xref: /openbmc/linux/fs/btrfs/reflink.c (revision 9b569ea0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "messages.h"
6 #include "compression.h"
7 #include "ctree.h"
8 #include "delalloc-space.h"
9 #include "disk-io.h"
10 #include "reflink.h"
11 #include "transaction.h"
12 #include "subpage.h"
13 
14 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
15 
16 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
17 				     struct inode *inode,
18 				     u64 endoff,
19 				     const u64 destoff,
20 				     const u64 olen,
21 				     int no_time_update)
22 {
23 	struct btrfs_root *root = BTRFS_I(inode)->root;
24 	int ret;
25 
26 	inode_inc_iversion(inode);
27 	if (!no_time_update) {
28 		inode->i_mtime = current_time(inode);
29 		inode->i_ctime = inode->i_mtime;
30 	}
31 	/*
32 	 * We round up to the block size at eof when determining which
33 	 * extents to clone above, but shouldn't round up the file size.
34 	 */
35 	if (endoff > destoff + olen)
36 		endoff = destoff + olen;
37 	if (endoff > inode->i_size) {
38 		i_size_write(inode, endoff);
39 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
40 	}
41 
42 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
43 	if (ret) {
44 		btrfs_abort_transaction(trans, ret);
45 		btrfs_end_transaction(trans);
46 		goto out;
47 	}
48 	ret = btrfs_end_transaction(trans);
49 out:
50 	return ret;
51 }
52 
53 static int copy_inline_to_page(struct btrfs_inode *inode,
54 			       const u64 file_offset,
55 			       char *inline_data,
56 			       const u64 size,
57 			       const u64 datal,
58 			       const u8 comp_type)
59 {
60 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
61 	const u32 block_size = fs_info->sectorsize;
62 	const u64 range_end = file_offset + block_size - 1;
63 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
64 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
65 	struct extent_changeset *data_reserved = NULL;
66 	struct page *page = NULL;
67 	struct address_space *mapping = inode->vfs_inode.i_mapping;
68 	int ret;
69 
70 	ASSERT(IS_ALIGNED(file_offset, block_size));
71 
72 	/*
73 	 * We have flushed and locked the ranges of the source and destination
74 	 * inodes, we also have locked the inodes, so we are safe to do a
75 	 * reservation here. Also we must not do the reservation while holding
76 	 * a transaction open, otherwise we would deadlock.
77 	 */
78 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
79 					   block_size);
80 	if (ret)
81 		goto out;
82 
83 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
84 				   btrfs_alloc_write_mask(mapping));
85 	if (!page) {
86 		ret = -ENOMEM;
87 		goto out_unlock;
88 	}
89 
90 	ret = set_page_extent_mapped(page);
91 	if (ret < 0)
92 		goto out_unlock;
93 
94 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
95 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
96 			 NULL);
97 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
98 	if (ret)
99 		goto out_unlock;
100 
101 	/*
102 	 * After dirtying the page our caller will need to start a transaction,
103 	 * and if we are low on metadata free space, that can cause flushing of
104 	 * delalloc for all inodes in order to get metadata space released.
105 	 * However we are holding the range locked for the whole duration of
106 	 * the clone/dedupe operation, so we may deadlock if that happens and no
107 	 * other task releases enough space. So mark this inode as not being
108 	 * possible to flush to avoid such deadlock. We will clear that flag
109 	 * when we finish cloning all extents, since a transaction is started
110 	 * after finding each extent to clone.
111 	 */
112 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
113 
114 	if (comp_type == BTRFS_COMPRESS_NONE) {
115 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
116 			       datal);
117 	} else {
118 		ret = btrfs_decompress(comp_type, data_start, page,
119 				       offset_in_page(file_offset),
120 				       inline_size, datal);
121 		if (ret)
122 			goto out_unlock;
123 		flush_dcache_page(page);
124 	}
125 
126 	/*
127 	 * If our inline data is smaller then the block/page size, then the
128 	 * remaining of the block/page is equivalent to zeroes. We had something
129 	 * like the following done:
130 	 *
131 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
132 	 * $ sync  # (or fsync)
133 	 * $ xfs_io -c "falloc 0 4K" file
134 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
135 	 *
136 	 * So what's in the range [500, 4095] corresponds to zeroes.
137 	 */
138 	if (datal < block_size)
139 		memzero_page(page, datal, block_size - datal);
140 
141 	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
142 	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
143 	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
144 out_unlock:
145 	if (page) {
146 		unlock_page(page);
147 		put_page(page);
148 	}
149 	if (ret)
150 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
151 					     block_size, true);
152 	btrfs_delalloc_release_extents(inode, block_size);
153 out:
154 	extent_changeset_free(data_reserved);
155 
156 	return ret;
157 }
158 
159 /*
160  * Deal with cloning of inline extents. We try to copy the inline extent from
161  * the source inode to destination inode when possible. When not possible we
162  * copy the inline extent's data into the respective page of the inode.
163  */
164 static int clone_copy_inline_extent(struct inode *dst,
165 				    struct btrfs_path *path,
166 				    struct btrfs_key *new_key,
167 				    const u64 drop_start,
168 				    const u64 datal,
169 				    const u64 size,
170 				    const u8 comp_type,
171 				    char *inline_data,
172 				    struct btrfs_trans_handle **trans_out)
173 {
174 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
175 	struct btrfs_root *root = BTRFS_I(dst)->root;
176 	const u64 aligned_end = ALIGN(new_key->offset + datal,
177 				      fs_info->sectorsize);
178 	struct btrfs_trans_handle *trans = NULL;
179 	struct btrfs_drop_extents_args drop_args = { 0 };
180 	int ret;
181 	struct btrfs_key key;
182 
183 	if (new_key->offset > 0) {
184 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
185 					  inline_data, size, datal, comp_type);
186 		goto out;
187 	}
188 
189 	key.objectid = btrfs_ino(BTRFS_I(dst));
190 	key.type = BTRFS_EXTENT_DATA_KEY;
191 	key.offset = 0;
192 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
193 	if (ret < 0) {
194 		return ret;
195 	} else if (ret > 0) {
196 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
197 			ret = btrfs_next_leaf(root, path);
198 			if (ret < 0)
199 				return ret;
200 			else if (ret > 0)
201 				goto copy_inline_extent;
202 		}
203 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
204 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
205 		    key.type == BTRFS_EXTENT_DATA_KEY) {
206 			/*
207 			 * There's an implicit hole at file offset 0, copy the
208 			 * inline extent's data to the page.
209 			 */
210 			ASSERT(key.offset > 0);
211 			goto copy_to_page;
212 		}
213 	} else if (i_size_read(dst) <= datal) {
214 		struct btrfs_file_extent_item *ei;
215 
216 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
217 				    struct btrfs_file_extent_item);
218 		/*
219 		 * If it's an inline extent replace it with the source inline
220 		 * extent, otherwise copy the source inline extent data into
221 		 * the respective page at the destination inode.
222 		 */
223 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
224 		    BTRFS_FILE_EXTENT_INLINE)
225 			goto copy_inline_extent;
226 
227 		goto copy_to_page;
228 	}
229 
230 copy_inline_extent:
231 	/*
232 	 * We have no extent items, or we have an extent at offset 0 which may
233 	 * or may not be inlined. All these cases are dealt the same way.
234 	 */
235 	if (i_size_read(dst) > datal) {
236 		/*
237 		 * At the destination offset 0 we have either a hole, a regular
238 		 * extent or an inline extent larger then the one we want to
239 		 * clone. Deal with all these cases by copying the inline extent
240 		 * data into the respective page at the destination inode.
241 		 */
242 		goto copy_to_page;
243 	}
244 
245 	/*
246 	 * Release path before starting a new transaction so we don't hold locks
247 	 * that would confuse lockdep.
248 	 */
249 	btrfs_release_path(path);
250 	/*
251 	 * If we end up here it means were copy the inline extent into a leaf
252 	 * of the destination inode. We know we will drop or adjust at most one
253 	 * extent item in the destination root.
254 	 *
255 	 * 1 unit - adjusting old extent (we may have to split it)
256 	 * 1 unit - add new extent
257 	 * 1 unit - inode update
258 	 */
259 	trans = btrfs_start_transaction(root, 3);
260 	if (IS_ERR(trans)) {
261 		ret = PTR_ERR(trans);
262 		trans = NULL;
263 		goto out;
264 	}
265 	drop_args.path = path;
266 	drop_args.start = drop_start;
267 	drop_args.end = aligned_end;
268 	drop_args.drop_cache = true;
269 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
270 	if (ret)
271 		goto out;
272 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
273 	if (ret)
274 		goto out;
275 
276 	write_extent_buffer(path->nodes[0], inline_data,
277 			    btrfs_item_ptr_offset(path->nodes[0],
278 						  path->slots[0]),
279 			    size);
280 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
281 	btrfs_set_inode_full_sync(BTRFS_I(dst));
282 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
283 out:
284 	if (!ret && !trans) {
285 		/*
286 		 * No transaction here means we copied the inline extent into a
287 		 * page of the destination inode.
288 		 *
289 		 * 1 unit to update inode item
290 		 */
291 		trans = btrfs_start_transaction(root, 1);
292 		if (IS_ERR(trans)) {
293 			ret = PTR_ERR(trans);
294 			trans = NULL;
295 		}
296 	}
297 	if (ret && trans) {
298 		btrfs_abort_transaction(trans, ret);
299 		btrfs_end_transaction(trans);
300 	}
301 	if (!ret)
302 		*trans_out = trans;
303 
304 	return ret;
305 
306 copy_to_page:
307 	/*
308 	 * Release our path because we don't need it anymore and also because
309 	 * copy_inline_to_page() needs to reserve data and metadata, which may
310 	 * need to flush delalloc when we are low on available space and
311 	 * therefore cause a deadlock if writeback of an inline extent needs to
312 	 * write to the same leaf or an ordered extent completion needs to write
313 	 * to the same leaf.
314 	 */
315 	btrfs_release_path(path);
316 
317 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
318 				  inline_data, size, datal, comp_type);
319 	goto out;
320 }
321 
322 /**
323  * btrfs_clone() - clone a range from inode file to another
324  *
325  * @src: Inode to clone from
326  * @inode: Inode to clone to
327  * @off: Offset within source to start clone from
328  * @olen: Original length, passed by user, of range to clone
329  * @olen_aligned: Block-aligned value of olen
330  * @destoff: Offset within @inode to start clone
331  * @no_time_update: Whether to update mtime/ctime on the target inode
332  */
333 static int btrfs_clone(struct inode *src, struct inode *inode,
334 		       const u64 off, const u64 olen, const u64 olen_aligned,
335 		       const u64 destoff, int no_time_update)
336 {
337 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
338 	struct btrfs_path *path = NULL;
339 	struct extent_buffer *leaf;
340 	struct btrfs_trans_handle *trans;
341 	char *buf = NULL;
342 	struct btrfs_key key;
343 	u32 nritems;
344 	int slot;
345 	int ret;
346 	const u64 len = olen_aligned;
347 	u64 last_dest_end = destoff;
348 	u64 prev_extent_end = off;
349 
350 	ret = -ENOMEM;
351 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
352 	if (!buf)
353 		return ret;
354 
355 	path = btrfs_alloc_path();
356 	if (!path) {
357 		kvfree(buf);
358 		return ret;
359 	}
360 
361 	path->reada = READA_FORWARD;
362 	/* Clone data */
363 	key.objectid = btrfs_ino(BTRFS_I(src));
364 	key.type = BTRFS_EXTENT_DATA_KEY;
365 	key.offset = off;
366 
367 	while (1) {
368 		struct btrfs_file_extent_item *extent;
369 		u64 extent_gen;
370 		int type;
371 		u32 size;
372 		struct btrfs_key new_key;
373 		u64 disko = 0, diskl = 0;
374 		u64 datao = 0, datal = 0;
375 		u8 comp;
376 		u64 drop_start;
377 
378 		/* Note the key will change type as we walk through the tree */
379 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
380 				0, 0);
381 		if (ret < 0)
382 			goto out;
383 		/*
384 		 * First search, if no extent item that starts at offset off was
385 		 * found but the previous item is an extent item, it's possible
386 		 * it might overlap our target range, therefore process it.
387 		 */
388 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
389 			btrfs_item_key_to_cpu(path->nodes[0], &key,
390 					      path->slots[0] - 1);
391 			if (key.type == BTRFS_EXTENT_DATA_KEY)
392 				path->slots[0]--;
393 		}
394 
395 		nritems = btrfs_header_nritems(path->nodes[0]);
396 process_slot:
397 		if (path->slots[0] >= nritems) {
398 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
399 			if (ret < 0)
400 				goto out;
401 			if (ret > 0)
402 				break;
403 			nritems = btrfs_header_nritems(path->nodes[0]);
404 		}
405 		leaf = path->nodes[0];
406 		slot = path->slots[0];
407 
408 		btrfs_item_key_to_cpu(leaf, &key, slot);
409 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
410 		    key.objectid != btrfs_ino(BTRFS_I(src)))
411 			break;
412 
413 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
414 
415 		extent = btrfs_item_ptr(leaf, slot,
416 					struct btrfs_file_extent_item);
417 		extent_gen = btrfs_file_extent_generation(leaf, extent);
418 		comp = btrfs_file_extent_compression(leaf, extent);
419 		type = btrfs_file_extent_type(leaf, extent);
420 		if (type == BTRFS_FILE_EXTENT_REG ||
421 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
422 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
423 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
424 			datao = btrfs_file_extent_offset(leaf, extent);
425 			datal = btrfs_file_extent_num_bytes(leaf, extent);
426 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
427 			/* Take upper bound, may be compressed */
428 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
429 		}
430 
431 		/*
432 		 * The first search might have left us at an extent item that
433 		 * ends before our target range's start, can happen if we have
434 		 * holes and NO_HOLES feature enabled.
435 		 *
436 		 * Subsequent searches may leave us on a file range we have
437 		 * processed before - this happens due to a race with ordered
438 		 * extent completion for a file range that is outside our source
439 		 * range, but that range was part of a file extent item that
440 		 * also covered a leading part of our source range.
441 		 */
442 		if (key.offset + datal <= prev_extent_end) {
443 			path->slots[0]++;
444 			goto process_slot;
445 		} else if (key.offset >= off + len) {
446 			break;
447 		}
448 
449 		prev_extent_end = key.offset + datal;
450 		size = btrfs_item_size(leaf, slot);
451 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
452 				   size);
453 
454 		btrfs_release_path(path);
455 
456 		memcpy(&new_key, &key, sizeof(new_key));
457 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
458 		if (off <= key.offset)
459 			new_key.offset = key.offset + destoff - off;
460 		else
461 			new_key.offset = destoff;
462 
463 		/*
464 		 * Deal with a hole that doesn't have an extent item that
465 		 * represents it (NO_HOLES feature enabled).
466 		 * This hole is either in the middle of the cloning range or at
467 		 * the beginning (fully overlaps it or partially overlaps it).
468 		 */
469 		if (new_key.offset != last_dest_end)
470 			drop_start = last_dest_end;
471 		else
472 			drop_start = new_key.offset;
473 
474 		if (type == BTRFS_FILE_EXTENT_REG ||
475 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
476 			struct btrfs_replace_extent_info clone_info;
477 
478 			/*
479 			 *    a  | --- range to clone ---|  b
480 			 * | ------------- extent ------------- |
481 			 */
482 
483 			/* Subtract range b */
484 			if (key.offset + datal > off + len)
485 				datal = off + len - key.offset;
486 
487 			/* Subtract range a */
488 			if (off > key.offset) {
489 				datao += off - key.offset;
490 				datal -= off - key.offset;
491 			}
492 
493 			clone_info.disk_offset = disko;
494 			clone_info.disk_len = diskl;
495 			clone_info.data_offset = datao;
496 			clone_info.data_len = datal;
497 			clone_info.file_offset = new_key.offset;
498 			clone_info.extent_buf = buf;
499 			clone_info.is_new_extent = false;
500 			clone_info.update_times = !no_time_update;
501 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
502 					drop_start, new_key.offset + datal - 1,
503 					&clone_info, &trans);
504 			if (ret)
505 				goto out;
506 		} else {
507 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
508 			/*
509 			 * Inline extents always have to start at file offset 0
510 			 * and can never be bigger then the sector size. We can
511 			 * never clone only parts of an inline extent, since all
512 			 * reflink operations must start at a sector size aligned
513 			 * offset, and the length must be aligned too or end at
514 			 * the i_size (which implies the whole inlined data).
515 			 */
516 			ASSERT(key.offset == 0);
517 			ASSERT(datal <= fs_info->sectorsize);
518 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
519 			    WARN_ON(key.offset != 0) ||
520 			    WARN_ON(datal > fs_info->sectorsize)) {
521 				ret = -EUCLEAN;
522 				goto out;
523 			}
524 
525 			ret = clone_copy_inline_extent(inode, path, &new_key,
526 						       drop_start, datal, size,
527 						       comp, buf, &trans);
528 			if (ret)
529 				goto out;
530 		}
531 
532 		btrfs_release_path(path);
533 
534 		/*
535 		 * Whenever we share an extent we update the last_reflink_trans
536 		 * of each inode to the current transaction. This is needed to
537 		 * make sure fsync does not log multiple checksum items with
538 		 * overlapping ranges (because some extent items might refer
539 		 * only to sections of the original extent). For the destination
540 		 * inode we do this regardless of the generation of the extents
541 		 * or even if they are inline extents or explicit holes, to make
542 		 * sure a full fsync does not skip them. For the source inode,
543 		 * we only need to update last_reflink_trans in case it's a new
544 		 * extent that is not a hole or an inline extent, to deal with
545 		 * the checksums problem on fsync.
546 		 */
547 		if (extent_gen == trans->transid && disko > 0)
548 			BTRFS_I(src)->last_reflink_trans = trans->transid;
549 
550 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
551 
552 		last_dest_end = ALIGN(new_key.offset + datal,
553 				      fs_info->sectorsize);
554 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
555 						destoff, olen, no_time_update);
556 		if (ret)
557 			goto out;
558 		if (new_key.offset + datal >= destoff + len)
559 			break;
560 
561 		btrfs_release_path(path);
562 		key.offset = prev_extent_end;
563 
564 		if (fatal_signal_pending(current)) {
565 			ret = -EINTR;
566 			goto out;
567 		}
568 
569 		cond_resched();
570 	}
571 	ret = 0;
572 
573 	if (last_dest_end < destoff + len) {
574 		/*
575 		 * We have an implicit hole that fully or partially overlaps our
576 		 * cloning range at its end. This means that we either have the
577 		 * NO_HOLES feature enabled or the implicit hole happened due to
578 		 * mixing buffered and direct IO writes against this file.
579 		 */
580 		btrfs_release_path(path);
581 
582 		/*
583 		 * When using NO_HOLES and we are cloning a range that covers
584 		 * only a hole (no extents) into a range beyond the current
585 		 * i_size, punching a hole in the target range will not create
586 		 * an extent map defining a hole, because the range starts at or
587 		 * beyond current i_size. If the file previously had an i_size
588 		 * greater than the new i_size set by this clone operation, we
589 		 * need to make sure the next fsync is a full fsync, so that it
590 		 * detects and logs a hole covering a range from the current
591 		 * i_size to the new i_size. If the clone range covers extents,
592 		 * besides a hole, then we know the full sync flag was already
593 		 * set by previous calls to btrfs_replace_file_extents() that
594 		 * replaced file extent items.
595 		 */
596 		if (last_dest_end >= i_size_read(inode))
597 			btrfs_set_inode_full_sync(BTRFS_I(inode));
598 
599 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
600 				last_dest_end, destoff + len - 1, NULL, &trans);
601 		if (ret)
602 			goto out;
603 
604 		ret = clone_finish_inode_update(trans, inode, destoff + len,
605 						destoff, olen, no_time_update);
606 	}
607 
608 out:
609 	btrfs_free_path(path);
610 	kvfree(buf);
611 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
612 
613 	return ret;
614 }
615 
616 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
617 				       struct inode *inode2, u64 loff2, u64 len)
618 {
619 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
620 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
621 }
622 
623 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
624 				     struct inode *inode2, u64 loff2, u64 len)
625 {
626 	u64 range1_end = loff1 + len - 1;
627 	u64 range2_end = loff2 + len - 1;
628 
629 	if (inode1 < inode2) {
630 		swap(inode1, inode2);
631 		swap(loff1, loff2);
632 		swap(range1_end, range2_end);
633 	} else if (inode1 == inode2 && loff2 < loff1) {
634 		swap(loff1, loff2);
635 		swap(range1_end, range2_end);
636 	}
637 
638 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
639 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
640 
641 	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
642 	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
643 }
644 
645 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
646 {
647 	if (inode1 < inode2)
648 		swap(inode1, inode2);
649 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
650 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
651 }
652 
653 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
654 {
655 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
656 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
657 }
658 
659 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
660 				   struct inode *dst, u64 dst_loff)
661 {
662 	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
663 	const u64 bs = fs_info->sb->s_blocksize;
664 	int ret;
665 
666 	/*
667 	 * Lock destination range to serialize with concurrent readahead() and
668 	 * source range to serialize with relocation.
669 	 */
670 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
671 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
672 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
673 
674 	btrfs_btree_balance_dirty(fs_info);
675 
676 	return ret;
677 }
678 
679 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
680 			     struct inode *dst, u64 dst_loff)
681 {
682 	int ret = 0;
683 	u64 i, tail_len, chunk_count;
684 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
685 
686 	spin_lock(&root_dst->root_item_lock);
687 	if (root_dst->send_in_progress) {
688 		btrfs_warn_rl(root_dst->fs_info,
689 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
690 			      root_dst->root_key.objectid,
691 			      root_dst->send_in_progress);
692 		spin_unlock(&root_dst->root_item_lock);
693 		return -EAGAIN;
694 	}
695 	root_dst->dedupe_in_progress++;
696 	spin_unlock(&root_dst->root_item_lock);
697 
698 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
699 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
700 
701 	for (i = 0; i < chunk_count; i++) {
702 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
703 					      dst, dst_loff);
704 		if (ret)
705 			goto out;
706 
707 		loff += BTRFS_MAX_DEDUPE_LEN;
708 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
709 	}
710 
711 	if (tail_len > 0)
712 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
713 out:
714 	spin_lock(&root_dst->root_item_lock);
715 	root_dst->dedupe_in_progress--;
716 	spin_unlock(&root_dst->root_item_lock);
717 
718 	return ret;
719 }
720 
721 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
722 					u64 off, u64 olen, u64 destoff)
723 {
724 	struct inode *inode = file_inode(file);
725 	struct inode *src = file_inode(file_src);
726 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
727 	int ret;
728 	int wb_ret;
729 	u64 len = olen;
730 	u64 bs = fs_info->sb->s_blocksize;
731 
732 	/*
733 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
734 	 * eof block into the middle of a file, which would result in corruption
735 	 * if the file size is not blocksize aligned. So we don't need to check
736 	 * for that case here.
737 	 */
738 	if (off + len == src->i_size)
739 		len = ALIGN(src->i_size, bs) - off;
740 
741 	if (destoff > inode->i_size) {
742 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
743 
744 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
745 		if (ret)
746 			return ret;
747 		/*
748 		 * We may have truncated the last block if the inode's size is
749 		 * not sector size aligned, so we need to wait for writeback to
750 		 * complete before proceeding further, otherwise we can race
751 		 * with cloning and attempt to increment a reference to an
752 		 * extent that no longer exists (writeback completed right after
753 		 * we found the previous extent covering eof and before we
754 		 * attempted to increment its reference count).
755 		 */
756 		ret = btrfs_wait_ordered_range(inode, wb_start,
757 					       destoff - wb_start);
758 		if (ret)
759 			return ret;
760 	}
761 
762 	/*
763 	 * Lock destination range to serialize with concurrent readahead() and
764 	 * source range to serialize with relocation.
765 	 */
766 	btrfs_double_extent_lock(src, off, inode, destoff, len);
767 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
768 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
769 
770 	/*
771 	 * We may have copied an inline extent into a page of the destination
772 	 * range, so wait for writeback to complete before truncating pages
773 	 * from the page cache. This is a rare case.
774 	 */
775 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
776 	ret = ret ? ret : wb_ret;
777 	/*
778 	 * Truncate page cache pages so that future reads will see the cloned
779 	 * data immediately and not the previous data.
780 	 */
781 	truncate_inode_pages_range(&inode->i_data,
782 				round_down(destoff, PAGE_SIZE),
783 				round_up(destoff + len, PAGE_SIZE) - 1);
784 
785 	btrfs_btree_balance_dirty(fs_info);
786 
787 	return ret;
788 }
789 
790 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
791 				       struct file *file_out, loff_t pos_out,
792 				       loff_t *len, unsigned int remap_flags)
793 {
794 	struct inode *inode_in = file_inode(file_in);
795 	struct inode *inode_out = file_inode(file_out);
796 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
797 	u64 wb_len;
798 	int ret;
799 
800 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
801 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
802 
803 		if (btrfs_root_readonly(root_out))
804 			return -EROFS;
805 
806 		ASSERT(inode_in->i_sb == inode_out->i_sb);
807 	}
808 
809 	/* Don't make the dst file partly checksummed */
810 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
811 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
812 		return -EINVAL;
813 	}
814 
815 	/*
816 	 * Now that the inodes are locked, we need to start writeback ourselves
817 	 * and can not rely on the writeback from the VFS's generic helper
818 	 * generic_remap_file_range_prep() because:
819 	 *
820 	 * 1) For compression we must call filemap_fdatawrite_range() range
821 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
822 	 *    helper only calls it once;
823 	 *
824 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
825 	 *    waits for the writeback to complete, i.e. for IO to be done, and
826 	 *    not for the ordered extents to complete. We need to wait for them
827 	 *    to complete so that new file extent items are in the fs tree.
828 	 */
829 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
830 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
831 	else
832 		wb_len = ALIGN(*len, bs);
833 
834 	/*
835 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
836 	 *
837 	 * Btrfs' back references do not have a block level granularity, they
838 	 * work at the whole extent level.
839 	 * NOCOW buffered write without data space reserved may not be able
840 	 * to fall back to CoW due to lack of data space, thus could cause
841 	 * data loss.
842 	 *
843 	 * Here we take a shortcut by flushing the whole inode, so that all
844 	 * nocow write should reach disk as nocow before we increase the
845 	 * reference of the extent. We could do better by only flushing NOCOW
846 	 * data, but that needs extra accounting.
847 	 *
848 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
849 	 * CoWed anyway, not affecting nocow part.
850 	 */
851 	ret = filemap_flush(inode_in->i_mapping);
852 	if (ret < 0)
853 		return ret;
854 
855 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
856 				       wb_len);
857 	if (ret < 0)
858 		return ret;
859 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
860 				       wb_len);
861 	if (ret < 0)
862 		return ret;
863 
864 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
865 					    len, remap_flags);
866 }
867 
868 static bool file_sync_write(const struct file *file)
869 {
870 	if (file->f_flags & (__O_SYNC | O_DSYNC))
871 		return true;
872 	if (IS_SYNC(file_inode(file)))
873 		return true;
874 
875 	return false;
876 }
877 
878 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
879 		struct file *dst_file, loff_t destoff, loff_t len,
880 		unsigned int remap_flags)
881 {
882 	struct inode *src_inode = file_inode(src_file);
883 	struct inode *dst_inode = file_inode(dst_file);
884 	bool same_inode = dst_inode == src_inode;
885 	int ret;
886 
887 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
888 		return -EINVAL;
889 
890 	if (same_inode) {
891 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
892 	} else {
893 		lock_two_nondirectories(src_inode, dst_inode);
894 		btrfs_double_mmap_lock(src_inode, dst_inode);
895 	}
896 
897 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
898 					  &len, remap_flags);
899 	if (ret < 0 || len == 0)
900 		goto out_unlock;
901 
902 	if (remap_flags & REMAP_FILE_DEDUP)
903 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
904 	else
905 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
906 
907 out_unlock:
908 	if (same_inode) {
909 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
910 	} else {
911 		btrfs_double_mmap_unlock(src_inode, dst_inode);
912 		unlock_two_nondirectories(src_inode, dst_inode);
913 	}
914 
915 	/*
916 	 * If either the source or the destination file was opened with O_SYNC,
917 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
918 	 * source files/ranges, so that after a successful return (0) followed
919 	 * by a power failure results in the reflinked data to be readable from
920 	 * both files/ranges.
921 	 */
922 	if (ret == 0 && len > 0 &&
923 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
924 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
925 		if (ret == 0)
926 			ret = btrfs_sync_file(dst_file, destoff,
927 					      destoff + len - 1, 0);
928 	}
929 
930 	return ret < 0 ? ret : len;
931 }
932