 704 struct mapping_node *node = NULL; 705 struct reloc_control *rc = fs_info->reloc_ctl; 706 707 spin_lock(&rc->reloc_root_tree.lock); 708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 709 root->commit_root->start); 710 if (rb_node) { 711 node = rb_entry(rb_node, struct mapping_node, rb_node); 712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 713 } 714 spin_unlock(&rc->reloc_root_tree.lock); 715 716 if (!node) 717 return 0; 718 BUG_ON((struct btrfs_root *)node->data != root); 719 720 spin_lock(&rc->reloc_root_tree.lock); 721 node->bytenr = root->node->start; 722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 723 node->bytenr, &node->rb_node); 724 spin_unlock(&rc->reloc_root_tree.lock); 725 if (rb_node) 726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 727 return 0; 728 } 729 730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 731 struct btrfs_root *root, u64 objectid) 732 { 733 struct btrfs_fs_info *fs_info = root->fs_info; 734 struct btrfs_root *reloc_root; 735 struct extent_buffer *eb; 736 struct btrfs_root_item *root_item; 737 struct btrfs_key root_key; 738 int ret; 739 740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 741 BUG_ON(!root_item); 742 743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 744 root_key.type = BTRFS_ROOT_ITEM_KEY; 745 root_key.offset = objectid; 746 747 if (root->root_key.objectid == objectid) { 748 u64 commit_root_gen; 749 750 /* called by btrfs_init_reloc_root */ 751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 752 BTRFS_TREE_RELOC_OBJECTID); 753 BUG_ON(ret); 754 /* 755 * Set the last_snapshot field to the generation of the commit 756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 757 * correctly (returns true) when the relocation root is created 758 * either inside the critical section of a transaction commit 759 * (through transaction.c:qgroup_account_snapshot()) and when 760 * it's created before the transaction commit is started. 761 */ 762 commit_root_gen = btrfs_header_generation(root->commit_root); 763 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 764 } else { 765 /* 766 * called by btrfs_reloc_post_snapshot_hook. 767 * the source tree is a reloc tree, all tree blocks 768 * modified after it was created have RELOC flag 769 * set in their headers. so it's OK to not update 770 * the 'last_snapshot'. 771 */ 772 ret = btrfs_copy_root(trans, root, root->node, &eb, 773 BTRFS_TREE_RELOC_OBJECTID); 774 BUG_ON(ret); 775 } 776 777 memcpy(root_item, &root->root_item, sizeof(*root_item)); 778 btrfs_set_root_bytenr(root_item, eb->start); 779 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 780 btrfs_set_root_generation(root_item, trans->transid); 781 782 if (root->root_key.objectid == objectid) { 783 btrfs_set_root_refs(root_item, 0); 784 memset(&root_item->drop_progress, 0, 785 sizeof(struct btrfs_disk_key)); 786 root_item->drop_level = 0; 787 } 788 789 btrfs_tree_unlock(eb); 790 free_extent_buffer(eb); 791 792 ret = btrfs_insert_root(trans, fs_info->tree_root, 793 &root_key, root_item); 794 BUG_ON(ret); 795 kfree(root_item); 796 797 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 798 BUG_ON(IS_ERR(reloc_root)); 799 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 800 reloc_root->last_trans = trans->transid; 801 return reloc_root; 802 } 803 804 /* 805 * create reloc tree for a given fs tree. reloc tree is just a 806 * snapshot of the fs tree with special root objectid. 807 * 808 * The reloc_root comes out of here with two references, one for 809 * root->reloc_root, and another for being on the rc->reloc_roots list. 810 */ 811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 812 struct btrfs_root *root) 813 { 814 struct btrfs_fs_info *fs_info = root->fs_info; 815 struct btrfs_root *reloc_root; 816 struct reloc_control *rc = fs_info->reloc_ctl; 817 struct btrfs_block_rsv *rsv; 818 int clear_rsv = 0; 819 int ret; 820 821 if (!rc) 822 return 0; 823 824 /* 825 * The subvolume has reloc tree but the swap is finished, no need to 826 * create/update the dead reloc tree 827 */ 828 if (reloc_root_is_dead(root)) 829 return 0; 830 831 /* 832 * This is subtle but important. We do not do 833 * record_root_in_transaction for reloc roots, instead we record their 834 * corresponding fs root, and then here we update the last trans for the 835 * reloc root. This means that we have to do this for the entire life 836 * of the reloc root, regardless of which stage of the relocation we are 837 * in. 838 */ 839 if (root->reloc_root) { 840 reloc_root = root->reloc_root; 841 reloc_root->last_trans = trans->transid; 842 return 0; 843 } 844 845 /* 846 * We are merging reloc roots, we do not need new reloc trees. Also 847 * reloc trees never need their own reloc tree. 848 */ 849 if (!rc->create_reloc_tree || 850 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 851 return 0; 852 853 if (!trans->reloc_reserved) { 854 rsv = trans->block_rsv; 855 trans->block_rsv = rc->block_rsv; 856 clear_rsv = 1; 857 } 858 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 859 if (clear_rsv) 860 trans->block_rsv = rsv; 861 862 ret = __add_reloc_root(reloc_root); 863 BUG_ON(ret < 0); 864 root->reloc_root = btrfs_grab_root(reloc_root); 865 return 0; 866 } 867 868 /* 869 * update root item of reloc tree 870 */ 871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root) 873 { 874 struct btrfs_fs_info *fs_info = root->fs_info; 875 struct btrfs_root *reloc_root; 876 struct btrfs_root_item *root_item; 877 int ret; 878 879 if (!have_reloc_root(root)) 880 goto out; 881 882 reloc_root = root->reloc_root; 883 root_item = &reloc_root->root_item; 884 885 /* 886 * We are probably ok here, but __del_reloc_root() will drop its ref of 887 * the root. We have the ref for root->reloc_root, but just in case 888 * hold it while we update the reloc root. 889 */ 890 btrfs_grab_root(reloc_root); 891 892 /* root->reloc_root will stay until current relocation finished */ 893 if (fs_info->reloc_ctl->merge_reloc_tree && 894 btrfs_root_refs(root_item) == 0) { 895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 896 /* 897 * Mark the tree as dead before we change reloc_root so 898 * have_reloc_root will not touch it from now on. 899 */ 900 smp_wmb(); 901 __del_reloc_root(reloc_root); 902 } 903 904 if (reloc_root->commit_root != reloc_root->node) { 905 __update_reloc_root(reloc_root); 906 btrfs_set_root_node(root_item, reloc_root->node); 907 free_extent_buffer(reloc_root->commit_root); 908 reloc_root->commit_root = btrfs_root_node(reloc_root); 909 } 910 911 ret = btrfs_update_root(trans, fs_info->tree_root, 912 &reloc_root->root_key, root_item); 913 BUG_ON(ret); 914 btrfs_put_root(reloc_root); 915 out: 916 return 0; 917 } 918 919 /* 920 * helper to find first cached inode with inode number >= objectid 921 * in a subvolume 922 */ 923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 924 { 925 struct rb_node *node; 926 struct rb_node *prev; 927 struct btrfs_inode *entry; 928 struct inode *inode; 929 930 spin_lock(&root->inode_lock); 931 again: 932 node = root->inode_tree.rb_node; 933 prev = NULL; 934 while (node) { 935 prev = node; 936 entry = rb_entry(node, struct btrfs_inode, rb_node); 937 938 if (objectid < btrfs_ino(entry)) 939 node = node->rb_left; 940 else if (objectid > btrfs_ino(entry)) 941 node = node->rb_right; 942 else 943 break; 944 } 945 if (!node) { 946 while (prev) { 947 entry = rb_entry(prev, struct btrfs_inode, rb_node); 948 if (objectid <= btrfs_ino(entry)) { 949 node = prev; 950 break; 951 } 952 prev = rb_next(prev); 953 } 954 } 955 while (node) { 956 entry = rb_entry(node, struct btrfs_inode, rb_node); 957 inode = igrab(&entry->vfs_inode); 958 if (inode) { 959 spin_unlock(&root->inode_lock); 960 return inode; 961 } 962 963 objectid = btrfs_ino(entry) + 1; 964 if (cond_resched_lock(&root->inode_lock)) 965 goto again; 966 967 node = rb_next(node); 968 } 969 spin_unlock(&root->inode_lock); 970 return NULL; 971 } 972 973 /* 974 * get new location of data 975 */ 976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 977 u64 bytenr, u64 num_bytes) 978 { 979 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 980 struct btrfs_path *path; 981 struct btrfs_file_extent_item *fi; 982 struct extent_buffer *leaf; 983 int ret; 984 985 path = btrfs_alloc_path(); 986 if (!path) 987 return -ENOMEM; 988 989 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 990 ret = btrfs_lookup_file_extent(NULL, root, path, 991 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 992 if (ret < 0) 993 goto out; 994 if (ret > 0) { 995 ret = -ENOENT; 996 goto out; 997 } 998 999 leaf = path->nodes[0]; 1000 fi = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_file_extent_item); 1002 1003 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1004 btrfs_file_extent_compression(leaf, fi) || 1005 btrfs_file_extent_encryption(leaf, fi) || 1006 btrfs_file_extent_other_encoding(leaf, fi)); 1007 1008 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1009 ret = -EINVAL; 1010 goto out; 1011 } 1012 1013 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1014 ret = 0; 1015 out: 1016 btrfs_free_path(path); 1017 return ret; 1018 } 1019 1020 /* 1021 * update file extent items in the tree leaf to point to 1022 * the new locations. 1023 */ 1024 static noinline_for_stack 1025 int replace_file_extents(struct btrfs_trans_handle *trans, 1026 struct reloc_control *rc, 1027 struct btrfs_root *root, 1028 struct extent_buffer *leaf) 1029 { 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 struct btrfs_key key; 1032 struct btrfs_file_extent_item *fi; 1033 struct inode *inode = NULL; 1034 u64 parent; 1035 u64 bytenr; 1036 u64 new_bytenr = 0; 1037 u64 num_bytes; 1038 u64 end; 1039 u32 nritems; 1040 u32 i; 1041 int ret = 0; 1042 int first = 1; 1043 int dirty = 0; 1044 1045 if (rc->stage != UPDATE_DATA_PTRS) 1046 return 0; 1047 1048 /* reloc trees always use full backref */ 1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1050 parent = leaf->start; 1051 else 1052 parent = 0; 1053 1054 nritems = btrfs_header_nritems(leaf); 1055 for (i = 0; i < nritems; i++) { 1056 struct btrfs_ref ref = { 0 }; 1057 1058 cond_resched(); 1059 btrfs_item_key_to_cpu(leaf, &key, i); 1060 if (key.type != BTRFS_EXTENT_DATA_KEY) 1061 continue; 1062 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1063 if (btrfs_file_extent_type(leaf, fi) == 1064 BTRFS_FILE_EXTENT_INLINE) 1065 continue; 1066 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1067 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1068 if (bytenr == 0) 1069 continue; 1070 if (!in_range(bytenr, rc->block_group->start, 1071 rc->block_group->length)) 1072 continue; 1073 1074 /* 1075 * if we are modifying block in fs tree, wait for readpage 1076 * to complete and drop the extent cache 1077 */ 1078 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1079 if (first) { 1080 inode = find_next_inode(root, key.objectid); 1081 first = 0; 1082 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1083 btrfs_add_delayed_iput(inode); 1084 inode = find_next_inode(root, key.objectid); 1085 } 1086 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1087 end = key.offset + 1088 btrfs_file_extent_num_bytes(leaf, fi); 1089 WARN_ON(!IS_ALIGNED(key.offset, 1090 fs_info->sectorsize)); 1091 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1092 end--; 1093 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1094 key.offset, end); 1095 if (!ret) 1096 continue; 1097 1098 btrfs_drop_extent_cache(BTRFS_I(inode), 1099 key.offset, end, 1); 1100 unlock_extent(&BTRFS_I(inode)->io_tree, 1101 key.offset, end); 1102 } 1103 } 1104 1105 ret = get_new_location(rc->data_inode, &new_bytenr, 1106 bytenr, num_bytes); 1107 if (ret) { 1108 /* 1109 * Don't have to abort since we've not changed anything 1110 * in the file extent yet. 1111 */ 1112 break; 1113 } 1114 1115 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1116 dirty = 1; 1117 1118 key.offset -= btrfs_file_extent_offset(leaf, fi); 1119 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1120 num_bytes, parent); 1121 ref.real_root = root->root_key.objectid; 1122 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1123 key.objectid, key.offset); 1124 ret = btrfs_inc_extent_ref(trans, &ref); 1125 if (ret) { 1126 btrfs_abort_transaction(trans, ret); 1127 break; 1128 } 1129 1130 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1131 num_bytes, parent); 1132 ref.real_root = root->root_key.objectid; 1133 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1134 key.objectid, key.offset); 1135 ret = btrfs_free_extent(trans, &ref); 1136 if (ret) { 1137 btrfs_abort_transaction(trans, ret); 1138 break; 1139 } 1140 } 1141 if (dirty) 1142 btrfs_mark_buffer_dirty(leaf); 1143 if (inode) 1144 btrfs_add_delayed_iput(inode); 1145 return ret; 1146 } 1147 1148 static noinline_for_stack 1149 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1150 struct btrfs_path *path, int level) 1151 { 1152 struct btrfs_disk_key key1; 1153 struct btrfs_disk_key key2; 1154 btrfs_node_key(eb, &key1, slot); 1155 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1156 return memcmp(&key1, &key2, sizeof(key1)); 1157 } 1158 1159 /* 1160 * try to replace tree blocks in fs tree with the new blocks 1161 * in reloc tree. tree blocks haven't been modified since the 1162 * reloc tree was create can be replaced. 1163 * 1164 * if a block was replaced, level of the block + 1 is returned. 1165 * if no block got replaced, 0 is returned. if there are other 1166 * errors, a negative error number is returned. 1167 */ 1168 static noinline_for_stack 1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1170 struct btrfs_root *dest, struct btrfs_root *src, 1171 struct btrfs_path *path, struct btrfs_key *next_key, 1172 int lowest_level, int max_level) 1173 { 1174 struct btrfs_fs_info *fs_info = dest->fs_info; 1175 struct extent_buffer *eb; 1176 struct extent_buffer *parent; 1177 struct btrfs_ref ref = { 0 }; 1178 struct btrfs_key key; 1179 u64 old_bytenr; 1180 u64 new_bytenr; 1181 u64 old_ptr_gen; 1182 u64 new_ptr_gen; 1183 u64 last_snapshot; 1184 u32 blocksize; 1185 int cow = 0; 1186 int level; 1187 int ret; 1188 int slot; 1189 1190 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1191 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1192 1193 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1194 again: 1195 slot = path->slots[lowest_level]; 1196 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1197 1198 eb = btrfs_lock_root_node(dest); 1199 btrfs_set_lock_blocking_write(eb); 1200 level = btrfs_header_level(eb); 1201 1202 if (level < lowest_level) { 1203 btrfs_tree_unlock(eb); 1204 free_extent_buffer(eb); 1205 return 0; 1206 } 1207 1208 if (cow) { 1209 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1210 BTRFS_NESTING_COW); 1211 BUG_ON(ret); 1212 } 1213 btrfs_set_lock_blocking_write(eb); 1214 1215 if (next_key) { 1216 next_key->objectid = (u64)-1; 1217 next_key->type = (u8)-1; 1218 next_key->offset = (u64)-1; 1219 } 1220 1221 parent = eb; 1222 while (1) { 1223 struct btrfs_key first_key; 1224 1225 level = btrfs_header_level(parent); 1226 BUG_ON(level < lowest_level); 1227 1228 ret = btrfs_bin_search(parent, &key, &slot); 1229 if (ret < 0) 1230 break; 1231 if (ret && slot > 0) 1232 slot--; 1233 1234 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1235 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1236 1237 old_bytenr = btrfs_node_blockptr(parent, slot); 1238 blocksize = fs_info->nodesize; 1239 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1240 btrfs_node_key_to_cpu(parent, &first_key, slot); 1241 1242 if (level <= max_level) { 1243 eb = path->nodes[level]; 1244 new_bytenr = btrfs_node_blockptr(eb, 1245 path->slots[level]); 1246 new_ptr_gen = btrfs_node_ptr_generation(eb, 1247 path->slots[level]); 1248 } else { 1249 new_bytenr = 0; 1250 new_ptr_gen = 0; 1251 } 1252 1253 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1254 ret = level; 1255 break; 1256 } 1257 1258 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1259 memcmp_node_keys(parent, slot, path, level)) { 1260 if (level <= lowest_level) { 1261 ret = 0; 1262 break; 1263 } 1264 1265 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1266 level - 1, &first_key); 1267 if (IS_ERR(eb)) { 1268 ret = PTR_ERR(eb); 1269 break; 1270 } else if (!extent_buffer_uptodate(eb)) { 1271 ret = -EIO; 1272 free_extent_buffer(eb); 1273 break; 1274 } 1275 btrfs_tree_lock(eb); 1276 if (cow) { 1277 ret = btrfs_cow_block(trans, dest, eb, parent, 1278 slot, &eb, 1279 BTRFS_NESTING_COW); 1280 BUG_ON(ret); 1281 } 1282 btrfs_set_lock_blocking_write(eb); 1283 1284 btrfs_tree_unlock(parent); 1285 free_extent_buffer(parent); 1286 1287 parent = eb; 1288 continue; 1289 } 1290 1291 if (!cow) { 1292 btrfs_tree_unlock(parent); 1293 free_extent_buffer(parent); 1294 cow = 1; 1295 goto again; 1296 } 1297 1298 btrfs_node_key_to_cpu(path->nodes[level], &key, 1299 path->slots[level]); 1300 btrfs_release_path(path); 1301 1302 path->lowest_level = level; 1303 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1304 path->lowest_level = 0; 1305 BUG_ON(ret); 1306 1307 /* 1308 * Info qgroup to trace both subtrees. 1309 * 1310 * We must trace both trees. 1311 * 1) Tree reloc subtree 1312 * If not traced, we will leak data numbers 1313 * 2) Fs subtree 1314 * If not traced, we will double count old data 1315 * 1316 * We don't scan the subtree right now, but only record 1317 * the swapped tree blocks. 1318 * The real subtree rescan is delayed until we have new 1319 * CoW on the subtree root node before transaction commit. 1320 */ 1321 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1322 rc->block_group, parent, slot, 1323 path->nodes[level], path->slots[level], 1324 last_snapshot); 1325 if (ret < 0) 1326 break; 1327 /* 1328 * swap blocks in fs tree and reloc tree. 1329 */ 1330 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1331 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1332 btrfs_mark_buffer_dirty(parent); 1333 1334 btrfs_set_node_blockptr(path->nodes[level], 1335 path->slots[level], old_bytenr); 1336 btrfs_set_node_ptr_generation(path->nodes[level], 1337 path->slots[level], old_ptr_gen); 1338 btrfs_mark_buffer_dirty(path->nodes[level]); 1339 1340 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1341 blocksize, path->nodes[level]->start); 1342 ref.skip_qgroup = true; 1343 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1344 ret = btrfs_inc_extent_ref(trans, &ref); 1345 BUG_ON(ret); 1346 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1347 blocksize, 0); 1348 ref.skip_qgroup = true; 1349 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1350 ret = btrfs_inc_extent_ref(trans, &ref); 1351 BUG_ON(ret); 1352 1353 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1354 blocksize, path->nodes[level]->start); 1355 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1356 ref.skip_qgroup = true; 1357 ret = btrfs_free_extent(trans, &ref); 1358 BUG_ON(ret); 1359 1360 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1361 blocksize, 0); 1362 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1363 ref.skip_qgroup = true; 1364 ret = btrfs_free_extent(trans, &ref); 1365 BUG_ON(ret); 1366 1367 btrfs_unlock_up_safe(path, 0); 1368 1369 ret = level; 1370 break; 1371 } 1372 btrfs_tree_unlock(parent); 1373 free_extent_buffer(parent); 1374 return ret; 1375 } 1376 1377 /* 1378 * helper to find next relocated block in reloc tree 1379 */ 1380 static noinline_for_stack 1381 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1382 int *level) 1383 { 1384 struct extent_buffer *eb; 1385 int i; 1386 u64 last_snapshot; 1387 u32 nritems; 1388 1389 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1390 1391 for (i = 0; i < *level; i++) { 1392 free_extent_buffer(path->nodes[i]); 1393 path->nodes[i] = NULL; 1394 } 1395 1396 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1397 eb = path->nodes[i]; 1398 nritems = btrfs_header_nritems(eb); 1399 while (path->slots[i] + 1 < nritems) { 1400 path->slots[i]++; 1401 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1402 last_snapshot) 1403 continue; 1404 1405 *level = i; 1406 return 0; 1407 } 1408 free_extent_buffer(path->nodes[i]); 1409 path->nodes[i] = NULL; 1410 } 1411 return 1; 1412 } 1413 1414 /* 1415 * walk down reloc tree to find relocated block of lowest level 1416 */ 1417 static noinline_for_stack 1418 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1419 int *level) 1420 { 1421 struct btrfs_fs_info *fs_info = root->fs_info; 1422 struct extent_buffer *eb = NULL; 1423 int i; 1424 u64 bytenr; 1425 u64 ptr_gen = 0; 1426 u64 last_snapshot; 1427 u32 nritems; 1428 1429 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1430 1431 for (i = *level; i > 0; i--) { 1432 struct btrfs_key first_key; 1433 1434 eb = path->nodes[i]; 1435 nritems = btrfs_header_nritems(eb); 1436 while (path->slots[i] < nritems) { 1437 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1438 if (ptr_gen > last_snapshot) 1439 break; 1440 path->slots[i]++; 1441 } 1442 if (path->slots[i] >= nritems) { 1443 if (i == *level) 1444 break; 1445 *level = i + 1; 1446 return 0; 1447 } 1448 if (i == 1) { 1449 *level = i; 1450 return 0; 1451 } 1452 1453 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1454 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 1455 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 1456 &first_key); 1457 if (IS_ERR(eb)) { 1458 return PTR_ERR(eb); 1459 } else if (!extent_buffer_uptodate(eb)) { 1460 free_extent_buffer(eb); 1461 return -EIO; 1462 } 1463 BUG_ON(btrfs_header_level(eb) != i - 1); 1464 path->nodes[i - 1] = eb; 1465 path->slots[i - 1] = 0; 1466 } 1467 return 1; 1468 } 1469 1470 /* 1471 * invalidate extent cache for file extents whose key in range of 1472 * [min_key, max_key) 1473 */ 1474 static int invalidate_extent_cache(struct btrfs_root *root, 1475 struct btrfs_key *min_key, 1476 struct btrfs_key *max_key) 1477 { 1478 struct btrfs_fs_info *fs_info = root->fs_info; 1479 struct inode *inode = NULL; 1480 u64 objectid; 1481 u64 start, end; 1482 u64 ino; 1483 1484 objectid = min_key->objectid; 1485 while (1) { 1486 cond_resched(); 1487 iput(inode); 1488 1489 if (objectid > max_key->objectid) 1490 break; 1491 1492 inode = find_next_inode(root, objectid); 1493 if (!inode) 1494 break; 1495 ino = btrfs_ino(BTRFS_I(inode)); 1496 1497 if (ino > max_key->objectid) { 1498 iput(inode); 1499 break; 1500 } 1501 1502 objectid = ino + 1; 1503 if (!S_ISREG(inode->i_mode)) 1504 continue; 1505 1506 if (unlikely(min_key->objectid == ino)) { 1507 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1508 continue; 1509 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1510 start = 0; 1511 else { 1512 start = min_key->offset; 1513 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1514 } 1515 } else { 1516 start = 0; 1517 } 1518 1519 if (unlikely(max_key->objectid == ino)) { 1520 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1521 continue; 1522 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1523 end = (u64)-1; 1524 } else { 1525 if (max_key->offset == 0) 1526 continue; 1527 end = max_key->offset; 1528 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1529 end--; 1530 } 1531 } else { 1532 end = (u64)-1; 1533 } 1534 1535 /* the lock_extent waits for readpage to complete */ 1536 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1537 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1538 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1539 } 1540 return 0; 1541 } 1542 1543 static int find_next_key(struct btrfs_path *path, int level, 1544 struct btrfs_key *key) 1545 1546 { 1547 while (level < BTRFS_MAX_LEVEL) { 1548 if (!path->nodes[level]) 1549 break; 1550 if (path->slots[level] + 1 < 1551 btrfs_header_nritems(path->nodes[level])) { 1552 btrfs_node_key_to_cpu(path->nodes[level], key, 1553 path->slots[level] + 1); 1554 return 0; 1555 } 1556 level++; 1557 } 1558 return 1; 1559 } 1560 1561 /* 1562 * Insert current subvolume into reloc_control::dirty_subvol_roots 1563 */ 1564 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 1565 struct reloc_control *rc, 1566 struct btrfs_root *root) 1567 { 1568 struct btrfs_root *reloc_root = root->reloc_root; 1569 struct btrfs_root_item *reloc_root_item; 1570 1571 /* @root must be a subvolume tree root with a valid reloc tree */ 1572 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1573 ASSERT(reloc_root); 1574 1575 reloc_root_item = &reloc_root->root_item; 1576 memset(&reloc_root_item->drop_progress, 0, 1577 sizeof(reloc_root_item->drop_progress)); 1578 reloc_root_item->drop_level = 0; 1579 btrfs_set_root_refs(reloc_root_item, 0); 1580 btrfs_update_reloc_root(trans, root); 1581 1582 if (list_empty(&root->reloc_dirty_list)) { 1583 btrfs_grab_root(root); 1584 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1585 } 1586 } 1587 1588 static int clean_dirty_subvols(struct reloc_control *rc) 1589 { 1590 struct btrfs_root *root; 1591 struct btrfs_root *next; 1592 int ret = 0; 1593 int ret2; 1594 1595 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1596 reloc_dirty_list) { 1597 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1598 /* Merged subvolume, cleanup its reloc root */ 1599 struct btrfs_root *reloc_root = root->reloc_root; 1600 1601 list_del_init(&root->reloc_dirty_list); 1602 root->reloc_root = NULL; 1603 /* 1604 * Need barrier to ensure clear_bit() only happens after 1605 * root->reloc_root = NULL. Pairs with have_reloc_root. 1606 */ 1607 smp_wmb(); 1608 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1609 if (reloc_root) { 1610 /* 1611 * btrfs_drop_snapshot drops our ref we hold for 1612 * ->reloc_root. If it fails however we must 1613 * drop the ref ourselves. 1614 */ 1615 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1616 if (ret2 < 0) { 1617 btrfs_put_root(reloc_root); 1618 if (!ret) 1619 ret = ret2; 1620 } 1621 } 1622 btrfs_put_root(root); 1623 } else { 1624 /* Orphan reloc tree, just clean it up */ 1625 ret2 = btrfs_drop_snapshot(root, 0, 1); 1626 if (ret2 < 0) { 1627 btrfs_put_root(root); 1628 if (!ret) 1629 ret = ret2; 1630 } 1631 } 1632 } 1633 return ret; 1634 } 1635 1636 /* 1637 * merge the relocated tree blocks in reloc tree with corresponding 1638 * fs tree. 1639 */ 1640 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1641 struct btrfs_root *root) 1642 { 1643 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1644 struct btrfs_key key; 1645 struct btrfs_key next_key; 1646 struct btrfs_trans_handle *trans = NULL; 1647 struct btrfs_root *reloc_root; 1648 struct btrfs_root_item *root_item; 1649 struct btrfs_path *path; 1650 struct extent_buffer *leaf; 1651 int level; 1652 int max_level; 1653 int replaced = 0; 1654 int ret; 1655 int err = 0; 1656 u32 min_reserved; 1657 1658 path = btrfs_alloc_path(); 1659 if (!path) 1660 return -ENOMEM; 1661 path->reada = READA_FORWARD; 1662 1663 reloc_root = root->reloc_root; 1664 root_item = &reloc_root->root_item; 1665 1666 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1667 level = btrfs_root_level(root_item); 1668 atomic_inc(&reloc_root->node->refs); 1669 path->nodes[level] = reloc_root->node; 1670 path->slots[level] = 0; 1671 } else { 1672 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1673 1674 level = root_item->drop_level; 1675 BUG_ON(level == 0); 1676 path->lowest_level = level; 1677 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1678 path->lowest_level = 0; 1679 if (ret < 0) { 1680 btrfs_free_path(path); 1681 return ret; 1682 } 1683 1684 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1685 path->slots[level]); 1686 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1687 1688 btrfs_unlock_up_safe(path, 0); 1689 } 1690 1691 /* 1692 * In merge_reloc_root(), we modify the upper level pointer to swap the 1693 * tree blocks between reloc tree and subvolume tree. Thus for tree 1694 * block COW, we COW at most from level 1 to root level for each tree. 1695 * 1696 * Thus the needed metadata size is at most root_level * nodesize, 1697 * and * 2 since we have two trees to COW. 1698 */ 1699 min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2; 1700 memset(&next_key, 0, sizeof(next_key)); 1701 1702 while (1) { 1703 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1704 BTRFS_RESERVE_FLUSH_LIMIT); 1705 if (ret) { 1706 err = ret; 1707 goto out; 1708 } 1709 trans = btrfs_start_transaction(root, 0); 1710 if (IS_ERR(trans)) { 1711 err = PTR_ERR(trans); 1712 trans = NULL; 1713 goto out; 1714 } 1715 1716 /* 1717 * At this point we no longer have a reloc_control, so we can't 1718 * depend on btrfs_init_reloc_root to update our last_trans. 1719 * 1720 * But that's ok, we started the trans handle on our 1721 * corresponding fs_root, which means it's been added to the 1722 * dirty list. At commit time we'll still call 1723 * btrfs_update_reloc_root() and update our root item 1724 * appropriately. 1725 */ 1726 reloc_root->last_trans = trans->transid; 1727 trans->block_rsv = rc->block_rsv; 1728 1729 replaced = 0; 1730 max_level = level; 1731 1732 ret = walk_down_reloc_tree(reloc_root, path, &level); 1733 if (ret < 0) { 1734 err = ret; 1735 goto out; 1736 } 1737 if (ret > 0) 1738 break; 1739 1740 if (!find_next_key(path, level, &key) && 1741 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1742 ret = 0; 1743 } else { 1744 ret = replace_path(trans, rc, root, reloc_root, path, 1745 &next_key, level, max_level); 1746 } 1747 if (ret < 0) { 1748 err = ret; 1749 goto out; 1750 } 1751 1752 if (ret > 0) { 1753 level = ret; 1754 btrfs_node_key_to_cpu(path->nodes[level], &key, 1755 path->slots[level]); 1756 replaced = 1; 1757 } 1758 1759 ret = walk_up_reloc_tree(reloc_root, path, &level); 1760 if (ret > 0) 1761 break; 1762 1763 BUG_ON(level == 0); 1764 /* 1765 * save the merging progress in the drop_progress. 1766 * this is OK since root refs == 1 in this case. 1767 */ 1768 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1769 path->slots[level]); 1770 root_item->drop_level = level; 1771 1772 btrfs_end_transaction_throttle(trans); 1773 trans = NULL; 1774 1775 btrfs_btree_balance_dirty(fs_info); 1776 1777 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1778 invalidate_extent_cache(root, &key, &next_key); 1779 } 1780 1781 /* 1782 * handle the case only one block in the fs tree need to be 1783 * relocated and the block is tree root. 1784 */ 1785 leaf = btrfs_lock_root_node(root); 1786 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1787 BTRFS_NESTING_COW); 1788 btrfs_tree_unlock(leaf); 1789 free_extent_buffer(leaf); 1790 if (ret < 0) 1791 err = ret; 1792 out: 1793 btrfs_free_path(path); 1794 1795 if (err == 0) 1796 insert_dirty_subvol(trans, rc, root); 1797 1798 if (trans) 1799 btrfs_end_transaction_throttle(trans); 1800 1801 btrfs_btree_balance_dirty(fs_info); 1802 1803 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1804 invalidate_extent_cache(root, &key, &next_key); 1805 1806 return err; 1807 } 1808 1809 static noinline_for_stack 1810 int prepare_to_merge(struct reloc_control *rc, int err) 1811 { 1812 struct btrfs_root *root = rc->extent_root; 1813 struct btrfs_fs_info *fs_info = root->fs_info; 1814 struct btrfs_root *reloc_root; 1815 struct btrfs_trans_handle *trans; 1816 LIST_HEAD(reloc_roots); 1817 u64 num_bytes = 0; 1818 int ret; 1819 1820 mutex_lock(&fs_info->reloc_mutex); 1821 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1822 rc->merging_rsv_size += rc->nodes_relocated * 2; 1823 mutex_unlock(&fs_info->reloc_mutex); 1824 1825 again: 1826 if (!err) { 1827 num_bytes = rc->merging_rsv_size; 1828 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1829 BTRFS_RESERVE_FLUSH_ALL); 1830 if (ret) 1831 err = ret; 1832 } 1833 1834 trans = btrfs_join_transaction(rc->extent_root); 1835 if (IS_ERR(trans)) { 1836 if (!err) 1837 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1838 num_bytes, NULL); 1839 return PTR_ERR(trans); 1840 } 1841 1842 if (!err) { 1843 if (num_bytes != rc->merging_rsv_size) { 1844 btrfs_end_transaction(trans); 1845 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1846 num_bytes, NULL); 1847 goto again; 1848 } 1849 } 1850 1851 rc->merge_reloc_tree = 1; 1852 1853 while (!list_empty(&rc->reloc_roots)) { 1854 reloc_root = list_entry(rc->reloc_roots.next, 1855 struct btrfs_root, root_list); 1856 list_del_init(&reloc_root->root_list); 1857 1858 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1859 false); 1860 BUG_ON(IS_ERR(root)); 1861 BUG_ON(root->reloc_root != reloc_root); 1862 1863 /* 1864 * set reference count to 1, so btrfs_recover_relocation 1865 * knows it should resumes merging 1866 */ 1867 if (!err) 1868 btrfs_set_root_refs(&reloc_root->root_item, 1); 1869 btrfs_update_reloc_root(trans, root); 1870 1871 list_add(&reloc_root->root_list, &reloc_roots); 1872 btrfs_put_root(root); 1873 } 1874 1875 list_splice(&reloc_roots, &rc->reloc_roots); 1876 1877 if (!err) 1878 btrfs_commit_transaction(trans); 1879 else 1880 btrfs_end_transaction(trans); 1881 return err; 1882 } 1883 1884 static noinline_for_stack 1885 void free_reloc_roots(struct list_head *list) 1886 { 1887 struct btrfs_root *reloc_root, *tmp; 1888 1889 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1890 __del_reloc_root(reloc_root); 1891 } 1892 1893 static noinline_for_stack 1894 void merge_reloc_roots(struct reloc_control *rc) 1895 { 1896 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1897 struct btrfs_root *root; 1898 struct btrfs_root *reloc_root; 1899 LIST_HEAD(reloc_roots); 1900 int found = 0; 1901 int ret = 0; 1902 again: 1903 root = rc->extent_root; 1904 1905 /* 1906 * this serializes us with btrfs_record_root_in_transaction, 1907 * we have to make sure nobody is in the middle of 1908 * adding their roots to the list while we are 1909 * doing this splice 1910 */ 1911 mutex_lock(&fs_info->reloc_mutex); 1912 list_splice_init(&rc->reloc_roots, &reloc_roots); 1913 mutex_unlock(&fs_info->reloc_mutex); 1914 1915 while (!list_empty(&reloc_roots)) { 1916 found = 1; 1917 reloc_root = list_entry(reloc_roots.next, 1918 struct btrfs_root, root_list); 1919 1920 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1921 false); 1922 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1923 BUG_ON(IS_ERR(root)); 1924 BUG_ON(root->reloc_root != reloc_root); 1925 ret = merge_reloc_root(rc, root); 1926 btrfs_put_root(root); 1927 if (ret) { 1928 if (list_empty(&reloc_root->root_list)) 1929 list_add_tail(&reloc_root->root_list, 1930 &reloc_roots); 1931 goto out; 1932 } 1933 } else { 1934 if (!IS_ERR(root)) { 1935 if (root->reloc_root == reloc_root) { 1936 root->reloc_root = NULL; 1937 btrfs_put_root(reloc_root); 1938 } 1939 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1940 &root->state); 1941 btrfs_put_root(root); 1942 } 1943 1944 list_del_init(&reloc_root->root_list); 1945 /* Don't forget to queue this reloc root for cleanup */ 1946 list_add_tail(&reloc_root->reloc_dirty_list, 1947 &rc->dirty_subvol_roots); 1948 } 1949 } 1950 1951 if (found) { 1952 found = 0; 1953 goto again; 1954 } 1955 out: 1956 if (ret) { 1957 btrfs_handle_fs_error(fs_info, ret, NULL); 1958 free_reloc_roots(&reloc_roots); 1959 1960 /* new reloc root may be added */ 1961 mutex_lock(&fs_info->reloc_mutex); 1962 list_splice_init(&rc->reloc_roots, &reloc_roots); 1963 mutex_unlock(&fs_info->reloc_mutex); 1964 free_reloc_roots(&reloc_roots); 1965 } 1966 1967 /* 1968 * We used to have 1969 * 1970 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1971 * 1972 * here, but it's wrong. If we fail to start the transaction in 1973 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1974 * have actually been removed from the reloc_root_tree rb tree. This is 1975 * fine because we're bailing here, and we hold a reference on the root 1976 * for the list that holds it, so these roots will be cleaned up when we 1977 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1978 * will be cleaned up on unmount. 1979 * 1980 * The remaining nodes will be cleaned up by free_reloc_control. 1981 */ 1982 } 1983 1984 static void free_block_list(struct rb_root *blocks) 1985 { 1986 struct tree_block *block; 1987 struct rb_node *rb_node; 1988 while ((rb_node = rb_first(blocks))) { 1989 block = rb_entry(rb_node, struct tree_block, rb_node); 1990 rb_erase(rb_node, blocks); 1991 kfree(block); 1992 } 1993 } 1994 1995 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 1996 struct btrfs_root *reloc_root) 1997 { 1998 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 1999 struct btrfs_root *root; 2000 int ret; 2001 2002 if (reloc_root->last_trans == trans->transid) 2003 return 0; 2004 2005 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2006 BUG_ON(IS_ERR(root)); 2007 BUG_ON(root->reloc_root != reloc_root); 2008 ret = btrfs_record_root_in_trans(trans, root); 2009 btrfs_put_root(root); 2010 2011 return ret; 2012 } 2013 2014 static noinline_for_stack 2015 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2016 struct reloc_control *rc, 2017 struct btrfs_backref_node *node, 2018 struct btrfs_backref_edge *edges[]) 2019 { 2020 struct btrfs_backref_node *next; 2021 struct btrfs_root *root; 2022 int index = 0; 2023 2024 next = node; 2025 while (1) { 2026 cond_resched(); 2027 next = walk_up_backref(next, edges, &index); 2028 root = next->root; 2029 BUG_ON(!root); 2030 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)); 2031 2032 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2033 record_reloc_root_in_trans(trans, root); 2034 break; 2035 } 2036 2037 btrfs_record_root_in_trans(trans, root); 2038 root = root->reloc_root; 2039 2040 if (next->new_bytenr != root->node->start) { 2041 BUG_ON(next->new_bytenr); 2042 BUG_ON(!list_empty(&next->list)); 2043 next->new_bytenr = root->node->start; 2044 btrfs_put_root(next->root); 2045 next->root = btrfs_grab_root(root); 2046 ASSERT(next->root); 2047 list_add_tail(&next->list, 2048 &rc->backref_cache.changed); 2049 mark_block_processed(rc, next); 2050 break; 2051 } 2052 2053 WARN_ON(1); 2054 root = NULL; 2055 next = walk_down_backref(edges, &index); 2056 if (!next || next->level <= node->level) 2057 break; 2058 } 2059 if (!root) 2060 return NULL; 2061 2062 next = node; 2063 /* setup backref node path for btrfs_reloc_cow_block */ 2064 while (1) { 2065 rc->backref_cache.path[next->level] = next; 2066 if (--index < 0) 2067 break; 2068 next = edges[index]->node[UPPER]; 2069 } 2070 return root; 2071 } 2072 2073 /* 2074 * Select a tree root for relocation. 2075 * 2076 * Return NULL if the block is not shareable. We should use do_relocation() in 2077 * this case. 2078 * 2079 * Return a tree root pointer if the block is shareable. 2080 * Return -ENOENT if the block is root of reloc tree. 2081 */ 2082 static noinline_for_stack 2083 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2084 { 2085 struct btrfs_backref_node *next; 2086 struct btrfs_root *root; 2087 struct btrfs_root *fs_root = NULL; 2088 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2089 int index = 0; 2090 2091 next = node; 2092 while (1) { 2093 cond_resched(); 2094 next = walk_up_backref(next, edges, &index); 2095 root = next->root; 2096 BUG_ON(!root); 2097 2098 /* No other choice for non-shareable tree */ 2099 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2100 return root; 2101 2102 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2103 fs_root = root; 2104 2105 if (next != node) 2106 return NULL; 2107 2108 next = walk_down_backref(edges, &index); 2109 if (!next || next->level <= node->level) 2110 break; 2111 } 2112 2113 if (!fs_root) 2114 return ERR_PTR(-ENOENT); 2115 return fs_root; 2116 } 2117 2118 static noinline_for_stack 2119 u64 calcu_metadata_size(struct reloc_control *rc, 2120 struct btrfs_backref_node *node, int reserve) 2121 { 2122 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2123 struct btrfs_backref_node *next = node; 2124 struct btrfs_backref_edge *edge; 2125 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2126 u64 num_bytes = 0; 2127 int index = 0; 2128 2129 BUG_ON(reserve && node->processed); 2130 2131 while (next) { 2132 cond_resched(); 2133 while (1) { 2134 if (next->processed && (reserve || next != node)) 2135 break; 2136 2137 num_bytes += fs_info->nodesize; 2138 2139 if (list_empty(&next->upper)) 2140 break; 2141 2142 edge = list_entry(next->upper.next, 2143 struct btrfs_backref_edge, list[LOWER]); 2144 edges[index++] = edge; 2145 next = edge->node[UPPER]; 2146 } 2147 next = walk_down_backref(edges, &index); 2148 } 2149 return num_bytes; 2150 } 2151 2152 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2153 struct reloc_control *rc, 2154 struct btrfs_backref_node *node) 2155 { 2156 struct btrfs_root *root = rc->extent_root; 2157 struct btrfs_fs_info *fs_info = root->fs_info; 2158 u64 num_bytes; 2159 int ret; 2160 u64 tmp; 2161 2162 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2163 2164 trans->block_rsv = rc->block_rsv; 2165 rc->reserved_bytes += num_bytes; 2166 2167 /* 2168 * We are under a transaction here so we can only do limited flushing. 2169 * If we get an enospc just kick back -EAGAIN so we know to drop the 2170 * transaction and try to refill when we can flush all the things. 2171 */ 2172 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2173 BTRFS_RESERVE_FLUSH_LIMIT); 2174 if (ret) { 2175 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2176 while (tmp <= rc->reserved_bytes) 2177 tmp <<= 1; 2178 /* 2179 * only one thread can access block_rsv at this point, 2180 * so we don't need hold lock to protect block_rsv. 2181 * we expand more reservation size here to allow enough 2182 * space for relocation and we will return earlier in 2183 * enospc case. 2184 */ 2185 rc->block_rsv->size = tmp + fs_info->nodesize * 2186 RELOCATION_RESERVED_NODES; 2187 return -EAGAIN; 2188 } 2189 2190 return 0; 2191 } 2192 2193 /* 2194 * relocate a block tree, and then update pointers in upper level 2195 * blocks that reference the block to point to the new location. 2196 * 2197 * if called by link_to_upper, the block has already been relocated. 2198 * in that case this function just updates pointers. 2199 */ 2200 static int do_relocation(struct btrfs_trans_handle *trans, 2201 struct reloc_control *rc, 2202 struct btrfs_backref_node *node, 2203 struct btrfs_key *key, 2204 struct btrfs_path *path, int lowest) 2205 { 2206 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2207 struct btrfs_backref_node *upper; 2208 struct btrfs_backref_edge *edge; 2209 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2210 struct btrfs_root *root; 2211 struct extent_buffer *eb; 2212 u32 blocksize; 2213 u64 bytenr; 2214 u64 generation; 2215 int slot; 2216 int ret; 2217 int err = 0; 2218 2219 BUG_ON(lowest && node->eb); 2220 2221 path->lowest_level = node->level + 1; 2222 rc->backref_cache.path[node->level] = node; 2223 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2224 struct btrfs_key first_key; 2225 struct btrfs_ref ref = { 0 }; 2226 2227 cond_resched(); 2228 2229 upper = edge->node[UPPER]; 2230 root = select_reloc_root(trans, rc, upper, edges); 2231 BUG_ON(!root); 2232 2233 if (upper->eb && !upper->locked) { 2234 if (!lowest) { 2235 ret = btrfs_bin_search(upper->eb, key, &slot); 2236 if (ret < 0) { 2237 err = ret; 2238 goto next; 2239 } 2240 BUG_ON(ret); 2241 bytenr = btrfs_node_blockptr(upper->eb, slot); 2242 if (node->eb->start == bytenr) 2243 goto next; 2244 } 2245 btrfs_backref_drop_node_buffer(upper); 2246 } 2247 2248 if (!upper->eb) { 2249 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2250 if (ret) { 2251 if (ret < 0) 2252 err = ret; 2253 else 2254 err = -ENOENT; 2255 2256 btrfs_release_path(path); 2257 break; 2258 } 2259 2260 if (!upper->eb) { 2261 upper->eb = path->nodes[upper->level]; 2262 path->nodes[upper->level] = NULL; 2263 } else { 2264 BUG_ON(upper->eb != path->nodes[upper->level]); 2265 } 2266 2267 upper->locked = 1; 2268 path->locks[upper->level] = 0; 2269 2270 slot = path->slots[upper->level]; 2271 btrfs_release_path(path); 2272 } else { 2273 ret = btrfs_bin_search(upper->eb, key, &slot); 2274 if (ret < 0) { 2275 err = ret; 2276 goto next; 2277 } 2278 BUG_ON(ret); 2279 } 2280 2281 bytenr = btrfs_node_blockptr(upper->eb, slot); 2282 if (lowest) { 2283 if (bytenr != node->bytenr) { 2284 btrfs_err(root->fs_info, 2285 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2286 bytenr, node->bytenr, slot, 2287 upper->eb->start); 2288 err = -EIO; 2289 goto next; 2290 } 2291 } else { 2292 if (node->eb->start == bytenr) 2293 goto next; 2294 } 2295 2296 blocksize = root->fs_info->nodesize; 2297 generation = btrfs_node_ptr_generation(upper->eb, slot); 2298 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2299 eb = read_tree_block(fs_info, bytenr, generation, 2300 upper->level - 1, &first_key); 2301 if (IS_ERR(eb)) { 2302 err = PTR_ERR(eb); 2303 goto next; 2304 } else if (!extent_buffer_uptodate(eb)) { 2305 free_extent_buffer(eb); 2306 err = -EIO; 2307 goto next; 2308 } 2309 btrfs_tree_lock(eb); 2310 btrfs_set_lock_blocking_write(eb); 2311 2312 if (!node->eb) { 2313 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2314 slot, &eb, BTRFS_NESTING_COW); 2315 btrfs_tree_unlock(eb); 2316 free_extent_buffer(eb); 2317 if (ret < 0) { 2318 err = ret; 2319 goto next; 2320 } 2321 BUG_ON(node->eb != eb); 2322 } else { 2323 btrfs_set_node_blockptr(upper->eb, slot, 2324 node->eb->start); 2325 btrfs_set_node_ptr_generation(upper->eb, slot, 2326 trans->transid); 2327 btrfs_mark_buffer_dirty(upper->eb); 2328 2329 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2330 node->eb->start, blocksize, 2331 upper->eb->start); 2332 ref.real_root = root->root_key.objectid; 2333 btrfs_init_tree_ref(&ref, node->level, 2334 btrfs_header_owner(upper->eb)); 2335 ret = btrfs_inc_extent_ref(trans, &ref); 2336 BUG_ON(ret); 2337 2338 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2339 BUG_ON(ret); 2340 } 2341 next: 2342 if (!upper->pending) 2343 btrfs_backref_drop_node_buffer(upper); 2344 else 2345 btrfs_backref_unlock_node_buffer(upper); 2346 if (err) 2347 break; 2348 } 2349 2350 if (!err && node->pending) { 2351 btrfs_backref_drop_node_buffer(node); 2352 list_move_tail(&node->list, &rc->backref_cache.changed); 2353 node->pending = 0; 2354 } 2355 2356 path->lowest_level = 0; 2357 BUG_ON(err == -ENOSPC); 2358 return err; 2359 } 2360 2361 static int link_to_upper(struct btrfs_trans_handle *trans, 2362 struct reloc_control *rc, 2363 struct btrfs_backref_node *node, 2364 struct btrfs_path *path) 2365 { 2366 struct btrfs_key key; 2367 2368 btrfs_node_key_to_cpu(node->eb, &key, 0); 2369 return do_relocation(trans, rc, node, &key, path, 0); 2370 } 2371 2372 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2373 struct reloc_control *rc, 2374 struct btrfs_path *path, int err) 2375 { 2376 LIST_HEAD(list); 2377 struct btrfs_backref_cache *cache = &rc->backref_cache; 2378 struct btrfs_backref_node *node; 2379 int level; 2380 int ret; 2381 2382 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2383 while (!list_empty(&cache->pending[level])) { 2384 node = list_entry(cache->pending[level].next, 2385 struct btrfs_backref_node, list); 2386 list_move_tail(&node->list, &list); 2387 BUG_ON(!node->pending); 2388 2389 if (!err) { 2390 ret = link_to_upper(trans, rc, node, path); 2391 if (ret < 0) 2392 err = ret; 2393 } 2394 } 2395 list_splice_init(&list, &cache->pending[level]); 2396 } 2397 return err; 2398 } 2399 2400 /* 2401 * mark a block and all blocks directly/indirectly reference the block 2402 * as processed. 2403 */ 2404 static void update_processed_blocks(struct reloc_control *rc, 2405 struct btrfs_backref_node *node) 2406 { 2407 struct btrfs_backref_node *next = node; 2408 struct btrfs_backref_edge *edge; 2409 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2410 int index = 0; 2411 2412 while (next) { 2413 cond_resched(); 2414 while (1) { 2415 if (next->processed) 2416 break; 2417 2418 mark_block_processed(rc, next); 2419 2420 if (list_empty(&next->upper)) 2421 break; 2422 2423 edge = list_entry(next->upper.next, 2424 struct btrfs_backref_edge, list[LOWER]); 2425 edges[index++] = edge; 2426 next = edge->node[UPPER]; 2427 } 2428 next = walk_down_backref(edges, &index); 2429 } 2430 } 2431 2432 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2433 { 2434 u32 blocksize = rc->extent_root->fs_info->nodesize; 2435 2436 if (test_range_bit(&rc->processed_blocks, bytenr, 2437 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2438 return 1; 2439 return 0; 2440 } 2441 2442 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2443 struct tree_block *block) 2444 { 2445 struct extent_buffer *eb; 2446 2447 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2448 block->level, NULL); 2449 if (IS_ERR(eb)) { 2450 return PTR_ERR(eb); 2451 } else if (!extent_buffer_uptodate(eb)) { 2452 free_extent_buffer(eb); 2453 return -EIO; 2454 } 2455 if (block->level == 0) 2456 btrfs_item_key_to_cpu(eb, &block->key, 0); 2457 else 2458 btrfs_node_key_to_cpu(eb, &block->key, 0); 2459 free_extent_buffer(eb); 2460 block->key_ready = 1; 2461 return 0; 2462 } 2463 2464 /* 2465 * helper function to relocate a tree block 2466 */ 2467 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2468 struct reloc_control *rc, 2469 struct btrfs_backref_node *node, 2470 struct btrfs_key *key, 2471 struct btrfs_path *path) 2472 { 2473 struct btrfs_root *root; 2474 int ret = 0; 2475 2476 if (!node) 2477 return 0; 2478 2479 /* 2480 * If we fail here we want to drop our backref_node because we are going 2481 * to start over and regenerate the tree for it. 2482 */ 2483 ret = reserve_metadata_space(trans, rc, node); 2484 if (ret) 2485 goto out; 2486 2487 BUG_ON(node->processed); 2488 root = select_one_root(node); 2489 if (root == ERR_PTR(-ENOENT)) { 2490 update_processed_blocks(rc, node); 2491 goto out; 2492 } 2493 2494 if (root) { 2495 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2496 BUG_ON(node->new_bytenr); 2497 BUG_ON(!list_empty(&node->list)); 2498 btrfs_record_root_in_trans(trans, root); 2499 root = root->reloc_root; 2500 node->new_bytenr = root->node->start; 2501 btrfs_put_root(node->root); 2502 node->root = btrfs_grab_root(root); 2503 ASSERT(node->root); 2504 list_add_tail(&node->list, &rc->backref_cache.changed); 2505 } else { 2506 path->lowest_level = node->level; 2507 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2508 btrfs_release_path(path); 2509 if (ret > 0) 2510 ret = 0; 2511 } 2512 if (!ret) 2513 update_processed_blocks(rc, node); 2514 } else { 2515 ret = do_relocation(trans, rc, node, key, path, 1); 2516 } 2517 out: 2518 if (ret || node->level == 0 || node->cowonly) 2519 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2520 return ret; 2521 } 2522 2523 /* 2524 * relocate a list of blocks 2525 */ 2526 static noinline_for_stack 2527 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2528 struct reloc_control *rc, struct rb_root *blocks) 2529 { 2530 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2531 struct btrfs_backref_node *node; 2532 struct btrfs_path *path; 2533 struct tree_block *block; 2534 struct tree_block *next; 2535 int ret; 2536 int err = 0; 2537 2538 path = btrfs_alloc_path(); 2539 if (!path) { 2540 err = -ENOMEM; 2541 goto out_free_blocks; 2542 } 2543 2544 /* Kick in readahead for tree blocks with missing keys */ 2545 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2546 if (!block->key_ready) 2547 readahead_tree_block(fs_info, block->bytenr); 2548 } 2549 2550 /* Get first keys */ 2551 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2552 if (!block->key_ready) { 2553 err = get_tree_block_key(fs_info, block); 2554 if (err) 2555 goto out_free_path; 2556 } 2557 } 2558 2559 /* Do tree relocation */ 2560 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2561 node = build_backref_tree(rc, &block->key, 2562 block->level, block->bytenr); 2563 if (IS_ERR(node)) { 2564 err = PTR_ERR(node); 2565 goto out; 2566 } 2567 2568 ret = relocate_tree_block(trans, rc, node, &block->key, 2569 path); 2570 if (ret < 0) { 2571 err = ret; 2572 break; 2573 } 2574 } 2575 out: 2576 err = finish_pending_nodes(trans, rc, path, err); 2577 2578 out_free_path: 2579 btrfs_free_path(path); 2580 out_free_blocks: 2581 free_block_list(blocks); 2582 return err; 2583 } 2584 2585 static noinline_for_stack int prealloc_file_extent_cluster( 2586 struct btrfs_inode *inode, 2587 struct file_extent_cluster *cluster) 2588 { 2589 u64 alloc_hint = 0; 2590 u64 start; 2591 u64 end; 2592 u64 offset = inode->index_cnt; 2593 u64 num_bytes; 2594 int nr; 2595 int ret = 0; 2596 u64 prealloc_start = cluster->start - offset; 2597 u64 prealloc_end = cluster->end - offset; 2598 u64 cur_offset = prealloc_start; 2599 2600 BUG_ON(cluster->start != cluster->boundary[0]); 2601 ret = btrfs_alloc_data_chunk_ondemand(inode, 2602 prealloc_end + 1 - prealloc_start); 2603 if (ret) 2604 return ret; 2605 2606 inode_lock(&inode->vfs_inode); 2607 for (nr = 0; nr < cluster->nr; nr++) { 2608 start = cluster->boundary[nr] - offset; 2609 if (nr + 1 < cluster->nr) 2610 end = cluster->boundary[nr + 1] - 1 - offset; 2611 else 2612 end = cluster->end - offset; 2613 2614 lock_extent(&inode->io_tree, start, end); 2615 num_bytes = end + 1 - start; 2616 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2617 num_bytes, num_bytes, 2618 end + 1, &alloc_hint); 2619 cur_offset = end + 1; 2620 unlock_extent(&inode->io_tree, start, end); 2621 if (ret) 2622 break; 2623 } 2624 inode_unlock(&inode->vfs_inode); 2625 2626 if (cur_offset < prealloc_end) 2627 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2628 prealloc_end + 1 - cur_offset); 2629 return ret; 2630 } 2631 2632 static noinline_for_stack 2633 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2634 u64 block_start) 2635 { 2636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2637 struct extent_map *em; 2638 int ret = 0; 2639 2640 em = alloc_extent_map(); 2641 if (!em) 2642 return -ENOMEM; 2643 2644 em->start = start; 2645 em->len = end + 1 - start; 2646 em->block_len = em->len; 2647 em->block_start = block_start; 2648 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2649 2650 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2651 while (1) { 2652 write_lock(&em_tree->lock); 2653 ret = add_extent_mapping(em_tree, em, 0); 2654 write_unlock(&em_tree->lock); 2655 if (ret != -EEXIST) { 2656 free_extent_map(em); 2657 break; 2658 } 2659 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2660 } 2661 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2662 return ret; 2663 } 2664 2665 /* 2666 * Allow error injection to test balance cancellation 2667 */ 2668 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2669 { 2670 return atomic_read(&fs_info->balance_cancel_req) || 2671 fatal_signal_pending(current); 2672 } 2673 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2674 2675 static int relocate_file_extent_cluster(struct inode *inode, 2676 struct file_extent_cluster *cluster) 2677 { 2678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2679 u64 page_start; 2680 u64 page_end; 2681 u64 offset = BTRFS_I(inode)->index_cnt; 2682 unsigned long index; 2683 unsigned long last_index; 2684 struct page *page; 2685 struct file_ra_state *ra; 2686 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2687 int nr = 0; 2688 int ret = 0; 2689 2690 if (!cluster->nr) 2691 return 0; 2692 2693 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2694 if (!ra) 2695 return -ENOMEM; 2696 2697 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 2698 if (ret) 2699 goto out; 2700 2701 file_ra_state_init(ra, inode->i_mapping); 2702 2703 ret = setup_extent_mapping(inode, cluster->start - offset, 2704 cluster->end - offset, cluster->start); 2705 if (ret) 2706 goto out; 2707 2708 index = (cluster->start - offset) >> PAGE_SHIFT; 2709 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2710 while (index <= last_index) { 2711 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2712 PAGE_SIZE); 2713 if (ret) 2714 goto out; 2715 2716 page = find_lock_page(inode->i_mapping, index); 2717 if (!page) { 2718 page_cache_sync_readahead(inode->i_mapping, 2719 ra, NULL, index, 2720 last_index + 1 - index); 2721 page = find_or_create_page(inode->i_mapping, index, 2722 mask); 2723 if (!page) { 2724 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2725 PAGE_SIZE, true); 2726 btrfs_delalloc_release_extents(BTRFS_I(inode), 2727 PAGE_SIZE); 2728 ret = -ENOMEM; 2729 goto out; 2730 } 2731 } 2732 2733 if (PageReadahead(page)) { 2734 page_cache_async_readahead(inode->i_mapping, 2735 ra, NULL, page, index, 2736 last_index + 1 - index); 2737 } 2738 2739 if (!PageUptodate(page)) { 2740 btrfs_readpage(NULL, page); 2741 lock_page(page); 2742 if (!PageUptodate(page)) { 2743 unlock_page(page); 2744 put_page(page); 2745 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2746 PAGE_SIZE, true); 2747 btrfs_delalloc_release_extents(BTRFS_I(inode), 2748 PAGE_SIZE); 2749 ret = -EIO; 2750 goto out; 2751 } 2752 } 2753 2754 page_start = page_offset(page); 2755 page_end = page_start + PAGE_SIZE - 1; 2756 2757 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2758 2759 set_page_extent_mapped(page); 2760 2761 if (nr < cluster->nr && 2762 page_start + offset == cluster->boundary[nr]) { 2763 set_extent_bits(&BTRFS_I(inode)->io_tree, 2764 page_start, page_end, 2765 EXTENT_BOUNDARY); 2766 nr++; 2767 } 2768 2769 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, 2770 page_end, 0, NULL); 2771 if (ret) { 2772 unlock_page(page); 2773 put_page(page); 2774 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2775 PAGE_SIZE, true); 2776 btrfs_delalloc_release_extents(BTRFS_I(inode), 2777 PAGE_SIZE); 2778 2779 clear_extent_bits(&BTRFS_I(inode)->io_tree, 2780 page_start, page_end, 2781 EXTENT_LOCKED | EXTENT_BOUNDARY); 2782 goto out; 2783 2784 } 2785 set_page_dirty(page); 2786 2787 unlock_extent(&BTRFS_I(inode)->io_tree, 2788 page_start, page_end); 2789 unlock_page(page); 2790 put_page(page); 2791 2792 index++; 2793 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2794 balance_dirty_pages_ratelimited(inode->i_mapping); 2795 btrfs_throttle(fs_info); 2796 if (btrfs_should_cancel_balance(fs_info)) { 2797 ret = -ECANCELED; 2798 goto out; 2799 } 2800 } 2801 WARN_ON(nr != cluster->nr); 2802 out: 2803 kfree(ra); 2804 return ret; 2805 } 2806 2807 static noinline_for_stack 2808 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 2809 struct file_extent_cluster *cluster) 2810 { 2811 int ret; 2812 2813 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 2814 ret = relocate_file_extent_cluster(inode, cluster); 2815 if (ret) 2816 return ret; 2817 cluster->nr = 0; 2818 } 2819 2820 if (!cluster->nr) 2821 cluster->start = extent_key->objectid; 2822 else 2823 BUG_ON(cluster->nr >= MAX_EXTENTS); 2824 cluster->end = extent_key->objectid + extent_key->offset - 1; 2825 cluster->boundary[cluster->nr] = extent_key->objectid; 2826 cluster->nr++; 2827 2828 if (cluster->nr >= MAX_EXTENTS) { 2829 ret = relocate_file_extent_cluster(inode, cluster); 2830 if (ret) 2831 return ret; 2832 cluster->nr = 0; 2833 } 2834 return 0; 2835 } 2836 2837 /* 2838 * helper to add a tree block to the list. 2839 * the major work is getting the generation and level of the block 2840 */ 2841 static int add_tree_block(struct reloc_control *rc, 2842 struct btrfs_key *extent_key, 2843 struct btrfs_path *path, 2844 struct rb_root *blocks) 2845 { 2846 struct extent_buffer *eb; 2847 struct btrfs_extent_item *ei; 2848 struct btrfs_tree_block_info *bi; 2849 struct tree_block *block; 2850 struct rb_node *rb_node; 2851 u32 item_size; 2852 int level = -1; 2853 u64 generation; 2854 2855 eb = path->nodes[0]; 2856 item_size = btrfs_item_size_nr(eb, path->slots[0]); 2857 2858 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 2859 item_size >= sizeof(*ei) + sizeof(*bi)) { 2860 ei = btrfs_item_ptr(eb, path->slots[0], 2861 struct btrfs_extent_item); 2862 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 2863 bi = (struct btrfs_tree_block_info *)(ei + 1); 2864 level = btrfs_tree_block_level(eb, bi); 2865 } else { 2866 level = (int)extent_key->offset; 2867 } 2868 generation = btrfs_extent_generation(eb, ei); 2869 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 2870 btrfs_print_v0_err(eb->fs_info); 2871 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 2872 return -EINVAL; 2873 } else { 2874 BUG(); 2875 } 2876 2877 btrfs_release_path(path); 2878 2879 BUG_ON(level == -1); 2880 2881 block = kmalloc(sizeof(*block), GFP_NOFS); 2882 if (!block) 2883 return -ENOMEM; 2884 2885 block->bytenr = extent_key->objectid; 2886 block->key.objectid = rc->extent_root->fs_info->nodesize; 2887 block->key.offset = generation; 2888 block->level = level; 2889 block->key_ready = 0; 2890 2891 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 2892 if (rb_node) 2893 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 2894 -EEXIST); 2895 2896 return 0; 2897 } 2898 2899 /* 2900 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 2901 */ 2902 static int __add_tree_block(struct reloc_control *rc, 2903 u64 bytenr, u32 blocksize, 2904 struct rb_root *blocks) 2905 { 2906 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2907 struct btrfs_path *path; 2908 struct btrfs_key key; 2909 int ret; 2910 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2911 2912 if (tree_block_processed(bytenr, rc)) 2913 return 0; 2914 2915 if (rb_simple_search(blocks, bytenr)) 2916 return 0; 2917 2918 path = btrfs_alloc_path(); 2919 if (!path) 2920 return -ENOMEM; 2921 again: 2922 key.objectid = bytenr; 2923 if (skinny) { 2924 key.type = BTRFS_METADATA_ITEM_KEY; 2925 key.offset = (u64)-1; 2926 } else { 2927 key.type = BTRFS_EXTENT_ITEM_KEY; 2928 key.offset = blocksize; 2929 } 2930 2931 path->search_commit_root = 1; 2932 path->skip_locking = 1; 2933 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 2934 if (ret < 0) 2935 goto out; 2936 2937 if (ret > 0 && skinny) { 2938 if (path->slots[0]) { 2939 path->slots[0]--; 2940 btrfs_item_key_to_cpu(path->nodes[0], &key, 2941 path->slots[0]); 2942 if (key.objectid == bytenr && 2943 (key.type == BTRFS_METADATA_ITEM_KEY || 2944 (key.type == BTRFS_EXTENT_ITEM_KEY && 2945 key.offset == blocksize))) 2946 ret = 0; 2947 } 2948 2949 if (ret) { 2950 skinny = false; 2951 btrfs_release_path(path); 2952 goto again; 2953 } 2954 } 2955 if (ret) { 2956 ASSERT(ret == 1); 2957 btrfs_print_leaf(path->nodes[0]); 2958 btrfs_err(fs_info, 2959 "tree block extent item (%llu) is not found in extent tree", 2960 bytenr); 2961 WARN_ON(1); 2962 ret = -EINVAL; 2963 goto out; 2964 } 2965 2966 ret = add_tree_block(rc, &key, path, blocks); 2967 out: 2968 btrfs_free_path(path); 2969 return ret; 2970 } 2971 2972 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 2973 struct btrfs_block_group *block_group, 2974 struct inode *inode, 2975 u64 ino) 2976 { 2977 struct btrfs_root *root = fs_info->tree_root; 2978 struct btrfs_trans_handle *trans; 2979 int ret = 0; 2980 2981 if (inode) 2982 goto truncate; 2983 2984 inode = btrfs_iget(fs_info->sb, ino, root); 2985 if (IS_ERR(inode)) 2986 return -ENOENT; 2987 2988 truncate: 2989 ret = btrfs_check_trunc_cache_free_space(fs_info, 2990 &fs_info->global_block_rsv); 2991 if (ret) 2992 goto out; 2993 2994 trans = btrfs_join_transaction(root); 2995 if (IS_ERR(trans)) { 2996 ret = PTR_ERR(trans); 2997 goto out; 2998 } 2999 3000 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3001 3002 btrfs_end_transaction(trans); 3003 btrfs_btree_balance_dirty(fs_info); 3004 out: 3005 iput(inode); 3006 return ret; 3007 } 3008 3009 /* 3010 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3011 * cache inode, to avoid free space cache data extent blocking data relocation. 3012 */ 3013 static int delete_v1_space_cache(struct extent_buffer *leaf, 3014 struct btrfs_block_group *block_group, 3015 u64 data_bytenr) 3016 { 3017 u64 space_cache_ino; 3018 struct btrfs_file_extent_item *ei; 3019 struct btrfs_key key; 3020 bool found = false; 3021 int i; 3022 int ret; 3023 3024 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3025 return 0; 3026 3027 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3028 btrfs_item_key_to_cpu(leaf, &key, i); 3029 if (key.type != BTRFS_EXTENT_DATA_KEY) 3030 continue; 3031 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3032 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG && 3033 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3034 found = true; 3035 space_cache_ino = key.objectid; 3036 break; 3037 } 3038 } 3039 if (!found) 3040 return -ENOENT; 3041 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3042 space_cache_ino); 3043 return ret; 3044 } 3045 3046 /* 3047 * helper to find all tree blocks that reference a given data extent 3048 */ 3049 static noinline_for_stack 3050 int add_data_references(struct reloc_control *rc, 3051 struct btrfs_key *extent_key, 3052 struct btrfs_path *path, 3053 struct rb_root *blocks) 3054 { 3055 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3056 struct ulist *leaves = NULL; 3057 struct ulist_iterator leaf_uiter; 3058 struct ulist_node *ref_node = NULL; 3059 const u32 blocksize = fs_info->nodesize; 3060 int ret = 0; 3061 3062 btrfs_release_path(path); 3063 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3064 0, &leaves, NULL, true); 3065 if (ret < 0) 3066 return ret; 3067 3068 ULIST_ITER_INIT(&leaf_uiter); 3069 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3070 struct extent_buffer *eb; 3071 3072 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL); 3073 if (IS_ERR(eb)) { 3074 ret = PTR_ERR(eb); 3075 break; 3076 } 3077 ret = delete_v1_space_cache(eb, rc->block_group, 3078 extent_key->objectid); 3079 free_extent_buffer(eb); 3080 if (ret < 0) 3081 break; 3082 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3083 if (ret < 0) 3084 break; 3085 } 3086 if (ret < 0) 3087 free_block_list(blocks); 3088 ulist_free(leaves); 3089 return ret; 3090 } 3091 3092 /* 3093 * helper to find next unprocessed extent 3094 */ 3095 static noinline_for_stack 3096 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3097 struct btrfs_key *extent_key) 3098 { 3099 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3100 struct btrfs_key key; 3101 struct extent_buffer *leaf; 3102 u64 start, end, last; 3103 int ret; 3104 3105 last = rc->block_group->start + rc->block_group->length; 3106 while (1) { 3107 cond_resched(); 3108 if (rc->search_start >= last) { 3109 ret = 1; 3110 break; 3111 } 3112 3113 key.objectid = rc->search_start; 3114 key.type = BTRFS_EXTENT_ITEM_KEY; 3115 key.offset = 0; 3116 3117 path->search_commit_root = 1; 3118 path->skip_locking = 1; 3119 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3120 0, 0); 3121 if (ret < 0) 3122 break; 3123 next: 3124 leaf = path->nodes[0]; 3125 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3126 ret = btrfs_next_leaf(rc->extent_root, path); 3127 if (ret != 0) 3128 break; 3129 leaf = path->nodes[0]; 3130 } 3131 3132 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3133 if (key.objectid >= last) { 3134 ret = 1; 3135 break; 3136 } 3137 3138 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3139 key.type != BTRFS_METADATA_ITEM_KEY) { 3140 path->slots[0]++; 3141 goto next; 3142 } 3143 3144 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3145 key.objectid + key.offset <= rc->search_start) { 3146 path->slots[0]++; 3147 goto next; 3148 } 3149 3150 if (key.type == BTRFS_METADATA_ITEM_KEY && 3151 key.objectid + fs_info->nodesize <= 3152 rc->search_start) { 3153 path->slots[0]++; 3154 goto next; 3155 } 3156 3157 ret = find_first_extent_bit(&rc->processed_blocks, 3158 key.objectid, &start, &end, 3159 EXTENT_DIRTY, NULL); 3160 3161 if (ret == 0 && start <= key.objectid) { 3162 btrfs_release_path(path); 3163 rc->search_start = end + 1; 3164 } else { 3165 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3166 rc->search_start = key.objectid + key.offset; 3167 else 3168 rc->search_start = key.objectid + 3169 fs_info->nodesize; 3170 memcpy(extent_key, &key, sizeof(key)); 3171 return 0; 3172 } 3173 } 3174 btrfs_release_path(path); 3175 return ret; 3176 } 3177 3178 static void set_reloc_control(struct reloc_control *rc) 3179 { 3180 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3181 3182 mutex_lock(&fs_info->reloc_mutex); 3183 fs_info->reloc_ctl = rc; 3184 mutex_unlock(&fs_info->reloc_mutex); 3185 } 3186 3187 static void unset_reloc_control(struct reloc_control *rc) 3188 { 3189 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3190 3191 mutex_lock(&fs_info->reloc_mutex); 3192 fs_info->reloc_ctl = NULL; 3193 mutex_unlock(&fs_info->reloc_mutex); 3194 } 3195 3196 static int check_extent_flags(u64 flags) 3197 { 3198 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3199 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3200 return 1; 3201 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3202 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3203 return 1; 3204 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3205 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3206 return 1; 3207 return 0; 3208 } 3209 3210 static noinline_for_stack 3211 int prepare_to_relocate(struct reloc_control *rc) 3212 { 3213 struct btrfs_trans_handle *trans; 3214 int ret; 3215 3216 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3217 BTRFS_BLOCK_RSV_TEMP); 3218 if (!rc->block_rsv) 3219 return -ENOMEM; 3220 3221 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3222 rc->search_start = rc->block_group->start; 3223 rc->extents_found = 0; 3224 rc->nodes_relocated = 0; 3225 rc->merging_rsv_size = 0; 3226 rc->reserved_bytes = 0; 3227 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3228 RELOCATION_RESERVED_NODES; 3229 ret = btrfs_block_rsv_refill(rc->extent_root, 3230 rc->block_rsv, rc->block_rsv->size, 3231 BTRFS_RESERVE_FLUSH_ALL); 3232 if (ret) 3233 return ret; 3234 3235 rc->create_reloc_tree = 1; 3236 set_reloc_control(rc); 3237 3238 trans = btrfs_join_transaction(rc->extent_root); 3239 if (IS_ERR(trans)) { 3240 unset_reloc_control(rc); 3241 /* 3242 * extent tree is not a ref_cow tree and has no reloc_root to 3243 * cleanup. And callers are responsible to free the above 3244 * block rsv. 3245 */ 3246 return PTR_ERR(trans); 3247 } 3248 btrfs_commit_transaction(trans); 3249 return 0; 3250 } 3251 3252 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3253 { 3254 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3255 struct rb_root blocks = RB_ROOT; 3256 struct btrfs_key key; 3257 struct btrfs_trans_handle *trans = NULL; 3258 struct btrfs_path *path; 3259 struct btrfs_extent_item *ei; 3260 u64 flags; 3261 u32 item_size; 3262 int ret; 3263 int err = 0; 3264 int progress = 0; 3265 3266 path = btrfs_alloc_path(); 3267 if (!path) 3268 return -ENOMEM; 3269 path->reada = READA_FORWARD; 3270 3271 ret = prepare_to_relocate(rc); 3272 if (ret) { 3273 err = ret; 3274 goto out_free; 3275 } 3276 3277 while (1) { 3278 rc->reserved_bytes = 0; 3279 ret = btrfs_block_rsv_refill(rc->extent_root, 3280 rc->block_rsv, rc->block_rsv->size, 3281 BTRFS_RESERVE_FLUSH_ALL); 3282 if (ret) { 3283 err = ret; 3284 break; 3285 } 3286 progress++; 3287 trans = btrfs_start_transaction(rc->extent_root, 0); 3288 if (IS_ERR(trans)) { 3289 err = PTR_ERR(trans); 3290 trans = NULL; 3291 break; 3292 } 3293 restart: 3294 if (update_backref_cache(trans, &rc->backref_cache)) { 3295 btrfs_end_transaction(trans); 3296 trans = NULL; 3297 continue; 3298 } 3299 3300 ret = find_next_extent(rc, path, &key); 3301 if (ret < 0) 3302 err = ret; 3303 if (ret != 0) 3304 break; 3305 3306 rc->extents_found++; 3307 3308 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3309 struct btrfs_extent_item); 3310 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3311 if (item_size >= sizeof(*ei)) { 3312 flags = btrfs_extent_flags(path->nodes[0], ei); 3313 ret = check_extent_flags(flags); 3314 BUG_ON(ret); 3315 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3316 err = -EINVAL; 3317 btrfs_print_v0_err(trans->fs_info); 3318 btrfs_abort_transaction(trans, err); 3319 break; 3320 } else { 3321 BUG(); 3322 } 3323 3324 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3325 ret = add_tree_block(rc, &key, path, &blocks); 3326 } else if (rc->stage == UPDATE_DATA_PTRS && 3327 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3328 ret = add_data_references(rc, &key, path, &blocks); 3329 } else { 3330 btrfs_release_path(path); 3331 ret = 0; 3332 } 3333 if (ret < 0) { 3334 err = ret; 3335 break; 3336 } 3337 3338 if (!RB_EMPTY_ROOT(&blocks)) { 3339 ret = relocate_tree_blocks(trans, rc, &blocks); 3340 if (ret < 0) { 3341 if (ret != -EAGAIN) { 3342 err = ret; 3343 break; 3344 } 3345 rc->extents_found--; 3346 rc->search_start = key.objectid; 3347 } 3348 } 3349 3350 btrfs_end_transaction_throttle(trans); 3351 btrfs_btree_balance_dirty(fs_info); 3352 trans = NULL; 3353 3354 if (rc->stage == MOVE_DATA_EXTENTS && 3355 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3356 rc->found_file_extent = 1; 3357 ret = relocate_data_extent(rc->data_inode, 3358 &key, &rc->cluster); 3359 if (ret < 0) { 3360 err = ret; 3361 break; 3362 } 3363 } 3364 if (btrfs_should_cancel_balance(fs_info)) { 3365 err = -ECANCELED; 3366 break; 3367 } 3368 } 3369 if (trans && progress && err == -ENOSPC) { 3370 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3371 if (ret == 1) { 3372 err = 0; 3373 progress = 0; 3374 goto restart; 3375 } 3376 } 3377 3378 btrfs_release_path(path); 3379 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3380 3381 if (trans) { 3382 btrfs_end_transaction_throttle(trans); 3383 btrfs_btree_balance_dirty(fs_info); 3384 } 3385 3386 if (!err) { 3387 ret = relocate_file_extent_cluster(rc->data_inode, 3388 &rc->cluster); 3389 if (ret < 0) 3390 err = ret; 3391 } 3392 3393 rc->create_reloc_tree = 0; 3394 set_reloc_control(rc); 3395 3396 btrfs_backref_release_cache(&rc->backref_cache); 3397 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3398 3399 /* 3400 * Even in the case when the relocation is cancelled, we should all go 3401 * through prepare_to_merge() and merge_reloc_roots(). 3402 * 3403 * For error (including cancelled balance), prepare_to_merge() will 3404 * mark all reloc trees orphan, then queue them for cleanup in 3405 * merge_reloc_roots() 3406 */ 3407 err = prepare_to_merge(rc, err); 3408 3409 merge_reloc_roots(rc); 3410 3411 rc->merge_reloc_tree = 0; 3412 unset_reloc_control(rc); 3413 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3414 3415 /* get rid of pinned extents */ 3416 trans = btrfs_join_transaction(rc->extent_root); 3417 if (IS_ERR(trans)) { 3418 err = PTR_ERR(trans); 3419 goto out_free; 3420 } 3421 btrfs_commit_transaction(trans); 3422 out_free: 3423 ret = clean_dirty_subvols(rc); 3424 if (ret < 0 && !err) 3425 err = ret; 3426 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3427 btrfs_free_path(path); 3428 return err; 3429 } 3430 3431 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3432 struct btrfs_root *root, u64 objectid) 3433 { 3434 struct btrfs_path *path; 3435 struct btrfs_inode_item *item; 3436 struct extent_buffer *leaf; 3437 int ret; 3438 3439 path = btrfs_alloc_path(); 3440 if (!path) 3441 return -ENOMEM; 3442 3443 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3444 if (ret) 3445 goto out; 3446 3447 leaf = path->nodes[0]; 3448 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3449 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3450 btrfs_set_inode_generation(leaf, item, 1); 3451 btrfs_set_inode_size(leaf, item, 0); 3452 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3453 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3454 BTRFS_INODE_PREALLOC); 3455 btrfs_mark_buffer_dirty(leaf); 3456 out: 3457 btrfs_free_path(path); 3458 return ret; 3459 } 3460 3461 /* 3462 * helper to create inode for data relocation. 3463 * the inode is in data relocation tree and its link count is 0 3464 */ 3465 static noinline_for_stack 3466 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3467 struct btrfs_block_group *group) 3468 { 3469 struct inode *inode = NULL; 3470 struct btrfs_trans_handle *trans; 3471 struct btrfs_root *root; 3472 u64 objectid; 3473 int err = 0; 3474 3475 root = btrfs_grab_root(fs_info->data_reloc_root); 3476 trans = btrfs_start_transaction(root, 6); 3477 if (IS_ERR(trans)) { 3478 btrfs_put_root(root); 3479 return ERR_CAST(trans); 3480 } 3481 3482 err = btrfs_find_free_objectid(root, &objectid); 3483 if (err) 3484 goto out; 3485 3486 err = __insert_orphan_inode(trans, root, objectid); 3487 BUG_ON(err); 3488 3489 inode = btrfs_iget(fs_info->sb, objectid, root); 3490 BUG_ON(IS_ERR(inode)); 3491 BTRFS_I(inode)->index_cnt = group->start; 3492 3493 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3494 out: 3495 btrfs_put_root(root); 3496 btrfs_end_transaction(trans); 3497 btrfs_btree_balance_dirty(fs_info); 3498 if (err) { 3499 if (inode) 3500 iput(inode); 3501 inode = ERR_PTR(err); 3502 } 3503 return inode; 3504 } 3505 3506 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3507 { 3508 struct reloc_control *rc; 3509 3510 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3511 if (!rc) 3512 return NULL; 3513 3514 INIT_LIST_HEAD(&rc->reloc_roots); 3515 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3516 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3517 mapping_tree_init(&rc->reloc_root_tree); 3518 extent_io_tree_init(fs_info, &rc->processed_blocks, 3519 IO_TREE_RELOC_BLOCKS, NULL); 3520 return rc; 3521 } 3522 3523 static void free_reloc_control(struct reloc_control *rc) 3524 { 3525 struct mapping_node *node, *tmp; 3526 3527 free_reloc_roots(&rc->reloc_roots); 3528 rbtree_postorder_for_each_entry_safe(node, tmp, 3529 &rc->reloc_root_tree.rb_root, rb_node) 3530 kfree(node); 3531 3532 kfree(rc); 3533 } 3534 3535 /* 3536 * Print the block group being relocated 3537 */ 3538 static void describe_relocation(struct btrfs_fs_info *fs_info, 3539 struct btrfs_block_group *block_group) 3540 { 3541 char buf[128] = {'\0'}; 3542 3543 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3544 3545 btrfs_info(fs_info, 3546 "relocating block group %llu flags %s", 3547 block_group->start, buf); 3548 } 3549 3550 static const char *stage_to_string(int stage) 3551 { 3552 if (stage == MOVE_DATA_EXTENTS) 3553 return "move data extents"; 3554 if (stage == UPDATE_DATA_PTRS) 3555 return "update data pointers"; 3556 return "unknown"; 3557 } 3558 3559 /* 3560 * function to relocate all extents in a block group. 3561 */ 3562 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3563 { 3564 struct btrfs_block_group *bg; 3565 struct btrfs_root *extent_root = fs_info->extent_root; 3566 struct reloc_control *rc; 3567 struct inode *inode; 3568 struct btrfs_path *path; 3569 int ret; 3570 int rw = 0; 3571 int err = 0; 3572 3573 bg = btrfs_lookup_block_group(fs_info, group_start); 3574 if (!bg) 3575 return -ENOENT; 3576 3577 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3578 btrfs_put_block_group(bg); 3579 return -ETXTBSY; 3580 } 3581 3582 rc = alloc_reloc_control(fs_info); 3583 if (!rc) { 3584 btrfs_put_block_group(bg); 3585 return -ENOMEM; 3586 } 3587 3588 rc->extent_root = extent_root; 3589 rc->block_group = bg; 3590 3591 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3592 if (ret) { 3593 err = ret; 3594 goto out; 3595 } 3596 rw = 1; 3597 3598 path = btrfs_alloc_path(); 3599 if (!path) { 3600 err = -ENOMEM; 3601 goto out; 3602 } 3603 3604 inode = lookup_free_space_inode(rc->block_group, path); 3605 btrfs_free_path(path); 3606 3607 if (!IS_ERR(inode)) 3608 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3609 else 3610 ret = PTR_ERR(inode); 3611 3612 if (ret && ret != -ENOENT) { 3613 err = ret; 3614 goto out; 3615 } 3616 3617 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3618 if (IS_ERR(rc->data_inode)) { 3619 err = PTR_ERR(rc->data_inode); 3620 rc->data_inode = NULL; 3621 goto out; 3622 } 3623 3624 describe_relocation(fs_info, rc->block_group); 3625 3626 btrfs_wait_block_group_reservations(rc->block_group); 3627 btrfs_wait_nocow_writers(rc->block_group); 3628 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3629 rc->block_group->start, 3630 rc->block_group->length); 3631 3632 while (1) { 3633 int finishes_stage; 3634 3635 mutex_lock(&fs_info->cleaner_mutex); 3636 ret = relocate_block_group(rc); 3637 mutex_unlock(&fs_info->cleaner_mutex); 3638 if (ret < 0) 3639 err = ret; 3640 3641 finishes_stage = rc->stage; 3642 /* 3643 * We may have gotten ENOSPC after we already dirtied some 3644 * extents. If writeout happens while we're relocating a 3645 * different block group we could end up hitting the 3646 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3647 * btrfs_reloc_cow_block. Make sure we write everything out 3648 * properly so we don't trip over this problem, and then break 3649 * out of the loop if we hit an error. 3650 */ 3651 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3652 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3653 (u64)-1); 3654 if (ret) 3655 err = ret; 3656 invalidate_mapping_pages(rc->data_inode->i_mapping, 3657 0, -1); 3658 rc->stage = UPDATE_DATA_PTRS; 3659 } 3660 3661 if (err < 0) 3662 goto out; 3663 3664 if (rc->extents_found == 0) 3665 break; 3666 3667 btrfs_info(fs_info, "found %llu extents, stage: %s", 3668 rc->extents_found, stage_to_string(finishes_stage)); 3669 } 3670 3671 WARN_ON(rc->block_group->pinned > 0); 3672 WARN_ON(rc->block_group->reserved > 0); 3673 WARN_ON(rc->block_group->used > 0); 3674 out: 3675 if (err && rw) 3676 btrfs_dec_block_group_ro(rc->block_group); 3677 iput(rc->data_inode); 3678 btrfs_put_block_group(rc->block_group); 3679 free_reloc_control(rc); 3680 return err; 3681 } 3682 3683 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 3684 { 3685 struct btrfs_fs_info *fs_info = root->fs_info; 3686 struct btrfs_trans_handle *trans; 3687 int ret, err; 3688 3689 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3690 if (IS_ERR(trans)) 3691 return PTR_ERR(trans); 3692 3693 memset(&root->root_item.drop_progress, 0, 3694 sizeof(root->root_item.drop_progress)); 3695 root->root_item.drop_level = 0; 3696 btrfs_set_root_refs(&root->root_item, 0); 3697 ret = btrfs_update_root(trans, fs_info->tree_root, 3698 &root->root_key, &root->root_item); 3699 3700 err = btrfs_end_transaction(trans); 3701 if (err) 3702 return err; 3703 return ret; 3704 } 3705 3706 /* 3707 * recover relocation interrupted by system crash. 3708 * 3709 * this function resumes merging reloc trees with corresponding fs trees. 3710 * this is important for keeping the sharing of tree blocks 3711 */ 3712 int btrfs_recover_relocation(struct btrfs_root *root) 3713 { 3714 struct btrfs_fs_info *fs_info = root->fs_info; 3715 LIST_HEAD(reloc_roots); 3716 struct btrfs_key key; 3717 struct btrfs_root *fs_root; 3718 struct btrfs_root *reloc_root; 3719 struct btrfs_path *path; 3720 struct extent_buffer *leaf; 3721 struct reloc_control *rc = NULL; 3722 struct btrfs_trans_handle *trans; 3723 int ret; 3724 int err = 0; 3725 3726 path = btrfs_alloc_path(); 3727 if (!path) 3728 return -ENOMEM; 3729 path->reada = READA_BACK; 3730 3731 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 3732 key.type = BTRFS_ROOT_ITEM_KEY; 3733 key.offset = (u64)-1; 3734 3735 while (1) { 3736 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 3737 path, 0, 0); 3738 if (ret < 0) { 3739 err = ret; 3740 goto out; 3741 } 3742 if (ret > 0) { 3743 if (path->slots[0] == 0) 3744 break; 3745 path->slots[0]--; 3746 } 3747 leaf = path->nodes[0]; 3748 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3749 btrfs_release_path(path); 3750 3751 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 3752 key.type != BTRFS_ROOT_ITEM_KEY) 3753 break; 3754 3755 reloc_root = btrfs_read_tree_root(root, &key); 3756 if (IS_ERR(reloc_root)) { 3757 err = PTR_ERR(reloc_root); 3758 goto out; 3759 } 3760 3761 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 3762 list_add(&reloc_root->root_list, &reloc_roots); 3763 3764 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 3765 fs_root = btrfs_get_fs_root(fs_info, 3766 reloc_root->root_key.offset, false); 3767 if (IS_ERR(fs_root)) { 3768 ret = PTR_ERR(fs_root); 3769 if (ret != -ENOENT) { 3770 err = ret; 3771 goto out; 3772 } 3773 ret = mark_garbage_root(reloc_root); 3774 if (ret < 0) { 3775 err = ret; 3776 goto out; 3777 } 3778 } else { 3779 btrfs_put_root(fs_root); 3780 } 3781 } 3782 3783 if (key.offset == 0) 3784 break; 3785 3786 key.offset--; 3787 } 3788 btrfs_release_path(path); 3789 3790 if (list_empty(&reloc_roots)) 3791 goto out; 3792 3793 rc = alloc_reloc_control(fs_info); 3794 if (!rc) { 3795 err = -ENOMEM; 3796 goto out; 3797 } 3798 3799 rc->extent_root = fs_info->extent_root; 3800 3801 set_reloc_control(rc); 3802 3803 trans = btrfs_join_transaction(rc->extent_root); 3804 if (IS_ERR(trans)) { 3805 err = PTR_ERR(trans); 3806 goto out_unset; 3807 } 3808 3809 rc->merge_reloc_tree = 1; 3810 3811 while (!list_empty(&reloc_roots)) { 3812 reloc_root = list_entry(reloc_roots.next, 3813 struct btrfs_root, root_list); 3814 list_del(&reloc_root->root_list); 3815 3816 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 3817 list_add_tail(&reloc_root->root_list, 3818 &rc->reloc_roots); 3819 continue; 3820 } 3821 3822 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 3823 false); 3824 if (IS_ERR(fs_root)) { 3825 err = PTR_ERR(fs_root); 3826 list_add_tail(&reloc_root->root_list, &reloc_roots); 3827 btrfs_end_transaction(trans); 3828 goto out_unset; 3829 } 3830 3831 err = __add_reloc_root(reloc_root); 3832 BUG_ON(err < 0); /* -ENOMEM or logic error */ 3833 fs_root->reloc_root = btrfs_grab_root(reloc_root); 3834 btrfs_put_root(fs_root); 3835 } 3836 3837 err = btrfs_commit_transaction(trans); 3838 if (err) 3839 goto out_unset; 3840 3841 merge_reloc_roots(rc); 3842 3843 unset_reloc_control(rc); 3844 3845 trans = btrfs_join_transaction(rc->extent_root); 3846 if (IS_ERR(trans)) { 3847 err = PTR_ERR(trans); 3848 goto out_clean; 3849 } 3850 err = btrfs_commit_transaction(trans); 3851 out_clean: 3852 ret = clean_dirty_subvols(rc); 3853 if (ret < 0 && !err) 3854 err = ret; 3855 out_unset: 3856 unset_reloc_control(rc); 3857 free_reloc_control(rc); 3858 out: 3859 free_reloc_roots(&reloc_roots); 3860 3861 btrfs_free_path(path); 3862 3863 if (err == 0) { 3864 /* cleanup orphan inode in data relocation tree */ 3865 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 3866 ASSERT(fs_root); 3867 err = btrfs_orphan_cleanup(fs_root); 3868 btrfs_put_root(fs_root); 3869 } 3870 return err; 3871 } 3872 3873 /* 3874 * helper to add ordered checksum for data relocation. 3875 * 3876 * cloning checksum properly handles the nodatasum extents. 3877 * it also saves CPU time to re-calculate the checksum. 3878 */ 3879 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 3880 { 3881 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3882 struct btrfs_ordered_sum *sums; 3883 struct btrfs_ordered_extent *ordered; 3884 int ret; 3885 u64 disk_bytenr; 3886 u64 new_bytenr; 3887 LIST_HEAD(list); 3888 3889 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 3890 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 3891 3892 disk_bytenr = file_pos + inode->index_cnt; 3893 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 3894 disk_bytenr + len - 1, &list, 0); 3895 if (ret) 3896 goto out; 3897 3898 while (!list_empty(&list)) { 3899 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 3900 list_del_init(&sums->list); 3901 3902 /* 3903 * We need to offset the new_bytenr based on where the csum is. 3904 * We need to do this because we will read in entire prealloc 3905 * extents but we may have written to say the middle of the 3906 * prealloc extent, so we need to make sure the csum goes with 3907 * the right disk offset. 3908 * 3909 * We can do this because the data reloc inode refers strictly 3910 * to the on disk bytes, so we don't have to worry about 3911 * disk_len vs real len like with real inodes since it's all 3912 * disk length. 3913 */ 3914 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 3915 sums->bytenr = new_bytenr; 3916 3917 btrfs_add_ordered_sum(ordered, sums); 3918 } 3919 out: 3920 btrfs_put_ordered_extent(ordered); 3921 return ret; 3922 } 3923 3924 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3925 struct btrfs_root *root, struct extent_buffer *buf, 3926 struct extent_buffer *cow) 3927 { 3928 struct btrfs_fs_info *fs_info = root->fs_info; 3929 struct reloc_control *rc; 3930 struct btrfs_backref_node *node; 3931 int first_cow = 0; 3932 int level; 3933 int ret = 0; 3934 3935 rc = fs_info->reloc_ctl; 3936 if (!rc) 3937 return 0; 3938 3939 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 3940 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 3941 3942 level = btrfs_header_level(buf); 3943 if (btrfs_header_generation(buf) <= 3944 btrfs_root_last_snapshot(&root->root_item)) 3945 first_cow = 1; 3946 3947 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 3948 rc->create_reloc_tree) { 3949 WARN_ON(!first_cow && level == 0); 3950 3951 node = rc->backref_cache.path[level]; 3952 BUG_ON(node->bytenr != buf->start && 3953 node->new_bytenr != buf->start); 3954 3955 btrfs_backref_drop_node_buffer(node); 3956 atomic_inc(&cow->refs); 3957 node->eb = cow; 3958 node->new_bytenr = cow->start; 3959 3960 if (!node->pending) { 3961 list_move_tail(&node->list, 3962 &rc->backref_cache.pending[level]); 3963 node->pending = 1; 3964 } 3965 3966 if (first_cow) 3967 mark_block_processed(rc, node); 3968 3969 if (first_cow && level > 0) 3970 rc->nodes_relocated += buf->len; 3971 } 3972 3973 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 3974 ret = replace_file_extents(trans, rc, root, cow); 3975 return ret; 3976 } 3977 3978 /* 3979 * called before creating snapshot. it calculates metadata reservation 3980 * required for relocating tree blocks in the snapshot 3981 */ 3982 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3983 u64 *bytes_to_reserve) 3984 { 3985 struct btrfs_root *root = pending->root; 3986 struct reloc_control *rc = root->fs_info->reloc_ctl; 3987 3988 if (!rc || !have_reloc_root(root)) 3989 return; 3990 3991 if (!rc->merge_reloc_tree) 3992 return; 3993 3994 root = root->reloc_root; 3995 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 3996 /* 3997 * relocation is in the stage of merging trees. the space 3998 * used by merging a reloc tree is twice the size of 3999 * relocated tree nodes in the worst case. half for cowing 4000 * the reloc tree, half for cowing the fs tree. the space 4001 * used by cowing the reloc tree will be freed after the 4002 * tree is dropped. if we create snapshot, cowing the fs 4003 * tree may use more space than it frees. so we need 4004 * reserve extra space. 4005 */ 4006 *bytes_to_reserve += rc->nodes_relocated; 4007 } 4008 4009 /* 4010 * called after snapshot is created. migrate block reservation 4011 * and create reloc root for the newly created snapshot 4012 * 4013 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4014 * references held on the reloc_root, one for root->reloc_root and one for 4015 * rc->reloc_roots. 4016 */ 4017 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4018 struct btrfs_pending_snapshot *pending) 4019 { 4020 struct btrfs_root *root = pending->root; 4021 struct btrfs_root *reloc_root; 4022 struct btrfs_root *new_root; 4023 struct reloc_control *rc = root->fs_info->reloc_ctl; 4024 int ret; 4025 4026 if (!rc || !have_reloc_root(root)) 4027 return 0; 4028 4029 rc = root->fs_info->reloc_ctl; 4030 rc->merging_rsv_size += rc->nodes_relocated; 4031 4032 if (rc->merge_reloc_tree) { 4033 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4034 rc->block_rsv, 4035 rc->nodes_relocated, true); 4036 if (ret) 4037 return ret; 4038 } 4039 4040 new_root = pending->snap; 4041 reloc_root = create_reloc_root(trans, root->reloc_root, 4042 new_root->root_key.objectid); 4043 if (IS_ERR(reloc_root)) 4044 return PTR_ERR(reloc_root); 4045 4046 ret = __add_reloc_root(reloc_root); 4047 BUG_ON(ret < 0); 4048 new_root->reloc_root = btrfs_grab_root(reloc_root); 4049 4050 if (rc->create_reloc_tree) 4051 ret = clone_backref_node(trans, rc, root, reloc_root); 4052 return ret; 4053 } 4054