1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/blkdev.h> 4 #include <linux/iversion.h> 5 #include "compression.h" 6 #include "ctree.h" 7 #include "delalloc-space.h" 8 #include "reflink.h" 9 #include "transaction.h" 10 11 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 12 13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 14 struct inode *inode, 15 u64 endoff, 16 const u64 destoff, 17 const u64 olen, 18 int no_time_update) 19 { 20 struct btrfs_root *root = BTRFS_I(inode)->root; 21 int ret; 22 23 inode_inc_iversion(inode); 24 if (!no_time_update) 25 inode->i_mtime = inode->i_ctime = current_time(inode); 26 /* 27 * We round up to the block size at eof when determining which 28 * extents to clone above, but shouldn't round up the file size. 29 */ 30 if (endoff > destoff + olen) 31 endoff = destoff + olen; 32 if (endoff > inode->i_size) { 33 i_size_write(inode, endoff); 34 btrfs_inode_safe_disk_i_size_write(inode, 0); 35 } 36 37 ret = btrfs_update_inode(trans, root, inode); 38 if (ret) { 39 btrfs_abort_transaction(trans, ret); 40 btrfs_end_transaction(trans); 41 goto out; 42 } 43 ret = btrfs_end_transaction(trans); 44 out: 45 return ret; 46 } 47 48 static int copy_inline_to_page(struct inode *inode, 49 const u64 file_offset, 50 char *inline_data, 51 const u64 size, 52 const u64 datal, 53 const u8 comp_type) 54 { 55 const u64 block_size = btrfs_inode_sectorsize(inode); 56 const u64 range_end = file_offset + block_size - 1; 57 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); 58 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); 59 struct extent_changeset *data_reserved = NULL; 60 struct page *page = NULL; 61 int ret; 62 63 ASSERT(IS_ALIGNED(file_offset, block_size)); 64 65 /* 66 * We have flushed and locked the ranges of the source and destination 67 * inodes, we also have locked the inodes, so we are safe to do a 68 * reservation here. Also we must not do the reservation while holding 69 * a transaction open, otherwise we would deadlock. 70 */ 71 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 72 file_offset, block_size); 73 if (ret) 74 goto out; 75 76 page = find_or_create_page(inode->i_mapping, file_offset >> PAGE_SHIFT, 77 btrfs_alloc_write_mask(inode->i_mapping)); 78 if (!page) { 79 ret = -ENOMEM; 80 goto out_unlock; 81 } 82 83 set_page_extent_mapped(page); 84 clear_extent_bit(&BTRFS_I(inode)->io_tree, file_offset, range_end, 85 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 86 0, 0, NULL); 87 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), file_offset, range_end, 88 0, NULL); 89 if (ret) 90 goto out_unlock; 91 92 if (comp_type == BTRFS_COMPRESS_NONE) { 93 char *map; 94 95 map = kmap(page); 96 memcpy(map, data_start, datal); 97 flush_dcache_page(page); 98 kunmap(page); 99 } else { 100 ret = btrfs_decompress(comp_type, data_start, page, 0, 101 inline_size, datal); 102 if (ret) 103 goto out_unlock; 104 flush_dcache_page(page); 105 } 106 107 /* 108 * If our inline data is smaller then the block/page size, then the 109 * remaining of the block/page is equivalent to zeroes. We had something 110 * like the following done: 111 * 112 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file 113 * $ sync # (or fsync) 114 * $ xfs_io -c "falloc 0 4K" file 115 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 116 * 117 * So what's in the range [500, 4095] corresponds to zeroes. 118 */ 119 if (datal < block_size) { 120 char *map; 121 122 map = kmap(page); 123 memset(map + datal, 0, block_size - datal); 124 flush_dcache_page(page); 125 kunmap(page); 126 } 127 128 SetPageUptodate(page); 129 ClearPageChecked(page); 130 set_page_dirty(page); 131 out_unlock: 132 if (page) { 133 unlock_page(page); 134 put_page(page); 135 } 136 if (ret) 137 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 138 file_offset, block_size, true); 139 btrfs_delalloc_release_extents(BTRFS_I(inode), block_size); 140 out: 141 extent_changeset_free(data_reserved); 142 143 return ret; 144 } 145 146 /* 147 * Deal with cloning of inline extents. We try to copy the inline extent from 148 * the source inode to destination inode when possible. When not possible we 149 * copy the inline extent's data into the respective page of the inode. 150 */ 151 static int clone_copy_inline_extent(struct inode *dst, 152 struct btrfs_path *path, 153 struct btrfs_key *new_key, 154 const u64 drop_start, 155 const u64 datal, 156 const u64 size, 157 const u8 comp_type, 158 char *inline_data, 159 struct btrfs_trans_handle **trans_out) 160 { 161 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 162 struct btrfs_root *root = BTRFS_I(dst)->root; 163 const u64 aligned_end = ALIGN(new_key->offset + datal, 164 fs_info->sectorsize); 165 struct btrfs_trans_handle *trans = NULL; 166 int ret; 167 struct btrfs_key key; 168 169 if (new_key->offset > 0) { 170 ret = copy_inline_to_page(dst, new_key->offset, inline_data, 171 size, datal, comp_type); 172 goto out; 173 } 174 175 key.objectid = btrfs_ino(BTRFS_I(dst)); 176 key.type = BTRFS_EXTENT_DATA_KEY; 177 key.offset = 0; 178 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 179 if (ret < 0) { 180 return ret; 181 } else if (ret > 0) { 182 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 183 ret = btrfs_next_leaf(root, path); 184 if (ret < 0) 185 return ret; 186 else if (ret > 0) 187 goto copy_inline_extent; 188 } 189 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 190 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 191 key.type == BTRFS_EXTENT_DATA_KEY) { 192 /* 193 * There's an implicit hole at file offset 0, copy the 194 * inline extent's data to the page. 195 */ 196 ASSERT(key.offset > 0); 197 ret = copy_inline_to_page(dst, new_key->offset, 198 inline_data, size, datal, 199 comp_type); 200 goto out; 201 } 202 } else if (i_size_read(dst) <= datal) { 203 struct btrfs_file_extent_item *ei; 204 205 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 206 struct btrfs_file_extent_item); 207 /* 208 * If it's an inline extent replace it with the source inline 209 * extent, otherwise copy the source inline extent data into 210 * the respective page at the destination inode. 211 */ 212 if (btrfs_file_extent_type(path->nodes[0], ei) == 213 BTRFS_FILE_EXTENT_INLINE) 214 goto copy_inline_extent; 215 216 ret = copy_inline_to_page(dst, new_key->offset, inline_data, 217 size, datal, comp_type); 218 goto out; 219 } 220 221 copy_inline_extent: 222 ret = 0; 223 /* 224 * We have no extent items, or we have an extent at offset 0 which may 225 * or may not be inlined. All these cases are dealt the same way. 226 */ 227 if (i_size_read(dst) > datal) { 228 /* 229 * At the destination offset 0 we have either a hole, a regular 230 * extent or an inline extent larger then the one we want to 231 * clone. Deal with all these cases by copying the inline extent 232 * data into the respective page at the destination inode. 233 */ 234 ret = copy_inline_to_page(dst, new_key->offset, inline_data, 235 size, datal, comp_type); 236 goto out; 237 } 238 239 btrfs_release_path(path); 240 /* 241 * If we end up here it means were copy the inline extent into a leaf 242 * of the destination inode. We know we will drop or adjust at most one 243 * extent item in the destination root. 244 * 245 * 1 unit - adjusting old extent (we may have to split it) 246 * 1 unit - add new extent 247 * 1 unit - inode update 248 */ 249 trans = btrfs_start_transaction(root, 3); 250 if (IS_ERR(trans)) { 251 ret = PTR_ERR(trans); 252 trans = NULL; 253 goto out; 254 } 255 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 256 if (ret) 257 goto out; 258 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 259 if (ret) 260 goto out; 261 262 write_extent_buffer(path->nodes[0], inline_data, 263 btrfs_item_ptr_offset(path->nodes[0], 264 path->slots[0]), 265 size); 266 inode_add_bytes(dst, datal); 267 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 268 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end); 269 out: 270 if (!ret && !trans) { 271 /* 272 * No transaction here means we copied the inline extent into a 273 * page of the destination inode. 274 * 275 * 1 unit to update inode item 276 */ 277 trans = btrfs_start_transaction(root, 1); 278 if (IS_ERR(trans)) { 279 ret = PTR_ERR(trans); 280 trans = NULL; 281 } 282 } 283 if (ret && trans) { 284 btrfs_abort_transaction(trans, ret); 285 btrfs_end_transaction(trans); 286 } 287 if (!ret) 288 *trans_out = trans; 289 290 return ret; 291 } 292 293 /** 294 * btrfs_clone() - clone a range from inode file to another 295 * 296 * @src: Inode to clone from 297 * @inode: Inode to clone to 298 * @off: Offset within source to start clone from 299 * @olen: Original length, passed by user, of range to clone 300 * @olen_aligned: Block-aligned value of olen 301 * @destoff: Offset within @inode to start clone 302 * @no_time_update: Whether to update mtime/ctime on the target inode 303 */ 304 static int btrfs_clone(struct inode *src, struct inode *inode, 305 const u64 off, const u64 olen, const u64 olen_aligned, 306 const u64 destoff, int no_time_update) 307 { 308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 309 struct btrfs_path *path = NULL; 310 struct extent_buffer *leaf; 311 struct btrfs_trans_handle *trans; 312 char *buf = NULL; 313 struct btrfs_key key; 314 u32 nritems; 315 int slot; 316 int ret; 317 const u64 len = olen_aligned; 318 u64 last_dest_end = destoff; 319 320 ret = -ENOMEM; 321 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 322 if (!buf) 323 return ret; 324 325 path = btrfs_alloc_path(); 326 if (!path) { 327 kvfree(buf); 328 return ret; 329 } 330 331 path->reada = READA_FORWARD; 332 /* Clone data */ 333 key.objectid = btrfs_ino(BTRFS_I(src)); 334 key.type = BTRFS_EXTENT_DATA_KEY; 335 key.offset = off; 336 337 while (1) { 338 u64 next_key_min_offset = key.offset + 1; 339 struct btrfs_file_extent_item *extent; 340 u64 extent_gen; 341 int type; 342 u32 size; 343 struct btrfs_key new_key; 344 u64 disko = 0, diskl = 0; 345 u64 datao = 0, datal = 0; 346 u8 comp; 347 u64 drop_start; 348 349 /* Note the key will change type as we walk through the tree */ 350 path->leave_spinning = 1; 351 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 352 0, 0); 353 if (ret < 0) 354 goto out; 355 /* 356 * First search, if no extent item that starts at offset off was 357 * found but the previous item is an extent item, it's possible 358 * it might overlap our target range, therefore process it. 359 */ 360 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 361 btrfs_item_key_to_cpu(path->nodes[0], &key, 362 path->slots[0] - 1); 363 if (key.type == BTRFS_EXTENT_DATA_KEY) 364 path->slots[0]--; 365 } 366 367 nritems = btrfs_header_nritems(path->nodes[0]); 368 process_slot: 369 if (path->slots[0] >= nritems) { 370 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 371 if (ret < 0) 372 goto out; 373 if (ret > 0) 374 break; 375 nritems = btrfs_header_nritems(path->nodes[0]); 376 } 377 leaf = path->nodes[0]; 378 slot = path->slots[0]; 379 380 btrfs_item_key_to_cpu(leaf, &key, slot); 381 if (key.type > BTRFS_EXTENT_DATA_KEY || 382 key.objectid != btrfs_ino(BTRFS_I(src))) 383 break; 384 385 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 386 387 extent = btrfs_item_ptr(leaf, slot, 388 struct btrfs_file_extent_item); 389 extent_gen = btrfs_file_extent_generation(leaf, extent); 390 comp = btrfs_file_extent_compression(leaf, extent); 391 type = btrfs_file_extent_type(leaf, extent); 392 if (type == BTRFS_FILE_EXTENT_REG || 393 type == BTRFS_FILE_EXTENT_PREALLOC) { 394 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 395 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 396 datao = btrfs_file_extent_offset(leaf, extent); 397 datal = btrfs_file_extent_num_bytes(leaf, extent); 398 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 399 /* Take upper bound, may be compressed */ 400 datal = btrfs_file_extent_ram_bytes(leaf, extent); 401 } 402 403 /* 404 * The first search might have left us at an extent item that 405 * ends before our target range's start, can happen if we have 406 * holes and NO_HOLES feature enabled. 407 */ 408 if (key.offset + datal <= off) { 409 path->slots[0]++; 410 goto process_slot; 411 } else if (key.offset >= off + len) { 412 break; 413 } 414 next_key_min_offset = key.offset + datal; 415 size = btrfs_item_size_nr(leaf, slot); 416 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 417 size); 418 419 btrfs_release_path(path); 420 path->leave_spinning = 0; 421 422 memcpy(&new_key, &key, sizeof(new_key)); 423 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 424 if (off <= key.offset) 425 new_key.offset = key.offset + destoff - off; 426 else 427 new_key.offset = destoff; 428 429 /* 430 * Deal with a hole that doesn't have an extent item that 431 * represents it (NO_HOLES feature enabled). 432 * This hole is either in the middle of the cloning range or at 433 * the beginning (fully overlaps it or partially overlaps it). 434 */ 435 if (new_key.offset != last_dest_end) 436 drop_start = last_dest_end; 437 else 438 drop_start = new_key.offset; 439 440 if (type == BTRFS_FILE_EXTENT_REG || 441 type == BTRFS_FILE_EXTENT_PREALLOC) { 442 struct btrfs_clone_extent_info clone_info; 443 444 /* 445 * a | --- range to clone ---| b 446 * | ------------- extent ------------- | 447 */ 448 449 /* Subtract range b */ 450 if (key.offset + datal > off + len) 451 datal = off + len - key.offset; 452 453 /* Subtract range a */ 454 if (off > key.offset) { 455 datao += off - key.offset; 456 datal -= off - key.offset; 457 } 458 459 clone_info.disk_offset = disko; 460 clone_info.disk_len = diskl; 461 clone_info.data_offset = datao; 462 clone_info.data_len = datal; 463 clone_info.file_offset = new_key.offset; 464 clone_info.extent_buf = buf; 465 clone_info.item_size = size; 466 ret = btrfs_punch_hole_range(inode, path, drop_start, 467 new_key.offset + datal - 1, &clone_info, 468 &trans); 469 if (ret) 470 goto out; 471 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 472 /* 473 * Inline extents always have to start at file offset 0 474 * and can never be bigger then the sector size. We can 475 * never clone only parts of an inline extent, since all 476 * reflink operations must start at a sector size aligned 477 * offset, and the length must be aligned too or end at 478 * the i_size (which implies the whole inlined data). 479 */ 480 ASSERT(key.offset == 0); 481 ASSERT(datal <= fs_info->sectorsize); 482 if (key.offset != 0 || datal > fs_info->sectorsize) 483 return -EUCLEAN; 484 485 ret = clone_copy_inline_extent(inode, path, &new_key, 486 drop_start, datal, size, 487 comp, buf, &trans); 488 if (ret) 489 goto out; 490 } 491 492 btrfs_release_path(path); 493 494 /* 495 * If this is a new extent update the last_reflink_trans of both 496 * inodes. This is used by fsync to make sure it does not log 497 * multiple checksum items with overlapping ranges. For older 498 * extents we don't need to do it since inode logging skips the 499 * checksums for older extents. Also ignore holes and inline 500 * extents because they don't have checksums in the csum tree. 501 */ 502 if (extent_gen == trans->transid && disko > 0) { 503 BTRFS_I(src)->last_reflink_trans = trans->transid; 504 BTRFS_I(inode)->last_reflink_trans = trans->transid; 505 } 506 507 last_dest_end = ALIGN(new_key.offset + datal, 508 fs_info->sectorsize); 509 ret = clone_finish_inode_update(trans, inode, last_dest_end, 510 destoff, olen, no_time_update); 511 if (ret) 512 goto out; 513 if (new_key.offset + datal >= destoff + len) 514 break; 515 516 btrfs_release_path(path); 517 key.offset = next_key_min_offset; 518 519 if (fatal_signal_pending(current)) { 520 ret = -EINTR; 521 goto out; 522 } 523 } 524 ret = 0; 525 526 if (last_dest_end < destoff + len) { 527 /* 528 * We have an implicit hole that fully or partially overlaps our 529 * cloning range at its end. This means that we either have the 530 * NO_HOLES feature enabled or the implicit hole happened due to 531 * mixing buffered and direct IO writes against this file. 532 */ 533 btrfs_release_path(path); 534 path->leave_spinning = 0; 535 536 ret = btrfs_punch_hole_range(inode, path, last_dest_end, 537 destoff + len - 1, NULL, &trans); 538 if (ret) 539 goto out; 540 541 ret = clone_finish_inode_update(trans, inode, destoff + len, 542 destoff, olen, no_time_update); 543 } 544 545 out: 546 btrfs_free_path(path); 547 kvfree(buf); 548 return ret; 549 } 550 551 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 552 struct inode *inode2, u64 loff2, u64 len) 553 { 554 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 555 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 556 } 557 558 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 559 struct inode *inode2, u64 loff2, u64 len) 560 { 561 if (inode1 < inode2) { 562 swap(inode1, inode2); 563 swap(loff1, loff2); 564 } else if (inode1 == inode2 && loff2 < loff1) { 565 swap(loff1, loff2); 566 } 567 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 568 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 569 } 570 571 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 572 struct inode *dst, u64 dst_loff) 573 { 574 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 575 int ret; 576 577 /* 578 * Lock destination range to serialize with concurrent readpages() and 579 * source range to serialize with relocation. 580 */ 581 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 582 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); 583 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 584 585 return ret; 586 } 587 588 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 589 struct inode *dst, u64 dst_loff) 590 { 591 int ret; 592 u64 i, tail_len, chunk_count; 593 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 594 595 spin_lock(&root_dst->root_item_lock); 596 if (root_dst->send_in_progress) { 597 btrfs_warn_rl(root_dst->fs_info, 598 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 599 root_dst->root_key.objectid, 600 root_dst->send_in_progress); 601 spin_unlock(&root_dst->root_item_lock); 602 return -EAGAIN; 603 } 604 root_dst->dedupe_in_progress++; 605 spin_unlock(&root_dst->root_item_lock); 606 607 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 608 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 609 610 for (i = 0; i < chunk_count; i++) { 611 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 612 dst, dst_loff); 613 if (ret) 614 goto out; 615 616 loff += BTRFS_MAX_DEDUPE_LEN; 617 dst_loff += BTRFS_MAX_DEDUPE_LEN; 618 } 619 620 if (tail_len > 0) 621 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff); 622 out: 623 spin_lock(&root_dst->root_item_lock); 624 root_dst->dedupe_in_progress--; 625 spin_unlock(&root_dst->root_item_lock); 626 627 return ret; 628 } 629 630 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 631 u64 off, u64 olen, u64 destoff) 632 { 633 struct inode *inode = file_inode(file); 634 struct inode *src = file_inode(file_src); 635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 636 int ret; 637 int wb_ret; 638 u64 len = olen; 639 u64 bs = fs_info->sb->s_blocksize; 640 641 /* 642 * VFS's generic_remap_file_range_prep() protects us from cloning the 643 * eof block into the middle of a file, which would result in corruption 644 * if the file size is not blocksize aligned. So we don't need to check 645 * for that case here. 646 */ 647 if (off + len == src->i_size) 648 len = ALIGN(src->i_size, bs) - off; 649 650 if (destoff > inode->i_size) { 651 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 652 653 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 654 if (ret) 655 return ret; 656 /* 657 * We may have truncated the last block if the inode's size is 658 * not sector size aligned, so we need to wait for writeback to 659 * complete before proceeding further, otherwise we can race 660 * with cloning and attempt to increment a reference to an 661 * extent that no longer exists (writeback completed right after 662 * we found the previous extent covering eof and before we 663 * attempted to increment its reference count). 664 */ 665 ret = btrfs_wait_ordered_range(inode, wb_start, 666 destoff - wb_start); 667 if (ret) 668 return ret; 669 } 670 671 /* 672 * Lock destination range to serialize with concurrent readpages() and 673 * source range to serialize with relocation. 674 */ 675 btrfs_double_extent_lock(src, off, inode, destoff, len); 676 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 677 btrfs_double_extent_unlock(src, off, inode, destoff, len); 678 679 /* 680 * We may have copied an inline extent into a page of the destination 681 * range, so wait for writeback to complete before truncating pages 682 * from the page cache. This is a rare case. 683 */ 684 wb_ret = btrfs_wait_ordered_range(inode, destoff, len); 685 ret = ret ? ret : wb_ret; 686 /* 687 * Truncate page cache pages so that future reads will see the cloned 688 * data immediately and not the previous data. 689 */ 690 truncate_inode_pages_range(&inode->i_data, 691 round_down(destoff, PAGE_SIZE), 692 round_up(destoff + len, PAGE_SIZE) - 1); 693 694 return ret; 695 } 696 697 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 698 struct file *file_out, loff_t pos_out, 699 loff_t *len, unsigned int remap_flags) 700 { 701 struct inode *inode_in = file_inode(file_in); 702 struct inode *inode_out = file_inode(file_out); 703 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 704 bool same_inode = inode_out == inode_in; 705 u64 wb_len; 706 int ret; 707 708 if (!(remap_flags & REMAP_FILE_DEDUP)) { 709 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 710 711 if (btrfs_root_readonly(root_out)) 712 return -EROFS; 713 714 if (file_in->f_path.mnt != file_out->f_path.mnt || 715 inode_in->i_sb != inode_out->i_sb) 716 return -EXDEV; 717 } 718 719 /* Don't make the dst file partly checksummed */ 720 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 721 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 722 return -EINVAL; 723 } 724 725 /* 726 * Now that the inodes are locked, we need to start writeback ourselves 727 * and can not rely on the writeback from the VFS's generic helper 728 * generic_remap_file_range_prep() because: 729 * 730 * 1) For compression we must call filemap_fdatawrite_range() range 731 * twice (btrfs_fdatawrite_range() does it for us), and the generic 732 * helper only calls it once; 733 * 734 * 2) filemap_fdatawrite_range(), called by the generic helper only 735 * waits for the writeback to complete, i.e. for IO to be done, and 736 * not for the ordered extents to complete. We need to wait for them 737 * to complete so that new file extent items are in the fs tree. 738 */ 739 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 740 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 741 else 742 wb_len = ALIGN(*len, bs); 743 744 /* 745 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 746 * any in progress could create its ordered extents after we wait for 747 * existing ordered extents below). 748 */ 749 inode_dio_wait(inode_in); 750 if (!same_inode) 751 inode_dio_wait(inode_out); 752 753 /* 754 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 755 * 756 * Btrfs' back references do not have a block level granularity, they 757 * work at the whole extent level. 758 * NOCOW buffered write without data space reserved may not be able 759 * to fall back to CoW due to lack of data space, thus could cause 760 * data loss. 761 * 762 * Here we take a shortcut by flushing the whole inode, so that all 763 * nocow write should reach disk as nocow before we increase the 764 * reference of the extent. We could do better by only flushing NOCOW 765 * data, but that needs extra accounting. 766 * 767 * Also we don't need to check ASYNC_EXTENT, as async extent will be 768 * CoWed anyway, not affecting nocow part. 769 */ 770 ret = filemap_flush(inode_in->i_mapping); 771 if (ret < 0) 772 return ret; 773 774 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 775 wb_len); 776 if (ret < 0) 777 return ret; 778 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 779 wb_len); 780 if (ret < 0) 781 return ret; 782 783 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 784 len, remap_flags); 785 } 786 787 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 788 struct file *dst_file, loff_t destoff, loff_t len, 789 unsigned int remap_flags) 790 { 791 struct inode *src_inode = file_inode(src_file); 792 struct inode *dst_inode = file_inode(dst_file); 793 bool same_inode = dst_inode == src_inode; 794 int ret; 795 796 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 797 return -EINVAL; 798 799 if (same_inode) 800 inode_lock(src_inode); 801 else 802 lock_two_nondirectories(src_inode, dst_inode); 803 804 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 805 &len, remap_flags); 806 if (ret < 0 || len == 0) 807 goto out_unlock; 808 809 if (remap_flags & REMAP_FILE_DEDUP) 810 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 811 else 812 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 813 814 out_unlock: 815 if (same_inode) 816 inode_unlock(src_inode); 817 else 818 unlock_two_nondirectories(src_inode, dst_inode); 819 820 return ret < 0 ? ret : len; 821 } 822