1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/blkdev.h> 4 #include <linux/iversion.h> 5 #include "compression.h" 6 #include "ctree.h" 7 #include "delalloc-space.h" 8 #include "reflink.h" 9 #include "transaction.h" 10 11 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 12 13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 14 struct inode *inode, 15 u64 endoff, 16 const u64 destoff, 17 const u64 olen, 18 int no_time_update) 19 { 20 struct btrfs_root *root = BTRFS_I(inode)->root; 21 int ret; 22 23 inode_inc_iversion(inode); 24 if (!no_time_update) 25 inode->i_mtime = inode->i_ctime = current_time(inode); 26 /* 27 * We round up to the block size at eof when determining which 28 * extents to clone above, but shouldn't round up the file size. 29 */ 30 if (endoff > destoff + olen) 31 endoff = destoff + olen; 32 if (endoff > inode->i_size) { 33 i_size_write(inode, endoff); 34 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 35 } 36 37 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 38 if (ret) { 39 btrfs_abort_transaction(trans, ret); 40 btrfs_end_transaction(trans); 41 goto out; 42 } 43 ret = btrfs_end_transaction(trans); 44 out: 45 return ret; 46 } 47 48 static int copy_inline_to_page(struct btrfs_inode *inode, 49 const u64 file_offset, 50 char *inline_data, 51 const u64 size, 52 const u64 datal, 53 const u8 comp_type) 54 { 55 const u64 block_size = btrfs_inode_sectorsize(inode); 56 const u64 range_end = file_offset + block_size - 1; 57 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); 58 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); 59 struct extent_changeset *data_reserved = NULL; 60 struct page *page = NULL; 61 struct address_space *mapping = inode->vfs_inode.i_mapping; 62 int ret; 63 64 ASSERT(IS_ALIGNED(file_offset, block_size)); 65 66 /* 67 * We have flushed and locked the ranges of the source and destination 68 * inodes, we also have locked the inodes, so we are safe to do a 69 * reservation here. Also we must not do the reservation while holding 70 * a transaction open, otherwise we would deadlock. 71 */ 72 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, 73 block_size); 74 if (ret) 75 goto out; 76 77 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT, 78 btrfs_alloc_write_mask(mapping)); 79 if (!page) { 80 ret = -ENOMEM; 81 goto out_unlock; 82 } 83 84 ret = set_page_extent_mapped(page); 85 if (ret < 0) 86 goto out_unlock; 87 88 clear_extent_bit(&inode->io_tree, file_offset, range_end, 89 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 90 0, 0, NULL); 91 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); 92 if (ret) 93 goto out_unlock; 94 95 /* 96 * After dirtying the page our caller will need to start a transaction, 97 * and if we are low on metadata free space, that can cause flushing of 98 * delalloc for all inodes in order to get metadata space released. 99 * However we are holding the range locked for the whole duration of 100 * the clone/dedupe operation, so we may deadlock if that happens and no 101 * other task releases enough space. So mark this inode as not being 102 * possible to flush to avoid such deadlock. We will clear that flag 103 * when we finish cloning all extents, since a transaction is started 104 * after finding each extent to clone. 105 */ 106 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); 107 108 if (comp_type == BTRFS_COMPRESS_NONE) { 109 memcpy_to_page(page, 0, data_start, datal); 110 flush_dcache_page(page); 111 } else { 112 ret = btrfs_decompress(comp_type, data_start, page, 0, 113 inline_size, datal); 114 if (ret) 115 goto out_unlock; 116 flush_dcache_page(page); 117 } 118 119 /* 120 * If our inline data is smaller then the block/page size, then the 121 * remaining of the block/page is equivalent to zeroes. We had something 122 * like the following done: 123 * 124 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file 125 * $ sync # (or fsync) 126 * $ xfs_io -c "falloc 0 4K" file 127 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 128 * 129 * So what's in the range [500, 4095] corresponds to zeroes. 130 */ 131 if (datal < block_size) { 132 memzero_page(page, datal, block_size - datal); 133 flush_dcache_page(page); 134 } 135 136 SetPageUptodate(page); 137 ClearPageChecked(page); 138 set_page_dirty(page); 139 out_unlock: 140 if (page) { 141 unlock_page(page); 142 put_page(page); 143 } 144 if (ret) 145 btrfs_delalloc_release_space(inode, data_reserved, file_offset, 146 block_size, true); 147 btrfs_delalloc_release_extents(inode, block_size); 148 out: 149 extent_changeset_free(data_reserved); 150 151 return ret; 152 } 153 154 /* 155 * Deal with cloning of inline extents. We try to copy the inline extent from 156 * the source inode to destination inode when possible. When not possible we 157 * copy the inline extent's data into the respective page of the inode. 158 */ 159 static int clone_copy_inline_extent(struct inode *dst, 160 struct btrfs_path *path, 161 struct btrfs_key *new_key, 162 const u64 drop_start, 163 const u64 datal, 164 const u64 size, 165 const u8 comp_type, 166 char *inline_data, 167 struct btrfs_trans_handle **trans_out) 168 { 169 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 170 struct btrfs_root *root = BTRFS_I(dst)->root; 171 const u64 aligned_end = ALIGN(new_key->offset + datal, 172 fs_info->sectorsize); 173 struct btrfs_trans_handle *trans = NULL; 174 struct btrfs_drop_extents_args drop_args = { 0 }; 175 int ret; 176 struct btrfs_key key; 177 178 if (new_key->offset > 0) { 179 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 180 inline_data, size, datal, comp_type); 181 goto out; 182 } 183 184 key.objectid = btrfs_ino(BTRFS_I(dst)); 185 key.type = BTRFS_EXTENT_DATA_KEY; 186 key.offset = 0; 187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 188 if (ret < 0) { 189 return ret; 190 } else if (ret > 0) { 191 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 192 ret = btrfs_next_leaf(root, path); 193 if (ret < 0) 194 return ret; 195 else if (ret > 0) 196 goto copy_inline_extent; 197 } 198 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 199 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 200 key.type == BTRFS_EXTENT_DATA_KEY) { 201 /* 202 * There's an implicit hole at file offset 0, copy the 203 * inline extent's data to the page. 204 */ 205 ASSERT(key.offset > 0); 206 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 207 inline_data, size, datal, 208 comp_type); 209 goto out; 210 } 211 } else if (i_size_read(dst) <= datal) { 212 struct btrfs_file_extent_item *ei; 213 214 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 215 struct btrfs_file_extent_item); 216 /* 217 * If it's an inline extent replace it with the source inline 218 * extent, otherwise copy the source inline extent data into 219 * the respective page at the destination inode. 220 */ 221 if (btrfs_file_extent_type(path->nodes[0], ei) == 222 BTRFS_FILE_EXTENT_INLINE) 223 goto copy_inline_extent; 224 225 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 226 inline_data, size, datal, comp_type); 227 goto out; 228 } 229 230 copy_inline_extent: 231 ret = 0; 232 /* 233 * We have no extent items, or we have an extent at offset 0 which may 234 * or may not be inlined. All these cases are dealt the same way. 235 */ 236 if (i_size_read(dst) > datal) { 237 /* 238 * At the destination offset 0 we have either a hole, a regular 239 * extent or an inline extent larger then the one we want to 240 * clone. Deal with all these cases by copying the inline extent 241 * data into the respective page at the destination inode. 242 */ 243 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 244 inline_data, size, datal, comp_type); 245 goto out; 246 } 247 248 btrfs_release_path(path); 249 /* 250 * If we end up here it means were copy the inline extent into a leaf 251 * of the destination inode. We know we will drop or adjust at most one 252 * extent item in the destination root. 253 * 254 * 1 unit - adjusting old extent (we may have to split it) 255 * 1 unit - add new extent 256 * 1 unit - inode update 257 */ 258 trans = btrfs_start_transaction(root, 3); 259 if (IS_ERR(trans)) { 260 ret = PTR_ERR(trans); 261 trans = NULL; 262 goto out; 263 } 264 drop_args.path = path; 265 drop_args.start = drop_start; 266 drop_args.end = aligned_end; 267 drop_args.drop_cache = true; 268 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args); 269 if (ret) 270 goto out; 271 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 272 if (ret) 273 goto out; 274 275 write_extent_buffer(path->nodes[0], inline_data, 276 btrfs_item_ptr_offset(path->nodes[0], 277 path->slots[0]), 278 size); 279 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found); 280 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 281 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end); 282 out: 283 if (!ret && !trans) { 284 /* 285 * No transaction here means we copied the inline extent into a 286 * page of the destination inode. 287 * 288 * 1 unit to update inode item 289 */ 290 trans = btrfs_start_transaction(root, 1); 291 if (IS_ERR(trans)) { 292 ret = PTR_ERR(trans); 293 trans = NULL; 294 } 295 } 296 if (ret && trans) { 297 btrfs_abort_transaction(trans, ret); 298 btrfs_end_transaction(trans); 299 } 300 if (!ret) 301 *trans_out = trans; 302 303 return ret; 304 } 305 306 /** 307 * btrfs_clone() - clone a range from inode file to another 308 * 309 * @src: Inode to clone from 310 * @inode: Inode to clone to 311 * @off: Offset within source to start clone from 312 * @olen: Original length, passed by user, of range to clone 313 * @olen_aligned: Block-aligned value of olen 314 * @destoff: Offset within @inode to start clone 315 * @no_time_update: Whether to update mtime/ctime on the target inode 316 */ 317 static int btrfs_clone(struct inode *src, struct inode *inode, 318 const u64 off, const u64 olen, const u64 olen_aligned, 319 const u64 destoff, int no_time_update) 320 { 321 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 322 struct btrfs_path *path = NULL; 323 struct extent_buffer *leaf; 324 struct btrfs_trans_handle *trans; 325 char *buf = NULL; 326 struct btrfs_key key; 327 u32 nritems; 328 int slot; 329 int ret; 330 const u64 len = olen_aligned; 331 u64 last_dest_end = destoff; 332 333 ret = -ENOMEM; 334 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 335 if (!buf) 336 return ret; 337 338 path = btrfs_alloc_path(); 339 if (!path) { 340 kvfree(buf); 341 return ret; 342 } 343 344 path->reada = READA_FORWARD; 345 /* Clone data */ 346 key.objectid = btrfs_ino(BTRFS_I(src)); 347 key.type = BTRFS_EXTENT_DATA_KEY; 348 key.offset = off; 349 350 while (1) { 351 u64 next_key_min_offset = key.offset + 1; 352 struct btrfs_file_extent_item *extent; 353 u64 extent_gen; 354 int type; 355 u32 size; 356 struct btrfs_key new_key; 357 u64 disko = 0, diskl = 0; 358 u64 datao = 0, datal = 0; 359 u8 comp; 360 u64 drop_start; 361 362 /* Note the key will change type as we walk through the tree */ 363 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 364 0, 0); 365 if (ret < 0) 366 goto out; 367 /* 368 * First search, if no extent item that starts at offset off was 369 * found but the previous item is an extent item, it's possible 370 * it might overlap our target range, therefore process it. 371 */ 372 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 373 btrfs_item_key_to_cpu(path->nodes[0], &key, 374 path->slots[0] - 1); 375 if (key.type == BTRFS_EXTENT_DATA_KEY) 376 path->slots[0]--; 377 } 378 379 nritems = btrfs_header_nritems(path->nodes[0]); 380 process_slot: 381 if (path->slots[0] >= nritems) { 382 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 383 if (ret < 0) 384 goto out; 385 if (ret > 0) 386 break; 387 nritems = btrfs_header_nritems(path->nodes[0]); 388 } 389 leaf = path->nodes[0]; 390 slot = path->slots[0]; 391 392 btrfs_item_key_to_cpu(leaf, &key, slot); 393 if (key.type > BTRFS_EXTENT_DATA_KEY || 394 key.objectid != btrfs_ino(BTRFS_I(src))) 395 break; 396 397 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 398 399 extent = btrfs_item_ptr(leaf, slot, 400 struct btrfs_file_extent_item); 401 extent_gen = btrfs_file_extent_generation(leaf, extent); 402 comp = btrfs_file_extent_compression(leaf, extent); 403 type = btrfs_file_extent_type(leaf, extent); 404 if (type == BTRFS_FILE_EXTENT_REG || 405 type == BTRFS_FILE_EXTENT_PREALLOC) { 406 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 407 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 408 datao = btrfs_file_extent_offset(leaf, extent); 409 datal = btrfs_file_extent_num_bytes(leaf, extent); 410 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 411 /* Take upper bound, may be compressed */ 412 datal = btrfs_file_extent_ram_bytes(leaf, extent); 413 } 414 415 /* 416 * The first search might have left us at an extent item that 417 * ends before our target range's start, can happen if we have 418 * holes and NO_HOLES feature enabled. 419 */ 420 if (key.offset + datal <= off) { 421 path->slots[0]++; 422 goto process_slot; 423 } else if (key.offset >= off + len) { 424 break; 425 } 426 next_key_min_offset = key.offset + datal; 427 size = btrfs_item_size_nr(leaf, slot); 428 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 429 size); 430 431 btrfs_release_path(path); 432 433 memcpy(&new_key, &key, sizeof(new_key)); 434 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 435 if (off <= key.offset) 436 new_key.offset = key.offset + destoff - off; 437 else 438 new_key.offset = destoff; 439 440 /* 441 * Deal with a hole that doesn't have an extent item that 442 * represents it (NO_HOLES feature enabled). 443 * This hole is either in the middle of the cloning range or at 444 * the beginning (fully overlaps it or partially overlaps it). 445 */ 446 if (new_key.offset != last_dest_end) 447 drop_start = last_dest_end; 448 else 449 drop_start = new_key.offset; 450 451 if (type == BTRFS_FILE_EXTENT_REG || 452 type == BTRFS_FILE_EXTENT_PREALLOC) { 453 struct btrfs_replace_extent_info clone_info; 454 455 /* 456 * a | --- range to clone ---| b 457 * | ------------- extent ------------- | 458 */ 459 460 /* Subtract range b */ 461 if (key.offset + datal > off + len) 462 datal = off + len - key.offset; 463 464 /* Subtract range a */ 465 if (off > key.offset) { 466 datao += off - key.offset; 467 datal -= off - key.offset; 468 } 469 470 clone_info.disk_offset = disko; 471 clone_info.disk_len = diskl; 472 clone_info.data_offset = datao; 473 clone_info.data_len = datal; 474 clone_info.file_offset = new_key.offset; 475 clone_info.extent_buf = buf; 476 clone_info.is_new_extent = false; 477 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 478 drop_start, new_key.offset + datal - 1, 479 &clone_info, &trans); 480 if (ret) 481 goto out; 482 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 483 /* 484 * Inline extents always have to start at file offset 0 485 * and can never be bigger then the sector size. We can 486 * never clone only parts of an inline extent, since all 487 * reflink operations must start at a sector size aligned 488 * offset, and the length must be aligned too or end at 489 * the i_size (which implies the whole inlined data). 490 */ 491 ASSERT(key.offset == 0); 492 ASSERT(datal <= fs_info->sectorsize); 493 if (key.offset != 0 || datal > fs_info->sectorsize) 494 return -EUCLEAN; 495 496 ret = clone_copy_inline_extent(inode, path, &new_key, 497 drop_start, datal, size, 498 comp, buf, &trans); 499 if (ret) 500 goto out; 501 } 502 503 btrfs_release_path(path); 504 505 /* 506 * If this is a new extent update the last_reflink_trans of both 507 * inodes. This is used by fsync to make sure it does not log 508 * multiple checksum items with overlapping ranges. For older 509 * extents we don't need to do it since inode logging skips the 510 * checksums for older extents. Also ignore holes and inline 511 * extents because they don't have checksums in the csum tree. 512 */ 513 if (extent_gen == trans->transid && disko > 0) { 514 BTRFS_I(src)->last_reflink_trans = trans->transid; 515 BTRFS_I(inode)->last_reflink_trans = trans->transid; 516 } 517 518 last_dest_end = ALIGN(new_key.offset + datal, 519 fs_info->sectorsize); 520 ret = clone_finish_inode_update(trans, inode, last_dest_end, 521 destoff, olen, no_time_update); 522 if (ret) 523 goto out; 524 if (new_key.offset + datal >= destoff + len) 525 break; 526 527 btrfs_release_path(path); 528 key.offset = next_key_min_offset; 529 530 if (fatal_signal_pending(current)) { 531 ret = -EINTR; 532 goto out; 533 } 534 535 cond_resched(); 536 } 537 ret = 0; 538 539 if (last_dest_end < destoff + len) { 540 /* 541 * We have an implicit hole that fully or partially overlaps our 542 * cloning range at its end. This means that we either have the 543 * NO_HOLES feature enabled or the implicit hole happened due to 544 * mixing buffered and direct IO writes against this file. 545 */ 546 btrfs_release_path(path); 547 548 /* 549 * When using NO_HOLES and we are cloning a range that covers 550 * only a hole (no extents) into a range beyond the current 551 * i_size, punching a hole in the target range will not create 552 * an extent map defining a hole, because the range starts at or 553 * beyond current i_size. If the file previously had an i_size 554 * greater than the new i_size set by this clone operation, we 555 * need to make sure the next fsync is a full fsync, so that it 556 * detects and logs a hole covering a range from the current 557 * i_size to the new i_size. If the clone range covers extents, 558 * besides a hole, then we know the full sync flag was already 559 * set by previous calls to btrfs_replace_file_extents() that 560 * replaced file extent items. 561 */ 562 if (last_dest_end >= i_size_read(inode)) 563 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 564 &BTRFS_I(inode)->runtime_flags); 565 566 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 567 last_dest_end, destoff + len - 1, NULL, &trans); 568 if (ret) 569 goto out; 570 571 ret = clone_finish_inode_update(trans, inode, destoff + len, 572 destoff, olen, no_time_update); 573 } 574 575 out: 576 btrfs_free_path(path); 577 kvfree(buf); 578 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); 579 580 return ret; 581 } 582 583 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 584 struct inode *inode2, u64 loff2, u64 len) 585 { 586 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 587 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 588 } 589 590 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 591 struct inode *inode2, u64 loff2, u64 len) 592 { 593 if (inode1 < inode2) { 594 swap(inode1, inode2); 595 swap(loff1, loff2); 596 } else if (inode1 == inode2 && loff2 < loff1) { 597 swap(loff1, loff2); 598 } 599 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 600 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 601 } 602 603 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2) 604 { 605 if (inode1 < inode2) 606 swap(inode1, inode2); 607 down_write(&BTRFS_I(inode1)->i_mmap_lock); 608 down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING); 609 } 610 611 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2) 612 { 613 up_write(&BTRFS_I(inode1)->i_mmap_lock); 614 up_write(&BTRFS_I(inode2)->i_mmap_lock); 615 } 616 617 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 618 struct inode *dst, u64 dst_loff) 619 { 620 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 621 int ret; 622 623 /* 624 * Lock destination range to serialize with concurrent readpages() and 625 * source range to serialize with relocation. 626 */ 627 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 628 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); 629 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 630 631 return ret; 632 } 633 634 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 635 struct inode *dst, u64 dst_loff) 636 { 637 int ret; 638 u64 i, tail_len, chunk_count; 639 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 640 641 spin_lock(&root_dst->root_item_lock); 642 if (root_dst->send_in_progress) { 643 btrfs_warn_rl(root_dst->fs_info, 644 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 645 root_dst->root_key.objectid, 646 root_dst->send_in_progress); 647 spin_unlock(&root_dst->root_item_lock); 648 return -EAGAIN; 649 } 650 root_dst->dedupe_in_progress++; 651 spin_unlock(&root_dst->root_item_lock); 652 653 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 654 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 655 656 for (i = 0; i < chunk_count; i++) { 657 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 658 dst, dst_loff); 659 if (ret) 660 goto out; 661 662 loff += BTRFS_MAX_DEDUPE_LEN; 663 dst_loff += BTRFS_MAX_DEDUPE_LEN; 664 } 665 666 if (tail_len > 0) 667 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff); 668 out: 669 spin_lock(&root_dst->root_item_lock); 670 root_dst->dedupe_in_progress--; 671 spin_unlock(&root_dst->root_item_lock); 672 673 return ret; 674 } 675 676 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 677 u64 off, u64 olen, u64 destoff) 678 { 679 struct inode *inode = file_inode(file); 680 struct inode *src = file_inode(file_src); 681 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 682 int ret; 683 int wb_ret; 684 u64 len = olen; 685 u64 bs = fs_info->sb->s_blocksize; 686 687 /* 688 * VFS's generic_remap_file_range_prep() protects us from cloning the 689 * eof block into the middle of a file, which would result in corruption 690 * if the file size is not blocksize aligned. So we don't need to check 691 * for that case here. 692 */ 693 if (off + len == src->i_size) 694 len = ALIGN(src->i_size, bs) - off; 695 696 if (destoff > inode->i_size) { 697 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 698 699 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff); 700 if (ret) 701 return ret; 702 /* 703 * We may have truncated the last block if the inode's size is 704 * not sector size aligned, so we need to wait for writeback to 705 * complete before proceeding further, otherwise we can race 706 * with cloning and attempt to increment a reference to an 707 * extent that no longer exists (writeback completed right after 708 * we found the previous extent covering eof and before we 709 * attempted to increment its reference count). 710 */ 711 ret = btrfs_wait_ordered_range(inode, wb_start, 712 destoff - wb_start); 713 if (ret) 714 return ret; 715 } 716 717 /* 718 * Lock destination range to serialize with concurrent readpages() and 719 * source range to serialize with relocation. 720 */ 721 btrfs_double_extent_lock(src, off, inode, destoff, len); 722 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 723 btrfs_double_extent_unlock(src, off, inode, destoff, len); 724 725 /* 726 * We may have copied an inline extent into a page of the destination 727 * range, so wait for writeback to complete before truncating pages 728 * from the page cache. This is a rare case. 729 */ 730 wb_ret = btrfs_wait_ordered_range(inode, destoff, len); 731 ret = ret ? ret : wb_ret; 732 /* 733 * Truncate page cache pages so that future reads will see the cloned 734 * data immediately and not the previous data. 735 */ 736 truncate_inode_pages_range(&inode->i_data, 737 round_down(destoff, PAGE_SIZE), 738 round_up(destoff + len, PAGE_SIZE) - 1); 739 740 return ret; 741 } 742 743 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 744 struct file *file_out, loff_t pos_out, 745 loff_t *len, unsigned int remap_flags) 746 { 747 struct inode *inode_in = file_inode(file_in); 748 struct inode *inode_out = file_inode(file_out); 749 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 750 bool same_inode = inode_out == inode_in; 751 u64 wb_len; 752 int ret; 753 754 if (!(remap_flags & REMAP_FILE_DEDUP)) { 755 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 756 757 if (btrfs_root_readonly(root_out)) 758 return -EROFS; 759 760 if (file_in->f_path.mnt != file_out->f_path.mnt || 761 inode_in->i_sb != inode_out->i_sb) 762 return -EXDEV; 763 } 764 765 /* Don't make the dst file partly checksummed */ 766 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 767 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 768 return -EINVAL; 769 } 770 771 /* 772 * Now that the inodes are locked, we need to start writeback ourselves 773 * and can not rely on the writeback from the VFS's generic helper 774 * generic_remap_file_range_prep() because: 775 * 776 * 1) For compression we must call filemap_fdatawrite_range() range 777 * twice (btrfs_fdatawrite_range() does it for us), and the generic 778 * helper only calls it once; 779 * 780 * 2) filemap_fdatawrite_range(), called by the generic helper only 781 * waits for the writeback to complete, i.e. for IO to be done, and 782 * not for the ordered extents to complete. We need to wait for them 783 * to complete so that new file extent items are in the fs tree. 784 */ 785 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 786 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 787 else 788 wb_len = ALIGN(*len, bs); 789 790 /* 791 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 792 * any in progress could create its ordered extents after we wait for 793 * existing ordered extents below). 794 */ 795 inode_dio_wait(inode_in); 796 if (!same_inode) 797 inode_dio_wait(inode_out); 798 799 /* 800 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 801 * 802 * Btrfs' back references do not have a block level granularity, they 803 * work at the whole extent level. 804 * NOCOW buffered write without data space reserved may not be able 805 * to fall back to CoW due to lack of data space, thus could cause 806 * data loss. 807 * 808 * Here we take a shortcut by flushing the whole inode, so that all 809 * nocow write should reach disk as nocow before we increase the 810 * reference of the extent. We could do better by only flushing NOCOW 811 * data, but that needs extra accounting. 812 * 813 * Also we don't need to check ASYNC_EXTENT, as async extent will be 814 * CoWed anyway, not affecting nocow part. 815 */ 816 ret = filemap_flush(inode_in->i_mapping); 817 if (ret < 0) 818 return ret; 819 820 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 821 wb_len); 822 if (ret < 0) 823 return ret; 824 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 825 wb_len); 826 if (ret < 0) 827 return ret; 828 829 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 830 len, remap_flags); 831 } 832 833 static bool file_sync_write(const struct file *file) 834 { 835 if (file->f_flags & (__O_SYNC | O_DSYNC)) 836 return true; 837 if (IS_SYNC(file_inode(file))) 838 return true; 839 840 return false; 841 } 842 843 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 844 struct file *dst_file, loff_t destoff, loff_t len, 845 unsigned int remap_flags) 846 { 847 struct inode *src_inode = file_inode(src_file); 848 struct inode *dst_inode = file_inode(dst_file); 849 bool same_inode = dst_inode == src_inode; 850 int ret; 851 852 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 853 return -EINVAL; 854 855 if (same_inode) { 856 btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP); 857 } else { 858 lock_two_nondirectories(src_inode, dst_inode); 859 btrfs_double_mmap_lock(src_inode, dst_inode); 860 } 861 862 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 863 &len, remap_flags); 864 if (ret < 0 || len == 0) 865 goto out_unlock; 866 867 if (remap_flags & REMAP_FILE_DEDUP) 868 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 869 else 870 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 871 872 out_unlock: 873 if (same_inode) { 874 btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP); 875 } else { 876 btrfs_double_mmap_unlock(src_inode, dst_inode); 877 unlock_two_nondirectories(src_inode, dst_inode); 878 } 879 880 /* 881 * If either the source or the destination file was opened with O_SYNC, 882 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and 883 * source files/ranges, so that after a successful return (0) followed 884 * by a power failure results in the reflinked data to be readable from 885 * both files/ranges. 886 */ 887 if (ret == 0 && len > 0 && 888 (file_sync_write(src_file) || file_sync_write(dst_file))) { 889 ret = btrfs_sync_file(src_file, off, off + len - 1, 0); 890 if (ret == 0) 891 ret = btrfs_sync_file(dst_file, destoff, 892 destoff + len - 1, 0); 893 } 894 895 return ret < 0 ? ret : len; 896 } 897