1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/blkdev.h> 4 #include <linux/iversion.h> 5 #include "compression.h" 6 #include "ctree.h" 7 #include "delalloc-space.h" 8 #include "reflink.h" 9 #include "transaction.h" 10 11 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 12 13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 14 struct inode *inode, 15 u64 endoff, 16 const u64 destoff, 17 const u64 olen, 18 int no_time_update) 19 { 20 struct btrfs_root *root = BTRFS_I(inode)->root; 21 int ret; 22 23 inode_inc_iversion(inode); 24 if (!no_time_update) 25 inode->i_mtime = inode->i_ctime = current_time(inode); 26 /* 27 * We round up to the block size at eof when determining which 28 * extents to clone above, but shouldn't round up the file size. 29 */ 30 if (endoff > destoff + olen) 31 endoff = destoff + olen; 32 if (endoff > inode->i_size) { 33 i_size_write(inode, endoff); 34 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 35 } 36 37 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 38 if (ret) { 39 btrfs_abort_transaction(trans, ret); 40 btrfs_end_transaction(trans); 41 goto out; 42 } 43 ret = btrfs_end_transaction(trans); 44 out: 45 return ret; 46 } 47 48 static int copy_inline_to_page(struct btrfs_inode *inode, 49 const u64 file_offset, 50 char *inline_data, 51 const u64 size, 52 const u64 datal, 53 const u8 comp_type) 54 { 55 const u64 block_size = btrfs_inode_sectorsize(inode); 56 const u64 range_end = file_offset + block_size - 1; 57 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); 58 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); 59 struct extent_changeset *data_reserved = NULL; 60 struct page *page = NULL; 61 struct address_space *mapping = inode->vfs_inode.i_mapping; 62 int ret; 63 64 ASSERT(IS_ALIGNED(file_offset, block_size)); 65 66 /* 67 * We have flushed and locked the ranges of the source and destination 68 * inodes, we also have locked the inodes, so we are safe to do a 69 * reservation here. Also we must not do the reservation while holding 70 * a transaction open, otherwise we would deadlock. 71 */ 72 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, 73 block_size); 74 if (ret) 75 goto out; 76 77 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT, 78 btrfs_alloc_write_mask(mapping)); 79 if (!page) { 80 ret = -ENOMEM; 81 goto out_unlock; 82 } 83 84 ret = set_page_extent_mapped(page); 85 if (ret < 0) 86 goto out_unlock; 87 88 clear_extent_bit(&inode->io_tree, file_offset, range_end, 89 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 90 0, 0, NULL); 91 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); 92 if (ret) 93 goto out_unlock; 94 95 /* 96 * After dirtying the page our caller will need to start a transaction, 97 * and if we are low on metadata free space, that can cause flushing of 98 * delalloc for all inodes in order to get metadata space released. 99 * However we are holding the range locked for the whole duration of 100 * the clone/dedupe operation, so we may deadlock if that happens and no 101 * other task releases enough space. So mark this inode as not being 102 * possible to flush to avoid such deadlock. We will clear that flag 103 * when we finish cloning all extents, since a transaction is started 104 * after finding each extent to clone. 105 */ 106 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); 107 108 if (comp_type == BTRFS_COMPRESS_NONE) { 109 memcpy_to_page(page, 0, data_start, datal); 110 flush_dcache_page(page); 111 } else { 112 ret = btrfs_decompress(comp_type, data_start, page, 0, 113 inline_size, datal); 114 if (ret) 115 goto out_unlock; 116 flush_dcache_page(page); 117 } 118 119 /* 120 * If our inline data is smaller then the block/page size, then the 121 * remaining of the block/page is equivalent to zeroes. We had something 122 * like the following done: 123 * 124 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file 125 * $ sync # (or fsync) 126 * $ xfs_io -c "falloc 0 4K" file 127 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 128 * 129 * So what's in the range [500, 4095] corresponds to zeroes. 130 */ 131 if (datal < block_size) { 132 memzero_page(page, datal, block_size - datal); 133 flush_dcache_page(page); 134 } 135 136 SetPageUptodate(page); 137 ClearPageChecked(page); 138 set_page_dirty(page); 139 out_unlock: 140 if (page) { 141 unlock_page(page); 142 put_page(page); 143 } 144 if (ret) 145 btrfs_delalloc_release_space(inode, data_reserved, file_offset, 146 block_size, true); 147 btrfs_delalloc_release_extents(inode, block_size); 148 out: 149 extent_changeset_free(data_reserved); 150 151 return ret; 152 } 153 154 /* 155 * Deal with cloning of inline extents. We try to copy the inline extent from 156 * the source inode to destination inode when possible. When not possible we 157 * copy the inline extent's data into the respective page of the inode. 158 */ 159 static int clone_copy_inline_extent(struct inode *dst, 160 struct btrfs_path *path, 161 struct btrfs_key *new_key, 162 const u64 drop_start, 163 const u64 datal, 164 const u64 size, 165 const u8 comp_type, 166 char *inline_data, 167 struct btrfs_trans_handle **trans_out) 168 { 169 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 170 struct btrfs_root *root = BTRFS_I(dst)->root; 171 const u64 aligned_end = ALIGN(new_key->offset + datal, 172 fs_info->sectorsize); 173 struct btrfs_trans_handle *trans = NULL; 174 struct btrfs_drop_extents_args drop_args = { 0 }; 175 int ret; 176 struct btrfs_key key; 177 178 if (new_key->offset > 0) { 179 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 180 inline_data, size, datal, comp_type); 181 goto out; 182 } 183 184 key.objectid = btrfs_ino(BTRFS_I(dst)); 185 key.type = BTRFS_EXTENT_DATA_KEY; 186 key.offset = 0; 187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 188 if (ret < 0) { 189 return ret; 190 } else if (ret > 0) { 191 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 192 ret = btrfs_next_leaf(root, path); 193 if (ret < 0) 194 return ret; 195 else if (ret > 0) 196 goto copy_inline_extent; 197 } 198 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 199 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 200 key.type == BTRFS_EXTENT_DATA_KEY) { 201 /* 202 * There's an implicit hole at file offset 0, copy the 203 * inline extent's data to the page. 204 */ 205 ASSERT(key.offset > 0); 206 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 207 inline_data, size, datal, 208 comp_type); 209 goto out; 210 } 211 } else if (i_size_read(dst) <= datal) { 212 struct btrfs_file_extent_item *ei; 213 214 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 215 struct btrfs_file_extent_item); 216 /* 217 * If it's an inline extent replace it with the source inline 218 * extent, otherwise copy the source inline extent data into 219 * the respective page at the destination inode. 220 */ 221 if (btrfs_file_extent_type(path->nodes[0], ei) == 222 BTRFS_FILE_EXTENT_INLINE) 223 goto copy_inline_extent; 224 225 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 226 inline_data, size, datal, comp_type); 227 goto out; 228 } 229 230 copy_inline_extent: 231 ret = 0; 232 /* 233 * We have no extent items, or we have an extent at offset 0 which may 234 * or may not be inlined. All these cases are dealt the same way. 235 */ 236 if (i_size_read(dst) > datal) { 237 /* 238 * At the destination offset 0 we have either a hole, a regular 239 * extent or an inline extent larger then the one we want to 240 * clone. Deal with all these cases by copying the inline extent 241 * data into the respective page at the destination inode. 242 */ 243 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset, 244 inline_data, size, datal, comp_type); 245 goto out; 246 } 247 248 btrfs_release_path(path); 249 /* 250 * If we end up here it means were copy the inline extent into a leaf 251 * of the destination inode. We know we will drop or adjust at most one 252 * extent item in the destination root. 253 * 254 * 1 unit - adjusting old extent (we may have to split it) 255 * 1 unit - add new extent 256 * 1 unit - inode update 257 */ 258 trans = btrfs_start_transaction(root, 3); 259 if (IS_ERR(trans)) { 260 ret = PTR_ERR(trans); 261 trans = NULL; 262 goto out; 263 } 264 drop_args.path = path; 265 drop_args.start = drop_start; 266 drop_args.end = aligned_end; 267 drop_args.drop_cache = true; 268 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args); 269 if (ret) 270 goto out; 271 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 272 if (ret) 273 goto out; 274 275 write_extent_buffer(path->nodes[0], inline_data, 276 btrfs_item_ptr_offset(path->nodes[0], 277 path->slots[0]), 278 size); 279 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found); 280 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 281 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end); 282 out: 283 if (!ret && !trans) { 284 /* 285 * Release path before starting a new transaction so we don't 286 * hold locks that would confuse lockdep. 287 */ 288 btrfs_release_path(path); 289 /* 290 * No transaction here means we copied the inline extent into a 291 * page of the destination inode. 292 * 293 * 1 unit to update inode item 294 */ 295 trans = btrfs_start_transaction(root, 1); 296 if (IS_ERR(trans)) { 297 ret = PTR_ERR(trans); 298 trans = NULL; 299 } 300 } 301 if (ret && trans) { 302 btrfs_abort_transaction(trans, ret); 303 btrfs_end_transaction(trans); 304 } 305 if (!ret) 306 *trans_out = trans; 307 308 return ret; 309 } 310 311 /** 312 * btrfs_clone() - clone a range from inode file to another 313 * 314 * @src: Inode to clone from 315 * @inode: Inode to clone to 316 * @off: Offset within source to start clone from 317 * @olen: Original length, passed by user, of range to clone 318 * @olen_aligned: Block-aligned value of olen 319 * @destoff: Offset within @inode to start clone 320 * @no_time_update: Whether to update mtime/ctime on the target inode 321 */ 322 static int btrfs_clone(struct inode *src, struct inode *inode, 323 const u64 off, const u64 olen, const u64 olen_aligned, 324 const u64 destoff, int no_time_update) 325 { 326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 327 struct btrfs_path *path = NULL; 328 struct extent_buffer *leaf; 329 struct btrfs_trans_handle *trans; 330 char *buf = NULL; 331 struct btrfs_key key; 332 u32 nritems; 333 int slot; 334 int ret; 335 const u64 len = olen_aligned; 336 u64 last_dest_end = destoff; 337 338 ret = -ENOMEM; 339 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 340 if (!buf) 341 return ret; 342 343 path = btrfs_alloc_path(); 344 if (!path) { 345 kvfree(buf); 346 return ret; 347 } 348 349 path->reada = READA_FORWARD; 350 /* Clone data */ 351 key.objectid = btrfs_ino(BTRFS_I(src)); 352 key.type = BTRFS_EXTENT_DATA_KEY; 353 key.offset = off; 354 355 while (1) { 356 u64 next_key_min_offset = key.offset + 1; 357 struct btrfs_file_extent_item *extent; 358 u64 extent_gen; 359 int type; 360 u32 size; 361 struct btrfs_key new_key; 362 u64 disko = 0, diskl = 0; 363 u64 datao = 0, datal = 0; 364 u8 comp; 365 u64 drop_start; 366 367 /* Note the key will change type as we walk through the tree */ 368 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 369 0, 0); 370 if (ret < 0) 371 goto out; 372 /* 373 * First search, if no extent item that starts at offset off was 374 * found but the previous item is an extent item, it's possible 375 * it might overlap our target range, therefore process it. 376 */ 377 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 378 btrfs_item_key_to_cpu(path->nodes[0], &key, 379 path->slots[0] - 1); 380 if (key.type == BTRFS_EXTENT_DATA_KEY) 381 path->slots[0]--; 382 } 383 384 nritems = btrfs_header_nritems(path->nodes[0]); 385 process_slot: 386 if (path->slots[0] >= nritems) { 387 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 388 if (ret < 0) 389 goto out; 390 if (ret > 0) 391 break; 392 nritems = btrfs_header_nritems(path->nodes[0]); 393 } 394 leaf = path->nodes[0]; 395 slot = path->slots[0]; 396 397 btrfs_item_key_to_cpu(leaf, &key, slot); 398 if (key.type > BTRFS_EXTENT_DATA_KEY || 399 key.objectid != btrfs_ino(BTRFS_I(src))) 400 break; 401 402 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 403 404 extent = btrfs_item_ptr(leaf, slot, 405 struct btrfs_file_extent_item); 406 extent_gen = btrfs_file_extent_generation(leaf, extent); 407 comp = btrfs_file_extent_compression(leaf, extent); 408 type = btrfs_file_extent_type(leaf, extent); 409 if (type == BTRFS_FILE_EXTENT_REG || 410 type == BTRFS_FILE_EXTENT_PREALLOC) { 411 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 412 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 413 datao = btrfs_file_extent_offset(leaf, extent); 414 datal = btrfs_file_extent_num_bytes(leaf, extent); 415 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 416 /* Take upper bound, may be compressed */ 417 datal = btrfs_file_extent_ram_bytes(leaf, extent); 418 } 419 420 /* 421 * The first search might have left us at an extent item that 422 * ends before our target range's start, can happen if we have 423 * holes and NO_HOLES feature enabled. 424 */ 425 if (key.offset + datal <= off) { 426 path->slots[0]++; 427 goto process_slot; 428 } else if (key.offset >= off + len) { 429 break; 430 } 431 next_key_min_offset = key.offset + datal; 432 size = btrfs_item_size_nr(leaf, slot); 433 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 434 size); 435 436 btrfs_release_path(path); 437 438 memcpy(&new_key, &key, sizeof(new_key)); 439 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 440 if (off <= key.offset) 441 new_key.offset = key.offset + destoff - off; 442 else 443 new_key.offset = destoff; 444 445 /* 446 * Deal with a hole that doesn't have an extent item that 447 * represents it (NO_HOLES feature enabled). 448 * This hole is either in the middle of the cloning range or at 449 * the beginning (fully overlaps it or partially overlaps it). 450 */ 451 if (new_key.offset != last_dest_end) 452 drop_start = last_dest_end; 453 else 454 drop_start = new_key.offset; 455 456 if (type == BTRFS_FILE_EXTENT_REG || 457 type == BTRFS_FILE_EXTENT_PREALLOC) { 458 struct btrfs_replace_extent_info clone_info; 459 460 /* 461 * a | --- range to clone ---| b 462 * | ------------- extent ------------- | 463 */ 464 465 /* Subtract range b */ 466 if (key.offset + datal > off + len) 467 datal = off + len - key.offset; 468 469 /* Subtract range a */ 470 if (off > key.offset) { 471 datao += off - key.offset; 472 datal -= off - key.offset; 473 } 474 475 clone_info.disk_offset = disko; 476 clone_info.disk_len = diskl; 477 clone_info.data_offset = datao; 478 clone_info.data_len = datal; 479 clone_info.file_offset = new_key.offset; 480 clone_info.extent_buf = buf; 481 clone_info.is_new_extent = false; 482 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 483 drop_start, new_key.offset + datal - 1, 484 &clone_info, &trans); 485 if (ret) 486 goto out; 487 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 488 /* 489 * Inline extents always have to start at file offset 0 490 * and can never be bigger then the sector size. We can 491 * never clone only parts of an inline extent, since all 492 * reflink operations must start at a sector size aligned 493 * offset, and the length must be aligned too or end at 494 * the i_size (which implies the whole inlined data). 495 */ 496 ASSERT(key.offset == 0); 497 ASSERT(datal <= fs_info->sectorsize); 498 if (key.offset != 0 || datal > fs_info->sectorsize) 499 return -EUCLEAN; 500 501 ret = clone_copy_inline_extent(inode, path, &new_key, 502 drop_start, datal, size, 503 comp, buf, &trans); 504 if (ret) 505 goto out; 506 } 507 508 btrfs_release_path(path); 509 510 /* 511 * If this is a new extent update the last_reflink_trans of both 512 * inodes. This is used by fsync to make sure it does not log 513 * multiple checksum items with overlapping ranges. For older 514 * extents we don't need to do it since inode logging skips the 515 * checksums for older extents. Also ignore holes and inline 516 * extents because they don't have checksums in the csum tree. 517 */ 518 if (extent_gen == trans->transid && disko > 0) { 519 BTRFS_I(src)->last_reflink_trans = trans->transid; 520 BTRFS_I(inode)->last_reflink_trans = trans->transid; 521 } 522 523 last_dest_end = ALIGN(new_key.offset + datal, 524 fs_info->sectorsize); 525 ret = clone_finish_inode_update(trans, inode, last_dest_end, 526 destoff, olen, no_time_update); 527 if (ret) 528 goto out; 529 if (new_key.offset + datal >= destoff + len) 530 break; 531 532 btrfs_release_path(path); 533 key.offset = next_key_min_offset; 534 535 if (fatal_signal_pending(current)) { 536 ret = -EINTR; 537 goto out; 538 } 539 540 cond_resched(); 541 } 542 ret = 0; 543 544 if (last_dest_end < destoff + len) { 545 /* 546 * We have an implicit hole that fully or partially overlaps our 547 * cloning range at its end. This means that we either have the 548 * NO_HOLES feature enabled or the implicit hole happened due to 549 * mixing buffered and direct IO writes against this file. 550 */ 551 btrfs_release_path(path); 552 553 /* 554 * When using NO_HOLES and we are cloning a range that covers 555 * only a hole (no extents) into a range beyond the current 556 * i_size, punching a hole in the target range will not create 557 * an extent map defining a hole, because the range starts at or 558 * beyond current i_size. If the file previously had an i_size 559 * greater than the new i_size set by this clone operation, we 560 * need to make sure the next fsync is a full fsync, so that it 561 * detects and logs a hole covering a range from the current 562 * i_size to the new i_size. If the clone range covers extents, 563 * besides a hole, then we know the full sync flag was already 564 * set by previous calls to btrfs_replace_file_extents() that 565 * replaced file extent items. 566 */ 567 if (last_dest_end >= i_size_read(inode)) 568 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 569 &BTRFS_I(inode)->runtime_flags); 570 571 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 572 last_dest_end, destoff + len - 1, NULL, &trans); 573 if (ret) 574 goto out; 575 576 ret = clone_finish_inode_update(trans, inode, destoff + len, 577 destoff, olen, no_time_update); 578 } 579 580 out: 581 btrfs_free_path(path); 582 kvfree(buf); 583 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); 584 585 return ret; 586 } 587 588 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 589 struct inode *inode2, u64 loff2, u64 len) 590 { 591 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 592 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 593 } 594 595 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 596 struct inode *inode2, u64 loff2, u64 len) 597 { 598 if (inode1 < inode2) { 599 swap(inode1, inode2); 600 swap(loff1, loff2); 601 } else if (inode1 == inode2 && loff2 < loff1) { 602 swap(loff1, loff2); 603 } 604 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 605 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 606 } 607 608 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2) 609 { 610 if (inode1 < inode2) 611 swap(inode1, inode2); 612 down_write(&BTRFS_I(inode1)->i_mmap_lock); 613 down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING); 614 } 615 616 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2) 617 { 618 up_write(&BTRFS_I(inode1)->i_mmap_lock); 619 up_write(&BTRFS_I(inode2)->i_mmap_lock); 620 } 621 622 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 623 struct inode *dst, u64 dst_loff) 624 { 625 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 626 int ret; 627 628 /* 629 * Lock destination range to serialize with concurrent readpages() and 630 * source range to serialize with relocation. 631 */ 632 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 633 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); 634 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 635 636 return ret; 637 } 638 639 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 640 struct inode *dst, u64 dst_loff) 641 { 642 int ret; 643 u64 i, tail_len, chunk_count; 644 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 645 646 spin_lock(&root_dst->root_item_lock); 647 if (root_dst->send_in_progress) { 648 btrfs_warn_rl(root_dst->fs_info, 649 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 650 root_dst->root_key.objectid, 651 root_dst->send_in_progress); 652 spin_unlock(&root_dst->root_item_lock); 653 return -EAGAIN; 654 } 655 root_dst->dedupe_in_progress++; 656 spin_unlock(&root_dst->root_item_lock); 657 658 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 659 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 660 661 for (i = 0; i < chunk_count; i++) { 662 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 663 dst, dst_loff); 664 if (ret) 665 goto out; 666 667 loff += BTRFS_MAX_DEDUPE_LEN; 668 dst_loff += BTRFS_MAX_DEDUPE_LEN; 669 } 670 671 if (tail_len > 0) 672 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff); 673 out: 674 spin_lock(&root_dst->root_item_lock); 675 root_dst->dedupe_in_progress--; 676 spin_unlock(&root_dst->root_item_lock); 677 678 return ret; 679 } 680 681 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 682 u64 off, u64 olen, u64 destoff) 683 { 684 struct inode *inode = file_inode(file); 685 struct inode *src = file_inode(file_src); 686 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 687 int ret; 688 int wb_ret; 689 u64 len = olen; 690 u64 bs = fs_info->sb->s_blocksize; 691 692 /* 693 * VFS's generic_remap_file_range_prep() protects us from cloning the 694 * eof block into the middle of a file, which would result in corruption 695 * if the file size is not blocksize aligned. So we don't need to check 696 * for that case here. 697 */ 698 if (off + len == src->i_size) 699 len = ALIGN(src->i_size, bs) - off; 700 701 if (destoff > inode->i_size) { 702 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 703 704 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff); 705 if (ret) 706 return ret; 707 /* 708 * We may have truncated the last block if the inode's size is 709 * not sector size aligned, so we need to wait for writeback to 710 * complete before proceeding further, otherwise we can race 711 * with cloning and attempt to increment a reference to an 712 * extent that no longer exists (writeback completed right after 713 * we found the previous extent covering eof and before we 714 * attempted to increment its reference count). 715 */ 716 ret = btrfs_wait_ordered_range(inode, wb_start, 717 destoff - wb_start); 718 if (ret) 719 return ret; 720 } 721 722 /* 723 * Lock destination range to serialize with concurrent readpages() and 724 * source range to serialize with relocation. 725 */ 726 btrfs_double_extent_lock(src, off, inode, destoff, len); 727 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 728 btrfs_double_extent_unlock(src, off, inode, destoff, len); 729 730 /* 731 * We may have copied an inline extent into a page of the destination 732 * range, so wait for writeback to complete before truncating pages 733 * from the page cache. This is a rare case. 734 */ 735 wb_ret = btrfs_wait_ordered_range(inode, destoff, len); 736 ret = ret ? ret : wb_ret; 737 /* 738 * Truncate page cache pages so that future reads will see the cloned 739 * data immediately and not the previous data. 740 */ 741 truncate_inode_pages_range(&inode->i_data, 742 round_down(destoff, PAGE_SIZE), 743 round_up(destoff + len, PAGE_SIZE) - 1); 744 745 return ret; 746 } 747 748 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 749 struct file *file_out, loff_t pos_out, 750 loff_t *len, unsigned int remap_flags) 751 { 752 struct inode *inode_in = file_inode(file_in); 753 struct inode *inode_out = file_inode(file_out); 754 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 755 bool same_inode = inode_out == inode_in; 756 u64 wb_len; 757 int ret; 758 759 if (!(remap_flags & REMAP_FILE_DEDUP)) { 760 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 761 762 if (btrfs_root_readonly(root_out)) 763 return -EROFS; 764 765 if (file_in->f_path.mnt != file_out->f_path.mnt || 766 inode_in->i_sb != inode_out->i_sb) 767 return -EXDEV; 768 } 769 770 /* Don't make the dst file partly checksummed */ 771 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 772 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 773 return -EINVAL; 774 } 775 776 /* 777 * Now that the inodes are locked, we need to start writeback ourselves 778 * and can not rely on the writeback from the VFS's generic helper 779 * generic_remap_file_range_prep() because: 780 * 781 * 1) For compression we must call filemap_fdatawrite_range() range 782 * twice (btrfs_fdatawrite_range() does it for us), and the generic 783 * helper only calls it once; 784 * 785 * 2) filemap_fdatawrite_range(), called by the generic helper only 786 * waits for the writeback to complete, i.e. for IO to be done, and 787 * not for the ordered extents to complete. We need to wait for them 788 * to complete so that new file extent items are in the fs tree. 789 */ 790 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 791 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 792 else 793 wb_len = ALIGN(*len, bs); 794 795 /* 796 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 797 * any in progress could create its ordered extents after we wait for 798 * existing ordered extents below). 799 */ 800 inode_dio_wait(inode_in); 801 if (!same_inode) 802 inode_dio_wait(inode_out); 803 804 /* 805 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 806 * 807 * Btrfs' back references do not have a block level granularity, they 808 * work at the whole extent level. 809 * NOCOW buffered write without data space reserved may not be able 810 * to fall back to CoW due to lack of data space, thus could cause 811 * data loss. 812 * 813 * Here we take a shortcut by flushing the whole inode, so that all 814 * nocow write should reach disk as nocow before we increase the 815 * reference of the extent. We could do better by only flushing NOCOW 816 * data, but that needs extra accounting. 817 * 818 * Also we don't need to check ASYNC_EXTENT, as async extent will be 819 * CoWed anyway, not affecting nocow part. 820 */ 821 ret = filemap_flush(inode_in->i_mapping); 822 if (ret < 0) 823 return ret; 824 825 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 826 wb_len); 827 if (ret < 0) 828 return ret; 829 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 830 wb_len); 831 if (ret < 0) 832 return ret; 833 834 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 835 len, remap_flags); 836 } 837 838 static bool file_sync_write(const struct file *file) 839 { 840 if (file->f_flags & (__O_SYNC | O_DSYNC)) 841 return true; 842 if (IS_SYNC(file_inode(file))) 843 return true; 844 845 return false; 846 } 847 848 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 849 struct file *dst_file, loff_t destoff, loff_t len, 850 unsigned int remap_flags) 851 { 852 struct inode *src_inode = file_inode(src_file); 853 struct inode *dst_inode = file_inode(dst_file); 854 bool same_inode = dst_inode == src_inode; 855 int ret; 856 857 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 858 return -EINVAL; 859 860 if (same_inode) { 861 btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP); 862 } else { 863 lock_two_nondirectories(src_inode, dst_inode); 864 btrfs_double_mmap_lock(src_inode, dst_inode); 865 } 866 867 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 868 &len, remap_flags); 869 if (ret < 0 || len == 0) 870 goto out_unlock; 871 872 if (remap_flags & REMAP_FILE_DEDUP) 873 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 874 else 875 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 876 877 out_unlock: 878 if (same_inode) { 879 btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP); 880 } else { 881 btrfs_double_mmap_unlock(src_inode, dst_inode); 882 unlock_two_nondirectories(src_inode, dst_inode); 883 } 884 885 /* 886 * If either the source or the destination file was opened with O_SYNC, 887 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and 888 * source files/ranges, so that after a successful return (0) followed 889 * by a power failure results in the reflinked data to be readable from 890 * both files/ranges. 891 */ 892 if (ret == 0 && len > 0 && 893 (file_sync_write(src_file) || file_sync_write(dst_file))) { 894 ret = btrfs_sync_file(src_file, off, off + len - 1, 0); 895 if (ret == 0) 896 ret = btrfs_sync_file(dst_file, destoff, 897 destoff + len - 1, 0); 898 } 899 900 return ret < 0 ? ret : len; 901 } 902