xref: /openbmc/linux/fs/btrfs/reflink.c (revision 3660d0bc)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
48 static int copy_inline_to_page(struct btrfs_inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	struct address_space *mapping = inode->vfs_inode.i_mapping;
62 	int ret;
63 
64 	ASSERT(IS_ALIGNED(file_offset, block_size));
65 
66 	/*
67 	 * We have flushed and locked the ranges of the source and destination
68 	 * inodes, we also have locked the inodes, so we are safe to do a
69 	 * reservation here. Also we must not do the reservation while holding
70 	 * a transaction open, otherwise we would deadlock.
71 	 */
72 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
73 					   block_size);
74 	if (ret)
75 		goto out;
76 
77 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
78 				   btrfs_alloc_write_mask(mapping));
79 	if (!page) {
80 		ret = -ENOMEM;
81 		goto out_unlock;
82 	}
83 
84 	ret = set_page_extent_mapped(page);
85 	if (ret < 0)
86 		goto out_unlock;
87 
88 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
89 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
90 			 0, 0, NULL);
91 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
92 	if (ret)
93 		goto out_unlock;
94 
95 	/*
96 	 * After dirtying the page our caller will need to start a transaction,
97 	 * and if we are low on metadata free space, that can cause flushing of
98 	 * delalloc for all inodes in order to get metadata space released.
99 	 * However we are holding the range locked for the whole duration of
100 	 * the clone/dedupe operation, so we may deadlock if that happens and no
101 	 * other task releases enough space. So mark this inode as not being
102 	 * possible to flush to avoid such deadlock. We will clear that flag
103 	 * when we finish cloning all extents, since a transaction is started
104 	 * after finding each extent to clone.
105 	 */
106 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
107 
108 	if (comp_type == BTRFS_COMPRESS_NONE) {
109 		char *map;
110 
111 		map = kmap(page);
112 		memcpy(map, data_start, datal);
113 		flush_dcache_page(page);
114 		kunmap(page);
115 	} else {
116 		ret = btrfs_decompress(comp_type, data_start, page, 0,
117 				       inline_size, datal);
118 		if (ret)
119 			goto out_unlock;
120 		flush_dcache_page(page);
121 	}
122 
123 	/*
124 	 * If our inline data is smaller then the block/page size, then the
125 	 * remaining of the block/page is equivalent to zeroes. We had something
126 	 * like the following done:
127 	 *
128 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
129 	 * $ sync  # (or fsync)
130 	 * $ xfs_io -c "falloc 0 4K" file
131 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
132 	 *
133 	 * So what's in the range [500, 4095] corresponds to zeroes.
134 	 */
135 	if (datal < block_size) {
136 		char *map;
137 
138 		map = kmap(page);
139 		memset(map + datal, 0, block_size - datal);
140 		flush_dcache_page(page);
141 		kunmap(page);
142 	}
143 
144 	SetPageUptodate(page);
145 	ClearPageChecked(page);
146 	set_page_dirty(page);
147 out_unlock:
148 	if (page) {
149 		unlock_page(page);
150 		put_page(page);
151 	}
152 	if (ret)
153 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
154 					     block_size, true);
155 	btrfs_delalloc_release_extents(inode, block_size);
156 out:
157 	extent_changeset_free(data_reserved);
158 
159 	return ret;
160 }
161 
162 /*
163  * Deal with cloning of inline extents. We try to copy the inline extent from
164  * the source inode to destination inode when possible. When not possible we
165  * copy the inline extent's data into the respective page of the inode.
166  */
167 static int clone_copy_inline_extent(struct inode *dst,
168 				    struct btrfs_path *path,
169 				    struct btrfs_key *new_key,
170 				    const u64 drop_start,
171 				    const u64 datal,
172 				    const u64 size,
173 				    const u8 comp_type,
174 				    char *inline_data,
175 				    struct btrfs_trans_handle **trans_out)
176 {
177 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
178 	struct btrfs_root *root = BTRFS_I(dst)->root;
179 	const u64 aligned_end = ALIGN(new_key->offset + datal,
180 				      fs_info->sectorsize);
181 	struct btrfs_trans_handle *trans = NULL;
182 	struct btrfs_drop_extents_args drop_args = { 0 };
183 	int ret;
184 	struct btrfs_key key;
185 
186 	if (new_key->offset > 0) {
187 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
188 					  inline_data, size, datal, comp_type);
189 		goto out;
190 	}
191 
192 	key.objectid = btrfs_ino(BTRFS_I(dst));
193 	key.type = BTRFS_EXTENT_DATA_KEY;
194 	key.offset = 0;
195 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
196 	if (ret < 0) {
197 		return ret;
198 	} else if (ret > 0) {
199 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
200 			ret = btrfs_next_leaf(root, path);
201 			if (ret < 0)
202 				return ret;
203 			else if (ret > 0)
204 				goto copy_inline_extent;
205 		}
206 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
207 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
208 		    key.type == BTRFS_EXTENT_DATA_KEY) {
209 			/*
210 			 * There's an implicit hole at file offset 0, copy the
211 			 * inline extent's data to the page.
212 			 */
213 			ASSERT(key.offset > 0);
214 			ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
215 						  inline_data, size, datal,
216 						  comp_type);
217 			goto out;
218 		}
219 	} else if (i_size_read(dst) <= datal) {
220 		struct btrfs_file_extent_item *ei;
221 
222 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
223 				    struct btrfs_file_extent_item);
224 		/*
225 		 * If it's an inline extent replace it with the source inline
226 		 * extent, otherwise copy the source inline extent data into
227 		 * the respective page at the destination inode.
228 		 */
229 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
230 		    BTRFS_FILE_EXTENT_INLINE)
231 			goto copy_inline_extent;
232 
233 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
234 					  inline_data, size, datal, comp_type);
235 		goto out;
236 	}
237 
238 copy_inline_extent:
239 	ret = 0;
240 	/*
241 	 * We have no extent items, or we have an extent at offset 0 which may
242 	 * or may not be inlined. All these cases are dealt the same way.
243 	 */
244 	if (i_size_read(dst) > datal) {
245 		/*
246 		 * At the destination offset 0 we have either a hole, a regular
247 		 * extent or an inline extent larger then the one we want to
248 		 * clone. Deal with all these cases by copying the inline extent
249 		 * data into the respective page at the destination inode.
250 		 */
251 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
252 					  inline_data, size, datal, comp_type);
253 		goto out;
254 	}
255 
256 	btrfs_release_path(path);
257 	/*
258 	 * If we end up here it means were copy the inline extent into a leaf
259 	 * of the destination inode. We know we will drop or adjust at most one
260 	 * extent item in the destination root.
261 	 *
262 	 * 1 unit - adjusting old extent (we may have to split it)
263 	 * 1 unit - add new extent
264 	 * 1 unit - inode update
265 	 */
266 	trans = btrfs_start_transaction(root, 3);
267 	if (IS_ERR(trans)) {
268 		ret = PTR_ERR(trans);
269 		trans = NULL;
270 		goto out;
271 	}
272 	drop_args.path = path;
273 	drop_args.start = drop_start;
274 	drop_args.end = aligned_end;
275 	drop_args.drop_cache = true;
276 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
277 	if (ret)
278 		goto out;
279 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
280 	if (ret)
281 		goto out;
282 
283 	write_extent_buffer(path->nodes[0], inline_data,
284 			    btrfs_item_ptr_offset(path->nodes[0],
285 						  path->slots[0]),
286 			    size);
287 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
288 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
289 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
290 out:
291 	if (!ret && !trans) {
292 		/*
293 		 * No transaction here means we copied the inline extent into a
294 		 * page of the destination inode.
295 		 *
296 		 * 1 unit to update inode item
297 		 */
298 		trans = btrfs_start_transaction(root, 1);
299 		if (IS_ERR(trans)) {
300 			ret = PTR_ERR(trans);
301 			trans = NULL;
302 		}
303 	}
304 	if (ret && trans) {
305 		btrfs_abort_transaction(trans, ret);
306 		btrfs_end_transaction(trans);
307 	}
308 	if (!ret)
309 		*trans_out = trans;
310 
311 	return ret;
312 }
313 
314 /**
315  * btrfs_clone() - clone a range from inode file to another
316  *
317  * @src: Inode to clone from
318  * @inode: Inode to clone to
319  * @off: Offset within source to start clone from
320  * @olen: Original length, passed by user, of range to clone
321  * @olen_aligned: Block-aligned value of olen
322  * @destoff: Offset within @inode to start clone
323  * @no_time_update: Whether to update mtime/ctime on the target inode
324  */
325 static int btrfs_clone(struct inode *src, struct inode *inode,
326 		       const u64 off, const u64 olen, const u64 olen_aligned,
327 		       const u64 destoff, int no_time_update)
328 {
329 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
330 	struct btrfs_path *path = NULL;
331 	struct extent_buffer *leaf;
332 	struct btrfs_trans_handle *trans;
333 	char *buf = NULL;
334 	struct btrfs_key key;
335 	u32 nritems;
336 	int slot;
337 	int ret;
338 	const u64 len = olen_aligned;
339 	u64 last_dest_end = destoff;
340 
341 	ret = -ENOMEM;
342 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
343 	if (!buf)
344 		return ret;
345 
346 	path = btrfs_alloc_path();
347 	if (!path) {
348 		kvfree(buf);
349 		return ret;
350 	}
351 
352 	path->reada = READA_FORWARD;
353 	/* Clone data */
354 	key.objectid = btrfs_ino(BTRFS_I(src));
355 	key.type = BTRFS_EXTENT_DATA_KEY;
356 	key.offset = off;
357 
358 	while (1) {
359 		u64 next_key_min_offset = key.offset + 1;
360 		struct btrfs_file_extent_item *extent;
361 		u64 extent_gen;
362 		int type;
363 		u32 size;
364 		struct btrfs_key new_key;
365 		u64 disko = 0, diskl = 0;
366 		u64 datao = 0, datal = 0;
367 		u8 comp;
368 		u64 drop_start;
369 
370 		/* Note the key will change type as we walk through the tree */
371 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
372 				0, 0);
373 		if (ret < 0)
374 			goto out;
375 		/*
376 		 * First search, if no extent item that starts at offset off was
377 		 * found but the previous item is an extent item, it's possible
378 		 * it might overlap our target range, therefore process it.
379 		 */
380 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
381 			btrfs_item_key_to_cpu(path->nodes[0], &key,
382 					      path->slots[0] - 1);
383 			if (key.type == BTRFS_EXTENT_DATA_KEY)
384 				path->slots[0]--;
385 		}
386 
387 		nritems = btrfs_header_nritems(path->nodes[0]);
388 process_slot:
389 		if (path->slots[0] >= nritems) {
390 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
391 			if (ret < 0)
392 				goto out;
393 			if (ret > 0)
394 				break;
395 			nritems = btrfs_header_nritems(path->nodes[0]);
396 		}
397 		leaf = path->nodes[0];
398 		slot = path->slots[0];
399 
400 		btrfs_item_key_to_cpu(leaf, &key, slot);
401 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
402 		    key.objectid != btrfs_ino(BTRFS_I(src)))
403 			break;
404 
405 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
406 
407 		extent = btrfs_item_ptr(leaf, slot,
408 					struct btrfs_file_extent_item);
409 		extent_gen = btrfs_file_extent_generation(leaf, extent);
410 		comp = btrfs_file_extent_compression(leaf, extent);
411 		type = btrfs_file_extent_type(leaf, extent);
412 		if (type == BTRFS_FILE_EXTENT_REG ||
413 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
414 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
415 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
416 			datao = btrfs_file_extent_offset(leaf, extent);
417 			datal = btrfs_file_extent_num_bytes(leaf, extent);
418 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
419 			/* Take upper bound, may be compressed */
420 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
421 		}
422 
423 		/*
424 		 * The first search might have left us at an extent item that
425 		 * ends before our target range's start, can happen if we have
426 		 * holes and NO_HOLES feature enabled.
427 		 */
428 		if (key.offset + datal <= off) {
429 			path->slots[0]++;
430 			goto process_slot;
431 		} else if (key.offset >= off + len) {
432 			break;
433 		}
434 		next_key_min_offset = key.offset + datal;
435 		size = btrfs_item_size_nr(leaf, slot);
436 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
437 				   size);
438 
439 		btrfs_release_path(path);
440 
441 		memcpy(&new_key, &key, sizeof(new_key));
442 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
443 		if (off <= key.offset)
444 			new_key.offset = key.offset + destoff - off;
445 		else
446 			new_key.offset = destoff;
447 
448 		/*
449 		 * Deal with a hole that doesn't have an extent item that
450 		 * represents it (NO_HOLES feature enabled).
451 		 * This hole is either in the middle of the cloning range or at
452 		 * the beginning (fully overlaps it or partially overlaps it).
453 		 */
454 		if (new_key.offset != last_dest_end)
455 			drop_start = last_dest_end;
456 		else
457 			drop_start = new_key.offset;
458 
459 		if (type == BTRFS_FILE_EXTENT_REG ||
460 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
461 			struct btrfs_replace_extent_info clone_info;
462 
463 			/*
464 			 *    a  | --- range to clone ---|  b
465 			 * | ------------- extent ------------- |
466 			 */
467 
468 			/* Subtract range b */
469 			if (key.offset + datal > off + len)
470 				datal = off + len - key.offset;
471 
472 			/* Subtract range a */
473 			if (off > key.offset) {
474 				datao += off - key.offset;
475 				datal -= off - key.offset;
476 			}
477 
478 			clone_info.disk_offset = disko;
479 			clone_info.disk_len = diskl;
480 			clone_info.data_offset = datao;
481 			clone_info.data_len = datal;
482 			clone_info.file_offset = new_key.offset;
483 			clone_info.extent_buf = buf;
484 			clone_info.is_new_extent = false;
485 			ret = btrfs_replace_file_extents(inode, path, drop_start,
486 					new_key.offset + datal - 1, &clone_info,
487 					&trans);
488 			if (ret)
489 				goto out;
490 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
491 			/*
492 			 * Inline extents always have to start at file offset 0
493 			 * and can never be bigger then the sector size. We can
494 			 * never clone only parts of an inline extent, since all
495 			 * reflink operations must start at a sector size aligned
496 			 * offset, and the length must be aligned too or end at
497 			 * the i_size (which implies the whole inlined data).
498 			 */
499 			ASSERT(key.offset == 0);
500 			ASSERT(datal <= fs_info->sectorsize);
501 			if (key.offset != 0 || datal > fs_info->sectorsize)
502 				return -EUCLEAN;
503 
504 			ret = clone_copy_inline_extent(inode, path, &new_key,
505 						       drop_start, datal, size,
506 						       comp, buf, &trans);
507 			if (ret)
508 				goto out;
509 		}
510 
511 		btrfs_release_path(path);
512 
513 		/*
514 		 * If this is a new extent update the last_reflink_trans of both
515 		 * inodes. This is used by fsync to make sure it does not log
516 		 * multiple checksum items with overlapping ranges. For older
517 		 * extents we don't need to do it since inode logging skips the
518 		 * checksums for older extents. Also ignore holes and inline
519 		 * extents because they don't have checksums in the csum tree.
520 		 */
521 		if (extent_gen == trans->transid && disko > 0) {
522 			BTRFS_I(src)->last_reflink_trans = trans->transid;
523 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
524 		}
525 
526 		last_dest_end = ALIGN(new_key.offset + datal,
527 				      fs_info->sectorsize);
528 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
529 						destoff, olen, no_time_update);
530 		if (ret)
531 			goto out;
532 		if (new_key.offset + datal >= destoff + len)
533 			break;
534 
535 		btrfs_release_path(path);
536 		key.offset = next_key_min_offset;
537 
538 		if (fatal_signal_pending(current)) {
539 			ret = -EINTR;
540 			goto out;
541 		}
542 
543 		cond_resched();
544 	}
545 	ret = 0;
546 
547 	if (last_dest_end < destoff + len) {
548 		/*
549 		 * We have an implicit hole that fully or partially overlaps our
550 		 * cloning range at its end. This means that we either have the
551 		 * NO_HOLES feature enabled or the implicit hole happened due to
552 		 * mixing buffered and direct IO writes against this file.
553 		 */
554 		btrfs_release_path(path);
555 
556 		/*
557 		 * When using NO_HOLES and we are cloning a range that covers
558 		 * only a hole (no extents) into a range beyond the current
559 		 * i_size, punching a hole in the target range will not create
560 		 * an extent map defining a hole, because the range starts at or
561 		 * beyond current i_size. If the file previously had an i_size
562 		 * greater than the new i_size set by this clone operation, we
563 		 * need to make sure the next fsync is a full fsync, so that it
564 		 * detects and logs a hole covering a range from the current
565 		 * i_size to the new i_size. If the clone range covers extents,
566 		 * besides a hole, then we know the full sync flag was already
567 		 * set by previous calls to btrfs_replace_file_extents() that
568 		 * replaced file extent items.
569 		 */
570 		if (last_dest_end >= i_size_read(inode))
571 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
572 				&BTRFS_I(inode)->runtime_flags);
573 
574 		ret = btrfs_replace_file_extents(inode, path, last_dest_end,
575 				destoff + len - 1, NULL, &trans);
576 		if (ret)
577 			goto out;
578 
579 		ret = clone_finish_inode_update(trans, inode, destoff + len,
580 						destoff, olen, no_time_update);
581 	}
582 
583 out:
584 	btrfs_free_path(path);
585 	kvfree(buf);
586 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
587 
588 	return ret;
589 }
590 
591 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
592 				       struct inode *inode2, u64 loff2, u64 len)
593 {
594 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
595 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
596 }
597 
598 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
599 				     struct inode *inode2, u64 loff2, u64 len)
600 {
601 	if (inode1 < inode2) {
602 		swap(inode1, inode2);
603 		swap(loff1, loff2);
604 	} else if (inode1 == inode2 && loff2 < loff1) {
605 		swap(loff1, loff2);
606 	}
607 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
608 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
609 }
610 
611 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
612 				   struct inode *dst, u64 dst_loff)
613 {
614 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
615 	int ret;
616 
617 	/*
618 	 * Lock destination range to serialize with concurrent readpages() and
619 	 * source range to serialize with relocation.
620 	 */
621 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
622 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
623 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
624 
625 	return ret;
626 }
627 
628 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
629 			     struct inode *dst, u64 dst_loff)
630 {
631 	int ret;
632 	u64 i, tail_len, chunk_count;
633 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
634 
635 	spin_lock(&root_dst->root_item_lock);
636 	if (root_dst->send_in_progress) {
637 		btrfs_warn_rl(root_dst->fs_info,
638 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
639 			      root_dst->root_key.objectid,
640 			      root_dst->send_in_progress);
641 		spin_unlock(&root_dst->root_item_lock);
642 		return -EAGAIN;
643 	}
644 	root_dst->dedupe_in_progress++;
645 	spin_unlock(&root_dst->root_item_lock);
646 
647 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
648 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
649 
650 	for (i = 0; i < chunk_count; i++) {
651 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
652 					      dst, dst_loff);
653 		if (ret)
654 			goto out;
655 
656 		loff += BTRFS_MAX_DEDUPE_LEN;
657 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
658 	}
659 
660 	if (tail_len > 0)
661 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
662 out:
663 	spin_lock(&root_dst->root_item_lock);
664 	root_dst->dedupe_in_progress--;
665 	spin_unlock(&root_dst->root_item_lock);
666 
667 	return ret;
668 }
669 
670 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
671 					u64 off, u64 olen, u64 destoff)
672 {
673 	struct inode *inode = file_inode(file);
674 	struct inode *src = file_inode(file_src);
675 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
676 	int ret;
677 	int wb_ret;
678 	u64 len = olen;
679 	u64 bs = fs_info->sb->s_blocksize;
680 
681 	/*
682 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
683 	 * eof block into the middle of a file, which would result in corruption
684 	 * if the file size is not blocksize aligned. So we don't need to check
685 	 * for that case here.
686 	 */
687 	if (off + len == src->i_size)
688 		len = ALIGN(src->i_size, bs) - off;
689 
690 	if (destoff > inode->i_size) {
691 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
692 
693 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
694 		if (ret)
695 			return ret;
696 		/*
697 		 * We may have truncated the last block if the inode's size is
698 		 * not sector size aligned, so we need to wait for writeback to
699 		 * complete before proceeding further, otherwise we can race
700 		 * with cloning and attempt to increment a reference to an
701 		 * extent that no longer exists (writeback completed right after
702 		 * we found the previous extent covering eof and before we
703 		 * attempted to increment its reference count).
704 		 */
705 		ret = btrfs_wait_ordered_range(inode, wb_start,
706 					       destoff - wb_start);
707 		if (ret)
708 			return ret;
709 	}
710 
711 	/*
712 	 * Lock destination range to serialize with concurrent readpages() and
713 	 * source range to serialize with relocation.
714 	 */
715 	btrfs_double_extent_lock(src, off, inode, destoff, len);
716 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
717 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
718 
719 	/*
720 	 * We may have copied an inline extent into a page of the destination
721 	 * range, so wait for writeback to complete before truncating pages
722 	 * from the page cache. This is a rare case.
723 	 */
724 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
725 	ret = ret ? ret : wb_ret;
726 	/*
727 	 * Truncate page cache pages so that future reads will see the cloned
728 	 * data immediately and not the previous data.
729 	 */
730 	truncate_inode_pages_range(&inode->i_data,
731 				round_down(destoff, PAGE_SIZE),
732 				round_up(destoff + len, PAGE_SIZE) - 1);
733 
734 	return ret;
735 }
736 
737 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
738 				       struct file *file_out, loff_t pos_out,
739 				       loff_t *len, unsigned int remap_flags)
740 {
741 	struct inode *inode_in = file_inode(file_in);
742 	struct inode *inode_out = file_inode(file_out);
743 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
744 	bool same_inode = inode_out == inode_in;
745 	u64 wb_len;
746 	int ret;
747 
748 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
749 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
750 
751 		if (btrfs_root_readonly(root_out))
752 			return -EROFS;
753 
754 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
755 		    inode_in->i_sb != inode_out->i_sb)
756 			return -EXDEV;
757 	}
758 
759 	/* Don't make the dst file partly checksummed */
760 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
761 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
762 		return -EINVAL;
763 	}
764 
765 	/*
766 	 * Now that the inodes are locked, we need to start writeback ourselves
767 	 * and can not rely on the writeback from the VFS's generic helper
768 	 * generic_remap_file_range_prep() because:
769 	 *
770 	 * 1) For compression we must call filemap_fdatawrite_range() range
771 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
772 	 *    helper only calls it once;
773 	 *
774 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
775 	 *    waits for the writeback to complete, i.e. for IO to be done, and
776 	 *    not for the ordered extents to complete. We need to wait for them
777 	 *    to complete so that new file extent items are in the fs tree.
778 	 */
779 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
780 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
781 	else
782 		wb_len = ALIGN(*len, bs);
783 
784 	/*
785 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
786 	 * any in progress could create its ordered extents after we wait for
787 	 * existing ordered extents below).
788 	 */
789 	inode_dio_wait(inode_in);
790 	if (!same_inode)
791 		inode_dio_wait(inode_out);
792 
793 	/*
794 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
795 	 *
796 	 * Btrfs' back references do not have a block level granularity, they
797 	 * work at the whole extent level.
798 	 * NOCOW buffered write without data space reserved may not be able
799 	 * to fall back to CoW due to lack of data space, thus could cause
800 	 * data loss.
801 	 *
802 	 * Here we take a shortcut by flushing the whole inode, so that all
803 	 * nocow write should reach disk as nocow before we increase the
804 	 * reference of the extent. We could do better by only flushing NOCOW
805 	 * data, but that needs extra accounting.
806 	 *
807 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
808 	 * CoWed anyway, not affecting nocow part.
809 	 */
810 	ret = filemap_flush(inode_in->i_mapping);
811 	if (ret < 0)
812 		return ret;
813 
814 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
815 				       wb_len);
816 	if (ret < 0)
817 		return ret;
818 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
819 				       wb_len);
820 	if (ret < 0)
821 		return ret;
822 
823 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
824 					    len, remap_flags);
825 }
826 
827 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
828 		struct file *dst_file, loff_t destoff, loff_t len,
829 		unsigned int remap_flags)
830 {
831 	struct inode *src_inode = file_inode(src_file);
832 	struct inode *dst_inode = file_inode(dst_file);
833 	bool same_inode = dst_inode == src_inode;
834 	int ret;
835 
836 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
837 		return -EINVAL;
838 
839 	if (same_inode)
840 		inode_lock(src_inode);
841 	else
842 		lock_two_nondirectories(src_inode, dst_inode);
843 
844 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
845 					  &len, remap_flags);
846 	if (ret < 0 || len == 0)
847 		goto out_unlock;
848 
849 	if (remap_flags & REMAP_FILE_DEDUP)
850 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
851 	else
852 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
853 
854 out_unlock:
855 	if (same_inode)
856 		inode_unlock(src_inode);
857 	else
858 		unlock_two_nondirectories(src_inode, dst_inode);
859 
860 	return ret < 0 ? ret : len;
861 }
862