1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/blkdev.h> 4 #include <linux/iversion.h> 5 #include "compression.h" 6 #include "ctree.h" 7 #include "delalloc-space.h" 8 #include "reflink.h" 9 #include "transaction.h" 10 11 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 12 13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 14 struct inode *inode, 15 u64 endoff, 16 const u64 destoff, 17 const u64 olen, 18 int no_time_update) 19 { 20 struct btrfs_root *root = BTRFS_I(inode)->root; 21 int ret; 22 23 inode_inc_iversion(inode); 24 if (!no_time_update) 25 inode->i_mtime = inode->i_ctime = current_time(inode); 26 /* 27 * We round up to the block size at eof when determining which 28 * extents to clone above, but shouldn't round up the file size. 29 */ 30 if (endoff > destoff + olen) 31 endoff = destoff + olen; 32 if (endoff > inode->i_size) { 33 i_size_write(inode, endoff); 34 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 35 } 36 37 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 38 if (ret) { 39 btrfs_abort_transaction(trans, ret); 40 btrfs_end_transaction(trans); 41 goto out; 42 } 43 ret = btrfs_end_transaction(trans); 44 out: 45 return ret; 46 } 47 48 static int copy_inline_to_page(struct btrfs_inode *inode, 49 const u64 file_offset, 50 char *inline_data, 51 const u64 size, 52 const u64 datal, 53 const u8 comp_type) 54 { 55 const u64 block_size = btrfs_inode_sectorsize(inode); 56 const u64 range_end = file_offset + block_size - 1; 57 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); 58 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); 59 struct extent_changeset *data_reserved = NULL; 60 struct page *page = NULL; 61 struct address_space *mapping = inode->vfs_inode.i_mapping; 62 int ret; 63 64 ASSERT(IS_ALIGNED(file_offset, block_size)); 65 66 /* 67 * We have flushed and locked the ranges of the source and destination 68 * inodes, we also have locked the inodes, so we are safe to do a 69 * reservation here. Also we must not do the reservation while holding 70 * a transaction open, otherwise we would deadlock. 71 */ 72 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, 73 block_size); 74 if (ret) 75 goto out; 76 77 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT, 78 btrfs_alloc_write_mask(mapping)); 79 if (!page) { 80 ret = -ENOMEM; 81 goto out_unlock; 82 } 83 84 set_page_extent_mapped(page); 85 clear_extent_bit(&inode->io_tree, file_offset, range_end, 86 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 87 0, 0, NULL); 88 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); 89 if (ret) 90 goto out_unlock; 91 92 /* 93 * After dirtying the page our caller will need to start a transaction, 94 * and if we are low on metadata free space, that can cause flushing of 95 * delalloc for all inodes in order to get metadata space released. 96 * However we are holding the range locked for the whole duration of 97 * the clone/dedupe operation, so we may deadlock if that happens and no 98 * other task releases enough space. So mark this inode as not being 99 * possible to flush to avoid such deadlock. We will clear that flag 100 * when we finish cloning all extents, since a transaction is started 101 * after finding each extent to clone. 102 */ 103 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); 104 105 if (comp_type == BTRFS_COMPRESS_NONE) { 106 char *map; 107 108 map = kmap(page); 109 memcpy(map, data_start, datal); 110 flush_dcache_page(page); 111 kunmap(page); 112 } else { 113 ret = btrfs_decompress(comp_type, data_start, page, 0, 114 inline_size, datal); 115 if (ret) 116 goto out_unlock; 117 flush_dcache_page(page); 118 } 119 120 /* 121 * If our inline data is smaller then the block/page size, then the 122 * remaining of the block/page is equivalent to zeroes. We had something 123 * like the following done: 124 * 125 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file 126 * $ sync # (or fsync) 127 * $ xfs_io -c "falloc 0 4K" file 128 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 129 * 130 * So what's in the range [500, 4095] corresponds to zeroes. 131 */ 132 if (datal < block_size) { 133 char *map; 134 135 map = kmap(page); 136 memset(map + datal, 0, block_size - datal); 137 flush_dcache_page(page); 138 kunmap(page); 139 } 140 141 SetPageUptodate(page); 142 ClearPageChecked(page); 143 set_page_dirty(page); 144 out_unlock: 145 if (page) { 146 unlock_page(page); 147 put_page(page); 148 } 149 if (ret) 150 btrfs_delalloc_release_space(inode, data_reserved, file_offset, 151 block_size, true); 152 btrfs_delalloc_release_extents(inode, block_size); 153 out: 154 extent_changeset_free(data_reserved); 155 156 return ret; 157 } 158 159 /* 160 * Deal with cloning of inline extents. We try to copy the inline extent from 161 * the source inode to destination inode when possible. When not possible we 162 * copy the inline extent's data into the respective page of the inode. 163 */ 164 static int clone_copy_inline_extent(struct inode *dst, 165 struct btrfs_path *path, 166 struct btrfs_key *new_key, 167 const u64 drop_start, 168 const u64 datal, 169 const u64 size, 170 const u8 comp_type, 171 char *inline_data, 172 struct btrfs_trans_handle **trans_out) 173 { 174 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 175 struct btrfs_root *root = BTRFS_I(dst)->root; 176 const u64 aligned_end = ALIGN(new_key->offset + datal, 177 fs_info->sectorsize); 178 struct btrfs_trans_handle *trans = NULL; 179 struct btrfs_drop_extents_args drop_args = { 0 }; 180 int ret; 181 struct btrfs_key key; 182 183 if (new_key->offset > 0) { 184 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 185 inline_data, size, datal, comp_type); 186 goto out; 187 } 188 189 key.objectid = btrfs_ino(BTRFS_I(dst)); 190 key.type = BTRFS_EXTENT_DATA_KEY; 191 key.offset = 0; 192 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 193 if (ret < 0) { 194 return ret; 195 } else if (ret > 0) { 196 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 197 ret = btrfs_next_leaf(root, path); 198 if (ret < 0) 199 return ret; 200 else if (ret > 0) 201 goto copy_inline_extent; 202 } 203 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 204 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 205 key.type == BTRFS_EXTENT_DATA_KEY) { 206 /* 207 * There's an implicit hole at file offset 0, copy the 208 * inline extent's data to the page. 209 */ 210 ASSERT(key.offset > 0); 211 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 212 inline_data, size, datal, 213 comp_type); 214 goto out; 215 } 216 } else if (i_size_read(dst) <= datal) { 217 struct btrfs_file_extent_item *ei; 218 219 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 220 struct btrfs_file_extent_item); 221 /* 222 * If it's an inline extent replace it with the source inline 223 * extent, otherwise copy the source inline extent data into 224 * the respective page at the destination inode. 225 */ 226 if (btrfs_file_extent_type(path->nodes[0], ei) == 227 BTRFS_FILE_EXTENT_INLINE) 228 goto copy_inline_extent; 229 230 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 231 inline_data, size, datal, comp_type); 232 goto out; 233 } 234 235 copy_inline_extent: 236 ret = 0; 237 /* 238 * We have no extent items, or we have an extent at offset 0 which may 239 * or may not be inlined. All these cases are dealt the same way. 240 */ 241 if (i_size_read(dst) > datal) { 242 /* 243 * At the destination offset 0 we have either a hole, a regular 244 * extent or an inline extent larger then the one we want to 245 * clone. Deal with all these cases by copying the inline extent 246 * data into the respective page at the destination inode. 247 */ 248 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 249 inline_data, size, datal, comp_type); 250 goto out; 251 } 252 253 btrfs_release_path(path); 254 /* 255 * If we end up here it means were copy the inline extent into a leaf 256 * of the destination inode. We know we will drop or adjust at most one 257 * extent item in the destination root. 258 * 259 * 1 unit - adjusting old extent (we may have to split it) 260 * 1 unit - add new extent 261 * 1 unit - inode update 262 */ 263 trans = btrfs_start_transaction(root, 3); 264 if (IS_ERR(trans)) { 265 ret = PTR_ERR(trans); 266 trans = NULL; 267 goto out; 268 } 269 drop_args.path = path; 270 drop_args.start = drop_start; 271 drop_args.end = aligned_end; 272 drop_args.drop_cache = true; 273 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args); 274 if (ret) 275 goto out; 276 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 277 if (ret) 278 goto out; 279 280 write_extent_buffer(path->nodes[0], inline_data, 281 btrfs_item_ptr_offset(path->nodes[0], 282 path->slots[0]), 283 size); 284 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found); 285 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 286 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end); 287 out: 288 if (!ret && !trans) { 289 /* 290 * No transaction here means we copied the inline extent into a 291 * page of the destination inode. 292 * 293 * 1 unit to update inode item 294 */ 295 trans = btrfs_start_transaction(root, 1); 296 if (IS_ERR(trans)) { 297 ret = PTR_ERR(trans); 298 trans = NULL; 299 } 300 } 301 if (ret && trans) { 302 btrfs_abort_transaction(trans, ret); 303 btrfs_end_transaction(trans); 304 } 305 if (!ret) 306 *trans_out = trans; 307 308 return ret; 309 } 310 311 /** 312 * btrfs_clone() - clone a range from inode file to another 313 * 314 * @src: Inode to clone from 315 * @inode: Inode to clone to 316 * @off: Offset within source to start clone from 317 * @olen: Original length, passed by user, of range to clone 318 * @olen_aligned: Block-aligned value of olen 319 * @destoff: Offset within @inode to start clone 320 * @no_time_update: Whether to update mtime/ctime on the target inode 321 */ 322 static int btrfs_clone(struct inode *src, struct inode *inode, 323 const u64 off, const u64 olen, const u64 olen_aligned, 324 const u64 destoff, int no_time_update) 325 { 326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 327 struct btrfs_path *path = NULL; 328 struct extent_buffer *leaf; 329 struct btrfs_trans_handle *trans; 330 char *buf = NULL; 331 struct btrfs_key key; 332 u32 nritems; 333 int slot; 334 int ret; 335 const u64 len = olen_aligned; 336 u64 last_dest_end = destoff; 337 338 ret = -ENOMEM; 339 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 340 if (!buf) 341 return ret; 342 343 path = btrfs_alloc_path(); 344 if (!path) { 345 kvfree(buf); 346 return ret; 347 } 348 349 path->reada = READA_FORWARD; 350 /* Clone data */ 351 key.objectid = btrfs_ino(BTRFS_I(src)); 352 key.type = BTRFS_EXTENT_DATA_KEY; 353 key.offset = off; 354 355 while (1) { 356 u64 next_key_min_offset = key.offset + 1; 357 struct btrfs_file_extent_item *extent; 358 u64 extent_gen; 359 int type; 360 u32 size; 361 struct btrfs_key new_key; 362 u64 disko = 0, diskl = 0; 363 u64 datao = 0, datal = 0; 364 u8 comp; 365 u64 drop_start; 366 367 /* Note the key will change type as we walk through the tree */ 368 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 369 0, 0); 370 if (ret < 0) 371 goto out; 372 /* 373 * First search, if no extent item that starts at offset off was 374 * found but the previous item is an extent item, it's possible 375 * it might overlap our target range, therefore process it. 376 */ 377 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 378 btrfs_item_key_to_cpu(path->nodes[0], &key, 379 path->slots[0] - 1); 380 if (key.type == BTRFS_EXTENT_DATA_KEY) 381 path->slots[0]--; 382 } 383 384 nritems = btrfs_header_nritems(path->nodes[0]); 385 process_slot: 386 if (path->slots[0] >= nritems) { 387 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 388 if (ret < 0) 389 goto out; 390 if (ret > 0) 391 break; 392 nritems = btrfs_header_nritems(path->nodes[0]); 393 } 394 leaf = path->nodes[0]; 395 slot = path->slots[0]; 396 397 btrfs_item_key_to_cpu(leaf, &key, slot); 398 if (key.type > BTRFS_EXTENT_DATA_KEY || 399 key.objectid != btrfs_ino(BTRFS_I(src))) 400 break; 401 402 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 403 404 extent = btrfs_item_ptr(leaf, slot, 405 struct btrfs_file_extent_item); 406 extent_gen = btrfs_file_extent_generation(leaf, extent); 407 comp = btrfs_file_extent_compression(leaf, extent); 408 type = btrfs_file_extent_type(leaf, extent); 409 if (type == BTRFS_FILE_EXTENT_REG || 410 type == BTRFS_FILE_EXTENT_PREALLOC) { 411 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 412 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 413 datao = btrfs_file_extent_offset(leaf, extent); 414 datal = btrfs_file_extent_num_bytes(leaf, extent); 415 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 416 /* Take upper bound, may be compressed */ 417 datal = btrfs_file_extent_ram_bytes(leaf, extent); 418 } 419 420 /* 421 * The first search might have left us at an extent item that 422 * ends before our target range's start, can happen if we have 423 * holes and NO_HOLES feature enabled. 424 */ 425 if (key.offset + datal <= off) { 426 path->slots[0]++; 427 goto process_slot; 428 } else if (key.offset >= off + len) { 429 break; 430 } 431 next_key_min_offset = key.offset + datal; 432 size = btrfs_item_size_nr(leaf, slot); 433 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 434 size); 435 436 btrfs_release_path(path); 437 438 memcpy(&new_key, &key, sizeof(new_key)); 439 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 440 if (off <= key.offset) 441 new_key.offset = key.offset + destoff - off; 442 else 443 new_key.offset = destoff; 444 445 /* 446 * Deal with a hole that doesn't have an extent item that 447 * represents it (NO_HOLES feature enabled). 448 * This hole is either in the middle of the cloning range or at 449 * the beginning (fully overlaps it or partially overlaps it). 450 */ 451 if (new_key.offset != last_dest_end) 452 drop_start = last_dest_end; 453 else 454 drop_start = new_key.offset; 455 456 if (type == BTRFS_FILE_EXTENT_REG || 457 type == BTRFS_FILE_EXTENT_PREALLOC) { 458 struct btrfs_replace_extent_info clone_info; 459 460 /* 461 * a | --- range to clone ---| b 462 * | ------------- extent ------------- | 463 */ 464 465 /* Subtract range b */ 466 if (key.offset + datal > off + len) 467 datal = off + len - key.offset; 468 469 /* Subtract range a */ 470 if (off > key.offset) { 471 datao += off - key.offset; 472 datal -= off - key.offset; 473 } 474 475 clone_info.disk_offset = disko; 476 clone_info.disk_len = diskl; 477 clone_info.data_offset = datao; 478 clone_info.data_len = datal; 479 clone_info.file_offset = new_key.offset; 480 clone_info.extent_buf = buf; 481 clone_info.is_new_extent = false; 482 ret = btrfs_replace_file_extents(inode, path, drop_start, 483 new_key.offset + datal - 1, &clone_info, 484 &trans); 485 if (ret) 486 goto out; 487 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 488 /* 489 * Inline extents always have to start at file offset 0 490 * and can never be bigger then the sector size. We can 491 * never clone only parts of an inline extent, since all 492 * reflink operations must start at a sector size aligned 493 * offset, and the length must be aligned too or end at 494 * the i_size (which implies the whole inlined data). 495 */ 496 ASSERT(key.offset == 0); 497 ASSERT(datal <= fs_info->sectorsize); 498 if (key.offset != 0 || datal > fs_info->sectorsize) 499 return -EUCLEAN; 500 501 ret = clone_copy_inline_extent(inode, path, &new_key, 502 drop_start, datal, size, 503 comp, buf, &trans); 504 if (ret) 505 goto out; 506 } 507 508 btrfs_release_path(path); 509 510 /* 511 * If this is a new extent update the last_reflink_trans of both 512 * inodes. This is used by fsync to make sure it does not log 513 * multiple checksum items with overlapping ranges. For older 514 * extents we don't need to do it since inode logging skips the 515 * checksums for older extents. Also ignore holes and inline 516 * extents because they don't have checksums in the csum tree. 517 */ 518 if (extent_gen == trans->transid && disko > 0) { 519 BTRFS_I(src)->last_reflink_trans = trans->transid; 520 BTRFS_I(inode)->last_reflink_trans = trans->transid; 521 } 522 523 last_dest_end = ALIGN(new_key.offset + datal, 524 fs_info->sectorsize); 525 ret = clone_finish_inode_update(trans, inode, last_dest_end, 526 destoff, olen, no_time_update); 527 if (ret) 528 goto out; 529 if (new_key.offset + datal >= destoff + len) 530 break; 531 532 btrfs_release_path(path); 533 key.offset = next_key_min_offset; 534 535 if (fatal_signal_pending(current)) { 536 ret = -EINTR; 537 goto out; 538 } 539 540 cond_resched(); 541 } 542 ret = 0; 543 544 if (last_dest_end < destoff + len) { 545 /* 546 * We have an implicit hole that fully or partially overlaps our 547 * cloning range at its end. This means that we either have the 548 * NO_HOLES feature enabled or the implicit hole happened due to 549 * mixing buffered and direct IO writes against this file. 550 */ 551 btrfs_release_path(path); 552 553 ret = btrfs_replace_file_extents(inode, path, last_dest_end, 554 destoff + len - 1, NULL, &trans); 555 if (ret) 556 goto out; 557 558 ret = clone_finish_inode_update(trans, inode, destoff + len, 559 destoff, olen, no_time_update); 560 } 561 562 out: 563 btrfs_free_path(path); 564 kvfree(buf); 565 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); 566 567 return ret; 568 } 569 570 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 571 struct inode *inode2, u64 loff2, u64 len) 572 { 573 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 574 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 575 } 576 577 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 578 struct inode *inode2, u64 loff2, u64 len) 579 { 580 if (inode1 < inode2) { 581 swap(inode1, inode2); 582 swap(loff1, loff2); 583 } else if (inode1 == inode2 && loff2 < loff1) { 584 swap(loff1, loff2); 585 } 586 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 587 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 588 } 589 590 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 591 struct inode *dst, u64 dst_loff) 592 { 593 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 594 int ret; 595 596 /* 597 * Lock destination range to serialize with concurrent readpages() and 598 * source range to serialize with relocation. 599 */ 600 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 601 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); 602 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 603 604 return ret; 605 } 606 607 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 608 struct inode *dst, u64 dst_loff) 609 { 610 int ret; 611 u64 i, tail_len, chunk_count; 612 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 613 614 spin_lock(&root_dst->root_item_lock); 615 if (root_dst->send_in_progress) { 616 btrfs_warn_rl(root_dst->fs_info, 617 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 618 root_dst->root_key.objectid, 619 root_dst->send_in_progress); 620 spin_unlock(&root_dst->root_item_lock); 621 return -EAGAIN; 622 } 623 root_dst->dedupe_in_progress++; 624 spin_unlock(&root_dst->root_item_lock); 625 626 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 627 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 628 629 for (i = 0; i < chunk_count; i++) { 630 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 631 dst, dst_loff); 632 if (ret) 633 goto out; 634 635 loff += BTRFS_MAX_DEDUPE_LEN; 636 dst_loff += BTRFS_MAX_DEDUPE_LEN; 637 } 638 639 if (tail_len > 0) 640 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff); 641 out: 642 spin_lock(&root_dst->root_item_lock); 643 root_dst->dedupe_in_progress--; 644 spin_unlock(&root_dst->root_item_lock); 645 646 return ret; 647 } 648 649 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 650 u64 off, u64 olen, u64 destoff) 651 { 652 struct inode *inode = file_inode(file); 653 struct inode *src = file_inode(file_src); 654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 655 int ret; 656 int wb_ret; 657 u64 len = olen; 658 u64 bs = fs_info->sb->s_blocksize; 659 660 /* 661 * VFS's generic_remap_file_range_prep() protects us from cloning the 662 * eof block into the middle of a file, which would result in corruption 663 * if the file size is not blocksize aligned. So we don't need to check 664 * for that case here. 665 */ 666 if (off + len == src->i_size) 667 len = ALIGN(src->i_size, bs) - off; 668 669 if (destoff > inode->i_size) { 670 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 671 672 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff); 673 if (ret) 674 return ret; 675 /* 676 * We may have truncated the last block if the inode's size is 677 * not sector size aligned, so we need to wait for writeback to 678 * complete before proceeding further, otherwise we can race 679 * with cloning and attempt to increment a reference to an 680 * extent that no longer exists (writeback completed right after 681 * we found the previous extent covering eof and before we 682 * attempted to increment its reference count). 683 */ 684 ret = btrfs_wait_ordered_range(inode, wb_start, 685 destoff - wb_start); 686 if (ret) 687 return ret; 688 } 689 690 /* 691 * Lock destination range to serialize with concurrent readpages() and 692 * source range to serialize with relocation. 693 */ 694 btrfs_double_extent_lock(src, off, inode, destoff, len); 695 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 696 btrfs_double_extent_unlock(src, off, inode, destoff, len); 697 698 /* 699 * We may have copied an inline extent into a page of the destination 700 * range, so wait for writeback to complete before truncating pages 701 * from the page cache. This is a rare case. 702 */ 703 wb_ret = btrfs_wait_ordered_range(inode, destoff, len); 704 ret = ret ? ret : wb_ret; 705 /* 706 * Truncate page cache pages so that future reads will see the cloned 707 * data immediately and not the previous data. 708 */ 709 truncate_inode_pages_range(&inode->i_data, 710 round_down(destoff, PAGE_SIZE), 711 round_up(destoff + len, PAGE_SIZE) - 1); 712 713 return ret; 714 } 715 716 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 717 struct file *file_out, loff_t pos_out, 718 loff_t *len, unsigned int remap_flags) 719 { 720 struct inode *inode_in = file_inode(file_in); 721 struct inode *inode_out = file_inode(file_out); 722 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 723 bool same_inode = inode_out == inode_in; 724 u64 wb_len; 725 int ret; 726 727 if (!(remap_flags & REMAP_FILE_DEDUP)) { 728 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 729 730 if (btrfs_root_readonly(root_out)) 731 return -EROFS; 732 733 if (file_in->f_path.mnt != file_out->f_path.mnt || 734 inode_in->i_sb != inode_out->i_sb) 735 return -EXDEV; 736 } 737 738 /* Don't make the dst file partly checksummed */ 739 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 740 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 741 return -EINVAL; 742 } 743 744 /* 745 * Now that the inodes are locked, we need to start writeback ourselves 746 * and can not rely on the writeback from the VFS's generic helper 747 * generic_remap_file_range_prep() because: 748 * 749 * 1) For compression we must call filemap_fdatawrite_range() range 750 * twice (btrfs_fdatawrite_range() does it for us), and the generic 751 * helper only calls it once; 752 * 753 * 2) filemap_fdatawrite_range(), called by the generic helper only 754 * waits for the writeback to complete, i.e. for IO to be done, and 755 * not for the ordered extents to complete. We need to wait for them 756 * to complete so that new file extent items are in the fs tree. 757 */ 758 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 759 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 760 else 761 wb_len = ALIGN(*len, bs); 762 763 /* 764 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 765 * any in progress could create its ordered extents after we wait for 766 * existing ordered extents below). 767 */ 768 inode_dio_wait(inode_in); 769 if (!same_inode) 770 inode_dio_wait(inode_out); 771 772 /* 773 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 774 * 775 * Btrfs' back references do not have a block level granularity, they 776 * work at the whole extent level. 777 * NOCOW buffered write without data space reserved may not be able 778 * to fall back to CoW due to lack of data space, thus could cause 779 * data loss. 780 * 781 * Here we take a shortcut by flushing the whole inode, so that all 782 * nocow write should reach disk as nocow before we increase the 783 * reference of the extent. We could do better by only flushing NOCOW 784 * data, but that needs extra accounting. 785 * 786 * Also we don't need to check ASYNC_EXTENT, as async extent will be 787 * CoWed anyway, not affecting nocow part. 788 */ 789 ret = filemap_flush(inode_in->i_mapping); 790 if (ret < 0) 791 return ret; 792 793 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 794 wb_len); 795 if (ret < 0) 796 return ret; 797 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 798 wb_len); 799 if (ret < 0) 800 return ret; 801 802 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 803 len, remap_flags); 804 } 805 806 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 807 struct file *dst_file, loff_t destoff, loff_t len, 808 unsigned int remap_flags) 809 { 810 struct inode *src_inode = file_inode(src_file); 811 struct inode *dst_inode = file_inode(dst_file); 812 bool same_inode = dst_inode == src_inode; 813 int ret; 814 815 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 816 return -EINVAL; 817 818 if (same_inode) 819 inode_lock(src_inode); 820 else 821 lock_two_nondirectories(src_inode, dst_inode); 822 823 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 824 &len, remap_flags); 825 if (ret < 0 || len == 0) 826 goto out_unlock; 827 828 if (remap_flags & REMAP_FILE_DEDUP) 829 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 830 else 831 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 832 833 out_unlock: 834 if (same_inode) 835 inode_unlock(src_inode); 836 else 837 unlock_two_nondirectories(src_inode, dst_inode); 838 839 return ret < 0 ? ret : len; 840 } 841