xref: /openbmc/linux/fs/btrfs/reflink.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "ctree.h"
6 #include "fs.h"
7 #include "messages.h"
8 #include "compression.h"
9 #include "delalloc-space.h"
10 #include "disk-io.h"
11 #include "reflink.h"
12 #include "transaction.h"
13 #include "subpage.h"
14 #include "accessors.h"
15 #include "file-item.h"
16 #include "file.h"
17 #include "super.h"
18 
19 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
20 
21 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22 				     struct inode *inode,
23 				     u64 endoff,
24 				     const u64 destoff,
25 				     const u64 olen,
26 				     int no_time_update)
27 {
28 	struct btrfs_root *root = BTRFS_I(inode)->root;
29 	int ret;
30 
31 	inode_inc_iversion(inode);
32 	if (!no_time_update) {
33 		inode->i_mtime = current_time(inode);
34 		inode->i_ctime = inode->i_mtime;
35 	}
36 	/*
37 	 * We round up to the block size at eof when determining which
38 	 * extents to clone above, but shouldn't round up the file size.
39 	 */
40 	if (endoff > destoff + olen)
41 		endoff = destoff + olen;
42 	if (endoff > inode->i_size) {
43 		i_size_write(inode, endoff);
44 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
45 	}
46 
47 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
48 	if (ret) {
49 		btrfs_abort_transaction(trans, ret);
50 		btrfs_end_transaction(trans);
51 		goto out;
52 	}
53 	ret = btrfs_end_transaction(trans);
54 out:
55 	return ret;
56 }
57 
58 static int copy_inline_to_page(struct btrfs_inode *inode,
59 			       const u64 file_offset,
60 			       char *inline_data,
61 			       const u64 size,
62 			       const u64 datal,
63 			       const u8 comp_type)
64 {
65 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
66 	const u32 block_size = fs_info->sectorsize;
67 	const u64 range_end = file_offset + block_size - 1;
68 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
69 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
70 	struct extent_changeset *data_reserved = NULL;
71 	struct page *page = NULL;
72 	struct address_space *mapping = inode->vfs_inode.i_mapping;
73 	int ret;
74 
75 	ASSERT(IS_ALIGNED(file_offset, block_size));
76 
77 	/*
78 	 * We have flushed and locked the ranges of the source and destination
79 	 * inodes, we also have locked the inodes, so we are safe to do a
80 	 * reservation here. Also we must not do the reservation while holding
81 	 * a transaction open, otherwise we would deadlock.
82 	 */
83 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
84 					   block_size);
85 	if (ret)
86 		goto out;
87 
88 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
89 				   btrfs_alloc_write_mask(mapping));
90 	if (!page) {
91 		ret = -ENOMEM;
92 		goto out_unlock;
93 	}
94 
95 	ret = set_page_extent_mapped(page);
96 	if (ret < 0)
97 		goto out_unlock;
98 
99 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
100 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
101 			 NULL);
102 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
103 	if (ret)
104 		goto out_unlock;
105 
106 	/*
107 	 * After dirtying the page our caller will need to start a transaction,
108 	 * and if we are low on metadata free space, that can cause flushing of
109 	 * delalloc for all inodes in order to get metadata space released.
110 	 * However we are holding the range locked for the whole duration of
111 	 * the clone/dedupe operation, so we may deadlock if that happens and no
112 	 * other task releases enough space. So mark this inode as not being
113 	 * possible to flush to avoid such deadlock. We will clear that flag
114 	 * when we finish cloning all extents, since a transaction is started
115 	 * after finding each extent to clone.
116 	 */
117 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
118 
119 	if (comp_type == BTRFS_COMPRESS_NONE) {
120 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
121 			       datal);
122 	} else {
123 		ret = btrfs_decompress(comp_type, data_start, page,
124 				       offset_in_page(file_offset),
125 				       inline_size, datal);
126 		if (ret)
127 			goto out_unlock;
128 		flush_dcache_page(page);
129 	}
130 
131 	/*
132 	 * If our inline data is smaller then the block/page size, then the
133 	 * remaining of the block/page is equivalent to zeroes. We had something
134 	 * like the following done:
135 	 *
136 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
137 	 * $ sync  # (or fsync)
138 	 * $ xfs_io -c "falloc 0 4K" file
139 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
140 	 *
141 	 * So what's in the range [500, 4095] corresponds to zeroes.
142 	 */
143 	if (datal < block_size)
144 		memzero_page(page, datal, block_size - datal);
145 
146 	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
147 	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
148 	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
149 out_unlock:
150 	if (page) {
151 		unlock_page(page);
152 		put_page(page);
153 	}
154 	if (ret)
155 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
156 					     block_size, true);
157 	btrfs_delalloc_release_extents(inode, block_size);
158 out:
159 	extent_changeset_free(data_reserved);
160 
161 	return ret;
162 }
163 
164 /*
165  * Deal with cloning of inline extents. We try to copy the inline extent from
166  * the source inode to destination inode when possible. When not possible we
167  * copy the inline extent's data into the respective page of the inode.
168  */
169 static int clone_copy_inline_extent(struct inode *dst,
170 				    struct btrfs_path *path,
171 				    struct btrfs_key *new_key,
172 				    const u64 drop_start,
173 				    const u64 datal,
174 				    const u64 size,
175 				    const u8 comp_type,
176 				    char *inline_data,
177 				    struct btrfs_trans_handle **trans_out)
178 {
179 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
180 	struct btrfs_root *root = BTRFS_I(dst)->root;
181 	const u64 aligned_end = ALIGN(new_key->offset + datal,
182 				      fs_info->sectorsize);
183 	struct btrfs_trans_handle *trans = NULL;
184 	struct btrfs_drop_extents_args drop_args = { 0 };
185 	int ret;
186 	struct btrfs_key key;
187 
188 	if (new_key->offset > 0) {
189 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
190 					  inline_data, size, datal, comp_type);
191 		goto out;
192 	}
193 
194 	key.objectid = btrfs_ino(BTRFS_I(dst));
195 	key.type = BTRFS_EXTENT_DATA_KEY;
196 	key.offset = 0;
197 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
198 	if (ret < 0) {
199 		return ret;
200 	} else if (ret > 0) {
201 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
202 			ret = btrfs_next_leaf(root, path);
203 			if (ret < 0)
204 				return ret;
205 			else if (ret > 0)
206 				goto copy_inline_extent;
207 		}
208 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
209 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
210 		    key.type == BTRFS_EXTENT_DATA_KEY) {
211 			/*
212 			 * There's an implicit hole at file offset 0, copy the
213 			 * inline extent's data to the page.
214 			 */
215 			ASSERT(key.offset > 0);
216 			goto copy_to_page;
217 		}
218 	} else if (i_size_read(dst) <= datal) {
219 		struct btrfs_file_extent_item *ei;
220 
221 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
222 				    struct btrfs_file_extent_item);
223 		/*
224 		 * If it's an inline extent replace it with the source inline
225 		 * extent, otherwise copy the source inline extent data into
226 		 * the respective page at the destination inode.
227 		 */
228 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
229 		    BTRFS_FILE_EXTENT_INLINE)
230 			goto copy_inline_extent;
231 
232 		goto copy_to_page;
233 	}
234 
235 copy_inline_extent:
236 	/*
237 	 * We have no extent items, or we have an extent at offset 0 which may
238 	 * or may not be inlined. All these cases are dealt the same way.
239 	 */
240 	if (i_size_read(dst) > datal) {
241 		/*
242 		 * At the destination offset 0 we have either a hole, a regular
243 		 * extent or an inline extent larger then the one we want to
244 		 * clone. Deal with all these cases by copying the inline extent
245 		 * data into the respective page at the destination inode.
246 		 */
247 		goto copy_to_page;
248 	}
249 
250 	/*
251 	 * Release path before starting a new transaction so we don't hold locks
252 	 * that would confuse lockdep.
253 	 */
254 	btrfs_release_path(path);
255 	/*
256 	 * If we end up here it means were copy the inline extent into a leaf
257 	 * of the destination inode. We know we will drop or adjust at most one
258 	 * extent item in the destination root.
259 	 *
260 	 * 1 unit - adjusting old extent (we may have to split it)
261 	 * 1 unit - add new extent
262 	 * 1 unit - inode update
263 	 */
264 	trans = btrfs_start_transaction(root, 3);
265 	if (IS_ERR(trans)) {
266 		ret = PTR_ERR(trans);
267 		trans = NULL;
268 		goto out;
269 	}
270 	drop_args.path = path;
271 	drop_args.start = drop_start;
272 	drop_args.end = aligned_end;
273 	drop_args.drop_cache = true;
274 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
275 	if (ret)
276 		goto out;
277 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
278 	if (ret)
279 		goto out;
280 
281 	write_extent_buffer(path->nodes[0], inline_data,
282 			    btrfs_item_ptr_offset(path->nodes[0],
283 						  path->slots[0]),
284 			    size);
285 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
286 	btrfs_set_inode_full_sync(BTRFS_I(dst));
287 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
288 out:
289 	if (!ret && !trans) {
290 		/*
291 		 * No transaction here means we copied the inline extent into a
292 		 * page of the destination inode.
293 		 *
294 		 * 1 unit to update inode item
295 		 */
296 		trans = btrfs_start_transaction(root, 1);
297 		if (IS_ERR(trans)) {
298 			ret = PTR_ERR(trans);
299 			trans = NULL;
300 		}
301 	}
302 	if (ret && trans) {
303 		btrfs_abort_transaction(trans, ret);
304 		btrfs_end_transaction(trans);
305 	}
306 	if (!ret)
307 		*trans_out = trans;
308 
309 	return ret;
310 
311 copy_to_page:
312 	/*
313 	 * Release our path because we don't need it anymore and also because
314 	 * copy_inline_to_page() needs to reserve data and metadata, which may
315 	 * need to flush delalloc when we are low on available space and
316 	 * therefore cause a deadlock if writeback of an inline extent needs to
317 	 * write to the same leaf or an ordered extent completion needs to write
318 	 * to the same leaf.
319 	 */
320 	btrfs_release_path(path);
321 
322 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
323 				  inline_data, size, datal, comp_type);
324 	goto out;
325 }
326 
327 /*
328  * Clone a range from inode file to another.
329  *
330  * @src:             Inode to clone from
331  * @inode:           Inode to clone to
332  * @off:             Offset within source to start clone from
333  * @olen:            Original length, passed by user, of range to clone
334  * @olen_aligned:    Block-aligned value of olen
335  * @destoff:         Offset within @inode to start clone
336  * @no_time_update:  Whether to update mtime/ctime on the target inode
337  */
338 static int btrfs_clone(struct inode *src, struct inode *inode,
339 		       const u64 off, const u64 olen, const u64 olen_aligned,
340 		       const u64 destoff, int no_time_update)
341 {
342 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
343 	struct btrfs_path *path = NULL;
344 	struct extent_buffer *leaf;
345 	struct btrfs_trans_handle *trans;
346 	char *buf = NULL;
347 	struct btrfs_key key;
348 	u32 nritems;
349 	int slot;
350 	int ret;
351 	const u64 len = olen_aligned;
352 	u64 last_dest_end = destoff;
353 	u64 prev_extent_end = off;
354 
355 	ret = -ENOMEM;
356 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
357 	if (!buf)
358 		return ret;
359 
360 	path = btrfs_alloc_path();
361 	if (!path) {
362 		kvfree(buf);
363 		return ret;
364 	}
365 
366 	path->reada = READA_FORWARD;
367 	/* Clone data */
368 	key.objectid = btrfs_ino(BTRFS_I(src));
369 	key.type = BTRFS_EXTENT_DATA_KEY;
370 	key.offset = off;
371 
372 	while (1) {
373 		struct btrfs_file_extent_item *extent;
374 		u64 extent_gen;
375 		int type;
376 		u32 size;
377 		struct btrfs_key new_key;
378 		u64 disko = 0, diskl = 0;
379 		u64 datao = 0, datal = 0;
380 		u8 comp;
381 		u64 drop_start;
382 
383 		/* Note the key will change type as we walk through the tree */
384 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
385 				0, 0);
386 		if (ret < 0)
387 			goto out;
388 		/*
389 		 * First search, if no extent item that starts at offset off was
390 		 * found but the previous item is an extent item, it's possible
391 		 * it might overlap our target range, therefore process it.
392 		 */
393 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
394 			btrfs_item_key_to_cpu(path->nodes[0], &key,
395 					      path->slots[0] - 1);
396 			if (key.type == BTRFS_EXTENT_DATA_KEY)
397 				path->slots[0]--;
398 		}
399 
400 		nritems = btrfs_header_nritems(path->nodes[0]);
401 process_slot:
402 		if (path->slots[0] >= nritems) {
403 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
404 			if (ret < 0)
405 				goto out;
406 			if (ret > 0)
407 				break;
408 			nritems = btrfs_header_nritems(path->nodes[0]);
409 		}
410 		leaf = path->nodes[0];
411 		slot = path->slots[0];
412 
413 		btrfs_item_key_to_cpu(leaf, &key, slot);
414 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
415 		    key.objectid != btrfs_ino(BTRFS_I(src)))
416 			break;
417 
418 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
419 
420 		extent = btrfs_item_ptr(leaf, slot,
421 					struct btrfs_file_extent_item);
422 		extent_gen = btrfs_file_extent_generation(leaf, extent);
423 		comp = btrfs_file_extent_compression(leaf, extent);
424 		type = btrfs_file_extent_type(leaf, extent);
425 		if (type == BTRFS_FILE_EXTENT_REG ||
426 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
427 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
428 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
429 			datao = btrfs_file_extent_offset(leaf, extent);
430 			datal = btrfs_file_extent_num_bytes(leaf, extent);
431 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
432 			/* Take upper bound, may be compressed */
433 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
434 		}
435 
436 		/*
437 		 * The first search might have left us at an extent item that
438 		 * ends before our target range's start, can happen if we have
439 		 * holes and NO_HOLES feature enabled.
440 		 *
441 		 * Subsequent searches may leave us on a file range we have
442 		 * processed before - this happens due to a race with ordered
443 		 * extent completion for a file range that is outside our source
444 		 * range, but that range was part of a file extent item that
445 		 * also covered a leading part of our source range.
446 		 */
447 		if (key.offset + datal <= prev_extent_end) {
448 			path->slots[0]++;
449 			goto process_slot;
450 		} else if (key.offset >= off + len) {
451 			break;
452 		}
453 
454 		prev_extent_end = key.offset + datal;
455 		size = btrfs_item_size(leaf, slot);
456 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
457 				   size);
458 
459 		btrfs_release_path(path);
460 
461 		memcpy(&new_key, &key, sizeof(new_key));
462 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
463 		if (off <= key.offset)
464 			new_key.offset = key.offset + destoff - off;
465 		else
466 			new_key.offset = destoff;
467 
468 		/*
469 		 * Deal with a hole that doesn't have an extent item that
470 		 * represents it (NO_HOLES feature enabled).
471 		 * This hole is either in the middle of the cloning range or at
472 		 * the beginning (fully overlaps it or partially overlaps it).
473 		 */
474 		if (new_key.offset != last_dest_end)
475 			drop_start = last_dest_end;
476 		else
477 			drop_start = new_key.offset;
478 
479 		if (type == BTRFS_FILE_EXTENT_REG ||
480 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
481 			struct btrfs_replace_extent_info clone_info;
482 
483 			/*
484 			 *    a  | --- range to clone ---|  b
485 			 * | ------------- extent ------------- |
486 			 */
487 
488 			/* Subtract range b */
489 			if (key.offset + datal > off + len)
490 				datal = off + len - key.offset;
491 
492 			/* Subtract range a */
493 			if (off > key.offset) {
494 				datao += off - key.offset;
495 				datal -= off - key.offset;
496 			}
497 
498 			clone_info.disk_offset = disko;
499 			clone_info.disk_len = diskl;
500 			clone_info.data_offset = datao;
501 			clone_info.data_len = datal;
502 			clone_info.file_offset = new_key.offset;
503 			clone_info.extent_buf = buf;
504 			clone_info.is_new_extent = false;
505 			clone_info.update_times = !no_time_update;
506 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
507 					drop_start, new_key.offset + datal - 1,
508 					&clone_info, &trans);
509 			if (ret)
510 				goto out;
511 		} else {
512 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
513 			/*
514 			 * Inline extents always have to start at file offset 0
515 			 * and can never be bigger then the sector size. We can
516 			 * never clone only parts of an inline extent, since all
517 			 * reflink operations must start at a sector size aligned
518 			 * offset, and the length must be aligned too or end at
519 			 * the i_size (which implies the whole inlined data).
520 			 */
521 			ASSERT(key.offset == 0);
522 			ASSERT(datal <= fs_info->sectorsize);
523 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
524 			    WARN_ON(key.offset != 0) ||
525 			    WARN_ON(datal > fs_info->sectorsize)) {
526 				ret = -EUCLEAN;
527 				goto out;
528 			}
529 
530 			ret = clone_copy_inline_extent(inode, path, &new_key,
531 						       drop_start, datal, size,
532 						       comp, buf, &trans);
533 			if (ret)
534 				goto out;
535 		}
536 
537 		btrfs_release_path(path);
538 
539 		/*
540 		 * Whenever we share an extent we update the last_reflink_trans
541 		 * of each inode to the current transaction. This is needed to
542 		 * make sure fsync does not log multiple checksum items with
543 		 * overlapping ranges (because some extent items might refer
544 		 * only to sections of the original extent). For the destination
545 		 * inode we do this regardless of the generation of the extents
546 		 * or even if they are inline extents or explicit holes, to make
547 		 * sure a full fsync does not skip them. For the source inode,
548 		 * we only need to update last_reflink_trans in case it's a new
549 		 * extent that is not a hole or an inline extent, to deal with
550 		 * the checksums problem on fsync.
551 		 */
552 		if (extent_gen == trans->transid && disko > 0)
553 			BTRFS_I(src)->last_reflink_trans = trans->transid;
554 
555 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
556 
557 		last_dest_end = ALIGN(new_key.offset + datal,
558 				      fs_info->sectorsize);
559 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
560 						destoff, olen, no_time_update);
561 		if (ret)
562 			goto out;
563 		if (new_key.offset + datal >= destoff + len)
564 			break;
565 
566 		btrfs_release_path(path);
567 		key.offset = prev_extent_end;
568 
569 		if (fatal_signal_pending(current)) {
570 			ret = -EINTR;
571 			goto out;
572 		}
573 
574 		cond_resched();
575 	}
576 	ret = 0;
577 
578 	if (last_dest_end < destoff + len) {
579 		/*
580 		 * We have an implicit hole that fully or partially overlaps our
581 		 * cloning range at its end. This means that we either have the
582 		 * NO_HOLES feature enabled or the implicit hole happened due to
583 		 * mixing buffered and direct IO writes against this file.
584 		 */
585 		btrfs_release_path(path);
586 
587 		/*
588 		 * When using NO_HOLES and we are cloning a range that covers
589 		 * only a hole (no extents) into a range beyond the current
590 		 * i_size, punching a hole in the target range will not create
591 		 * an extent map defining a hole, because the range starts at or
592 		 * beyond current i_size. If the file previously had an i_size
593 		 * greater than the new i_size set by this clone operation, we
594 		 * need to make sure the next fsync is a full fsync, so that it
595 		 * detects and logs a hole covering a range from the current
596 		 * i_size to the new i_size. If the clone range covers extents,
597 		 * besides a hole, then we know the full sync flag was already
598 		 * set by previous calls to btrfs_replace_file_extents() that
599 		 * replaced file extent items.
600 		 */
601 		if (last_dest_end >= i_size_read(inode))
602 			btrfs_set_inode_full_sync(BTRFS_I(inode));
603 
604 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
605 				last_dest_end, destoff + len - 1, NULL, &trans);
606 		if (ret)
607 			goto out;
608 
609 		ret = clone_finish_inode_update(trans, inode, destoff + len,
610 						destoff, olen, no_time_update);
611 	}
612 
613 out:
614 	btrfs_free_path(path);
615 	kvfree(buf);
616 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
617 
618 	return ret;
619 }
620 
621 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
622 				       struct inode *inode2, u64 loff2, u64 len)
623 {
624 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
625 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
626 }
627 
628 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
629 				     struct inode *inode2, u64 loff2, u64 len)
630 {
631 	u64 range1_end = loff1 + len - 1;
632 	u64 range2_end = loff2 + len - 1;
633 
634 	if (inode1 < inode2) {
635 		swap(inode1, inode2);
636 		swap(loff1, loff2);
637 		swap(range1_end, range2_end);
638 	} else if (inode1 == inode2 && loff2 < loff1) {
639 		swap(loff1, loff2);
640 		swap(range1_end, range2_end);
641 	}
642 
643 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
644 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
645 
646 	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
647 	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
648 }
649 
650 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
651 {
652 	if (inode1 < inode2)
653 		swap(inode1, inode2);
654 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
655 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
656 }
657 
658 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
659 {
660 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
661 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
662 }
663 
664 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
665 				   struct inode *dst, u64 dst_loff)
666 {
667 	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
668 	const u64 bs = fs_info->sb->s_blocksize;
669 	int ret;
670 
671 	/*
672 	 * Lock destination range to serialize with concurrent readahead() and
673 	 * source range to serialize with relocation.
674 	 */
675 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
676 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
677 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
678 
679 	btrfs_btree_balance_dirty(fs_info);
680 
681 	return ret;
682 }
683 
684 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
685 			     struct inode *dst, u64 dst_loff)
686 {
687 	int ret = 0;
688 	u64 i, tail_len, chunk_count;
689 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
690 
691 	spin_lock(&root_dst->root_item_lock);
692 	if (root_dst->send_in_progress) {
693 		btrfs_warn_rl(root_dst->fs_info,
694 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
695 			      root_dst->root_key.objectid,
696 			      root_dst->send_in_progress);
697 		spin_unlock(&root_dst->root_item_lock);
698 		return -EAGAIN;
699 	}
700 	root_dst->dedupe_in_progress++;
701 	spin_unlock(&root_dst->root_item_lock);
702 
703 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
704 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
705 
706 	for (i = 0; i < chunk_count; i++) {
707 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
708 					      dst, dst_loff);
709 		if (ret)
710 			goto out;
711 
712 		loff += BTRFS_MAX_DEDUPE_LEN;
713 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
714 	}
715 
716 	if (tail_len > 0)
717 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
718 out:
719 	spin_lock(&root_dst->root_item_lock);
720 	root_dst->dedupe_in_progress--;
721 	spin_unlock(&root_dst->root_item_lock);
722 
723 	return ret;
724 }
725 
726 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
727 					u64 off, u64 olen, u64 destoff)
728 {
729 	struct inode *inode = file_inode(file);
730 	struct inode *src = file_inode(file_src);
731 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
732 	int ret;
733 	int wb_ret;
734 	u64 len = olen;
735 	u64 bs = fs_info->sb->s_blocksize;
736 
737 	/*
738 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
739 	 * eof block into the middle of a file, which would result in corruption
740 	 * if the file size is not blocksize aligned. So we don't need to check
741 	 * for that case here.
742 	 */
743 	if (off + len == src->i_size)
744 		len = ALIGN(src->i_size, bs) - off;
745 
746 	if (destoff > inode->i_size) {
747 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
748 
749 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
750 		if (ret)
751 			return ret;
752 		/*
753 		 * We may have truncated the last block if the inode's size is
754 		 * not sector size aligned, so we need to wait for writeback to
755 		 * complete before proceeding further, otherwise we can race
756 		 * with cloning and attempt to increment a reference to an
757 		 * extent that no longer exists (writeback completed right after
758 		 * we found the previous extent covering eof and before we
759 		 * attempted to increment its reference count).
760 		 */
761 		ret = btrfs_wait_ordered_range(inode, wb_start,
762 					       destoff - wb_start);
763 		if (ret)
764 			return ret;
765 	}
766 
767 	/*
768 	 * Lock destination range to serialize with concurrent readahead() and
769 	 * source range to serialize with relocation.
770 	 */
771 	btrfs_double_extent_lock(src, off, inode, destoff, len);
772 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
773 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
774 
775 	/*
776 	 * We may have copied an inline extent into a page of the destination
777 	 * range, so wait for writeback to complete before truncating pages
778 	 * from the page cache. This is a rare case.
779 	 */
780 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
781 	ret = ret ? ret : wb_ret;
782 	/*
783 	 * Truncate page cache pages so that future reads will see the cloned
784 	 * data immediately and not the previous data.
785 	 */
786 	truncate_inode_pages_range(&inode->i_data,
787 				round_down(destoff, PAGE_SIZE),
788 				round_up(destoff + len, PAGE_SIZE) - 1);
789 
790 	btrfs_btree_balance_dirty(fs_info);
791 
792 	return ret;
793 }
794 
795 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
796 				       struct file *file_out, loff_t pos_out,
797 				       loff_t *len, unsigned int remap_flags)
798 {
799 	struct inode *inode_in = file_inode(file_in);
800 	struct inode *inode_out = file_inode(file_out);
801 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
802 	u64 wb_len;
803 	int ret;
804 
805 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
806 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
807 
808 		if (btrfs_root_readonly(root_out))
809 			return -EROFS;
810 
811 		ASSERT(inode_in->i_sb == inode_out->i_sb);
812 	}
813 
814 	/* Don't make the dst file partly checksummed */
815 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
816 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
817 		return -EINVAL;
818 	}
819 
820 	/*
821 	 * Now that the inodes are locked, we need to start writeback ourselves
822 	 * and can not rely on the writeback from the VFS's generic helper
823 	 * generic_remap_file_range_prep() because:
824 	 *
825 	 * 1) For compression we must call filemap_fdatawrite_range() range
826 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
827 	 *    helper only calls it once;
828 	 *
829 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
830 	 *    waits for the writeback to complete, i.e. for IO to be done, and
831 	 *    not for the ordered extents to complete. We need to wait for them
832 	 *    to complete so that new file extent items are in the fs tree.
833 	 */
834 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
835 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
836 	else
837 		wb_len = ALIGN(*len, bs);
838 
839 	/*
840 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
841 	 *
842 	 * Btrfs' back references do not have a block level granularity, they
843 	 * work at the whole extent level.
844 	 * NOCOW buffered write without data space reserved may not be able
845 	 * to fall back to CoW due to lack of data space, thus could cause
846 	 * data loss.
847 	 *
848 	 * Here we take a shortcut by flushing the whole inode, so that all
849 	 * nocow write should reach disk as nocow before we increase the
850 	 * reference of the extent. We could do better by only flushing NOCOW
851 	 * data, but that needs extra accounting.
852 	 *
853 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
854 	 * CoWed anyway, not affecting nocow part.
855 	 */
856 	ret = filemap_flush(inode_in->i_mapping);
857 	if (ret < 0)
858 		return ret;
859 
860 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
861 				       wb_len);
862 	if (ret < 0)
863 		return ret;
864 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
865 				       wb_len);
866 	if (ret < 0)
867 		return ret;
868 
869 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
870 					    len, remap_flags);
871 }
872 
873 static bool file_sync_write(const struct file *file)
874 {
875 	if (file->f_flags & (__O_SYNC | O_DSYNC))
876 		return true;
877 	if (IS_SYNC(file_inode(file)))
878 		return true;
879 
880 	return false;
881 }
882 
883 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
884 		struct file *dst_file, loff_t destoff, loff_t len,
885 		unsigned int remap_flags)
886 {
887 	struct inode *src_inode = file_inode(src_file);
888 	struct inode *dst_inode = file_inode(dst_file);
889 	bool same_inode = dst_inode == src_inode;
890 	int ret;
891 
892 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
893 		return -EINVAL;
894 
895 	if (same_inode) {
896 		btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
897 	} else {
898 		lock_two_nondirectories(src_inode, dst_inode);
899 		btrfs_double_mmap_lock(src_inode, dst_inode);
900 	}
901 
902 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
903 					  &len, remap_flags);
904 	if (ret < 0 || len == 0)
905 		goto out_unlock;
906 
907 	if (remap_flags & REMAP_FILE_DEDUP)
908 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
909 	else
910 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
911 
912 out_unlock:
913 	if (same_inode) {
914 		btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
915 	} else {
916 		btrfs_double_mmap_unlock(src_inode, dst_inode);
917 		unlock_two_nondirectories(src_inode, dst_inode);
918 	}
919 
920 	/*
921 	 * If either the source or the destination file was opened with O_SYNC,
922 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
923 	 * source files/ranges, so that after a successful return (0) followed
924 	 * by a power failure results in the reflinked data to be readable from
925 	 * both files/ranges.
926 	 */
927 	if (ret == 0 && len > 0 &&
928 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
929 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
930 		if (ret == 0)
931 			ret = btrfs_sync_file(dst_file, destoff,
932 					      destoff + len - 1, 0);
933 	}
934 
935 	return ret < 0 ? ret : len;
936 }
937