xref: /openbmc/linux/fs/btrfs/reflink.c (revision 88f566be)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(inode, 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, inode);
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
48 static int copy_inline_to_page(struct btrfs_inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	struct address_space *mapping = inode->vfs_inode.i_mapping;
62 	int ret;
63 
64 	ASSERT(IS_ALIGNED(file_offset, block_size));
65 
66 	/*
67 	 * We have flushed and locked the ranges of the source and destination
68 	 * inodes, we also have locked the inodes, so we are safe to do a
69 	 * reservation here. Also we must not do the reservation while holding
70 	 * a transaction open, otherwise we would deadlock.
71 	 */
72 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
73 					   block_size);
74 	if (ret)
75 		goto out;
76 
77 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
78 				   btrfs_alloc_write_mask(mapping));
79 	if (!page) {
80 		ret = -ENOMEM;
81 		goto out_unlock;
82 	}
83 
84 	set_page_extent_mapped(page);
85 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
86 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
87 			 0, 0, NULL);
88 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
89 	if (ret)
90 		goto out_unlock;
91 
92 	/*
93 	 * After dirtying the page our caller will need to start a transaction,
94 	 * and if we are low on metadata free space, that can cause flushing of
95 	 * delalloc for all inodes in order to get metadata space released.
96 	 * However we are holding the range locked for the whole duration of
97 	 * the clone/dedupe operation, so we may deadlock if that happens and no
98 	 * other task releases enough space. So mark this inode as not being
99 	 * possible to flush to avoid such deadlock. We will clear that flag
100 	 * when we finish cloning all extents, since a transaction is started
101 	 * after finding each extent to clone.
102 	 */
103 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
104 
105 	if (comp_type == BTRFS_COMPRESS_NONE) {
106 		char *map;
107 
108 		map = kmap(page);
109 		memcpy(map, data_start, datal);
110 		flush_dcache_page(page);
111 		kunmap(page);
112 	} else {
113 		ret = btrfs_decompress(comp_type, data_start, page, 0,
114 				       inline_size, datal);
115 		if (ret)
116 			goto out_unlock;
117 		flush_dcache_page(page);
118 	}
119 
120 	/*
121 	 * If our inline data is smaller then the block/page size, then the
122 	 * remaining of the block/page is equivalent to zeroes. We had something
123 	 * like the following done:
124 	 *
125 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
126 	 * $ sync  # (or fsync)
127 	 * $ xfs_io -c "falloc 0 4K" file
128 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
129 	 *
130 	 * So what's in the range [500, 4095] corresponds to zeroes.
131 	 */
132 	if (datal < block_size) {
133 		char *map;
134 
135 		map = kmap(page);
136 		memset(map + datal, 0, block_size - datal);
137 		flush_dcache_page(page);
138 		kunmap(page);
139 	}
140 
141 	SetPageUptodate(page);
142 	ClearPageChecked(page);
143 	set_page_dirty(page);
144 out_unlock:
145 	if (page) {
146 		unlock_page(page);
147 		put_page(page);
148 	}
149 	if (ret)
150 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
151 					     block_size, true);
152 	btrfs_delalloc_release_extents(inode, block_size);
153 out:
154 	extent_changeset_free(data_reserved);
155 
156 	return ret;
157 }
158 
159 /*
160  * Deal with cloning of inline extents. We try to copy the inline extent from
161  * the source inode to destination inode when possible. When not possible we
162  * copy the inline extent's data into the respective page of the inode.
163  */
164 static int clone_copy_inline_extent(struct inode *dst,
165 				    struct btrfs_path *path,
166 				    struct btrfs_key *new_key,
167 				    const u64 drop_start,
168 				    const u64 datal,
169 				    const u64 size,
170 				    const u8 comp_type,
171 				    char *inline_data,
172 				    struct btrfs_trans_handle **trans_out)
173 {
174 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
175 	struct btrfs_root *root = BTRFS_I(dst)->root;
176 	const u64 aligned_end = ALIGN(new_key->offset + datal,
177 				      fs_info->sectorsize);
178 	struct btrfs_trans_handle *trans = NULL;
179 	int ret;
180 	struct btrfs_key key;
181 
182 	if (new_key->offset > 0) {
183 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184 					  inline_data, size, datal, comp_type);
185 		goto out;
186 	}
187 
188 	key.objectid = btrfs_ino(BTRFS_I(dst));
189 	key.type = BTRFS_EXTENT_DATA_KEY;
190 	key.offset = 0;
191 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192 	if (ret < 0) {
193 		return ret;
194 	} else if (ret > 0) {
195 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196 			ret = btrfs_next_leaf(root, path);
197 			if (ret < 0)
198 				return ret;
199 			else if (ret > 0)
200 				goto copy_inline_extent;
201 		}
202 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204 		    key.type == BTRFS_EXTENT_DATA_KEY) {
205 			/*
206 			 * There's an implicit hole at file offset 0, copy the
207 			 * inline extent's data to the page.
208 			 */
209 			ASSERT(key.offset > 0);
210 			ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
211 						  inline_data, size, datal,
212 						  comp_type);
213 			goto out;
214 		}
215 	} else if (i_size_read(dst) <= datal) {
216 		struct btrfs_file_extent_item *ei;
217 
218 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
219 				    struct btrfs_file_extent_item);
220 		/*
221 		 * If it's an inline extent replace it with the source inline
222 		 * extent, otherwise copy the source inline extent data into
223 		 * the respective page at the destination inode.
224 		 */
225 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
226 		    BTRFS_FILE_EXTENT_INLINE)
227 			goto copy_inline_extent;
228 
229 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
230 					  inline_data, size, datal, comp_type);
231 		goto out;
232 	}
233 
234 copy_inline_extent:
235 	ret = 0;
236 	/*
237 	 * We have no extent items, or we have an extent at offset 0 which may
238 	 * or may not be inlined. All these cases are dealt the same way.
239 	 */
240 	if (i_size_read(dst) > datal) {
241 		/*
242 		 * At the destination offset 0 we have either a hole, a regular
243 		 * extent or an inline extent larger then the one we want to
244 		 * clone. Deal with all these cases by copying the inline extent
245 		 * data into the respective page at the destination inode.
246 		 */
247 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
248 					  inline_data, size, datal, comp_type);
249 		goto out;
250 	}
251 
252 	btrfs_release_path(path);
253 	/*
254 	 * If we end up here it means were copy the inline extent into a leaf
255 	 * of the destination inode. We know we will drop or adjust at most one
256 	 * extent item in the destination root.
257 	 *
258 	 * 1 unit - adjusting old extent (we may have to split it)
259 	 * 1 unit - add new extent
260 	 * 1 unit - inode update
261 	 */
262 	trans = btrfs_start_transaction(root, 3);
263 	if (IS_ERR(trans)) {
264 		ret = PTR_ERR(trans);
265 		trans = NULL;
266 		goto out;
267 	}
268 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
269 	if (ret)
270 		goto out;
271 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272 	if (ret)
273 		goto out;
274 
275 	write_extent_buffer(path->nodes[0], inline_data,
276 			    btrfs_item_ptr_offset(path->nodes[0],
277 						  path->slots[0]),
278 			    size);
279 	inode_add_bytes(dst, datal);
280 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
281 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282 out:
283 	if (!ret && !trans) {
284 		/*
285 		 * Release path before starting a new transaction so we don't
286 		 * hold locks that would confuse lockdep.
287 		 */
288 		btrfs_release_path(path);
289 		/*
290 		 * No transaction here means we copied the inline extent into a
291 		 * page of the destination inode.
292 		 *
293 		 * 1 unit to update inode item
294 		 */
295 		trans = btrfs_start_transaction(root, 1);
296 		if (IS_ERR(trans)) {
297 			ret = PTR_ERR(trans);
298 			trans = NULL;
299 		}
300 	}
301 	if (ret && trans) {
302 		btrfs_abort_transaction(trans, ret);
303 		btrfs_end_transaction(trans);
304 	}
305 	if (!ret)
306 		*trans_out = trans;
307 
308 	return ret;
309 }
310 
311 /**
312  * btrfs_clone() - clone a range from inode file to another
313  *
314  * @src: Inode to clone from
315  * @inode: Inode to clone to
316  * @off: Offset within source to start clone from
317  * @olen: Original length, passed by user, of range to clone
318  * @olen_aligned: Block-aligned value of olen
319  * @destoff: Offset within @inode to start clone
320  * @no_time_update: Whether to update mtime/ctime on the target inode
321  */
322 static int btrfs_clone(struct inode *src, struct inode *inode,
323 		       const u64 off, const u64 olen, const u64 olen_aligned,
324 		       const u64 destoff, int no_time_update)
325 {
326 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
327 	struct btrfs_path *path = NULL;
328 	struct extent_buffer *leaf;
329 	struct btrfs_trans_handle *trans;
330 	char *buf = NULL;
331 	struct btrfs_key key;
332 	u32 nritems;
333 	int slot;
334 	int ret;
335 	const u64 len = olen_aligned;
336 	u64 last_dest_end = destoff;
337 
338 	ret = -ENOMEM;
339 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
340 	if (!buf)
341 		return ret;
342 
343 	path = btrfs_alloc_path();
344 	if (!path) {
345 		kvfree(buf);
346 		return ret;
347 	}
348 
349 	path->reada = READA_FORWARD;
350 	/* Clone data */
351 	key.objectid = btrfs_ino(BTRFS_I(src));
352 	key.type = BTRFS_EXTENT_DATA_KEY;
353 	key.offset = off;
354 
355 	while (1) {
356 		u64 next_key_min_offset = key.offset + 1;
357 		struct btrfs_file_extent_item *extent;
358 		u64 extent_gen;
359 		int type;
360 		u32 size;
361 		struct btrfs_key new_key;
362 		u64 disko = 0, diskl = 0;
363 		u64 datao = 0, datal = 0;
364 		u8 comp;
365 		u64 drop_start;
366 
367 		/* Note the key will change type as we walk through the tree */
368 		path->leave_spinning = 1;
369 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
370 				0, 0);
371 		if (ret < 0)
372 			goto out;
373 		/*
374 		 * First search, if no extent item that starts at offset off was
375 		 * found but the previous item is an extent item, it's possible
376 		 * it might overlap our target range, therefore process it.
377 		 */
378 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
379 			btrfs_item_key_to_cpu(path->nodes[0], &key,
380 					      path->slots[0] - 1);
381 			if (key.type == BTRFS_EXTENT_DATA_KEY)
382 				path->slots[0]--;
383 		}
384 
385 		nritems = btrfs_header_nritems(path->nodes[0]);
386 process_slot:
387 		if (path->slots[0] >= nritems) {
388 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
389 			if (ret < 0)
390 				goto out;
391 			if (ret > 0)
392 				break;
393 			nritems = btrfs_header_nritems(path->nodes[0]);
394 		}
395 		leaf = path->nodes[0];
396 		slot = path->slots[0];
397 
398 		btrfs_item_key_to_cpu(leaf, &key, slot);
399 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
400 		    key.objectid != btrfs_ino(BTRFS_I(src)))
401 			break;
402 
403 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
404 
405 		extent = btrfs_item_ptr(leaf, slot,
406 					struct btrfs_file_extent_item);
407 		extent_gen = btrfs_file_extent_generation(leaf, extent);
408 		comp = btrfs_file_extent_compression(leaf, extent);
409 		type = btrfs_file_extent_type(leaf, extent);
410 		if (type == BTRFS_FILE_EXTENT_REG ||
411 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
412 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
413 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
414 			datao = btrfs_file_extent_offset(leaf, extent);
415 			datal = btrfs_file_extent_num_bytes(leaf, extent);
416 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
417 			/* Take upper bound, may be compressed */
418 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
419 		}
420 
421 		/*
422 		 * The first search might have left us at an extent item that
423 		 * ends before our target range's start, can happen if we have
424 		 * holes and NO_HOLES feature enabled.
425 		 */
426 		if (key.offset + datal <= off) {
427 			path->slots[0]++;
428 			goto process_slot;
429 		} else if (key.offset >= off + len) {
430 			break;
431 		}
432 		next_key_min_offset = key.offset + datal;
433 		size = btrfs_item_size_nr(leaf, slot);
434 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
435 				   size);
436 
437 		btrfs_release_path(path);
438 		path->leave_spinning = 0;
439 
440 		memcpy(&new_key, &key, sizeof(new_key));
441 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
442 		if (off <= key.offset)
443 			new_key.offset = key.offset + destoff - off;
444 		else
445 			new_key.offset = destoff;
446 
447 		/*
448 		 * Deal with a hole that doesn't have an extent item that
449 		 * represents it (NO_HOLES feature enabled).
450 		 * This hole is either in the middle of the cloning range or at
451 		 * the beginning (fully overlaps it or partially overlaps it).
452 		 */
453 		if (new_key.offset != last_dest_end)
454 			drop_start = last_dest_end;
455 		else
456 			drop_start = new_key.offset;
457 
458 		if (type == BTRFS_FILE_EXTENT_REG ||
459 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
460 			struct btrfs_replace_extent_info clone_info;
461 
462 			/*
463 			 *    a  | --- range to clone ---|  b
464 			 * | ------------- extent ------------- |
465 			 */
466 
467 			/* Subtract range b */
468 			if (key.offset + datal > off + len)
469 				datal = off + len - key.offset;
470 
471 			/* Subtract range a */
472 			if (off > key.offset) {
473 				datao += off - key.offset;
474 				datal -= off - key.offset;
475 			}
476 
477 			clone_info.disk_offset = disko;
478 			clone_info.disk_len = diskl;
479 			clone_info.data_offset = datao;
480 			clone_info.data_len = datal;
481 			clone_info.file_offset = new_key.offset;
482 			clone_info.extent_buf = buf;
483 			clone_info.is_new_extent = false;
484 			ret = btrfs_replace_file_extents(inode, path, drop_start,
485 					new_key.offset + datal - 1, &clone_info,
486 					&trans);
487 			if (ret)
488 				goto out;
489 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
490 			/*
491 			 * Inline extents always have to start at file offset 0
492 			 * and can never be bigger then the sector size. We can
493 			 * never clone only parts of an inline extent, since all
494 			 * reflink operations must start at a sector size aligned
495 			 * offset, and the length must be aligned too or end at
496 			 * the i_size (which implies the whole inlined data).
497 			 */
498 			ASSERT(key.offset == 0);
499 			ASSERT(datal <= fs_info->sectorsize);
500 			if (key.offset != 0 || datal > fs_info->sectorsize)
501 				return -EUCLEAN;
502 
503 			ret = clone_copy_inline_extent(inode, path, &new_key,
504 						       drop_start, datal, size,
505 						       comp, buf, &trans);
506 			if (ret)
507 				goto out;
508 		}
509 
510 		btrfs_release_path(path);
511 
512 		/*
513 		 * If this is a new extent update the last_reflink_trans of both
514 		 * inodes. This is used by fsync to make sure it does not log
515 		 * multiple checksum items with overlapping ranges. For older
516 		 * extents we don't need to do it since inode logging skips the
517 		 * checksums for older extents. Also ignore holes and inline
518 		 * extents because they don't have checksums in the csum tree.
519 		 */
520 		if (extent_gen == trans->transid && disko > 0) {
521 			BTRFS_I(src)->last_reflink_trans = trans->transid;
522 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
523 		}
524 
525 		last_dest_end = ALIGN(new_key.offset + datal,
526 				      fs_info->sectorsize);
527 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
528 						destoff, olen, no_time_update);
529 		if (ret)
530 			goto out;
531 		if (new_key.offset + datal >= destoff + len)
532 			break;
533 
534 		btrfs_release_path(path);
535 		key.offset = next_key_min_offset;
536 
537 		if (fatal_signal_pending(current)) {
538 			ret = -EINTR;
539 			goto out;
540 		}
541 
542 		cond_resched();
543 	}
544 	ret = 0;
545 
546 	if (last_dest_end < destoff + len) {
547 		/*
548 		 * We have an implicit hole that fully or partially overlaps our
549 		 * cloning range at its end. This means that we either have the
550 		 * NO_HOLES feature enabled or the implicit hole happened due to
551 		 * mixing buffered and direct IO writes against this file.
552 		 */
553 		btrfs_release_path(path);
554 		path->leave_spinning = 0;
555 
556 		/*
557 		 * When using NO_HOLES and we are cloning a range that covers
558 		 * only a hole (no extents) into a range beyond the current
559 		 * i_size, punching a hole in the target range will not create
560 		 * an extent map defining a hole, because the range starts at or
561 		 * beyond current i_size. If the file previously had an i_size
562 		 * greater than the new i_size set by this clone operation, we
563 		 * need to make sure the next fsync is a full fsync, so that it
564 		 * detects and logs a hole covering a range from the current
565 		 * i_size to the new i_size. If the clone range covers extents,
566 		 * besides a hole, then we know the full sync flag was already
567 		 * set by previous calls to btrfs_replace_file_extents() that
568 		 * replaced file extent items.
569 		 */
570 		if (last_dest_end >= i_size_read(inode))
571 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
572 				&BTRFS_I(inode)->runtime_flags);
573 
574 		ret = btrfs_replace_file_extents(inode, path, last_dest_end,
575 				destoff + len - 1, NULL, &trans);
576 		if (ret)
577 			goto out;
578 
579 		ret = clone_finish_inode_update(trans, inode, destoff + len,
580 						destoff, olen, no_time_update);
581 	}
582 
583 out:
584 	btrfs_free_path(path);
585 	kvfree(buf);
586 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
587 
588 	return ret;
589 }
590 
591 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
592 				       struct inode *inode2, u64 loff2, u64 len)
593 {
594 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
595 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
596 }
597 
598 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
599 				     struct inode *inode2, u64 loff2, u64 len)
600 {
601 	if (inode1 < inode2) {
602 		swap(inode1, inode2);
603 		swap(loff1, loff2);
604 	} else if (inode1 == inode2 && loff2 < loff1) {
605 		swap(loff1, loff2);
606 	}
607 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
608 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
609 }
610 
611 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
612 				   struct inode *dst, u64 dst_loff)
613 {
614 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
615 	int ret;
616 
617 	/*
618 	 * Lock destination range to serialize with concurrent readpages() and
619 	 * source range to serialize with relocation.
620 	 */
621 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
622 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
623 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
624 
625 	return ret;
626 }
627 
628 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
629 			     struct inode *dst, u64 dst_loff)
630 {
631 	int ret;
632 	u64 i, tail_len, chunk_count;
633 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
634 
635 	spin_lock(&root_dst->root_item_lock);
636 	if (root_dst->send_in_progress) {
637 		btrfs_warn_rl(root_dst->fs_info,
638 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
639 			      root_dst->root_key.objectid,
640 			      root_dst->send_in_progress);
641 		spin_unlock(&root_dst->root_item_lock);
642 		return -EAGAIN;
643 	}
644 	root_dst->dedupe_in_progress++;
645 	spin_unlock(&root_dst->root_item_lock);
646 
647 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
648 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
649 
650 	for (i = 0; i < chunk_count; i++) {
651 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
652 					      dst, dst_loff);
653 		if (ret)
654 			goto out;
655 
656 		loff += BTRFS_MAX_DEDUPE_LEN;
657 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
658 	}
659 
660 	if (tail_len > 0)
661 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
662 out:
663 	spin_lock(&root_dst->root_item_lock);
664 	root_dst->dedupe_in_progress--;
665 	spin_unlock(&root_dst->root_item_lock);
666 
667 	return ret;
668 }
669 
670 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
671 					u64 off, u64 olen, u64 destoff)
672 {
673 	struct inode *inode = file_inode(file);
674 	struct inode *src = file_inode(file_src);
675 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
676 	int ret;
677 	int wb_ret;
678 	u64 len = olen;
679 	u64 bs = fs_info->sb->s_blocksize;
680 
681 	/*
682 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
683 	 * eof block into the middle of a file, which would result in corruption
684 	 * if the file size is not blocksize aligned. So we don't need to check
685 	 * for that case here.
686 	 */
687 	if (off + len == src->i_size)
688 		len = ALIGN(src->i_size, bs) - off;
689 
690 	if (destoff > inode->i_size) {
691 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
692 
693 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
694 		if (ret)
695 			return ret;
696 		/*
697 		 * We may have truncated the last block if the inode's size is
698 		 * not sector size aligned, so we need to wait for writeback to
699 		 * complete before proceeding further, otherwise we can race
700 		 * with cloning and attempt to increment a reference to an
701 		 * extent that no longer exists (writeback completed right after
702 		 * we found the previous extent covering eof and before we
703 		 * attempted to increment its reference count).
704 		 */
705 		ret = btrfs_wait_ordered_range(inode, wb_start,
706 					       destoff - wb_start);
707 		if (ret)
708 			return ret;
709 	}
710 
711 	/*
712 	 * Lock destination range to serialize with concurrent readpages() and
713 	 * source range to serialize with relocation.
714 	 */
715 	btrfs_double_extent_lock(src, off, inode, destoff, len);
716 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
717 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
718 
719 	/*
720 	 * We may have copied an inline extent into a page of the destination
721 	 * range, so wait for writeback to complete before truncating pages
722 	 * from the page cache. This is a rare case.
723 	 */
724 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
725 	ret = ret ? ret : wb_ret;
726 	/*
727 	 * Truncate page cache pages so that future reads will see the cloned
728 	 * data immediately and not the previous data.
729 	 */
730 	truncate_inode_pages_range(&inode->i_data,
731 				round_down(destoff, PAGE_SIZE),
732 				round_up(destoff + len, PAGE_SIZE) - 1);
733 
734 	return ret;
735 }
736 
737 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
738 				       struct file *file_out, loff_t pos_out,
739 				       loff_t *len, unsigned int remap_flags)
740 {
741 	struct inode *inode_in = file_inode(file_in);
742 	struct inode *inode_out = file_inode(file_out);
743 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
744 	bool same_inode = inode_out == inode_in;
745 	u64 wb_len;
746 	int ret;
747 
748 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
749 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
750 
751 		if (btrfs_root_readonly(root_out))
752 			return -EROFS;
753 
754 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
755 		    inode_in->i_sb != inode_out->i_sb)
756 			return -EXDEV;
757 	}
758 
759 	/* Don't make the dst file partly checksummed */
760 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
761 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
762 		return -EINVAL;
763 	}
764 
765 	/*
766 	 * Now that the inodes are locked, we need to start writeback ourselves
767 	 * and can not rely on the writeback from the VFS's generic helper
768 	 * generic_remap_file_range_prep() because:
769 	 *
770 	 * 1) For compression we must call filemap_fdatawrite_range() range
771 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
772 	 *    helper only calls it once;
773 	 *
774 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
775 	 *    waits for the writeback to complete, i.e. for IO to be done, and
776 	 *    not for the ordered extents to complete. We need to wait for them
777 	 *    to complete so that new file extent items are in the fs tree.
778 	 */
779 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
780 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
781 	else
782 		wb_len = ALIGN(*len, bs);
783 
784 	/*
785 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
786 	 * any in progress could create its ordered extents after we wait for
787 	 * existing ordered extents below).
788 	 */
789 	inode_dio_wait(inode_in);
790 	if (!same_inode)
791 		inode_dio_wait(inode_out);
792 
793 	/*
794 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
795 	 *
796 	 * Btrfs' back references do not have a block level granularity, they
797 	 * work at the whole extent level.
798 	 * NOCOW buffered write without data space reserved may not be able
799 	 * to fall back to CoW due to lack of data space, thus could cause
800 	 * data loss.
801 	 *
802 	 * Here we take a shortcut by flushing the whole inode, so that all
803 	 * nocow write should reach disk as nocow before we increase the
804 	 * reference of the extent. We could do better by only flushing NOCOW
805 	 * data, but that needs extra accounting.
806 	 *
807 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
808 	 * CoWed anyway, not affecting nocow part.
809 	 */
810 	ret = filemap_flush(inode_in->i_mapping);
811 	if (ret < 0)
812 		return ret;
813 
814 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
815 				       wb_len);
816 	if (ret < 0)
817 		return ret;
818 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
819 				       wb_len);
820 	if (ret < 0)
821 		return ret;
822 
823 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
824 					    len, remap_flags);
825 }
826 
827 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
828 		struct file *dst_file, loff_t destoff, loff_t len,
829 		unsigned int remap_flags)
830 {
831 	struct inode *src_inode = file_inode(src_file);
832 	struct inode *dst_inode = file_inode(dst_file);
833 	bool same_inode = dst_inode == src_inode;
834 	int ret;
835 
836 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
837 		return -EINVAL;
838 
839 	if (same_inode)
840 		inode_lock(src_inode);
841 	else
842 		lock_two_nondirectories(src_inode, dst_inode);
843 
844 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
845 					  &len, remap_flags);
846 	if (ret < 0 || len == 0)
847 		goto out_unlock;
848 
849 	if (remap_flags & REMAP_FILE_DEDUP)
850 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
851 	else
852 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
853 
854 out_unlock:
855 	if (same_inode)
856 		inode_unlock(src_inode);
857 	else
858 		unlock_two_nondirectories(src_inode, dst_inode);
859 
860 	return ret < 0 ? ret : len;
861 }
862