xref: /openbmc/linux/fs/btrfs/reflink.c (revision 43dd529a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "ctree.h"
6 #include "fs.h"
7 #include "messages.h"
8 #include "compression.h"
9 #include "delalloc-space.h"
10 #include "disk-io.h"
11 #include "reflink.h"
12 #include "transaction.h"
13 #include "subpage.h"
14 #include "accessors.h"
15 
16 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
17 
18 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
19 				     struct inode *inode,
20 				     u64 endoff,
21 				     const u64 destoff,
22 				     const u64 olen,
23 				     int no_time_update)
24 {
25 	struct btrfs_root *root = BTRFS_I(inode)->root;
26 	int ret;
27 
28 	inode_inc_iversion(inode);
29 	if (!no_time_update) {
30 		inode->i_mtime = current_time(inode);
31 		inode->i_ctime = inode->i_mtime;
32 	}
33 	/*
34 	 * We round up to the block size at eof when determining which
35 	 * extents to clone above, but shouldn't round up the file size.
36 	 */
37 	if (endoff > destoff + olen)
38 		endoff = destoff + olen;
39 	if (endoff > inode->i_size) {
40 		i_size_write(inode, endoff);
41 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
42 	}
43 
44 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
45 	if (ret) {
46 		btrfs_abort_transaction(trans, ret);
47 		btrfs_end_transaction(trans);
48 		goto out;
49 	}
50 	ret = btrfs_end_transaction(trans);
51 out:
52 	return ret;
53 }
54 
55 static int copy_inline_to_page(struct btrfs_inode *inode,
56 			       const u64 file_offset,
57 			       char *inline_data,
58 			       const u64 size,
59 			       const u64 datal,
60 			       const u8 comp_type)
61 {
62 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
63 	const u32 block_size = fs_info->sectorsize;
64 	const u64 range_end = file_offset + block_size - 1;
65 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
66 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
67 	struct extent_changeset *data_reserved = NULL;
68 	struct page *page = NULL;
69 	struct address_space *mapping = inode->vfs_inode.i_mapping;
70 	int ret;
71 
72 	ASSERT(IS_ALIGNED(file_offset, block_size));
73 
74 	/*
75 	 * We have flushed and locked the ranges of the source and destination
76 	 * inodes, we also have locked the inodes, so we are safe to do a
77 	 * reservation here. Also we must not do the reservation while holding
78 	 * a transaction open, otherwise we would deadlock.
79 	 */
80 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
81 					   block_size);
82 	if (ret)
83 		goto out;
84 
85 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
86 				   btrfs_alloc_write_mask(mapping));
87 	if (!page) {
88 		ret = -ENOMEM;
89 		goto out_unlock;
90 	}
91 
92 	ret = set_page_extent_mapped(page);
93 	if (ret < 0)
94 		goto out_unlock;
95 
96 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
97 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
98 			 NULL);
99 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
100 	if (ret)
101 		goto out_unlock;
102 
103 	/*
104 	 * After dirtying the page our caller will need to start a transaction,
105 	 * and if we are low on metadata free space, that can cause flushing of
106 	 * delalloc for all inodes in order to get metadata space released.
107 	 * However we are holding the range locked for the whole duration of
108 	 * the clone/dedupe operation, so we may deadlock if that happens and no
109 	 * other task releases enough space. So mark this inode as not being
110 	 * possible to flush to avoid such deadlock. We will clear that flag
111 	 * when we finish cloning all extents, since a transaction is started
112 	 * after finding each extent to clone.
113 	 */
114 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
115 
116 	if (comp_type == BTRFS_COMPRESS_NONE) {
117 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
118 			       datal);
119 	} else {
120 		ret = btrfs_decompress(comp_type, data_start, page,
121 				       offset_in_page(file_offset),
122 				       inline_size, datal);
123 		if (ret)
124 			goto out_unlock;
125 		flush_dcache_page(page);
126 	}
127 
128 	/*
129 	 * If our inline data is smaller then the block/page size, then the
130 	 * remaining of the block/page is equivalent to zeroes. We had something
131 	 * like the following done:
132 	 *
133 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
134 	 * $ sync  # (or fsync)
135 	 * $ xfs_io -c "falloc 0 4K" file
136 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
137 	 *
138 	 * So what's in the range [500, 4095] corresponds to zeroes.
139 	 */
140 	if (datal < block_size)
141 		memzero_page(page, datal, block_size - datal);
142 
143 	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
144 	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
145 	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
146 out_unlock:
147 	if (page) {
148 		unlock_page(page);
149 		put_page(page);
150 	}
151 	if (ret)
152 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
153 					     block_size, true);
154 	btrfs_delalloc_release_extents(inode, block_size);
155 out:
156 	extent_changeset_free(data_reserved);
157 
158 	return ret;
159 }
160 
161 /*
162  * Deal with cloning of inline extents. We try to copy the inline extent from
163  * the source inode to destination inode when possible. When not possible we
164  * copy the inline extent's data into the respective page of the inode.
165  */
166 static int clone_copy_inline_extent(struct inode *dst,
167 				    struct btrfs_path *path,
168 				    struct btrfs_key *new_key,
169 				    const u64 drop_start,
170 				    const u64 datal,
171 				    const u64 size,
172 				    const u8 comp_type,
173 				    char *inline_data,
174 				    struct btrfs_trans_handle **trans_out)
175 {
176 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
177 	struct btrfs_root *root = BTRFS_I(dst)->root;
178 	const u64 aligned_end = ALIGN(new_key->offset + datal,
179 				      fs_info->sectorsize);
180 	struct btrfs_trans_handle *trans = NULL;
181 	struct btrfs_drop_extents_args drop_args = { 0 };
182 	int ret;
183 	struct btrfs_key key;
184 
185 	if (new_key->offset > 0) {
186 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
187 					  inline_data, size, datal, comp_type);
188 		goto out;
189 	}
190 
191 	key.objectid = btrfs_ino(BTRFS_I(dst));
192 	key.type = BTRFS_EXTENT_DATA_KEY;
193 	key.offset = 0;
194 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
195 	if (ret < 0) {
196 		return ret;
197 	} else if (ret > 0) {
198 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
199 			ret = btrfs_next_leaf(root, path);
200 			if (ret < 0)
201 				return ret;
202 			else if (ret > 0)
203 				goto copy_inline_extent;
204 		}
205 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
206 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
207 		    key.type == BTRFS_EXTENT_DATA_KEY) {
208 			/*
209 			 * There's an implicit hole at file offset 0, copy the
210 			 * inline extent's data to the page.
211 			 */
212 			ASSERT(key.offset > 0);
213 			goto copy_to_page;
214 		}
215 	} else if (i_size_read(dst) <= datal) {
216 		struct btrfs_file_extent_item *ei;
217 
218 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
219 				    struct btrfs_file_extent_item);
220 		/*
221 		 * If it's an inline extent replace it with the source inline
222 		 * extent, otherwise copy the source inline extent data into
223 		 * the respective page at the destination inode.
224 		 */
225 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
226 		    BTRFS_FILE_EXTENT_INLINE)
227 			goto copy_inline_extent;
228 
229 		goto copy_to_page;
230 	}
231 
232 copy_inline_extent:
233 	/*
234 	 * We have no extent items, or we have an extent at offset 0 which may
235 	 * or may not be inlined. All these cases are dealt the same way.
236 	 */
237 	if (i_size_read(dst) > datal) {
238 		/*
239 		 * At the destination offset 0 we have either a hole, a regular
240 		 * extent or an inline extent larger then the one we want to
241 		 * clone. Deal with all these cases by copying the inline extent
242 		 * data into the respective page at the destination inode.
243 		 */
244 		goto copy_to_page;
245 	}
246 
247 	/*
248 	 * Release path before starting a new transaction so we don't hold locks
249 	 * that would confuse lockdep.
250 	 */
251 	btrfs_release_path(path);
252 	/*
253 	 * If we end up here it means were copy the inline extent into a leaf
254 	 * of the destination inode. We know we will drop or adjust at most one
255 	 * extent item in the destination root.
256 	 *
257 	 * 1 unit - adjusting old extent (we may have to split it)
258 	 * 1 unit - add new extent
259 	 * 1 unit - inode update
260 	 */
261 	trans = btrfs_start_transaction(root, 3);
262 	if (IS_ERR(trans)) {
263 		ret = PTR_ERR(trans);
264 		trans = NULL;
265 		goto out;
266 	}
267 	drop_args.path = path;
268 	drop_args.start = drop_start;
269 	drop_args.end = aligned_end;
270 	drop_args.drop_cache = true;
271 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
272 	if (ret)
273 		goto out;
274 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
275 	if (ret)
276 		goto out;
277 
278 	write_extent_buffer(path->nodes[0], inline_data,
279 			    btrfs_item_ptr_offset(path->nodes[0],
280 						  path->slots[0]),
281 			    size);
282 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
283 	btrfs_set_inode_full_sync(BTRFS_I(dst));
284 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
285 out:
286 	if (!ret && !trans) {
287 		/*
288 		 * No transaction here means we copied the inline extent into a
289 		 * page of the destination inode.
290 		 *
291 		 * 1 unit to update inode item
292 		 */
293 		trans = btrfs_start_transaction(root, 1);
294 		if (IS_ERR(trans)) {
295 			ret = PTR_ERR(trans);
296 			trans = NULL;
297 		}
298 	}
299 	if (ret && trans) {
300 		btrfs_abort_transaction(trans, ret);
301 		btrfs_end_transaction(trans);
302 	}
303 	if (!ret)
304 		*trans_out = trans;
305 
306 	return ret;
307 
308 copy_to_page:
309 	/*
310 	 * Release our path because we don't need it anymore and also because
311 	 * copy_inline_to_page() needs to reserve data and metadata, which may
312 	 * need to flush delalloc when we are low on available space and
313 	 * therefore cause a deadlock if writeback of an inline extent needs to
314 	 * write to the same leaf or an ordered extent completion needs to write
315 	 * to the same leaf.
316 	 */
317 	btrfs_release_path(path);
318 
319 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
320 				  inline_data, size, datal, comp_type);
321 	goto out;
322 }
323 
324 /*
325  * Clone a range from inode file to another.
326  *
327  * @src:             Inode to clone from
328  * @inode:           Inode to clone to
329  * @off:             Offset within source to start clone from
330  * @olen:            Original length, passed by user, of range to clone
331  * @olen_aligned:    Block-aligned value of olen
332  * @destoff:         Offset within @inode to start clone
333  * @no_time_update:  Whether to update mtime/ctime on the target inode
334  */
335 static int btrfs_clone(struct inode *src, struct inode *inode,
336 		       const u64 off, const u64 olen, const u64 olen_aligned,
337 		       const u64 destoff, int no_time_update)
338 {
339 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 	struct btrfs_path *path = NULL;
341 	struct extent_buffer *leaf;
342 	struct btrfs_trans_handle *trans;
343 	char *buf = NULL;
344 	struct btrfs_key key;
345 	u32 nritems;
346 	int slot;
347 	int ret;
348 	const u64 len = olen_aligned;
349 	u64 last_dest_end = destoff;
350 	u64 prev_extent_end = off;
351 
352 	ret = -ENOMEM;
353 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
354 	if (!buf)
355 		return ret;
356 
357 	path = btrfs_alloc_path();
358 	if (!path) {
359 		kvfree(buf);
360 		return ret;
361 	}
362 
363 	path->reada = READA_FORWARD;
364 	/* Clone data */
365 	key.objectid = btrfs_ino(BTRFS_I(src));
366 	key.type = BTRFS_EXTENT_DATA_KEY;
367 	key.offset = off;
368 
369 	while (1) {
370 		struct btrfs_file_extent_item *extent;
371 		u64 extent_gen;
372 		int type;
373 		u32 size;
374 		struct btrfs_key new_key;
375 		u64 disko = 0, diskl = 0;
376 		u64 datao = 0, datal = 0;
377 		u8 comp;
378 		u64 drop_start;
379 
380 		/* Note the key will change type as we walk through the tree */
381 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
382 				0, 0);
383 		if (ret < 0)
384 			goto out;
385 		/*
386 		 * First search, if no extent item that starts at offset off was
387 		 * found but the previous item is an extent item, it's possible
388 		 * it might overlap our target range, therefore process it.
389 		 */
390 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
391 			btrfs_item_key_to_cpu(path->nodes[0], &key,
392 					      path->slots[0] - 1);
393 			if (key.type == BTRFS_EXTENT_DATA_KEY)
394 				path->slots[0]--;
395 		}
396 
397 		nritems = btrfs_header_nritems(path->nodes[0]);
398 process_slot:
399 		if (path->slots[0] >= nritems) {
400 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
401 			if (ret < 0)
402 				goto out;
403 			if (ret > 0)
404 				break;
405 			nritems = btrfs_header_nritems(path->nodes[0]);
406 		}
407 		leaf = path->nodes[0];
408 		slot = path->slots[0];
409 
410 		btrfs_item_key_to_cpu(leaf, &key, slot);
411 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
412 		    key.objectid != btrfs_ino(BTRFS_I(src)))
413 			break;
414 
415 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
416 
417 		extent = btrfs_item_ptr(leaf, slot,
418 					struct btrfs_file_extent_item);
419 		extent_gen = btrfs_file_extent_generation(leaf, extent);
420 		comp = btrfs_file_extent_compression(leaf, extent);
421 		type = btrfs_file_extent_type(leaf, extent);
422 		if (type == BTRFS_FILE_EXTENT_REG ||
423 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
424 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
425 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
426 			datao = btrfs_file_extent_offset(leaf, extent);
427 			datal = btrfs_file_extent_num_bytes(leaf, extent);
428 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
429 			/* Take upper bound, may be compressed */
430 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
431 		}
432 
433 		/*
434 		 * The first search might have left us at an extent item that
435 		 * ends before our target range's start, can happen if we have
436 		 * holes and NO_HOLES feature enabled.
437 		 *
438 		 * Subsequent searches may leave us on a file range we have
439 		 * processed before - this happens due to a race with ordered
440 		 * extent completion for a file range that is outside our source
441 		 * range, but that range was part of a file extent item that
442 		 * also covered a leading part of our source range.
443 		 */
444 		if (key.offset + datal <= prev_extent_end) {
445 			path->slots[0]++;
446 			goto process_slot;
447 		} else if (key.offset >= off + len) {
448 			break;
449 		}
450 
451 		prev_extent_end = key.offset + datal;
452 		size = btrfs_item_size(leaf, slot);
453 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
454 				   size);
455 
456 		btrfs_release_path(path);
457 
458 		memcpy(&new_key, &key, sizeof(new_key));
459 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
460 		if (off <= key.offset)
461 			new_key.offset = key.offset + destoff - off;
462 		else
463 			new_key.offset = destoff;
464 
465 		/*
466 		 * Deal with a hole that doesn't have an extent item that
467 		 * represents it (NO_HOLES feature enabled).
468 		 * This hole is either in the middle of the cloning range or at
469 		 * the beginning (fully overlaps it or partially overlaps it).
470 		 */
471 		if (new_key.offset != last_dest_end)
472 			drop_start = last_dest_end;
473 		else
474 			drop_start = new_key.offset;
475 
476 		if (type == BTRFS_FILE_EXTENT_REG ||
477 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
478 			struct btrfs_replace_extent_info clone_info;
479 
480 			/*
481 			 *    a  | --- range to clone ---|  b
482 			 * | ------------- extent ------------- |
483 			 */
484 
485 			/* Subtract range b */
486 			if (key.offset + datal > off + len)
487 				datal = off + len - key.offset;
488 
489 			/* Subtract range a */
490 			if (off > key.offset) {
491 				datao += off - key.offset;
492 				datal -= off - key.offset;
493 			}
494 
495 			clone_info.disk_offset = disko;
496 			clone_info.disk_len = diskl;
497 			clone_info.data_offset = datao;
498 			clone_info.data_len = datal;
499 			clone_info.file_offset = new_key.offset;
500 			clone_info.extent_buf = buf;
501 			clone_info.is_new_extent = false;
502 			clone_info.update_times = !no_time_update;
503 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
504 					drop_start, new_key.offset + datal - 1,
505 					&clone_info, &trans);
506 			if (ret)
507 				goto out;
508 		} else {
509 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
510 			/*
511 			 * Inline extents always have to start at file offset 0
512 			 * and can never be bigger then the sector size. We can
513 			 * never clone only parts of an inline extent, since all
514 			 * reflink operations must start at a sector size aligned
515 			 * offset, and the length must be aligned too or end at
516 			 * the i_size (which implies the whole inlined data).
517 			 */
518 			ASSERT(key.offset == 0);
519 			ASSERT(datal <= fs_info->sectorsize);
520 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
521 			    WARN_ON(key.offset != 0) ||
522 			    WARN_ON(datal > fs_info->sectorsize)) {
523 				ret = -EUCLEAN;
524 				goto out;
525 			}
526 
527 			ret = clone_copy_inline_extent(inode, path, &new_key,
528 						       drop_start, datal, size,
529 						       comp, buf, &trans);
530 			if (ret)
531 				goto out;
532 		}
533 
534 		btrfs_release_path(path);
535 
536 		/*
537 		 * Whenever we share an extent we update the last_reflink_trans
538 		 * of each inode to the current transaction. This is needed to
539 		 * make sure fsync does not log multiple checksum items with
540 		 * overlapping ranges (because some extent items might refer
541 		 * only to sections of the original extent). For the destination
542 		 * inode we do this regardless of the generation of the extents
543 		 * or even if they are inline extents or explicit holes, to make
544 		 * sure a full fsync does not skip them. For the source inode,
545 		 * we only need to update last_reflink_trans in case it's a new
546 		 * extent that is not a hole or an inline extent, to deal with
547 		 * the checksums problem on fsync.
548 		 */
549 		if (extent_gen == trans->transid && disko > 0)
550 			BTRFS_I(src)->last_reflink_trans = trans->transid;
551 
552 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
553 
554 		last_dest_end = ALIGN(new_key.offset + datal,
555 				      fs_info->sectorsize);
556 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
557 						destoff, olen, no_time_update);
558 		if (ret)
559 			goto out;
560 		if (new_key.offset + datal >= destoff + len)
561 			break;
562 
563 		btrfs_release_path(path);
564 		key.offset = prev_extent_end;
565 
566 		if (fatal_signal_pending(current)) {
567 			ret = -EINTR;
568 			goto out;
569 		}
570 
571 		cond_resched();
572 	}
573 	ret = 0;
574 
575 	if (last_dest_end < destoff + len) {
576 		/*
577 		 * We have an implicit hole that fully or partially overlaps our
578 		 * cloning range at its end. This means that we either have the
579 		 * NO_HOLES feature enabled or the implicit hole happened due to
580 		 * mixing buffered and direct IO writes against this file.
581 		 */
582 		btrfs_release_path(path);
583 
584 		/*
585 		 * When using NO_HOLES and we are cloning a range that covers
586 		 * only a hole (no extents) into a range beyond the current
587 		 * i_size, punching a hole in the target range will not create
588 		 * an extent map defining a hole, because the range starts at or
589 		 * beyond current i_size. If the file previously had an i_size
590 		 * greater than the new i_size set by this clone operation, we
591 		 * need to make sure the next fsync is a full fsync, so that it
592 		 * detects and logs a hole covering a range from the current
593 		 * i_size to the new i_size. If the clone range covers extents,
594 		 * besides a hole, then we know the full sync flag was already
595 		 * set by previous calls to btrfs_replace_file_extents() that
596 		 * replaced file extent items.
597 		 */
598 		if (last_dest_end >= i_size_read(inode))
599 			btrfs_set_inode_full_sync(BTRFS_I(inode));
600 
601 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
602 				last_dest_end, destoff + len - 1, NULL, &trans);
603 		if (ret)
604 			goto out;
605 
606 		ret = clone_finish_inode_update(trans, inode, destoff + len,
607 						destoff, olen, no_time_update);
608 	}
609 
610 out:
611 	btrfs_free_path(path);
612 	kvfree(buf);
613 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
614 
615 	return ret;
616 }
617 
618 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
619 				       struct inode *inode2, u64 loff2, u64 len)
620 {
621 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
622 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
623 }
624 
625 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
626 				     struct inode *inode2, u64 loff2, u64 len)
627 {
628 	u64 range1_end = loff1 + len - 1;
629 	u64 range2_end = loff2 + len - 1;
630 
631 	if (inode1 < inode2) {
632 		swap(inode1, inode2);
633 		swap(loff1, loff2);
634 		swap(range1_end, range2_end);
635 	} else if (inode1 == inode2 && loff2 < loff1) {
636 		swap(loff1, loff2);
637 		swap(range1_end, range2_end);
638 	}
639 
640 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
641 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
642 
643 	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
644 	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
645 }
646 
647 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
648 {
649 	if (inode1 < inode2)
650 		swap(inode1, inode2);
651 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
652 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
653 }
654 
655 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
656 {
657 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
658 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
659 }
660 
661 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
662 				   struct inode *dst, u64 dst_loff)
663 {
664 	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
665 	const u64 bs = fs_info->sb->s_blocksize;
666 	int ret;
667 
668 	/*
669 	 * Lock destination range to serialize with concurrent readahead() and
670 	 * source range to serialize with relocation.
671 	 */
672 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
673 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
674 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
675 
676 	btrfs_btree_balance_dirty(fs_info);
677 
678 	return ret;
679 }
680 
681 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
682 			     struct inode *dst, u64 dst_loff)
683 {
684 	int ret = 0;
685 	u64 i, tail_len, chunk_count;
686 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
687 
688 	spin_lock(&root_dst->root_item_lock);
689 	if (root_dst->send_in_progress) {
690 		btrfs_warn_rl(root_dst->fs_info,
691 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
692 			      root_dst->root_key.objectid,
693 			      root_dst->send_in_progress);
694 		spin_unlock(&root_dst->root_item_lock);
695 		return -EAGAIN;
696 	}
697 	root_dst->dedupe_in_progress++;
698 	spin_unlock(&root_dst->root_item_lock);
699 
700 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
701 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
702 
703 	for (i = 0; i < chunk_count; i++) {
704 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
705 					      dst, dst_loff);
706 		if (ret)
707 			goto out;
708 
709 		loff += BTRFS_MAX_DEDUPE_LEN;
710 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
711 	}
712 
713 	if (tail_len > 0)
714 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
715 out:
716 	spin_lock(&root_dst->root_item_lock);
717 	root_dst->dedupe_in_progress--;
718 	spin_unlock(&root_dst->root_item_lock);
719 
720 	return ret;
721 }
722 
723 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
724 					u64 off, u64 olen, u64 destoff)
725 {
726 	struct inode *inode = file_inode(file);
727 	struct inode *src = file_inode(file_src);
728 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
729 	int ret;
730 	int wb_ret;
731 	u64 len = olen;
732 	u64 bs = fs_info->sb->s_blocksize;
733 
734 	/*
735 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
736 	 * eof block into the middle of a file, which would result in corruption
737 	 * if the file size is not blocksize aligned. So we don't need to check
738 	 * for that case here.
739 	 */
740 	if (off + len == src->i_size)
741 		len = ALIGN(src->i_size, bs) - off;
742 
743 	if (destoff > inode->i_size) {
744 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
745 
746 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
747 		if (ret)
748 			return ret;
749 		/*
750 		 * We may have truncated the last block if the inode's size is
751 		 * not sector size aligned, so we need to wait for writeback to
752 		 * complete before proceeding further, otherwise we can race
753 		 * with cloning and attempt to increment a reference to an
754 		 * extent that no longer exists (writeback completed right after
755 		 * we found the previous extent covering eof and before we
756 		 * attempted to increment its reference count).
757 		 */
758 		ret = btrfs_wait_ordered_range(inode, wb_start,
759 					       destoff - wb_start);
760 		if (ret)
761 			return ret;
762 	}
763 
764 	/*
765 	 * Lock destination range to serialize with concurrent readahead() and
766 	 * source range to serialize with relocation.
767 	 */
768 	btrfs_double_extent_lock(src, off, inode, destoff, len);
769 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
770 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
771 
772 	/*
773 	 * We may have copied an inline extent into a page of the destination
774 	 * range, so wait for writeback to complete before truncating pages
775 	 * from the page cache. This is a rare case.
776 	 */
777 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
778 	ret = ret ? ret : wb_ret;
779 	/*
780 	 * Truncate page cache pages so that future reads will see the cloned
781 	 * data immediately and not the previous data.
782 	 */
783 	truncate_inode_pages_range(&inode->i_data,
784 				round_down(destoff, PAGE_SIZE),
785 				round_up(destoff + len, PAGE_SIZE) - 1);
786 
787 	btrfs_btree_balance_dirty(fs_info);
788 
789 	return ret;
790 }
791 
792 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
793 				       struct file *file_out, loff_t pos_out,
794 				       loff_t *len, unsigned int remap_flags)
795 {
796 	struct inode *inode_in = file_inode(file_in);
797 	struct inode *inode_out = file_inode(file_out);
798 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
799 	u64 wb_len;
800 	int ret;
801 
802 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
803 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
804 
805 		if (btrfs_root_readonly(root_out))
806 			return -EROFS;
807 
808 		ASSERT(inode_in->i_sb == inode_out->i_sb);
809 	}
810 
811 	/* Don't make the dst file partly checksummed */
812 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
813 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
814 		return -EINVAL;
815 	}
816 
817 	/*
818 	 * Now that the inodes are locked, we need to start writeback ourselves
819 	 * and can not rely on the writeback from the VFS's generic helper
820 	 * generic_remap_file_range_prep() because:
821 	 *
822 	 * 1) For compression we must call filemap_fdatawrite_range() range
823 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
824 	 *    helper only calls it once;
825 	 *
826 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
827 	 *    waits for the writeback to complete, i.e. for IO to be done, and
828 	 *    not for the ordered extents to complete. We need to wait for them
829 	 *    to complete so that new file extent items are in the fs tree.
830 	 */
831 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
832 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
833 	else
834 		wb_len = ALIGN(*len, bs);
835 
836 	/*
837 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
838 	 *
839 	 * Btrfs' back references do not have a block level granularity, they
840 	 * work at the whole extent level.
841 	 * NOCOW buffered write without data space reserved may not be able
842 	 * to fall back to CoW due to lack of data space, thus could cause
843 	 * data loss.
844 	 *
845 	 * Here we take a shortcut by flushing the whole inode, so that all
846 	 * nocow write should reach disk as nocow before we increase the
847 	 * reference of the extent. We could do better by only flushing NOCOW
848 	 * data, but that needs extra accounting.
849 	 *
850 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
851 	 * CoWed anyway, not affecting nocow part.
852 	 */
853 	ret = filemap_flush(inode_in->i_mapping);
854 	if (ret < 0)
855 		return ret;
856 
857 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
858 				       wb_len);
859 	if (ret < 0)
860 		return ret;
861 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
862 				       wb_len);
863 	if (ret < 0)
864 		return ret;
865 
866 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
867 					    len, remap_flags);
868 }
869 
870 static bool file_sync_write(const struct file *file)
871 {
872 	if (file->f_flags & (__O_SYNC | O_DSYNC))
873 		return true;
874 	if (IS_SYNC(file_inode(file)))
875 		return true;
876 
877 	return false;
878 }
879 
880 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
881 		struct file *dst_file, loff_t destoff, loff_t len,
882 		unsigned int remap_flags)
883 {
884 	struct inode *src_inode = file_inode(src_file);
885 	struct inode *dst_inode = file_inode(dst_file);
886 	bool same_inode = dst_inode == src_inode;
887 	int ret;
888 
889 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
890 		return -EINVAL;
891 
892 	if (same_inode) {
893 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
894 	} else {
895 		lock_two_nondirectories(src_inode, dst_inode);
896 		btrfs_double_mmap_lock(src_inode, dst_inode);
897 	}
898 
899 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
900 					  &len, remap_flags);
901 	if (ret < 0 || len == 0)
902 		goto out_unlock;
903 
904 	if (remap_flags & REMAP_FILE_DEDUP)
905 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
906 	else
907 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
908 
909 out_unlock:
910 	if (same_inode) {
911 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
912 	} else {
913 		btrfs_double_mmap_unlock(src_inode, dst_inode);
914 		unlock_two_nondirectories(src_inode, dst_inode);
915 	}
916 
917 	/*
918 	 * If either the source or the destination file was opened with O_SYNC,
919 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
920 	 * source files/ranges, so that after a successful return (0) followed
921 	 * by a power failure results in the reflinked data to be readable from
922 	 * both files/ranges.
923 	 */
924 	if (ret == 0 && len > 0 &&
925 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
926 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
927 		if (ret == 0)
928 			ret = btrfs_sync_file(dst_file, destoff,
929 					      destoff + len - 1, 0);
930 	}
931 
932 	return ret < 0 ? ret : len;
933 }
934