xref: /openbmc/linux/fs/btrfs/reflink.c (revision 802b8362)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(inode, 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, inode);
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
48 static int copy_inline_to_page(struct inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	int ret;
62 
63 	ASSERT(IS_ALIGNED(file_offset, block_size));
64 
65 	/*
66 	 * We have flushed and locked the ranges of the source and destination
67 	 * inodes, we also have locked the inodes, so we are safe to do a
68 	 * reservation here. Also we must not do the reservation while holding
69 	 * a transaction open, otherwise we would deadlock.
70 	 */
71 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
72 					   file_offset, block_size);
73 	if (ret)
74 		goto out;
75 
76 	page = find_or_create_page(inode->i_mapping, file_offset >> PAGE_SHIFT,
77 				   btrfs_alloc_write_mask(inode->i_mapping));
78 	if (!page) {
79 		ret = -ENOMEM;
80 		goto out_unlock;
81 	}
82 
83 	set_page_extent_mapped(page);
84 	clear_extent_bit(&BTRFS_I(inode)->io_tree, file_offset, range_end,
85 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
86 			 0, 0, NULL);
87 	ret = btrfs_set_extent_delalloc(BTRFS_I(inode), file_offset, range_end,
88 					0, NULL);
89 	if (ret)
90 		goto out_unlock;
91 
92 	if (comp_type == BTRFS_COMPRESS_NONE) {
93 		char *map;
94 
95 		map = kmap(page);
96 		memcpy(map, data_start, datal);
97 		flush_dcache_page(page);
98 		kunmap(page);
99 	} else {
100 		ret = btrfs_decompress(comp_type, data_start, page, 0,
101 				       inline_size, datal);
102 		if (ret)
103 			goto out_unlock;
104 		flush_dcache_page(page);
105 	}
106 
107 	/*
108 	 * If our inline data is smaller then the block/page size, then the
109 	 * remaining of the block/page is equivalent to zeroes. We had something
110 	 * like the following done:
111 	 *
112 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
113 	 * $ sync  # (or fsync)
114 	 * $ xfs_io -c "falloc 0 4K" file
115 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
116 	 *
117 	 * So what's in the range [500, 4095] corresponds to zeroes.
118 	 */
119 	if (datal < block_size) {
120 		char *map;
121 
122 		map = kmap(page);
123 		memset(map + datal, 0, block_size - datal);
124 		flush_dcache_page(page);
125 		kunmap(page);
126 	}
127 
128 	SetPageUptodate(page);
129 	ClearPageChecked(page);
130 	set_page_dirty(page);
131 out_unlock:
132 	if (page) {
133 		unlock_page(page);
134 		put_page(page);
135 	}
136 	if (ret)
137 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
138 					     file_offset, block_size, true);
139 	btrfs_delalloc_release_extents(BTRFS_I(inode), block_size);
140 out:
141 	extent_changeset_free(data_reserved);
142 
143 	return ret;
144 }
145 
146 /*
147  * Deal with cloning of inline extents. We try to copy the inline extent from
148  * the source inode to destination inode when possible. When not possible we
149  * copy the inline extent's data into the respective page of the inode.
150  */
151 static int clone_copy_inline_extent(struct inode *dst,
152 				    struct btrfs_path *path,
153 				    struct btrfs_key *new_key,
154 				    const u64 drop_start,
155 				    const u64 datal,
156 				    const u64 size,
157 				    const u8 comp_type,
158 				    char *inline_data,
159 				    struct btrfs_trans_handle **trans_out)
160 {
161 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
162 	struct btrfs_root *root = BTRFS_I(dst)->root;
163 	const u64 aligned_end = ALIGN(new_key->offset + datal,
164 				      fs_info->sectorsize);
165 	struct btrfs_trans_handle *trans = NULL;
166 	int ret;
167 	struct btrfs_key key;
168 
169 	if (new_key->offset > 0) {
170 		ret = copy_inline_to_page(dst, new_key->offset, inline_data,
171 					  size, datal, comp_type);
172 		goto out;
173 	}
174 
175 	key.objectid = btrfs_ino(BTRFS_I(dst));
176 	key.type = BTRFS_EXTENT_DATA_KEY;
177 	key.offset = 0;
178 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
179 	if (ret < 0) {
180 		return ret;
181 	} else if (ret > 0) {
182 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
183 			ret = btrfs_next_leaf(root, path);
184 			if (ret < 0)
185 				return ret;
186 			else if (ret > 0)
187 				goto copy_inline_extent;
188 		}
189 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
190 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
191 		    key.type == BTRFS_EXTENT_DATA_KEY) {
192 			/*
193 			 * There's an implicit hole at file offset 0, copy the
194 			 * inline extent's data to the page.
195 			 */
196 			ASSERT(key.offset > 0);
197 			ret = copy_inline_to_page(dst, new_key->offset,
198 						  inline_data, size, datal,
199 						  comp_type);
200 			goto out;
201 		}
202 	} else if (i_size_read(dst) <= datal) {
203 		struct btrfs_file_extent_item *ei;
204 
205 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
206 				    struct btrfs_file_extent_item);
207 		/*
208 		 * If it's an inline extent replace it with the source inline
209 		 * extent, otherwise copy the source inline extent data into
210 		 * the respective page at the destination inode.
211 		 */
212 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
213 		    BTRFS_FILE_EXTENT_INLINE)
214 			goto copy_inline_extent;
215 
216 		ret = copy_inline_to_page(dst, new_key->offset, inline_data,
217 					  size, datal, comp_type);
218 		goto out;
219 	}
220 
221 copy_inline_extent:
222 	ret = 0;
223 	/*
224 	 * We have no extent items, or we have an extent at offset 0 which may
225 	 * or may not be inlined. All these cases are dealt the same way.
226 	 */
227 	if (i_size_read(dst) > datal) {
228 		/*
229 		 * At the destination offset 0 we have either a hole, a regular
230 		 * extent or an inline extent larger then the one we want to
231 		 * clone. Deal with all these cases by copying the inline extent
232 		 * data into the respective page at the destination inode.
233 		 */
234 		ret = copy_inline_to_page(dst, new_key->offset, inline_data,
235 					   size, datal, comp_type);
236 		goto out;
237 	}
238 
239 	btrfs_release_path(path);
240 	/*
241 	 * If we end up here it means were copy the inline extent into a leaf
242 	 * of the destination inode. We know we will drop or adjust at most one
243 	 * extent item in the destination root.
244 	 *
245 	 * 1 unit - adjusting old extent (we may have to split it)
246 	 * 1 unit - add new extent
247 	 * 1 unit - inode update
248 	 */
249 	trans = btrfs_start_transaction(root, 3);
250 	if (IS_ERR(trans)) {
251 		ret = PTR_ERR(trans);
252 		trans = NULL;
253 		goto out;
254 	}
255 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
256 	if (ret)
257 		goto out;
258 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
259 	if (ret)
260 		goto out;
261 
262 	write_extent_buffer(path->nodes[0], inline_data,
263 			    btrfs_item_ptr_offset(path->nodes[0],
264 						  path->slots[0]),
265 			    size);
266 	inode_add_bytes(dst, datal);
267 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
268 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
269 out:
270 	if (!ret && !trans) {
271 		/*
272 		 * No transaction here means we copied the inline extent into a
273 		 * page of the destination inode.
274 		 *
275 		 * 1 unit to update inode item
276 		 */
277 		trans = btrfs_start_transaction(root, 1);
278 		if (IS_ERR(trans)) {
279 			ret = PTR_ERR(trans);
280 			trans = NULL;
281 		}
282 	}
283 	if (ret && trans) {
284 		btrfs_abort_transaction(trans, ret);
285 		btrfs_end_transaction(trans);
286 	}
287 	if (!ret)
288 		*trans_out = trans;
289 
290 	return ret;
291 }
292 
293 /**
294  * btrfs_clone() - clone a range from inode file to another
295  *
296  * @src: Inode to clone from
297  * @inode: Inode to clone to
298  * @off: Offset within source to start clone from
299  * @olen: Original length, passed by user, of range to clone
300  * @olen_aligned: Block-aligned value of olen
301  * @destoff: Offset within @inode to start clone
302  * @no_time_update: Whether to update mtime/ctime on the target inode
303  */
304 static int btrfs_clone(struct inode *src, struct inode *inode,
305 		       const u64 off, const u64 olen, const u64 olen_aligned,
306 		       const u64 destoff, int no_time_update)
307 {
308 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
309 	struct btrfs_path *path = NULL;
310 	struct extent_buffer *leaf;
311 	struct btrfs_trans_handle *trans;
312 	char *buf = NULL;
313 	struct btrfs_key key;
314 	u32 nritems;
315 	int slot;
316 	int ret;
317 	const u64 len = olen_aligned;
318 	u64 last_dest_end = destoff;
319 
320 	ret = -ENOMEM;
321 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
322 	if (!buf)
323 		return ret;
324 
325 	path = btrfs_alloc_path();
326 	if (!path) {
327 		kvfree(buf);
328 		return ret;
329 	}
330 
331 	path->reada = READA_FORWARD;
332 	/* Clone data */
333 	key.objectid = btrfs_ino(BTRFS_I(src));
334 	key.type = BTRFS_EXTENT_DATA_KEY;
335 	key.offset = off;
336 
337 	while (1) {
338 		u64 next_key_min_offset = key.offset + 1;
339 		struct btrfs_file_extent_item *extent;
340 		u64 extent_gen;
341 		int type;
342 		u32 size;
343 		struct btrfs_key new_key;
344 		u64 disko = 0, diskl = 0;
345 		u64 datao = 0, datal = 0;
346 		u8 comp;
347 		u64 drop_start;
348 
349 		/* Note the key will change type as we walk through the tree */
350 		path->leave_spinning = 1;
351 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
352 				0, 0);
353 		if (ret < 0)
354 			goto out;
355 		/*
356 		 * First search, if no extent item that starts at offset off was
357 		 * found but the previous item is an extent item, it's possible
358 		 * it might overlap our target range, therefore process it.
359 		 */
360 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
361 			btrfs_item_key_to_cpu(path->nodes[0], &key,
362 					      path->slots[0] - 1);
363 			if (key.type == BTRFS_EXTENT_DATA_KEY)
364 				path->slots[0]--;
365 		}
366 
367 		nritems = btrfs_header_nritems(path->nodes[0]);
368 process_slot:
369 		if (path->slots[0] >= nritems) {
370 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
371 			if (ret < 0)
372 				goto out;
373 			if (ret > 0)
374 				break;
375 			nritems = btrfs_header_nritems(path->nodes[0]);
376 		}
377 		leaf = path->nodes[0];
378 		slot = path->slots[0];
379 
380 		btrfs_item_key_to_cpu(leaf, &key, slot);
381 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
382 		    key.objectid != btrfs_ino(BTRFS_I(src)))
383 			break;
384 
385 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
386 
387 		extent = btrfs_item_ptr(leaf, slot,
388 					struct btrfs_file_extent_item);
389 		extent_gen = btrfs_file_extent_generation(leaf, extent);
390 		comp = btrfs_file_extent_compression(leaf, extent);
391 		type = btrfs_file_extent_type(leaf, extent);
392 		if (type == BTRFS_FILE_EXTENT_REG ||
393 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
394 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
395 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
396 			datao = btrfs_file_extent_offset(leaf, extent);
397 			datal = btrfs_file_extent_num_bytes(leaf, extent);
398 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
399 			/* Take upper bound, may be compressed */
400 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
401 		}
402 
403 		/*
404 		 * The first search might have left us at an extent item that
405 		 * ends before our target range's start, can happen if we have
406 		 * holes and NO_HOLES feature enabled.
407 		 */
408 		if (key.offset + datal <= off) {
409 			path->slots[0]++;
410 			goto process_slot;
411 		} else if (key.offset >= off + len) {
412 			break;
413 		}
414 		next_key_min_offset = key.offset + datal;
415 		size = btrfs_item_size_nr(leaf, slot);
416 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
417 				   size);
418 
419 		btrfs_release_path(path);
420 		path->leave_spinning = 0;
421 
422 		memcpy(&new_key, &key, sizeof(new_key));
423 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
424 		if (off <= key.offset)
425 			new_key.offset = key.offset + destoff - off;
426 		else
427 			new_key.offset = destoff;
428 
429 		/*
430 		 * Deal with a hole that doesn't have an extent item that
431 		 * represents it (NO_HOLES feature enabled).
432 		 * This hole is either in the middle of the cloning range or at
433 		 * the beginning (fully overlaps it or partially overlaps it).
434 		 */
435 		if (new_key.offset != last_dest_end)
436 			drop_start = last_dest_end;
437 		else
438 			drop_start = new_key.offset;
439 
440 		if (type == BTRFS_FILE_EXTENT_REG ||
441 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
442 			struct btrfs_clone_extent_info clone_info;
443 
444 			/*
445 			 *    a  | --- range to clone ---|  b
446 			 * | ------------- extent ------------- |
447 			 */
448 
449 			/* Subtract range b */
450 			if (key.offset + datal > off + len)
451 				datal = off + len - key.offset;
452 
453 			/* Subtract range a */
454 			if (off > key.offset) {
455 				datao += off - key.offset;
456 				datal -= off - key.offset;
457 			}
458 
459 			clone_info.disk_offset = disko;
460 			clone_info.disk_len = diskl;
461 			clone_info.data_offset = datao;
462 			clone_info.data_len = datal;
463 			clone_info.file_offset = new_key.offset;
464 			clone_info.extent_buf = buf;
465 			clone_info.item_size = size;
466 			ret = btrfs_punch_hole_range(inode, path, drop_start,
467 					new_key.offset + datal - 1, &clone_info,
468 					&trans);
469 			if (ret)
470 				goto out;
471 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
472 			/*
473 			 * Inline extents always have to start at file offset 0
474 			 * and can never be bigger then the sector size. We can
475 			 * never clone only parts of an inline extent, since all
476 			 * reflink operations must start at a sector size aligned
477 			 * offset, and the length must be aligned too or end at
478 			 * the i_size (which implies the whole inlined data).
479 			 */
480 			ASSERT(key.offset == 0);
481 			ASSERT(datal <= fs_info->sectorsize);
482 			if (key.offset != 0 || datal > fs_info->sectorsize)
483 				return -EUCLEAN;
484 
485 			ret = clone_copy_inline_extent(inode, path, &new_key,
486 						       drop_start, datal, size,
487 						       comp, buf, &trans);
488 			if (ret)
489 				goto out;
490 		}
491 
492 		btrfs_release_path(path);
493 
494 		/*
495 		 * If this is a new extent update the last_reflink_trans of both
496 		 * inodes. This is used by fsync to make sure it does not log
497 		 * multiple checksum items with overlapping ranges. For older
498 		 * extents we don't need to do it since inode logging skips the
499 		 * checksums for older extents. Also ignore holes and inline
500 		 * extents because they don't have checksums in the csum tree.
501 		 */
502 		if (extent_gen == trans->transid && disko > 0) {
503 			BTRFS_I(src)->last_reflink_trans = trans->transid;
504 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
505 		}
506 
507 		last_dest_end = ALIGN(new_key.offset + datal,
508 				      fs_info->sectorsize);
509 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
510 						destoff, olen, no_time_update);
511 		if (ret)
512 			goto out;
513 		if (new_key.offset + datal >= destoff + len)
514 			break;
515 
516 		btrfs_release_path(path);
517 		key.offset = next_key_min_offset;
518 
519 		if (fatal_signal_pending(current)) {
520 			ret = -EINTR;
521 			goto out;
522 		}
523 	}
524 	ret = 0;
525 
526 	if (last_dest_end < destoff + len) {
527 		/*
528 		 * We have an implicit hole that fully or partially overlaps our
529 		 * cloning range at its end. This means that we either have the
530 		 * NO_HOLES feature enabled or the implicit hole happened due to
531 		 * mixing buffered and direct IO writes against this file.
532 		 */
533 		btrfs_release_path(path);
534 		path->leave_spinning = 0;
535 
536 		ret = btrfs_punch_hole_range(inode, path, last_dest_end,
537 				destoff + len - 1, NULL, &trans);
538 		if (ret)
539 			goto out;
540 
541 		ret = clone_finish_inode_update(trans, inode, destoff + len,
542 						destoff, olen, no_time_update);
543 	}
544 
545 out:
546 	btrfs_free_path(path);
547 	kvfree(buf);
548 	return ret;
549 }
550 
551 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
552 				       struct inode *inode2, u64 loff2, u64 len)
553 {
554 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
555 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
556 }
557 
558 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
559 				     struct inode *inode2, u64 loff2, u64 len)
560 {
561 	if (inode1 < inode2) {
562 		swap(inode1, inode2);
563 		swap(loff1, loff2);
564 	} else if (inode1 == inode2 && loff2 < loff1) {
565 		swap(loff1, loff2);
566 	}
567 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
568 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
569 }
570 
571 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
572 				   struct inode *dst, u64 dst_loff)
573 {
574 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
575 	int ret;
576 
577 	/*
578 	 * Lock destination range to serialize with concurrent readpages() and
579 	 * source range to serialize with relocation.
580 	 */
581 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
582 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
583 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
584 
585 	return ret;
586 }
587 
588 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
589 			     struct inode *dst, u64 dst_loff)
590 {
591 	int ret;
592 	u64 i, tail_len, chunk_count;
593 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
594 
595 	spin_lock(&root_dst->root_item_lock);
596 	if (root_dst->send_in_progress) {
597 		btrfs_warn_rl(root_dst->fs_info,
598 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
599 			      root_dst->root_key.objectid,
600 			      root_dst->send_in_progress);
601 		spin_unlock(&root_dst->root_item_lock);
602 		return -EAGAIN;
603 	}
604 	root_dst->dedupe_in_progress++;
605 	spin_unlock(&root_dst->root_item_lock);
606 
607 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
608 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
609 
610 	for (i = 0; i < chunk_count; i++) {
611 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
612 					      dst, dst_loff);
613 		if (ret)
614 			goto out;
615 
616 		loff += BTRFS_MAX_DEDUPE_LEN;
617 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
618 	}
619 
620 	if (tail_len > 0)
621 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
622 out:
623 	spin_lock(&root_dst->root_item_lock);
624 	root_dst->dedupe_in_progress--;
625 	spin_unlock(&root_dst->root_item_lock);
626 
627 	return ret;
628 }
629 
630 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
631 					u64 off, u64 olen, u64 destoff)
632 {
633 	struct inode *inode = file_inode(file);
634 	struct inode *src = file_inode(file_src);
635 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
636 	int ret;
637 	int wb_ret;
638 	u64 len = olen;
639 	u64 bs = fs_info->sb->s_blocksize;
640 
641 	/*
642 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
643 	 * eof block into the middle of a file, which would result in corruption
644 	 * if the file size is not blocksize aligned. So we don't need to check
645 	 * for that case here.
646 	 */
647 	if (off + len == src->i_size)
648 		len = ALIGN(src->i_size, bs) - off;
649 
650 	if (destoff > inode->i_size) {
651 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
652 
653 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
654 		if (ret)
655 			return ret;
656 		/*
657 		 * We may have truncated the last block if the inode's size is
658 		 * not sector size aligned, so we need to wait for writeback to
659 		 * complete before proceeding further, otherwise we can race
660 		 * with cloning and attempt to increment a reference to an
661 		 * extent that no longer exists (writeback completed right after
662 		 * we found the previous extent covering eof and before we
663 		 * attempted to increment its reference count).
664 		 */
665 		ret = btrfs_wait_ordered_range(inode, wb_start,
666 					       destoff - wb_start);
667 		if (ret)
668 			return ret;
669 	}
670 
671 	/*
672 	 * Lock destination range to serialize with concurrent readpages() and
673 	 * source range to serialize with relocation.
674 	 */
675 	btrfs_double_extent_lock(src, off, inode, destoff, len);
676 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
677 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
678 
679 	/*
680 	 * We may have copied an inline extent into a page of the destination
681 	 * range, so wait for writeback to complete before truncating pages
682 	 * from the page cache. This is a rare case.
683 	 */
684 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
685 	ret = ret ? ret : wb_ret;
686 	/*
687 	 * Truncate page cache pages so that future reads will see the cloned
688 	 * data immediately and not the previous data.
689 	 */
690 	truncate_inode_pages_range(&inode->i_data,
691 				round_down(destoff, PAGE_SIZE),
692 				round_up(destoff + len, PAGE_SIZE) - 1);
693 
694 	return ret;
695 }
696 
697 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
698 				       struct file *file_out, loff_t pos_out,
699 				       loff_t *len, unsigned int remap_flags)
700 {
701 	struct inode *inode_in = file_inode(file_in);
702 	struct inode *inode_out = file_inode(file_out);
703 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
704 	bool same_inode = inode_out == inode_in;
705 	u64 wb_len;
706 	int ret;
707 
708 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
709 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
710 
711 		if (btrfs_root_readonly(root_out))
712 			return -EROFS;
713 
714 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
715 		    inode_in->i_sb != inode_out->i_sb)
716 			return -EXDEV;
717 	}
718 
719 	/* Don't make the dst file partly checksummed */
720 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
721 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
722 		return -EINVAL;
723 	}
724 
725 	/*
726 	 * Now that the inodes are locked, we need to start writeback ourselves
727 	 * and can not rely on the writeback from the VFS's generic helper
728 	 * generic_remap_file_range_prep() because:
729 	 *
730 	 * 1) For compression we must call filemap_fdatawrite_range() range
731 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
732 	 *    helper only calls it once;
733 	 *
734 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
735 	 *    waits for the writeback to complete, i.e. for IO to be done, and
736 	 *    not for the ordered extents to complete. We need to wait for them
737 	 *    to complete so that new file extent items are in the fs tree.
738 	 */
739 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
740 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
741 	else
742 		wb_len = ALIGN(*len, bs);
743 
744 	/*
745 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
746 	 * any in progress could create its ordered extents after we wait for
747 	 * existing ordered extents below).
748 	 */
749 	inode_dio_wait(inode_in);
750 	if (!same_inode)
751 		inode_dio_wait(inode_out);
752 
753 	/*
754 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
755 	 *
756 	 * Btrfs' back references do not have a block level granularity, they
757 	 * work at the whole extent level.
758 	 * NOCOW buffered write without data space reserved may not be able
759 	 * to fall back to CoW due to lack of data space, thus could cause
760 	 * data loss.
761 	 *
762 	 * Here we take a shortcut by flushing the whole inode, so that all
763 	 * nocow write should reach disk as nocow before we increase the
764 	 * reference of the extent. We could do better by only flushing NOCOW
765 	 * data, but that needs extra accounting.
766 	 *
767 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
768 	 * CoWed anyway, not affecting nocow part.
769 	 */
770 	ret = filemap_flush(inode_in->i_mapping);
771 	if (ret < 0)
772 		return ret;
773 
774 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
775 				       wb_len);
776 	if (ret < 0)
777 		return ret;
778 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
779 				       wb_len);
780 	if (ret < 0)
781 		return ret;
782 
783 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
784 					    len, remap_flags);
785 }
786 
787 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
788 		struct file *dst_file, loff_t destoff, loff_t len,
789 		unsigned int remap_flags)
790 {
791 	struct inode *src_inode = file_inode(src_file);
792 	struct inode *dst_inode = file_inode(dst_file);
793 	bool same_inode = dst_inode == src_inode;
794 	int ret;
795 
796 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
797 		return -EINVAL;
798 
799 	if (same_inode)
800 		inode_lock(src_inode);
801 	else
802 		lock_two_nondirectories(src_inode, dst_inode);
803 
804 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
805 					  &len, remap_flags);
806 	if (ret < 0 || len == 0)
807 		goto out_unlock;
808 
809 	if (remap_flags & REMAP_FILE_DEDUP)
810 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
811 	else
812 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
813 
814 out_unlock:
815 	if (same_inode)
816 		inode_unlock(src_inode);
817 	else
818 		unlock_two_nondirectories(src_inode, dst_inode);
819 
820 	return ret < 0 ? ret : len;
821 }
822