xref: /openbmc/linux/fs/btrfs/reflink.c (revision ec8eb376)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "ctree.h"
6 #include "fs.h"
7 #include "messages.h"
8 #include "compression.h"
9 #include "delalloc-space.h"
10 #include "disk-io.h"
11 #include "reflink.h"
12 #include "transaction.h"
13 #include "subpage.h"
14 
15 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
16 
17 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
18 				     struct inode *inode,
19 				     u64 endoff,
20 				     const u64 destoff,
21 				     const u64 olen,
22 				     int no_time_update)
23 {
24 	struct btrfs_root *root = BTRFS_I(inode)->root;
25 	int ret;
26 
27 	inode_inc_iversion(inode);
28 	if (!no_time_update) {
29 		inode->i_mtime = current_time(inode);
30 		inode->i_ctime = inode->i_mtime;
31 	}
32 	/*
33 	 * We round up to the block size at eof when determining which
34 	 * extents to clone above, but shouldn't round up the file size.
35 	 */
36 	if (endoff > destoff + olen)
37 		endoff = destoff + olen;
38 	if (endoff > inode->i_size) {
39 		i_size_write(inode, endoff);
40 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
41 	}
42 
43 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
44 	if (ret) {
45 		btrfs_abort_transaction(trans, ret);
46 		btrfs_end_transaction(trans);
47 		goto out;
48 	}
49 	ret = btrfs_end_transaction(trans);
50 out:
51 	return ret;
52 }
53 
54 static int copy_inline_to_page(struct btrfs_inode *inode,
55 			       const u64 file_offset,
56 			       char *inline_data,
57 			       const u64 size,
58 			       const u64 datal,
59 			       const u8 comp_type)
60 {
61 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
62 	const u32 block_size = fs_info->sectorsize;
63 	const u64 range_end = file_offset + block_size - 1;
64 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
65 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
66 	struct extent_changeset *data_reserved = NULL;
67 	struct page *page = NULL;
68 	struct address_space *mapping = inode->vfs_inode.i_mapping;
69 	int ret;
70 
71 	ASSERT(IS_ALIGNED(file_offset, block_size));
72 
73 	/*
74 	 * We have flushed and locked the ranges of the source and destination
75 	 * inodes, we also have locked the inodes, so we are safe to do a
76 	 * reservation here. Also we must not do the reservation while holding
77 	 * a transaction open, otherwise we would deadlock.
78 	 */
79 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
80 					   block_size);
81 	if (ret)
82 		goto out;
83 
84 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
85 				   btrfs_alloc_write_mask(mapping));
86 	if (!page) {
87 		ret = -ENOMEM;
88 		goto out_unlock;
89 	}
90 
91 	ret = set_page_extent_mapped(page);
92 	if (ret < 0)
93 		goto out_unlock;
94 
95 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
96 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
97 			 NULL);
98 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
99 	if (ret)
100 		goto out_unlock;
101 
102 	/*
103 	 * After dirtying the page our caller will need to start a transaction,
104 	 * and if we are low on metadata free space, that can cause flushing of
105 	 * delalloc for all inodes in order to get metadata space released.
106 	 * However we are holding the range locked for the whole duration of
107 	 * the clone/dedupe operation, so we may deadlock if that happens and no
108 	 * other task releases enough space. So mark this inode as not being
109 	 * possible to flush to avoid such deadlock. We will clear that flag
110 	 * when we finish cloning all extents, since a transaction is started
111 	 * after finding each extent to clone.
112 	 */
113 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
114 
115 	if (comp_type == BTRFS_COMPRESS_NONE) {
116 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
117 			       datal);
118 	} else {
119 		ret = btrfs_decompress(comp_type, data_start, page,
120 				       offset_in_page(file_offset),
121 				       inline_size, datal);
122 		if (ret)
123 			goto out_unlock;
124 		flush_dcache_page(page);
125 	}
126 
127 	/*
128 	 * If our inline data is smaller then the block/page size, then the
129 	 * remaining of the block/page is equivalent to zeroes. We had something
130 	 * like the following done:
131 	 *
132 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
133 	 * $ sync  # (or fsync)
134 	 * $ xfs_io -c "falloc 0 4K" file
135 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
136 	 *
137 	 * So what's in the range [500, 4095] corresponds to zeroes.
138 	 */
139 	if (datal < block_size)
140 		memzero_page(page, datal, block_size - datal);
141 
142 	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
143 	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
144 	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
145 out_unlock:
146 	if (page) {
147 		unlock_page(page);
148 		put_page(page);
149 	}
150 	if (ret)
151 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
152 					     block_size, true);
153 	btrfs_delalloc_release_extents(inode, block_size);
154 out:
155 	extent_changeset_free(data_reserved);
156 
157 	return ret;
158 }
159 
160 /*
161  * Deal with cloning of inline extents. We try to copy the inline extent from
162  * the source inode to destination inode when possible. When not possible we
163  * copy the inline extent's data into the respective page of the inode.
164  */
165 static int clone_copy_inline_extent(struct inode *dst,
166 				    struct btrfs_path *path,
167 				    struct btrfs_key *new_key,
168 				    const u64 drop_start,
169 				    const u64 datal,
170 				    const u64 size,
171 				    const u8 comp_type,
172 				    char *inline_data,
173 				    struct btrfs_trans_handle **trans_out)
174 {
175 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
176 	struct btrfs_root *root = BTRFS_I(dst)->root;
177 	const u64 aligned_end = ALIGN(new_key->offset + datal,
178 				      fs_info->sectorsize);
179 	struct btrfs_trans_handle *trans = NULL;
180 	struct btrfs_drop_extents_args drop_args = { 0 };
181 	int ret;
182 	struct btrfs_key key;
183 
184 	if (new_key->offset > 0) {
185 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
186 					  inline_data, size, datal, comp_type);
187 		goto out;
188 	}
189 
190 	key.objectid = btrfs_ino(BTRFS_I(dst));
191 	key.type = BTRFS_EXTENT_DATA_KEY;
192 	key.offset = 0;
193 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
194 	if (ret < 0) {
195 		return ret;
196 	} else if (ret > 0) {
197 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
198 			ret = btrfs_next_leaf(root, path);
199 			if (ret < 0)
200 				return ret;
201 			else if (ret > 0)
202 				goto copy_inline_extent;
203 		}
204 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
205 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
206 		    key.type == BTRFS_EXTENT_DATA_KEY) {
207 			/*
208 			 * There's an implicit hole at file offset 0, copy the
209 			 * inline extent's data to the page.
210 			 */
211 			ASSERT(key.offset > 0);
212 			goto copy_to_page;
213 		}
214 	} else if (i_size_read(dst) <= datal) {
215 		struct btrfs_file_extent_item *ei;
216 
217 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
218 				    struct btrfs_file_extent_item);
219 		/*
220 		 * If it's an inline extent replace it with the source inline
221 		 * extent, otherwise copy the source inline extent data into
222 		 * the respective page at the destination inode.
223 		 */
224 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
225 		    BTRFS_FILE_EXTENT_INLINE)
226 			goto copy_inline_extent;
227 
228 		goto copy_to_page;
229 	}
230 
231 copy_inline_extent:
232 	/*
233 	 * We have no extent items, or we have an extent at offset 0 which may
234 	 * or may not be inlined. All these cases are dealt the same way.
235 	 */
236 	if (i_size_read(dst) > datal) {
237 		/*
238 		 * At the destination offset 0 we have either a hole, a regular
239 		 * extent or an inline extent larger then the one we want to
240 		 * clone. Deal with all these cases by copying the inline extent
241 		 * data into the respective page at the destination inode.
242 		 */
243 		goto copy_to_page;
244 	}
245 
246 	/*
247 	 * Release path before starting a new transaction so we don't hold locks
248 	 * that would confuse lockdep.
249 	 */
250 	btrfs_release_path(path);
251 	/*
252 	 * If we end up here it means were copy the inline extent into a leaf
253 	 * of the destination inode. We know we will drop or adjust at most one
254 	 * extent item in the destination root.
255 	 *
256 	 * 1 unit - adjusting old extent (we may have to split it)
257 	 * 1 unit - add new extent
258 	 * 1 unit - inode update
259 	 */
260 	trans = btrfs_start_transaction(root, 3);
261 	if (IS_ERR(trans)) {
262 		ret = PTR_ERR(trans);
263 		trans = NULL;
264 		goto out;
265 	}
266 	drop_args.path = path;
267 	drop_args.start = drop_start;
268 	drop_args.end = aligned_end;
269 	drop_args.drop_cache = true;
270 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
271 	if (ret)
272 		goto out;
273 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
274 	if (ret)
275 		goto out;
276 
277 	write_extent_buffer(path->nodes[0], inline_data,
278 			    btrfs_item_ptr_offset(path->nodes[0],
279 						  path->slots[0]),
280 			    size);
281 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
282 	btrfs_set_inode_full_sync(BTRFS_I(dst));
283 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
284 out:
285 	if (!ret && !trans) {
286 		/*
287 		 * No transaction here means we copied the inline extent into a
288 		 * page of the destination inode.
289 		 *
290 		 * 1 unit to update inode item
291 		 */
292 		trans = btrfs_start_transaction(root, 1);
293 		if (IS_ERR(trans)) {
294 			ret = PTR_ERR(trans);
295 			trans = NULL;
296 		}
297 	}
298 	if (ret && trans) {
299 		btrfs_abort_transaction(trans, ret);
300 		btrfs_end_transaction(trans);
301 	}
302 	if (!ret)
303 		*trans_out = trans;
304 
305 	return ret;
306 
307 copy_to_page:
308 	/*
309 	 * Release our path because we don't need it anymore and also because
310 	 * copy_inline_to_page() needs to reserve data and metadata, which may
311 	 * need to flush delalloc when we are low on available space and
312 	 * therefore cause a deadlock if writeback of an inline extent needs to
313 	 * write to the same leaf or an ordered extent completion needs to write
314 	 * to the same leaf.
315 	 */
316 	btrfs_release_path(path);
317 
318 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
319 				  inline_data, size, datal, comp_type);
320 	goto out;
321 }
322 
323 /**
324  * btrfs_clone() - clone a range from inode file to another
325  *
326  * @src: Inode to clone from
327  * @inode: Inode to clone to
328  * @off: Offset within source to start clone from
329  * @olen: Original length, passed by user, of range to clone
330  * @olen_aligned: Block-aligned value of olen
331  * @destoff: Offset within @inode to start clone
332  * @no_time_update: Whether to update mtime/ctime on the target inode
333  */
334 static int btrfs_clone(struct inode *src, struct inode *inode,
335 		       const u64 off, const u64 olen, const u64 olen_aligned,
336 		       const u64 destoff, int no_time_update)
337 {
338 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
339 	struct btrfs_path *path = NULL;
340 	struct extent_buffer *leaf;
341 	struct btrfs_trans_handle *trans;
342 	char *buf = NULL;
343 	struct btrfs_key key;
344 	u32 nritems;
345 	int slot;
346 	int ret;
347 	const u64 len = olen_aligned;
348 	u64 last_dest_end = destoff;
349 	u64 prev_extent_end = off;
350 
351 	ret = -ENOMEM;
352 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
353 	if (!buf)
354 		return ret;
355 
356 	path = btrfs_alloc_path();
357 	if (!path) {
358 		kvfree(buf);
359 		return ret;
360 	}
361 
362 	path->reada = READA_FORWARD;
363 	/* Clone data */
364 	key.objectid = btrfs_ino(BTRFS_I(src));
365 	key.type = BTRFS_EXTENT_DATA_KEY;
366 	key.offset = off;
367 
368 	while (1) {
369 		struct btrfs_file_extent_item *extent;
370 		u64 extent_gen;
371 		int type;
372 		u32 size;
373 		struct btrfs_key new_key;
374 		u64 disko = 0, diskl = 0;
375 		u64 datao = 0, datal = 0;
376 		u8 comp;
377 		u64 drop_start;
378 
379 		/* Note the key will change type as we walk through the tree */
380 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
381 				0, 0);
382 		if (ret < 0)
383 			goto out;
384 		/*
385 		 * First search, if no extent item that starts at offset off was
386 		 * found but the previous item is an extent item, it's possible
387 		 * it might overlap our target range, therefore process it.
388 		 */
389 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
390 			btrfs_item_key_to_cpu(path->nodes[0], &key,
391 					      path->slots[0] - 1);
392 			if (key.type == BTRFS_EXTENT_DATA_KEY)
393 				path->slots[0]--;
394 		}
395 
396 		nritems = btrfs_header_nritems(path->nodes[0]);
397 process_slot:
398 		if (path->slots[0] >= nritems) {
399 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
400 			if (ret < 0)
401 				goto out;
402 			if (ret > 0)
403 				break;
404 			nritems = btrfs_header_nritems(path->nodes[0]);
405 		}
406 		leaf = path->nodes[0];
407 		slot = path->slots[0];
408 
409 		btrfs_item_key_to_cpu(leaf, &key, slot);
410 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
411 		    key.objectid != btrfs_ino(BTRFS_I(src)))
412 			break;
413 
414 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
415 
416 		extent = btrfs_item_ptr(leaf, slot,
417 					struct btrfs_file_extent_item);
418 		extent_gen = btrfs_file_extent_generation(leaf, extent);
419 		comp = btrfs_file_extent_compression(leaf, extent);
420 		type = btrfs_file_extent_type(leaf, extent);
421 		if (type == BTRFS_FILE_EXTENT_REG ||
422 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
423 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
424 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
425 			datao = btrfs_file_extent_offset(leaf, extent);
426 			datal = btrfs_file_extent_num_bytes(leaf, extent);
427 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
428 			/* Take upper bound, may be compressed */
429 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
430 		}
431 
432 		/*
433 		 * The first search might have left us at an extent item that
434 		 * ends before our target range's start, can happen if we have
435 		 * holes and NO_HOLES feature enabled.
436 		 *
437 		 * Subsequent searches may leave us on a file range we have
438 		 * processed before - this happens due to a race with ordered
439 		 * extent completion for a file range that is outside our source
440 		 * range, but that range was part of a file extent item that
441 		 * also covered a leading part of our source range.
442 		 */
443 		if (key.offset + datal <= prev_extent_end) {
444 			path->slots[0]++;
445 			goto process_slot;
446 		} else if (key.offset >= off + len) {
447 			break;
448 		}
449 
450 		prev_extent_end = key.offset + datal;
451 		size = btrfs_item_size(leaf, slot);
452 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
453 				   size);
454 
455 		btrfs_release_path(path);
456 
457 		memcpy(&new_key, &key, sizeof(new_key));
458 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
459 		if (off <= key.offset)
460 			new_key.offset = key.offset + destoff - off;
461 		else
462 			new_key.offset = destoff;
463 
464 		/*
465 		 * Deal with a hole that doesn't have an extent item that
466 		 * represents it (NO_HOLES feature enabled).
467 		 * This hole is either in the middle of the cloning range or at
468 		 * the beginning (fully overlaps it or partially overlaps it).
469 		 */
470 		if (new_key.offset != last_dest_end)
471 			drop_start = last_dest_end;
472 		else
473 			drop_start = new_key.offset;
474 
475 		if (type == BTRFS_FILE_EXTENT_REG ||
476 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
477 			struct btrfs_replace_extent_info clone_info;
478 
479 			/*
480 			 *    a  | --- range to clone ---|  b
481 			 * | ------------- extent ------------- |
482 			 */
483 
484 			/* Subtract range b */
485 			if (key.offset + datal > off + len)
486 				datal = off + len - key.offset;
487 
488 			/* Subtract range a */
489 			if (off > key.offset) {
490 				datao += off - key.offset;
491 				datal -= off - key.offset;
492 			}
493 
494 			clone_info.disk_offset = disko;
495 			clone_info.disk_len = diskl;
496 			clone_info.data_offset = datao;
497 			clone_info.data_len = datal;
498 			clone_info.file_offset = new_key.offset;
499 			clone_info.extent_buf = buf;
500 			clone_info.is_new_extent = false;
501 			clone_info.update_times = !no_time_update;
502 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
503 					drop_start, new_key.offset + datal - 1,
504 					&clone_info, &trans);
505 			if (ret)
506 				goto out;
507 		} else {
508 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
509 			/*
510 			 * Inline extents always have to start at file offset 0
511 			 * and can never be bigger then the sector size. We can
512 			 * never clone only parts of an inline extent, since all
513 			 * reflink operations must start at a sector size aligned
514 			 * offset, and the length must be aligned too or end at
515 			 * the i_size (which implies the whole inlined data).
516 			 */
517 			ASSERT(key.offset == 0);
518 			ASSERT(datal <= fs_info->sectorsize);
519 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
520 			    WARN_ON(key.offset != 0) ||
521 			    WARN_ON(datal > fs_info->sectorsize)) {
522 				ret = -EUCLEAN;
523 				goto out;
524 			}
525 
526 			ret = clone_copy_inline_extent(inode, path, &new_key,
527 						       drop_start, datal, size,
528 						       comp, buf, &trans);
529 			if (ret)
530 				goto out;
531 		}
532 
533 		btrfs_release_path(path);
534 
535 		/*
536 		 * Whenever we share an extent we update the last_reflink_trans
537 		 * of each inode to the current transaction. This is needed to
538 		 * make sure fsync does not log multiple checksum items with
539 		 * overlapping ranges (because some extent items might refer
540 		 * only to sections of the original extent). For the destination
541 		 * inode we do this regardless of the generation of the extents
542 		 * or even if they are inline extents or explicit holes, to make
543 		 * sure a full fsync does not skip them. For the source inode,
544 		 * we only need to update last_reflink_trans in case it's a new
545 		 * extent that is not a hole or an inline extent, to deal with
546 		 * the checksums problem on fsync.
547 		 */
548 		if (extent_gen == trans->transid && disko > 0)
549 			BTRFS_I(src)->last_reflink_trans = trans->transid;
550 
551 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
552 
553 		last_dest_end = ALIGN(new_key.offset + datal,
554 				      fs_info->sectorsize);
555 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
556 						destoff, olen, no_time_update);
557 		if (ret)
558 			goto out;
559 		if (new_key.offset + datal >= destoff + len)
560 			break;
561 
562 		btrfs_release_path(path);
563 		key.offset = prev_extent_end;
564 
565 		if (fatal_signal_pending(current)) {
566 			ret = -EINTR;
567 			goto out;
568 		}
569 
570 		cond_resched();
571 	}
572 	ret = 0;
573 
574 	if (last_dest_end < destoff + len) {
575 		/*
576 		 * We have an implicit hole that fully or partially overlaps our
577 		 * cloning range at its end. This means that we either have the
578 		 * NO_HOLES feature enabled or the implicit hole happened due to
579 		 * mixing buffered and direct IO writes against this file.
580 		 */
581 		btrfs_release_path(path);
582 
583 		/*
584 		 * When using NO_HOLES and we are cloning a range that covers
585 		 * only a hole (no extents) into a range beyond the current
586 		 * i_size, punching a hole in the target range will not create
587 		 * an extent map defining a hole, because the range starts at or
588 		 * beyond current i_size. If the file previously had an i_size
589 		 * greater than the new i_size set by this clone operation, we
590 		 * need to make sure the next fsync is a full fsync, so that it
591 		 * detects and logs a hole covering a range from the current
592 		 * i_size to the new i_size. If the clone range covers extents,
593 		 * besides a hole, then we know the full sync flag was already
594 		 * set by previous calls to btrfs_replace_file_extents() that
595 		 * replaced file extent items.
596 		 */
597 		if (last_dest_end >= i_size_read(inode))
598 			btrfs_set_inode_full_sync(BTRFS_I(inode));
599 
600 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
601 				last_dest_end, destoff + len - 1, NULL, &trans);
602 		if (ret)
603 			goto out;
604 
605 		ret = clone_finish_inode_update(trans, inode, destoff + len,
606 						destoff, olen, no_time_update);
607 	}
608 
609 out:
610 	btrfs_free_path(path);
611 	kvfree(buf);
612 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
613 
614 	return ret;
615 }
616 
617 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
618 				       struct inode *inode2, u64 loff2, u64 len)
619 {
620 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
621 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
622 }
623 
624 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
625 				     struct inode *inode2, u64 loff2, u64 len)
626 {
627 	u64 range1_end = loff1 + len - 1;
628 	u64 range2_end = loff2 + len - 1;
629 
630 	if (inode1 < inode2) {
631 		swap(inode1, inode2);
632 		swap(loff1, loff2);
633 		swap(range1_end, range2_end);
634 	} else if (inode1 == inode2 && loff2 < loff1) {
635 		swap(loff1, loff2);
636 		swap(range1_end, range2_end);
637 	}
638 
639 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
640 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
641 
642 	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
643 	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
644 }
645 
646 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
647 {
648 	if (inode1 < inode2)
649 		swap(inode1, inode2);
650 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
651 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
652 }
653 
654 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
655 {
656 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
657 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
658 }
659 
660 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
661 				   struct inode *dst, u64 dst_loff)
662 {
663 	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
664 	const u64 bs = fs_info->sb->s_blocksize;
665 	int ret;
666 
667 	/*
668 	 * Lock destination range to serialize with concurrent readahead() and
669 	 * source range to serialize with relocation.
670 	 */
671 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
672 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
673 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
674 
675 	btrfs_btree_balance_dirty(fs_info);
676 
677 	return ret;
678 }
679 
680 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
681 			     struct inode *dst, u64 dst_loff)
682 {
683 	int ret = 0;
684 	u64 i, tail_len, chunk_count;
685 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
686 
687 	spin_lock(&root_dst->root_item_lock);
688 	if (root_dst->send_in_progress) {
689 		btrfs_warn_rl(root_dst->fs_info,
690 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
691 			      root_dst->root_key.objectid,
692 			      root_dst->send_in_progress);
693 		spin_unlock(&root_dst->root_item_lock);
694 		return -EAGAIN;
695 	}
696 	root_dst->dedupe_in_progress++;
697 	spin_unlock(&root_dst->root_item_lock);
698 
699 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
700 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
701 
702 	for (i = 0; i < chunk_count; i++) {
703 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
704 					      dst, dst_loff);
705 		if (ret)
706 			goto out;
707 
708 		loff += BTRFS_MAX_DEDUPE_LEN;
709 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
710 	}
711 
712 	if (tail_len > 0)
713 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
714 out:
715 	spin_lock(&root_dst->root_item_lock);
716 	root_dst->dedupe_in_progress--;
717 	spin_unlock(&root_dst->root_item_lock);
718 
719 	return ret;
720 }
721 
722 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
723 					u64 off, u64 olen, u64 destoff)
724 {
725 	struct inode *inode = file_inode(file);
726 	struct inode *src = file_inode(file_src);
727 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
728 	int ret;
729 	int wb_ret;
730 	u64 len = olen;
731 	u64 bs = fs_info->sb->s_blocksize;
732 
733 	/*
734 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
735 	 * eof block into the middle of a file, which would result in corruption
736 	 * if the file size is not blocksize aligned. So we don't need to check
737 	 * for that case here.
738 	 */
739 	if (off + len == src->i_size)
740 		len = ALIGN(src->i_size, bs) - off;
741 
742 	if (destoff > inode->i_size) {
743 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
744 
745 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
746 		if (ret)
747 			return ret;
748 		/*
749 		 * We may have truncated the last block if the inode's size is
750 		 * not sector size aligned, so we need to wait for writeback to
751 		 * complete before proceeding further, otherwise we can race
752 		 * with cloning and attempt to increment a reference to an
753 		 * extent that no longer exists (writeback completed right after
754 		 * we found the previous extent covering eof and before we
755 		 * attempted to increment its reference count).
756 		 */
757 		ret = btrfs_wait_ordered_range(inode, wb_start,
758 					       destoff - wb_start);
759 		if (ret)
760 			return ret;
761 	}
762 
763 	/*
764 	 * Lock destination range to serialize with concurrent readahead() and
765 	 * source range to serialize with relocation.
766 	 */
767 	btrfs_double_extent_lock(src, off, inode, destoff, len);
768 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
769 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
770 
771 	/*
772 	 * We may have copied an inline extent into a page of the destination
773 	 * range, so wait for writeback to complete before truncating pages
774 	 * from the page cache. This is a rare case.
775 	 */
776 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
777 	ret = ret ? ret : wb_ret;
778 	/*
779 	 * Truncate page cache pages so that future reads will see the cloned
780 	 * data immediately and not the previous data.
781 	 */
782 	truncate_inode_pages_range(&inode->i_data,
783 				round_down(destoff, PAGE_SIZE),
784 				round_up(destoff + len, PAGE_SIZE) - 1);
785 
786 	btrfs_btree_balance_dirty(fs_info);
787 
788 	return ret;
789 }
790 
791 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
792 				       struct file *file_out, loff_t pos_out,
793 				       loff_t *len, unsigned int remap_flags)
794 {
795 	struct inode *inode_in = file_inode(file_in);
796 	struct inode *inode_out = file_inode(file_out);
797 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
798 	u64 wb_len;
799 	int ret;
800 
801 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
802 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
803 
804 		if (btrfs_root_readonly(root_out))
805 			return -EROFS;
806 
807 		ASSERT(inode_in->i_sb == inode_out->i_sb);
808 	}
809 
810 	/* Don't make the dst file partly checksummed */
811 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
812 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
813 		return -EINVAL;
814 	}
815 
816 	/*
817 	 * Now that the inodes are locked, we need to start writeback ourselves
818 	 * and can not rely on the writeback from the VFS's generic helper
819 	 * generic_remap_file_range_prep() because:
820 	 *
821 	 * 1) For compression we must call filemap_fdatawrite_range() range
822 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
823 	 *    helper only calls it once;
824 	 *
825 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
826 	 *    waits for the writeback to complete, i.e. for IO to be done, and
827 	 *    not for the ordered extents to complete. We need to wait for them
828 	 *    to complete so that new file extent items are in the fs tree.
829 	 */
830 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
831 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
832 	else
833 		wb_len = ALIGN(*len, bs);
834 
835 	/*
836 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
837 	 *
838 	 * Btrfs' back references do not have a block level granularity, they
839 	 * work at the whole extent level.
840 	 * NOCOW buffered write without data space reserved may not be able
841 	 * to fall back to CoW due to lack of data space, thus could cause
842 	 * data loss.
843 	 *
844 	 * Here we take a shortcut by flushing the whole inode, so that all
845 	 * nocow write should reach disk as nocow before we increase the
846 	 * reference of the extent. We could do better by only flushing NOCOW
847 	 * data, but that needs extra accounting.
848 	 *
849 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
850 	 * CoWed anyway, not affecting nocow part.
851 	 */
852 	ret = filemap_flush(inode_in->i_mapping);
853 	if (ret < 0)
854 		return ret;
855 
856 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
857 				       wb_len);
858 	if (ret < 0)
859 		return ret;
860 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
861 				       wb_len);
862 	if (ret < 0)
863 		return ret;
864 
865 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
866 					    len, remap_flags);
867 }
868 
869 static bool file_sync_write(const struct file *file)
870 {
871 	if (file->f_flags & (__O_SYNC | O_DSYNC))
872 		return true;
873 	if (IS_SYNC(file_inode(file)))
874 		return true;
875 
876 	return false;
877 }
878 
879 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
880 		struct file *dst_file, loff_t destoff, loff_t len,
881 		unsigned int remap_flags)
882 {
883 	struct inode *src_inode = file_inode(src_file);
884 	struct inode *dst_inode = file_inode(dst_file);
885 	bool same_inode = dst_inode == src_inode;
886 	int ret;
887 
888 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
889 		return -EINVAL;
890 
891 	if (same_inode) {
892 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
893 	} else {
894 		lock_two_nondirectories(src_inode, dst_inode);
895 		btrfs_double_mmap_lock(src_inode, dst_inode);
896 	}
897 
898 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
899 					  &len, remap_flags);
900 	if (ret < 0 || len == 0)
901 		goto out_unlock;
902 
903 	if (remap_flags & REMAP_FILE_DEDUP)
904 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
905 	else
906 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
907 
908 out_unlock:
909 	if (same_inode) {
910 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
911 	} else {
912 		btrfs_double_mmap_unlock(src_inode, dst_inode);
913 		unlock_two_nondirectories(src_inode, dst_inode);
914 	}
915 
916 	/*
917 	 * If either the source or the destination file was opened with O_SYNC,
918 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
919 	 * source files/ranges, so that after a successful return (0) followed
920 	 * by a power failure results in the reflinked data to be readable from
921 	 * both files/ranges.
922 	 */
923 	if (ret == 0 && len > 0 &&
924 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
925 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
926 		if (ret == 0)
927 			ret = btrfs_sync_file(dst_file, destoff,
928 					      destoff + len - 1, 0);
929 	}
930 
931 	return ret < 0 ? ret : len;
932 }
933