xref: /openbmc/linux/fs/btrfs/reflink.c (revision 23e3337f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 #include "subpage.h"
11 
12 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
13 
14 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
15 				     struct inode *inode,
16 				     u64 endoff,
17 				     const u64 destoff,
18 				     const u64 olen,
19 				     int no_time_update)
20 {
21 	struct btrfs_root *root = BTRFS_I(inode)->root;
22 	int ret;
23 
24 	inode_inc_iversion(inode);
25 	if (!no_time_update)
26 		inode->i_mtime = inode->i_ctime = current_time(inode);
27 	/*
28 	 * We round up to the block size at eof when determining which
29 	 * extents to clone above, but shouldn't round up the file size.
30 	 */
31 	if (endoff > destoff + olen)
32 		endoff = destoff + olen;
33 	if (endoff > inode->i_size) {
34 		i_size_write(inode, endoff);
35 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
36 	}
37 
38 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
39 	if (ret) {
40 		btrfs_abort_transaction(trans, ret);
41 		btrfs_end_transaction(trans);
42 		goto out;
43 	}
44 	ret = btrfs_end_transaction(trans);
45 out:
46 	return ret;
47 }
48 
49 static int copy_inline_to_page(struct btrfs_inode *inode,
50 			       const u64 file_offset,
51 			       char *inline_data,
52 			       const u64 size,
53 			       const u64 datal,
54 			       const u8 comp_type)
55 {
56 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
57 	const u32 block_size = fs_info->sectorsize;
58 	const u64 range_end = file_offset + block_size - 1;
59 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
60 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
61 	struct extent_changeset *data_reserved = NULL;
62 	struct page *page = NULL;
63 	struct address_space *mapping = inode->vfs_inode.i_mapping;
64 	int ret;
65 
66 	ASSERT(IS_ALIGNED(file_offset, block_size));
67 
68 	/*
69 	 * We have flushed and locked the ranges of the source and destination
70 	 * inodes, we also have locked the inodes, so we are safe to do a
71 	 * reservation here. Also we must not do the reservation while holding
72 	 * a transaction open, otherwise we would deadlock.
73 	 */
74 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
75 					   block_size);
76 	if (ret)
77 		goto out;
78 
79 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
80 				   btrfs_alloc_write_mask(mapping));
81 	if (!page) {
82 		ret = -ENOMEM;
83 		goto out_unlock;
84 	}
85 
86 	ret = set_page_extent_mapped(page);
87 	if (ret < 0)
88 		goto out_unlock;
89 
90 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
91 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
92 			 0, 0, NULL);
93 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
94 	if (ret)
95 		goto out_unlock;
96 
97 	/*
98 	 * After dirtying the page our caller will need to start a transaction,
99 	 * and if we are low on metadata free space, that can cause flushing of
100 	 * delalloc for all inodes in order to get metadata space released.
101 	 * However we are holding the range locked for the whole duration of
102 	 * the clone/dedupe operation, so we may deadlock if that happens and no
103 	 * other task releases enough space. So mark this inode as not being
104 	 * possible to flush to avoid such deadlock. We will clear that flag
105 	 * when we finish cloning all extents, since a transaction is started
106 	 * after finding each extent to clone.
107 	 */
108 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
109 
110 	if (comp_type == BTRFS_COMPRESS_NONE) {
111 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
112 			       datal);
113 		flush_dcache_page(page);
114 	} else {
115 		ret = btrfs_decompress(comp_type, data_start, page,
116 				       offset_in_page(file_offset),
117 				       inline_size, datal);
118 		if (ret)
119 			goto out_unlock;
120 		flush_dcache_page(page);
121 	}
122 
123 	/*
124 	 * If our inline data is smaller then the block/page size, then the
125 	 * remaining of the block/page is equivalent to zeroes. We had something
126 	 * like the following done:
127 	 *
128 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
129 	 * $ sync  # (or fsync)
130 	 * $ xfs_io -c "falloc 0 4K" file
131 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
132 	 *
133 	 * So what's in the range [500, 4095] corresponds to zeroes.
134 	 */
135 	if (datal < block_size) {
136 		memzero_page(page, datal, block_size - datal);
137 		flush_dcache_page(page);
138 	}
139 
140 	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
141 	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
142 	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
143 out_unlock:
144 	if (page) {
145 		unlock_page(page);
146 		put_page(page);
147 	}
148 	if (ret)
149 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
150 					     block_size, true);
151 	btrfs_delalloc_release_extents(inode, block_size);
152 out:
153 	extent_changeset_free(data_reserved);
154 
155 	return ret;
156 }
157 
158 /*
159  * Deal with cloning of inline extents. We try to copy the inline extent from
160  * the source inode to destination inode when possible. When not possible we
161  * copy the inline extent's data into the respective page of the inode.
162  */
163 static int clone_copy_inline_extent(struct inode *dst,
164 				    struct btrfs_path *path,
165 				    struct btrfs_key *new_key,
166 				    const u64 drop_start,
167 				    const u64 datal,
168 				    const u64 size,
169 				    const u8 comp_type,
170 				    char *inline_data,
171 				    struct btrfs_trans_handle **trans_out)
172 {
173 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
174 	struct btrfs_root *root = BTRFS_I(dst)->root;
175 	const u64 aligned_end = ALIGN(new_key->offset + datal,
176 				      fs_info->sectorsize);
177 	struct btrfs_trans_handle *trans = NULL;
178 	struct btrfs_drop_extents_args drop_args = { 0 };
179 	int ret;
180 	struct btrfs_key key;
181 
182 	if (new_key->offset > 0) {
183 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184 					  inline_data, size, datal, comp_type);
185 		goto out;
186 	}
187 
188 	key.objectid = btrfs_ino(BTRFS_I(dst));
189 	key.type = BTRFS_EXTENT_DATA_KEY;
190 	key.offset = 0;
191 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192 	if (ret < 0) {
193 		return ret;
194 	} else if (ret > 0) {
195 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196 			ret = btrfs_next_leaf(root, path);
197 			if (ret < 0)
198 				return ret;
199 			else if (ret > 0)
200 				goto copy_inline_extent;
201 		}
202 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204 		    key.type == BTRFS_EXTENT_DATA_KEY) {
205 			/*
206 			 * There's an implicit hole at file offset 0, copy the
207 			 * inline extent's data to the page.
208 			 */
209 			ASSERT(key.offset > 0);
210 			goto copy_to_page;
211 		}
212 	} else if (i_size_read(dst) <= datal) {
213 		struct btrfs_file_extent_item *ei;
214 
215 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
216 				    struct btrfs_file_extent_item);
217 		/*
218 		 * If it's an inline extent replace it with the source inline
219 		 * extent, otherwise copy the source inline extent data into
220 		 * the respective page at the destination inode.
221 		 */
222 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
223 		    BTRFS_FILE_EXTENT_INLINE)
224 			goto copy_inline_extent;
225 
226 		goto copy_to_page;
227 	}
228 
229 copy_inline_extent:
230 	/*
231 	 * We have no extent items, or we have an extent at offset 0 which may
232 	 * or may not be inlined. All these cases are dealt the same way.
233 	 */
234 	if (i_size_read(dst) > datal) {
235 		/*
236 		 * At the destination offset 0 we have either a hole, a regular
237 		 * extent or an inline extent larger then the one we want to
238 		 * clone. Deal with all these cases by copying the inline extent
239 		 * data into the respective page at the destination inode.
240 		 */
241 		goto copy_to_page;
242 	}
243 
244 	/*
245 	 * Release path before starting a new transaction so we don't hold locks
246 	 * that would confuse lockdep.
247 	 */
248 	btrfs_release_path(path);
249 	/*
250 	 * If we end up here it means were copy the inline extent into a leaf
251 	 * of the destination inode. We know we will drop or adjust at most one
252 	 * extent item in the destination root.
253 	 *
254 	 * 1 unit - adjusting old extent (we may have to split it)
255 	 * 1 unit - add new extent
256 	 * 1 unit - inode update
257 	 */
258 	trans = btrfs_start_transaction(root, 3);
259 	if (IS_ERR(trans)) {
260 		ret = PTR_ERR(trans);
261 		trans = NULL;
262 		goto out;
263 	}
264 	drop_args.path = path;
265 	drop_args.start = drop_start;
266 	drop_args.end = aligned_end;
267 	drop_args.drop_cache = true;
268 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
269 	if (ret)
270 		goto out;
271 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272 	if (ret)
273 		goto out;
274 
275 	write_extent_buffer(path->nodes[0], inline_data,
276 			    btrfs_item_ptr_offset(path->nodes[0],
277 						  path->slots[0]),
278 			    size);
279 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
280 	btrfs_set_inode_full_sync(BTRFS_I(dst));
281 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282 out:
283 	if (!ret && !trans) {
284 		/*
285 		 * No transaction here means we copied the inline extent into a
286 		 * page of the destination inode.
287 		 *
288 		 * 1 unit to update inode item
289 		 */
290 		trans = btrfs_start_transaction(root, 1);
291 		if (IS_ERR(trans)) {
292 			ret = PTR_ERR(trans);
293 			trans = NULL;
294 		}
295 	}
296 	if (ret && trans) {
297 		btrfs_abort_transaction(trans, ret);
298 		btrfs_end_transaction(trans);
299 	}
300 	if (!ret)
301 		*trans_out = trans;
302 
303 	return ret;
304 
305 copy_to_page:
306 	/*
307 	 * Release our path because we don't need it anymore and also because
308 	 * copy_inline_to_page() needs to reserve data and metadata, which may
309 	 * need to flush delalloc when we are low on available space and
310 	 * therefore cause a deadlock if writeback of an inline extent needs to
311 	 * write to the same leaf or an ordered extent completion needs to write
312 	 * to the same leaf.
313 	 */
314 	btrfs_release_path(path);
315 
316 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
317 				  inline_data, size, datal, comp_type);
318 	goto out;
319 }
320 
321 /**
322  * btrfs_clone() - clone a range from inode file to another
323  *
324  * @src: Inode to clone from
325  * @inode: Inode to clone to
326  * @off: Offset within source to start clone from
327  * @olen: Original length, passed by user, of range to clone
328  * @olen_aligned: Block-aligned value of olen
329  * @destoff: Offset within @inode to start clone
330  * @no_time_update: Whether to update mtime/ctime on the target inode
331  */
332 static int btrfs_clone(struct inode *src, struct inode *inode,
333 		       const u64 off, const u64 olen, const u64 olen_aligned,
334 		       const u64 destoff, int no_time_update)
335 {
336 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
337 	struct btrfs_path *path = NULL;
338 	struct extent_buffer *leaf;
339 	struct btrfs_trans_handle *trans;
340 	char *buf = NULL;
341 	struct btrfs_key key;
342 	u32 nritems;
343 	int slot;
344 	int ret;
345 	const u64 len = olen_aligned;
346 	u64 last_dest_end = destoff;
347 
348 	ret = -ENOMEM;
349 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
350 	if (!buf)
351 		return ret;
352 
353 	path = btrfs_alloc_path();
354 	if (!path) {
355 		kvfree(buf);
356 		return ret;
357 	}
358 
359 	path->reada = READA_FORWARD;
360 	/* Clone data */
361 	key.objectid = btrfs_ino(BTRFS_I(src));
362 	key.type = BTRFS_EXTENT_DATA_KEY;
363 	key.offset = off;
364 
365 	while (1) {
366 		u64 next_key_min_offset = key.offset + 1;
367 		struct btrfs_file_extent_item *extent;
368 		u64 extent_gen;
369 		int type;
370 		u32 size;
371 		struct btrfs_key new_key;
372 		u64 disko = 0, diskl = 0;
373 		u64 datao = 0, datal = 0;
374 		u8 comp;
375 		u64 drop_start;
376 
377 		/* Note the key will change type as we walk through the tree */
378 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
379 				0, 0);
380 		if (ret < 0)
381 			goto out;
382 		/*
383 		 * First search, if no extent item that starts at offset off was
384 		 * found but the previous item is an extent item, it's possible
385 		 * it might overlap our target range, therefore process it.
386 		 */
387 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
388 			btrfs_item_key_to_cpu(path->nodes[0], &key,
389 					      path->slots[0] - 1);
390 			if (key.type == BTRFS_EXTENT_DATA_KEY)
391 				path->slots[0]--;
392 		}
393 
394 		nritems = btrfs_header_nritems(path->nodes[0]);
395 process_slot:
396 		if (path->slots[0] >= nritems) {
397 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
398 			if (ret < 0)
399 				goto out;
400 			if (ret > 0)
401 				break;
402 			nritems = btrfs_header_nritems(path->nodes[0]);
403 		}
404 		leaf = path->nodes[0];
405 		slot = path->slots[0];
406 
407 		btrfs_item_key_to_cpu(leaf, &key, slot);
408 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
409 		    key.objectid != btrfs_ino(BTRFS_I(src)))
410 			break;
411 
412 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
413 
414 		extent = btrfs_item_ptr(leaf, slot,
415 					struct btrfs_file_extent_item);
416 		extent_gen = btrfs_file_extent_generation(leaf, extent);
417 		comp = btrfs_file_extent_compression(leaf, extent);
418 		type = btrfs_file_extent_type(leaf, extent);
419 		if (type == BTRFS_FILE_EXTENT_REG ||
420 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
421 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
422 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
423 			datao = btrfs_file_extent_offset(leaf, extent);
424 			datal = btrfs_file_extent_num_bytes(leaf, extent);
425 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
426 			/* Take upper bound, may be compressed */
427 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
428 		}
429 
430 		/*
431 		 * The first search might have left us at an extent item that
432 		 * ends before our target range's start, can happen if we have
433 		 * holes and NO_HOLES feature enabled.
434 		 */
435 		if (key.offset + datal <= off) {
436 			path->slots[0]++;
437 			goto process_slot;
438 		} else if (key.offset >= off + len) {
439 			break;
440 		}
441 		next_key_min_offset = key.offset + datal;
442 		size = btrfs_item_size(leaf, slot);
443 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
444 				   size);
445 
446 		btrfs_release_path(path);
447 
448 		memcpy(&new_key, &key, sizeof(new_key));
449 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
450 		if (off <= key.offset)
451 			new_key.offset = key.offset + destoff - off;
452 		else
453 			new_key.offset = destoff;
454 
455 		/*
456 		 * Deal with a hole that doesn't have an extent item that
457 		 * represents it (NO_HOLES feature enabled).
458 		 * This hole is either in the middle of the cloning range or at
459 		 * the beginning (fully overlaps it or partially overlaps it).
460 		 */
461 		if (new_key.offset != last_dest_end)
462 			drop_start = last_dest_end;
463 		else
464 			drop_start = new_key.offset;
465 
466 		if (type == BTRFS_FILE_EXTENT_REG ||
467 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
468 			struct btrfs_replace_extent_info clone_info;
469 
470 			/*
471 			 *    a  | --- range to clone ---|  b
472 			 * | ------------- extent ------------- |
473 			 */
474 
475 			/* Subtract range b */
476 			if (key.offset + datal > off + len)
477 				datal = off + len - key.offset;
478 
479 			/* Subtract range a */
480 			if (off > key.offset) {
481 				datao += off - key.offset;
482 				datal -= off - key.offset;
483 			}
484 
485 			clone_info.disk_offset = disko;
486 			clone_info.disk_len = diskl;
487 			clone_info.data_offset = datao;
488 			clone_info.data_len = datal;
489 			clone_info.file_offset = new_key.offset;
490 			clone_info.extent_buf = buf;
491 			clone_info.is_new_extent = false;
492 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
493 					drop_start, new_key.offset + datal - 1,
494 					&clone_info, &trans);
495 			if (ret)
496 				goto out;
497 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
498 			/*
499 			 * Inline extents always have to start at file offset 0
500 			 * and can never be bigger then the sector size. We can
501 			 * never clone only parts of an inline extent, since all
502 			 * reflink operations must start at a sector size aligned
503 			 * offset, and the length must be aligned too or end at
504 			 * the i_size (which implies the whole inlined data).
505 			 */
506 			ASSERT(key.offset == 0);
507 			ASSERT(datal <= fs_info->sectorsize);
508 			if (key.offset != 0 || datal > fs_info->sectorsize)
509 				return -EUCLEAN;
510 
511 			ret = clone_copy_inline_extent(inode, path, &new_key,
512 						       drop_start, datal, size,
513 						       comp, buf, &trans);
514 			if (ret)
515 				goto out;
516 		}
517 
518 		btrfs_release_path(path);
519 
520 		/*
521 		 * Whenever we share an extent we update the last_reflink_trans
522 		 * of each inode to the current transaction. This is needed to
523 		 * make sure fsync does not log multiple checksum items with
524 		 * overlapping ranges (because some extent items might refer
525 		 * only to sections of the original extent). For the destination
526 		 * inode we do this regardless of the generation of the extents
527 		 * or even if they are inline extents or explicit holes, to make
528 		 * sure a full fsync does not skip them. For the source inode,
529 		 * we only need to update last_reflink_trans in case it's a new
530 		 * extent that is not a hole or an inline extent, to deal with
531 		 * the checksums problem on fsync.
532 		 */
533 		if (extent_gen == trans->transid && disko > 0)
534 			BTRFS_I(src)->last_reflink_trans = trans->transid;
535 
536 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
537 
538 		last_dest_end = ALIGN(new_key.offset + datal,
539 				      fs_info->sectorsize);
540 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
541 						destoff, olen, no_time_update);
542 		if (ret)
543 			goto out;
544 		if (new_key.offset + datal >= destoff + len)
545 			break;
546 
547 		btrfs_release_path(path);
548 		key.offset = next_key_min_offset;
549 
550 		if (fatal_signal_pending(current)) {
551 			ret = -EINTR;
552 			goto out;
553 		}
554 
555 		cond_resched();
556 	}
557 	ret = 0;
558 
559 	if (last_dest_end < destoff + len) {
560 		/*
561 		 * We have an implicit hole that fully or partially overlaps our
562 		 * cloning range at its end. This means that we either have the
563 		 * NO_HOLES feature enabled or the implicit hole happened due to
564 		 * mixing buffered and direct IO writes against this file.
565 		 */
566 		btrfs_release_path(path);
567 
568 		/*
569 		 * When using NO_HOLES and we are cloning a range that covers
570 		 * only a hole (no extents) into a range beyond the current
571 		 * i_size, punching a hole in the target range will not create
572 		 * an extent map defining a hole, because the range starts at or
573 		 * beyond current i_size. If the file previously had an i_size
574 		 * greater than the new i_size set by this clone operation, we
575 		 * need to make sure the next fsync is a full fsync, so that it
576 		 * detects and logs a hole covering a range from the current
577 		 * i_size to the new i_size. If the clone range covers extents,
578 		 * besides a hole, then we know the full sync flag was already
579 		 * set by previous calls to btrfs_replace_file_extents() that
580 		 * replaced file extent items.
581 		 */
582 		if (last_dest_end >= i_size_read(inode))
583 			btrfs_set_inode_full_sync(BTRFS_I(inode));
584 
585 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
586 				last_dest_end, destoff + len - 1, NULL, &trans);
587 		if (ret)
588 			goto out;
589 
590 		ret = clone_finish_inode_update(trans, inode, destoff + len,
591 						destoff, olen, no_time_update);
592 	}
593 
594 out:
595 	btrfs_free_path(path);
596 	kvfree(buf);
597 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
598 
599 	return ret;
600 }
601 
602 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
603 				       struct inode *inode2, u64 loff2, u64 len)
604 {
605 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
606 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
607 }
608 
609 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
610 				     struct inode *inode2, u64 loff2, u64 len)
611 {
612 	if (inode1 < inode2) {
613 		swap(inode1, inode2);
614 		swap(loff1, loff2);
615 	} else if (inode1 == inode2 && loff2 < loff1) {
616 		swap(loff1, loff2);
617 	}
618 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
619 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
620 }
621 
622 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
623 {
624 	if (inode1 < inode2)
625 		swap(inode1, inode2);
626 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
627 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
628 }
629 
630 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
631 {
632 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
633 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
634 }
635 
636 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
637 				   struct inode *dst, u64 dst_loff)
638 {
639 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
640 	int ret;
641 
642 	/*
643 	 * Lock destination range to serialize with concurrent readpages() and
644 	 * source range to serialize with relocation.
645 	 */
646 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
647 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
648 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
649 
650 	return ret;
651 }
652 
653 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
654 			     struct inode *dst, u64 dst_loff)
655 {
656 	int ret = 0;
657 	u64 i, tail_len, chunk_count;
658 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
659 
660 	spin_lock(&root_dst->root_item_lock);
661 	if (root_dst->send_in_progress) {
662 		btrfs_warn_rl(root_dst->fs_info,
663 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
664 			      root_dst->root_key.objectid,
665 			      root_dst->send_in_progress);
666 		spin_unlock(&root_dst->root_item_lock);
667 		return -EAGAIN;
668 	}
669 	root_dst->dedupe_in_progress++;
670 	spin_unlock(&root_dst->root_item_lock);
671 
672 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
673 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
674 
675 	for (i = 0; i < chunk_count; i++) {
676 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
677 					      dst, dst_loff);
678 		if (ret)
679 			goto out;
680 
681 		loff += BTRFS_MAX_DEDUPE_LEN;
682 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
683 	}
684 
685 	if (tail_len > 0)
686 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
687 out:
688 	spin_lock(&root_dst->root_item_lock);
689 	root_dst->dedupe_in_progress--;
690 	spin_unlock(&root_dst->root_item_lock);
691 
692 	return ret;
693 }
694 
695 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
696 					u64 off, u64 olen, u64 destoff)
697 {
698 	struct inode *inode = file_inode(file);
699 	struct inode *src = file_inode(file_src);
700 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
701 	int ret;
702 	int wb_ret;
703 	u64 len = olen;
704 	u64 bs = fs_info->sb->s_blocksize;
705 
706 	/*
707 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
708 	 * eof block into the middle of a file, which would result in corruption
709 	 * if the file size is not blocksize aligned. So we don't need to check
710 	 * for that case here.
711 	 */
712 	if (off + len == src->i_size)
713 		len = ALIGN(src->i_size, bs) - off;
714 
715 	if (destoff > inode->i_size) {
716 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
717 
718 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
719 		if (ret)
720 			return ret;
721 		/*
722 		 * We may have truncated the last block if the inode's size is
723 		 * not sector size aligned, so we need to wait for writeback to
724 		 * complete before proceeding further, otherwise we can race
725 		 * with cloning and attempt to increment a reference to an
726 		 * extent that no longer exists (writeback completed right after
727 		 * we found the previous extent covering eof and before we
728 		 * attempted to increment its reference count).
729 		 */
730 		ret = btrfs_wait_ordered_range(inode, wb_start,
731 					       destoff - wb_start);
732 		if (ret)
733 			return ret;
734 	}
735 
736 	/*
737 	 * Lock destination range to serialize with concurrent readpages() and
738 	 * source range to serialize with relocation.
739 	 */
740 	btrfs_double_extent_lock(src, off, inode, destoff, len);
741 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
742 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
743 
744 	/*
745 	 * We may have copied an inline extent into a page of the destination
746 	 * range, so wait for writeback to complete before truncating pages
747 	 * from the page cache. This is a rare case.
748 	 */
749 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
750 	ret = ret ? ret : wb_ret;
751 	/*
752 	 * Truncate page cache pages so that future reads will see the cloned
753 	 * data immediately and not the previous data.
754 	 */
755 	truncate_inode_pages_range(&inode->i_data,
756 				round_down(destoff, PAGE_SIZE),
757 				round_up(destoff + len, PAGE_SIZE) - 1);
758 
759 	return ret;
760 }
761 
762 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
763 				       struct file *file_out, loff_t pos_out,
764 				       loff_t *len, unsigned int remap_flags)
765 {
766 	struct inode *inode_in = file_inode(file_in);
767 	struct inode *inode_out = file_inode(file_out);
768 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
769 	bool same_inode = inode_out == inode_in;
770 	u64 wb_len;
771 	int ret;
772 
773 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
774 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
775 
776 		if (btrfs_root_readonly(root_out))
777 			return -EROFS;
778 
779 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
780 		    inode_in->i_sb != inode_out->i_sb)
781 			return -EXDEV;
782 	}
783 
784 	/* Don't make the dst file partly checksummed */
785 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
786 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
787 		return -EINVAL;
788 	}
789 
790 	/*
791 	 * Now that the inodes are locked, we need to start writeback ourselves
792 	 * and can not rely on the writeback from the VFS's generic helper
793 	 * generic_remap_file_range_prep() because:
794 	 *
795 	 * 1) For compression we must call filemap_fdatawrite_range() range
796 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
797 	 *    helper only calls it once;
798 	 *
799 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
800 	 *    waits for the writeback to complete, i.e. for IO to be done, and
801 	 *    not for the ordered extents to complete. We need to wait for them
802 	 *    to complete so that new file extent items are in the fs tree.
803 	 */
804 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
805 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
806 	else
807 		wb_len = ALIGN(*len, bs);
808 
809 	/*
810 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
811 	 * any in progress could create its ordered extents after we wait for
812 	 * existing ordered extents below).
813 	 */
814 	inode_dio_wait(inode_in);
815 	if (!same_inode)
816 		inode_dio_wait(inode_out);
817 
818 	/*
819 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
820 	 *
821 	 * Btrfs' back references do not have a block level granularity, they
822 	 * work at the whole extent level.
823 	 * NOCOW buffered write without data space reserved may not be able
824 	 * to fall back to CoW due to lack of data space, thus could cause
825 	 * data loss.
826 	 *
827 	 * Here we take a shortcut by flushing the whole inode, so that all
828 	 * nocow write should reach disk as nocow before we increase the
829 	 * reference of the extent. We could do better by only flushing NOCOW
830 	 * data, but that needs extra accounting.
831 	 *
832 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
833 	 * CoWed anyway, not affecting nocow part.
834 	 */
835 	ret = filemap_flush(inode_in->i_mapping);
836 	if (ret < 0)
837 		return ret;
838 
839 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
840 				       wb_len);
841 	if (ret < 0)
842 		return ret;
843 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
844 				       wb_len);
845 	if (ret < 0)
846 		return ret;
847 
848 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
849 					    len, remap_flags);
850 }
851 
852 static bool file_sync_write(const struct file *file)
853 {
854 	if (file->f_flags & (__O_SYNC | O_DSYNC))
855 		return true;
856 	if (IS_SYNC(file_inode(file)))
857 		return true;
858 
859 	return false;
860 }
861 
862 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
863 		struct file *dst_file, loff_t destoff, loff_t len,
864 		unsigned int remap_flags)
865 {
866 	struct inode *src_inode = file_inode(src_file);
867 	struct inode *dst_inode = file_inode(dst_file);
868 	bool same_inode = dst_inode == src_inode;
869 	int ret;
870 
871 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
872 		return -EINVAL;
873 
874 	if (same_inode) {
875 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
876 	} else {
877 		lock_two_nondirectories(src_inode, dst_inode);
878 		btrfs_double_mmap_lock(src_inode, dst_inode);
879 	}
880 
881 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
882 					  &len, remap_flags);
883 	if (ret < 0 || len == 0)
884 		goto out_unlock;
885 
886 	if (remap_flags & REMAP_FILE_DEDUP)
887 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
888 	else
889 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
890 
891 out_unlock:
892 	if (same_inode) {
893 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
894 	} else {
895 		btrfs_double_mmap_unlock(src_inode, dst_inode);
896 		unlock_two_nondirectories(src_inode, dst_inode);
897 	}
898 
899 	/*
900 	 * If either the source or the destination file was opened with O_SYNC,
901 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
902 	 * source files/ranges, so that after a successful return (0) followed
903 	 * by a power failure results in the reflinked data to be readable from
904 	 * both files/ranges.
905 	 */
906 	if (ret == 0 && len > 0 &&
907 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
908 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
909 		if (ret == 0)
910 			ret = btrfs_sync_file(dst_file, destoff,
911 					      destoff + len - 1, 0);
912 	}
913 
914 	return ret < 0 ? ret : len;
915 }
916