xref: /openbmc/linux/fs/btrfs/reflink.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
48 static int copy_inline_to_page(struct btrfs_inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	struct address_space *mapping = inode->vfs_inode.i_mapping;
62 	int ret;
63 
64 	ASSERT(IS_ALIGNED(file_offset, block_size));
65 
66 	/*
67 	 * We have flushed and locked the ranges of the source and destination
68 	 * inodes, we also have locked the inodes, so we are safe to do a
69 	 * reservation here. Also we must not do the reservation while holding
70 	 * a transaction open, otherwise we would deadlock.
71 	 */
72 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
73 					   block_size);
74 	if (ret)
75 		goto out;
76 
77 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
78 				   btrfs_alloc_write_mask(mapping));
79 	if (!page) {
80 		ret = -ENOMEM;
81 		goto out_unlock;
82 	}
83 
84 	ret = set_page_extent_mapped(page);
85 	if (ret < 0)
86 		goto out_unlock;
87 
88 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
89 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
90 			 0, 0, NULL);
91 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
92 	if (ret)
93 		goto out_unlock;
94 
95 	/*
96 	 * After dirtying the page our caller will need to start a transaction,
97 	 * and if we are low on metadata free space, that can cause flushing of
98 	 * delalloc for all inodes in order to get metadata space released.
99 	 * However we are holding the range locked for the whole duration of
100 	 * the clone/dedupe operation, so we may deadlock if that happens and no
101 	 * other task releases enough space. So mark this inode as not being
102 	 * possible to flush to avoid such deadlock. We will clear that flag
103 	 * when we finish cloning all extents, since a transaction is started
104 	 * after finding each extent to clone.
105 	 */
106 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
107 
108 	if (comp_type == BTRFS_COMPRESS_NONE) {
109 		memcpy_to_page(page, 0, data_start, datal);
110 		flush_dcache_page(page);
111 	} else {
112 		ret = btrfs_decompress(comp_type, data_start, page, 0,
113 				       inline_size, datal);
114 		if (ret)
115 			goto out_unlock;
116 		flush_dcache_page(page);
117 	}
118 
119 	/*
120 	 * If our inline data is smaller then the block/page size, then the
121 	 * remaining of the block/page is equivalent to zeroes. We had something
122 	 * like the following done:
123 	 *
124 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
125 	 * $ sync  # (or fsync)
126 	 * $ xfs_io -c "falloc 0 4K" file
127 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
128 	 *
129 	 * So what's in the range [500, 4095] corresponds to zeroes.
130 	 */
131 	if (datal < block_size) {
132 		memzero_page(page, datal, block_size - datal);
133 		flush_dcache_page(page);
134 	}
135 
136 	SetPageUptodate(page);
137 	ClearPageChecked(page);
138 	set_page_dirty(page);
139 out_unlock:
140 	if (page) {
141 		unlock_page(page);
142 		put_page(page);
143 	}
144 	if (ret)
145 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
146 					     block_size, true);
147 	btrfs_delalloc_release_extents(inode, block_size);
148 out:
149 	extent_changeset_free(data_reserved);
150 
151 	return ret;
152 }
153 
154 /*
155  * Deal with cloning of inline extents. We try to copy the inline extent from
156  * the source inode to destination inode when possible. When not possible we
157  * copy the inline extent's data into the respective page of the inode.
158  */
159 static int clone_copy_inline_extent(struct inode *dst,
160 				    struct btrfs_path *path,
161 				    struct btrfs_key *new_key,
162 				    const u64 drop_start,
163 				    const u64 datal,
164 				    const u64 size,
165 				    const u8 comp_type,
166 				    char *inline_data,
167 				    struct btrfs_trans_handle **trans_out)
168 {
169 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
170 	struct btrfs_root *root = BTRFS_I(dst)->root;
171 	const u64 aligned_end = ALIGN(new_key->offset + datal,
172 				      fs_info->sectorsize);
173 	struct btrfs_trans_handle *trans = NULL;
174 	struct btrfs_drop_extents_args drop_args = { 0 };
175 	int ret;
176 	struct btrfs_key key;
177 
178 	if (new_key->offset > 0) {
179 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
180 					  inline_data, size, datal, comp_type);
181 		goto out;
182 	}
183 
184 	key.objectid = btrfs_ino(BTRFS_I(dst));
185 	key.type = BTRFS_EXTENT_DATA_KEY;
186 	key.offset = 0;
187 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
188 	if (ret < 0) {
189 		return ret;
190 	} else if (ret > 0) {
191 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
192 			ret = btrfs_next_leaf(root, path);
193 			if (ret < 0)
194 				return ret;
195 			else if (ret > 0)
196 				goto copy_inline_extent;
197 		}
198 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
199 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
200 		    key.type == BTRFS_EXTENT_DATA_KEY) {
201 			/*
202 			 * There's an implicit hole at file offset 0, copy the
203 			 * inline extent's data to the page.
204 			 */
205 			ASSERT(key.offset > 0);
206 			goto copy_to_page;
207 		}
208 	} else if (i_size_read(dst) <= datal) {
209 		struct btrfs_file_extent_item *ei;
210 
211 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
212 				    struct btrfs_file_extent_item);
213 		/*
214 		 * If it's an inline extent replace it with the source inline
215 		 * extent, otherwise copy the source inline extent data into
216 		 * the respective page at the destination inode.
217 		 */
218 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
219 		    BTRFS_FILE_EXTENT_INLINE)
220 			goto copy_inline_extent;
221 
222 		goto copy_to_page;
223 	}
224 
225 copy_inline_extent:
226 	/*
227 	 * We have no extent items, or we have an extent at offset 0 which may
228 	 * or may not be inlined. All these cases are dealt the same way.
229 	 */
230 	if (i_size_read(dst) > datal) {
231 		/*
232 		 * At the destination offset 0 we have either a hole, a regular
233 		 * extent or an inline extent larger then the one we want to
234 		 * clone. Deal with all these cases by copying the inline extent
235 		 * data into the respective page at the destination inode.
236 		 */
237 		goto copy_to_page;
238 	}
239 
240 	/*
241 	 * Release path before starting a new transaction so we don't hold locks
242 	 * that would confuse lockdep.
243 	 */
244 	btrfs_release_path(path);
245 	/*
246 	 * If we end up here it means were copy the inline extent into a leaf
247 	 * of the destination inode. We know we will drop or adjust at most one
248 	 * extent item in the destination root.
249 	 *
250 	 * 1 unit - adjusting old extent (we may have to split it)
251 	 * 1 unit - add new extent
252 	 * 1 unit - inode update
253 	 */
254 	trans = btrfs_start_transaction(root, 3);
255 	if (IS_ERR(trans)) {
256 		ret = PTR_ERR(trans);
257 		trans = NULL;
258 		goto out;
259 	}
260 	drop_args.path = path;
261 	drop_args.start = drop_start;
262 	drop_args.end = aligned_end;
263 	drop_args.drop_cache = true;
264 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
265 	if (ret)
266 		goto out;
267 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
268 	if (ret)
269 		goto out;
270 
271 	write_extent_buffer(path->nodes[0], inline_data,
272 			    btrfs_item_ptr_offset(path->nodes[0],
273 						  path->slots[0]),
274 			    size);
275 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
276 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
277 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
278 out:
279 	if (!ret && !trans) {
280 		/*
281 		 * No transaction here means we copied the inline extent into a
282 		 * page of the destination inode.
283 		 *
284 		 * 1 unit to update inode item
285 		 */
286 		trans = btrfs_start_transaction(root, 1);
287 		if (IS_ERR(trans)) {
288 			ret = PTR_ERR(trans);
289 			trans = NULL;
290 		}
291 	}
292 	if (ret && trans) {
293 		btrfs_abort_transaction(trans, ret);
294 		btrfs_end_transaction(trans);
295 	}
296 	if (!ret)
297 		*trans_out = trans;
298 
299 	return ret;
300 
301 copy_to_page:
302 	/*
303 	 * Release our path because we don't need it anymore and also because
304 	 * copy_inline_to_page() needs to reserve data and metadata, which may
305 	 * need to flush delalloc when we are low on available space and
306 	 * therefore cause a deadlock if writeback of an inline extent needs to
307 	 * write to the same leaf or an ordered extent completion needs to write
308 	 * to the same leaf.
309 	 */
310 	btrfs_release_path(path);
311 
312 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
313 				  inline_data, size, datal, comp_type);
314 	goto out;
315 }
316 
317 /**
318  * btrfs_clone() - clone a range from inode file to another
319  *
320  * @src: Inode to clone from
321  * @inode: Inode to clone to
322  * @off: Offset within source to start clone from
323  * @olen: Original length, passed by user, of range to clone
324  * @olen_aligned: Block-aligned value of olen
325  * @destoff: Offset within @inode to start clone
326  * @no_time_update: Whether to update mtime/ctime on the target inode
327  */
328 static int btrfs_clone(struct inode *src, struct inode *inode,
329 		       const u64 off, const u64 olen, const u64 olen_aligned,
330 		       const u64 destoff, int no_time_update)
331 {
332 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
333 	struct btrfs_path *path = NULL;
334 	struct extent_buffer *leaf;
335 	struct btrfs_trans_handle *trans;
336 	char *buf = NULL;
337 	struct btrfs_key key;
338 	u32 nritems;
339 	int slot;
340 	int ret;
341 	const u64 len = olen_aligned;
342 	u64 last_dest_end = destoff;
343 
344 	ret = -ENOMEM;
345 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
346 	if (!buf)
347 		return ret;
348 
349 	path = btrfs_alloc_path();
350 	if (!path) {
351 		kvfree(buf);
352 		return ret;
353 	}
354 
355 	path->reada = READA_FORWARD;
356 	/* Clone data */
357 	key.objectid = btrfs_ino(BTRFS_I(src));
358 	key.type = BTRFS_EXTENT_DATA_KEY;
359 	key.offset = off;
360 
361 	while (1) {
362 		u64 next_key_min_offset = key.offset + 1;
363 		struct btrfs_file_extent_item *extent;
364 		u64 extent_gen;
365 		int type;
366 		u32 size;
367 		struct btrfs_key new_key;
368 		u64 disko = 0, diskl = 0;
369 		u64 datao = 0, datal = 0;
370 		u8 comp;
371 		u64 drop_start;
372 
373 		/* Note the key will change type as we walk through the tree */
374 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
375 				0, 0);
376 		if (ret < 0)
377 			goto out;
378 		/*
379 		 * First search, if no extent item that starts at offset off was
380 		 * found but the previous item is an extent item, it's possible
381 		 * it might overlap our target range, therefore process it.
382 		 */
383 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
384 			btrfs_item_key_to_cpu(path->nodes[0], &key,
385 					      path->slots[0] - 1);
386 			if (key.type == BTRFS_EXTENT_DATA_KEY)
387 				path->slots[0]--;
388 		}
389 
390 		nritems = btrfs_header_nritems(path->nodes[0]);
391 process_slot:
392 		if (path->slots[0] >= nritems) {
393 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
394 			if (ret < 0)
395 				goto out;
396 			if (ret > 0)
397 				break;
398 			nritems = btrfs_header_nritems(path->nodes[0]);
399 		}
400 		leaf = path->nodes[0];
401 		slot = path->slots[0];
402 
403 		btrfs_item_key_to_cpu(leaf, &key, slot);
404 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
405 		    key.objectid != btrfs_ino(BTRFS_I(src)))
406 			break;
407 
408 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
409 
410 		extent = btrfs_item_ptr(leaf, slot,
411 					struct btrfs_file_extent_item);
412 		extent_gen = btrfs_file_extent_generation(leaf, extent);
413 		comp = btrfs_file_extent_compression(leaf, extent);
414 		type = btrfs_file_extent_type(leaf, extent);
415 		if (type == BTRFS_FILE_EXTENT_REG ||
416 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
417 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
418 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
419 			datao = btrfs_file_extent_offset(leaf, extent);
420 			datal = btrfs_file_extent_num_bytes(leaf, extent);
421 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
422 			/* Take upper bound, may be compressed */
423 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
424 		}
425 
426 		/*
427 		 * The first search might have left us at an extent item that
428 		 * ends before our target range's start, can happen if we have
429 		 * holes and NO_HOLES feature enabled.
430 		 */
431 		if (key.offset + datal <= off) {
432 			path->slots[0]++;
433 			goto process_slot;
434 		} else if (key.offset >= off + len) {
435 			break;
436 		}
437 		next_key_min_offset = key.offset + datal;
438 		size = btrfs_item_size_nr(leaf, slot);
439 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
440 				   size);
441 
442 		btrfs_release_path(path);
443 
444 		memcpy(&new_key, &key, sizeof(new_key));
445 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
446 		if (off <= key.offset)
447 			new_key.offset = key.offset + destoff - off;
448 		else
449 			new_key.offset = destoff;
450 
451 		/*
452 		 * Deal with a hole that doesn't have an extent item that
453 		 * represents it (NO_HOLES feature enabled).
454 		 * This hole is either in the middle of the cloning range or at
455 		 * the beginning (fully overlaps it or partially overlaps it).
456 		 */
457 		if (new_key.offset != last_dest_end)
458 			drop_start = last_dest_end;
459 		else
460 			drop_start = new_key.offset;
461 
462 		if (type == BTRFS_FILE_EXTENT_REG ||
463 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
464 			struct btrfs_replace_extent_info clone_info;
465 
466 			/*
467 			 *    a  | --- range to clone ---|  b
468 			 * | ------------- extent ------------- |
469 			 */
470 
471 			/* Subtract range b */
472 			if (key.offset + datal > off + len)
473 				datal = off + len - key.offset;
474 
475 			/* Subtract range a */
476 			if (off > key.offset) {
477 				datao += off - key.offset;
478 				datal -= off - key.offset;
479 			}
480 
481 			clone_info.disk_offset = disko;
482 			clone_info.disk_len = diskl;
483 			clone_info.data_offset = datao;
484 			clone_info.data_len = datal;
485 			clone_info.file_offset = new_key.offset;
486 			clone_info.extent_buf = buf;
487 			clone_info.is_new_extent = false;
488 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
489 					drop_start, new_key.offset + datal - 1,
490 					&clone_info, &trans);
491 			if (ret)
492 				goto out;
493 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
494 			/*
495 			 * Inline extents always have to start at file offset 0
496 			 * and can never be bigger then the sector size. We can
497 			 * never clone only parts of an inline extent, since all
498 			 * reflink operations must start at a sector size aligned
499 			 * offset, and the length must be aligned too or end at
500 			 * the i_size (which implies the whole inlined data).
501 			 */
502 			ASSERT(key.offset == 0);
503 			ASSERT(datal <= fs_info->sectorsize);
504 			if (key.offset != 0 || datal > fs_info->sectorsize)
505 				return -EUCLEAN;
506 
507 			ret = clone_copy_inline_extent(inode, path, &new_key,
508 						       drop_start, datal, size,
509 						       comp, buf, &trans);
510 			if (ret)
511 				goto out;
512 		}
513 
514 		btrfs_release_path(path);
515 
516 		/*
517 		 * If this is a new extent update the last_reflink_trans of both
518 		 * inodes. This is used by fsync to make sure it does not log
519 		 * multiple checksum items with overlapping ranges. For older
520 		 * extents we don't need to do it since inode logging skips the
521 		 * checksums for older extents. Also ignore holes and inline
522 		 * extents because they don't have checksums in the csum tree.
523 		 */
524 		if (extent_gen == trans->transid && disko > 0) {
525 			BTRFS_I(src)->last_reflink_trans = trans->transid;
526 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
527 		}
528 
529 		last_dest_end = ALIGN(new_key.offset + datal,
530 				      fs_info->sectorsize);
531 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
532 						destoff, olen, no_time_update);
533 		if (ret)
534 			goto out;
535 		if (new_key.offset + datal >= destoff + len)
536 			break;
537 
538 		btrfs_release_path(path);
539 		key.offset = next_key_min_offset;
540 
541 		if (fatal_signal_pending(current)) {
542 			ret = -EINTR;
543 			goto out;
544 		}
545 
546 		cond_resched();
547 	}
548 	ret = 0;
549 
550 	if (last_dest_end < destoff + len) {
551 		/*
552 		 * We have an implicit hole that fully or partially overlaps our
553 		 * cloning range at its end. This means that we either have the
554 		 * NO_HOLES feature enabled or the implicit hole happened due to
555 		 * mixing buffered and direct IO writes against this file.
556 		 */
557 		btrfs_release_path(path);
558 
559 		/*
560 		 * When using NO_HOLES and we are cloning a range that covers
561 		 * only a hole (no extents) into a range beyond the current
562 		 * i_size, punching a hole in the target range will not create
563 		 * an extent map defining a hole, because the range starts at or
564 		 * beyond current i_size. If the file previously had an i_size
565 		 * greater than the new i_size set by this clone operation, we
566 		 * need to make sure the next fsync is a full fsync, so that it
567 		 * detects and logs a hole covering a range from the current
568 		 * i_size to the new i_size. If the clone range covers extents,
569 		 * besides a hole, then we know the full sync flag was already
570 		 * set by previous calls to btrfs_replace_file_extents() that
571 		 * replaced file extent items.
572 		 */
573 		if (last_dest_end >= i_size_read(inode))
574 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
575 				&BTRFS_I(inode)->runtime_flags);
576 
577 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
578 				last_dest_end, destoff + len - 1, NULL, &trans);
579 		if (ret)
580 			goto out;
581 
582 		ret = clone_finish_inode_update(trans, inode, destoff + len,
583 						destoff, olen, no_time_update);
584 	}
585 
586 out:
587 	btrfs_free_path(path);
588 	kvfree(buf);
589 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
590 
591 	return ret;
592 }
593 
594 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
595 				       struct inode *inode2, u64 loff2, u64 len)
596 {
597 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
598 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
599 }
600 
601 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
602 				     struct inode *inode2, u64 loff2, u64 len)
603 {
604 	if (inode1 < inode2) {
605 		swap(inode1, inode2);
606 		swap(loff1, loff2);
607 	} else if (inode1 == inode2 && loff2 < loff1) {
608 		swap(loff1, loff2);
609 	}
610 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
611 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
612 }
613 
614 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
615 {
616 	if (inode1 < inode2)
617 		swap(inode1, inode2);
618 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
619 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
620 }
621 
622 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
623 {
624 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
625 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
626 }
627 
628 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
629 				   struct inode *dst, u64 dst_loff)
630 {
631 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
632 	int ret;
633 
634 	/*
635 	 * Lock destination range to serialize with concurrent readpages() and
636 	 * source range to serialize with relocation.
637 	 */
638 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
639 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
640 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
641 
642 	return ret;
643 }
644 
645 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
646 			     struct inode *dst, u64 dst_loff)
647 {
648 	int ret;
649 	u64 i, tail_len, chunk_count;
650 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
651 
652 	spin_lock(&root_dst->root_item_lock);
653 	if (root_dst->send_in_progress) {
654 		btrfs_warn_rl(root_dst->fs_info,
655 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
656 			      root_dst->root_key.objectid,
657 			      root_dst->send_in_progress);
658 		spin_unlock(&root_dst->root_item_lock);
659 		return -EAGAIN;
660 	}
661 	root_dst->dedupe_in_progress++;
662 	spin_unlock(&root_dst->root_item_lock);
663 
664 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
665 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
666 
667 	for (i = 0; i < chunk_count; i++) {
668 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
669 					      dst, dst_loff);
670 		if (ret)
671 			goto out;
672 
673 		loff += BTRFS_MAX_DEDUPE_LEN;
674 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
675 	}
676 
677 	if (tail_len > 0)
678 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
679 out:
680 	spin_lock(&root_dst->root_item_lock);
681 	root_dst->dedupe_in_progress--;
682 	spin_unlock(&root_dst->root_item_lock);
683 
684 	return ret;
685 }
686 
687 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
688 					u64 off, u64 olen, u64 destoff)
689 {
690 	struct inode *inode = file_inode(file);
691 	struct inode *src = file_inode(file_src);
692 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
693 	int ret;
694 	int wb_ret;
695 	u64 len = olen;
696 	u64 bs = fs_info->sb->s_blocksize;
697 
698 	/*
699 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
700 	 * eof block into the middle of a file, which would result in corruption
701 	 * if the file size is not blocksize aligned. So we don't need to check
702 	 * for that case here.
703 	 */
704 	if (off + len == src->i_size)
705 		len = ALIGN(src->i_size, bs) - off;
706 
707 	if (destoff > inode->i_size) {
708 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
709 
710 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
711 		if (ret)
712 			return ret;
713 		/*
714 		 * We may have truncated the last block if the inode's size is
715 		 * not sector size aligned, so we need to wait for writeback to
716 		 * complete before proceeding further, otherwise we can race
717 		 * with cloning and attempt to increment a reference to an
718 		 * extent that no longer exists (writeback completed right after
719 		 * we found the previous extent covering eof and before we
720 		 * attempted to increment its reference count).
721 		 */
722 		ret = btrfs_wait_ordered_range(inode, wb_start,
723 					       destoff - wb_start);
724 		if (ret)
725 			return ret;
726 	}
727 
728 	/*
729 	 * Lock destination range to serialize with concurrent readpages() and
730 	 * source range to serialize with relocation.
731 	 */
732 	btrfs_double_extent_lock(src, off, inode, destoff, len);
733 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
734 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
735 
736 	/*
737 	 * We may have copied an inline extent into a page of the destination
738 	 * range, so wait for writeback to complete before truncating pages
739 	 * from the page cache. This is a rare case.
740 	 */
741 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
742 	ret = ret ? ret : wb_ret;
743 	/*
744 	 * Truncate page cache pages so that future reads will see the cloned
745 	 * data immediately and not the previous data.
746 	 */
747 	truncate_inode_pages_range(&inode->i_data,
748 				round_down(destoff, PAGE_SIZE),
749 				round_up(destoff + len, PAGE_SIZE) - 1);
750 
751 	return ret;
752 }
753 
754 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
755 				       struct file *file_out, loff_t pos_out,
756 				       loff_t *len, unsigned int remap_flags)
757 {
758 	struct inode *inode_in = file_inode(file_in);
759 	struct inode *inode_out = file_inode(file_out);
760 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
761 	bool same_inode = inode_out == inode_in;
762 	u64 wb_len;
763 	int ret;
764 
765 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
766 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
767 
768 		if (btrfs_root_readonly(root_out))
769 			return -EROFS;
770 
771 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
772 		    inode_in->i_sb != inode_out->i_sb)
773 			return -EXDEV;
774 	}
775 
776 	/* Don't make the dst file partly checksummed */
777 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
778 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
779 		return -EINVAL;
780 	}
781 
782 	/*
783 	 * Now that the inodes are locked, we need to start writeback ourselves
784 	 * and can not rely on the writeback from the VFS's generic helper
785 	 * generic_remap_file_range_prep() because:
786 	 *
787 	 * 1) For compression we must call filemap_fdatawrite_range() range
788 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
789 	 *    helper only calls it once;
790 	 *
791 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
792 	 *    waits for the writeback to complete, i.e. for IO to be done, and
793 	 *    not for the ordered extents to complete. We need to wait for them
794 	 *    to complete so that new file extent items are in the fs tree.
795 	 */
796 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
797 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
798 	else
799 		wb_len = ALIGN(*len, bs);
800 
801 	/*
802 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
803 	 * any in progress could create its ordered extents after we wait for
804 	 * existing ordered extents below).
805 	 */
806 	inode_dio_wait(inode_in);
807 	if (!same_inode)
808 		inode_dio_wait(inode_out);
809 
810 	/*
811 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
812 	 *
813 	 * Btrfs' back references do not have a block level granularity, they
814 	 * work at the whole extent level.
815 	 * NOCOW buffered write without data space reserved may not be able
816 	 * to fall back to CoW due to lack of data space, thus could cause
817 	 * data loss.
818 	 *
819 	 * Here we take a shortcut by flushing the whole inode, so that all
820 	 * nocow write should reach disk as nocow before we increase the
821 	 * reference of the extent. We could do better by only flushing NOCOW
822 	 * data, but that needs extra accounting.
823 	 *
824 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
825 	 * CoWed anyway, not affecting nocow part.
826 	 */
827 	ret = filemap_flush(inode_in->i_mapping);
828 	if (ret < 0)
829 		return ret;
830 
831 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
832 				       wb_len);
833 	if (ret < 0)
834 		return ret;
835 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
836 				       wb_len);
837 	if (ret < 0)
838 		return ret;
839 
840 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
841 					    len, remap_flags);
842 }
843 
844 static bool file_sync_write(const struct file *file)
845 {
846 	if (file->f_flags & (__O_SYNC | O_DSYNC))
847 		return true;
848 	if (IS_SYNC(file_inode(file)))
849 		return true;
850 
851 	return false;
852 }
853 
854 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
855 		struct file *dst_file, loff_t destoff, loff_t len,
856 		unsigned int remap_flags)
857 {
858 	struct inode *src_inode = file_inode(src_file);
859 	struct inode *dst_inode = file_inode(dst_file);
860 	bool same_inode = dst_inode == src_inode;
861 	int ret;
862 
863 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
864 		return -EINVAL;
865 
866 	if (same_inode) {
867 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
868 	} else {
869 		lock_two_nondirectories(src_inode, dst_inode);
870 		btrfs_double_mmap_lock(src_inode, dst_inode);
871 	}
872 
873 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
874 					  &len, remap_flags);
875 	if (ret < 0 || len == 0)
876 		goto out_unlock;
877 
878 	if (remap_flags & REMAP_FILE_DEDUP)
879 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
880 	else
881 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
882 
883 out_unlock:
884 	if (same_inode) {
885 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
886 	} else {
887 		btrfs_double_mmap_unlock(src_inode, dst_inode);
888 		unlock_two_nondirectories(src_inode, dst_inode);
889 	}
890 
891 	/*
892 	 * If either the source or the destination file was opened with O_SYNC,
893 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
894 	 * source files/ranges, so that after a successful return (0) followed
895 	 * by a power failure results in the reflinked data to be readable from
896 	 * both files/ranges.
897 	 */
898 	if (ret == 0 && len > 0 &&
899 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
900 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
901 		if (ret == 0)
902 			ret = btrfs_sync_file(dst_file, destoff,
903 					      destoff + len - 1, 0);
904 	}
905 
906 	return ret < 0 ? ret : len;
907 }
908