xref: /openbmc/linux/fs/btrfs/reflink.c (revision 21a8935e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 #include "subpage.h"
11 
12 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
13 
14 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
15 				     struct inode *inode,
16 				     u64 endoff,
17 				     const u64 destoff,
18 				     const u64 olen,
19 				     int no_time_update)
20 {
21 	struct btrfs_root *root = BTRFS_I(inode)->root;
22 	int ret;
23 
24 	inode_inc_iversion(inode);
25 	if (!no_time_update)
26 		inode->i_mtime = inode->i_ctime = current_time(inode);
27 	/*
28 	 * We round up to the block size at eof when determining which
29 	 * extents to clone above, but shouldn't round up the file size.
30 	 */
31 	if (endoff > destoff + olen)
32 		endoff = destoff + olen;
33 	if (endoff > inode->i_size) {
34 		i_size_write(inode, endoff);
35 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
36 	}
37 
38 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
39 	if (ret) {
40 		btrfs_abort_transaction(trans, ret);
41 		btrfs_end_transaction(trans);
42 		goto out;
43 	}
44 	ret = btrfs_end_transaction(trans);
45 out:
46 	return ret;
47 }
48 
49 static int copy_inline_to_page(struct btrfs_inode *inode,
50 			       const u64 file_offset,
51 			       char *inline_data,
52 			       const u64 size,
53 			       const u64 datal,
54 			       const u8 comp_type)
55 {
56 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
57 	const u32 block_size = fs_info->sectorsize;
58 	const u64 range_end = file_offset + block_size - 1;
59 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
60 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
61 	struct extent_changeset *data_reserved = NULL;
62 	struct page *page = NULL;
63 	struct address_space *mapping = inode->vfs_inode.i_mapping;
64 	int ret;
65 
66 	ASSERT(IS_ALIGNED(file_offset, block_size));
67 
68 	/*
69 	 * We have flushed and locked the ranges of the source and destination
70 	 * inodes, we also have locked the inodes, so we are safe to do a
71 	 * reservation here. Also we must not do the reservation while holding
72 	 * a transaction open, otherwise we would deadlock.
73 	 */
74 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
75 					   block_size);
76 	if (ret)
77 		goto out;
78 
79 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
80 				   btrfs_alloc_write_mask(mapping));
81 	if (!page) {
82 		ret = -ENOMEM;
83 		goto out_unlock;
84 	}
85 
86 	ret = set_page_extent_mapped(page);
87 	if (ret < 0)
88 		goto out_unlock;
89 
90 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
91 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
92 			 0, 0, NULL);
93 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
94 	if (ret)
95 		goto out_unlock;
96 
97 	/*
98 	 * After dirtying the page our caller will need to start a transaction,
99 	 * and if we are low on metadata free space, that can cause flushing of
100 	 * delalloc for all inodes in order to get metadata space released.
101 	 * However we are holding the range locked for the whole duration of
102 	 * the clone/dedupe operation, so we may deadlock if that happens and no
103 	 * other task releases enough space. So mark this inode as not being
104 	 * possible to flush to avoid such deadlock. We will clear that flag
105 	 * when we finish cloning all extents, since a transaction is started
106 	 * after finding each extent to clone.
107 	 */
108 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
109 
110 	if (comp_type == BTRFS_COMPRESS_NONE) {
111 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
112 			       datal);
113 	} else {
114 		ret = btrfs_decompress(comp_type, data_start, page,
115 				       offset_in_page(file_offset),
116 				       inline_size, datal);
117 		if (ret)
118 			goto out_unlock;
119 		flush_dcache_page(page);
120 	}
121 
122 	/*
123 	 * If our inline data is smaller then the block/page size, then the
124 	 * remaining of the block/page is equivalent to zeroes. We had something
125 	 * like the following done:
126 	 *
127 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
128 	 * $ sync  # (or fsync)
129 	 * $ xfs_io -c "falloc 0 4K" file
130 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
131 	 *
132 	 * So what's in the range [500, 4095] corresponds to zeroes.
133 	 */
134 	if (datal < block_size)
135 		memzero_page(page, datal, block_size - datal);
136 
137 	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
138 	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
139 	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
140 out_unlock:
141 	if (page) {
142 		unlock_page(page);
143 		put_page(page);
144 	}
145 	if (ret)
146 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
147 					     block_size, true);
148 	btrfs_delalloc_release_extents(inode, block_size);
149 out:
150 	extent_changeset_free(data_reserved);
151 
152 	return ret;
153 }
154 
155 /*
156  * Deal with cloning of inline extents. We try to copy the inline extent from
157  * the source inode to destination inode when possible. When not possible we
158  * copy the inline extent's data into the respective page of the inode.
159  */
160 static int clone_copy_inline_extent(struct inode *dst,
161 				    struct btrfs_path *path,
162 				    struct btrfs_key *new_key,
163 				    const u64 drop_start,
164 				    const u64 datal,
165 				    const u64 size,
166 				    const u8 comp_type,
167 				    char *inline_data,
168 				    struct btrfs_trans_handle **trans_out)
169 {
170 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
171 	struct btrfs_root *root = BTRFS_I(dst)->root;
172 	const u64 aligned_end = ALIGN(new_key->offset + datal,
173 				      fs_info->sectorsize);
174 	struct btrfs_trans_handle *trans = NULL;
175 	struct btrfs_drop_extents_args drop_args = { 0 };
176 	int ret;
177 	struct btrfs_key key;
178 
179 	if (new_key->offset > 0) {
180 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
181 					  inline_data, size, datal, comp_type);
182 		goto out;
183 	}
184 
185 	key.objectid = btrfs_ino(BTRFS_I(dst));
186 	key.type = BTRFS_EXTENT_DATA_KEY;
187 	key.offset = 0;
188 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
189 	if (ret < 0) {
190 		return ret;
191 	} else if (ret > 0) {
192 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
193 			ret = btrfs_next_leaf(root, path);
194 			if (ret < 0)
195 				return ret;
196 			else if (ret > 0)
197 				goto copy_inline_extent;
198 		}
199 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
200 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
201 		    key.type == BTRFS_EXTENT_DATA_KEY) {
202 			/*
203 			 * There's an implicit hole at file offset 0, copy the
204 			 * inline extent's data to the page.
205 			 */
206 			ASSERT(key.offset > 0);
207 			goto copy_to_page;
208 		}
209 	} else if (i_size_read(dst) <= datal) {
210 		struct btrfs_file_extent_item *ei;
211 
212 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
213 				    struct btrfs_file_extent_item);
214 		/*
215 		 * If it's an inline extent replace it with the source inline
216 		 * extent, otherwise copy the source inline extent data into
217 		 * the respective page at the destination inode.
218 		 */
219 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
220 		    BTRFS_FILE_EXTENT_INLINE)
221 			goto copy_inline_extent;
222 
223 		goto copy_to_page;
224 	}
225 
226 copy_inline_extent:
227 	/*
228 	 * We have no extent items, or we have an extent at offset 0 which may
229 	 * or may not be inlined. All these cases are dealt the same way.
230 	 */
231 	if (i_size_read(dst) > datal) {
232 		/*
233 		 * At the destination offset 0 we have either a hole, a regular
234 		 * extent or an inline extent larger then the one we want to
235 		 * clone. Deal with all these cases by copying the inline extent
236 		 * data into the respective page at the destination inode.
237 		 */
238 		goto copy_to_page;
239 	}
240 
241 	/*
242 	 * Release path before starting a new transaction so we don't hold locks
243 	 * that would confuse lockdep.
244 	 */
245 	btrfs_release_path(path);
246 	/*
247 	 * If we end up here it means were copy the inline extent into a leaf
248 	 * of the destination inode. We know we will drop or adjust at most one
249 	 * extent item in the destination root.
250 	 *
251 	 * 1 unit - adjusting old extent (we may have to split it)
252 	 * 1 unit - add new extent
253 	 * 1 unit - inode update
254 	 */
255 	trans = btrfs_start_transaction(root, 3);
256 	if (IS_ERR(trans)) {
257 		ret = PTR_ERR(trans);
258 		trans = NULL;
259 		goto out;
260 	}
261 	drop_args.path = path;
262 	drop_args.start = drop_start;
263 	drop_args.end = aligned_end;
264 	drop_args.drop_cache = true;
265 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
266 	if (ret)
267 		goto out;
268 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
269 	if (ret)
270 		goto out;
271 
272 	write_extent_buffer(path->nodes[0], inline_data,
273 			    btrfs_item_ptr_offset(path->nodes[0],
274 						  path->slots[0]),
275 			    size);
276 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
277 	btrfs_set_inode_full_sync(BTRFS_I(dst));
278 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
279 out:
280 	if (!ret && !trans) {
281 		/*
282 		 * No transaction here means we copied the inline extent into a
283 		 * page of the destination inode.
284 		 *
285 		 * 1 unit to update inode item
286 		 */
287 		trans = btrfs_start_transaction(root, 1);
288 		if (IS_ERR(trans)) {
289 			ret = PTR_ERR(trans);
290 			trans = NULL;
291 		}
292 	}
293 	if (ret && trans) {
294 		btrfs_abort_transaction(trans, ret);
295 		btrfs_end_transaction(trans);
296 	}
297 	if (!ret)
298 		*trans_out = trans;
299 
300 	return ret;
301 
302 copy_to_page:
303 	/*
304 	 * Release our path because we don't need it anymore and also because
305 	 * copy_inline_to_page() needs to reserve data and metadata, which may
306 	 * need to flush delalloc when we are low on available space and
307 	 * therefore cause a deadlock if writeback of an inline extent needs to
308 	 * write to the same leaf or an ordered extent completion needs to write
309 	 * to the same leaf.
310 	 */
311 	btrfs_release_path(path);
312 
313 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
314 				  inline_data, size, datal, comp_type);
315 	goto out;
316 }
317 
318 /**
319  * btrfs_clone() - clone a range from inode file to another
320  *
321  * @src: Inode to clone from
322  * @inode: Inode to clone to
323  * @off: Offset within source to start clone from
324  * @olen: Original length, passed by user, of range to clone
325  * @olen_aligned: Block-aligned value of olen
326  * @destoff: Offset within @inode to start clone
327  * @no_time_update: Whether to update mtime/ctime on the target inode
328  */
329 static int btrfs_clone(struct inode *src, struct inode *inode,
330 		       const u64 off, const u64 olen, const u64 olen_aligned,
331 		       const u64 destoff, int no_time_update)
332 {
333 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
334 	struct btrfs_path *path = NULL;
335 	struct extent_buffer *leaf;
336 	struct btrfs_trans_handle *trans;
337 	char *buf = NULL;
338 	struct btrfs_key key;
339 	u32 nritems;
340 	int slot;
341 	int ret;
342 	const u64 len = olen_aligned;
343 	u64 last_dest_end = destoff;
344 	u64 prev_extent_end = off;
345 
346 	ret = -ENOMEM;
347 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
348 	if (!buf)
349 		return ret;
350 
351 	path = btrfs_alloc_path();
352 	if (!path) {
353 		kvfree(buf);
354 		return ret;
355 	}
356 
357 	path->reada = READA_FORWARD;
358 	/* Clone data */
359 	key.objectid = btrfs_ino(BTRFS_I(src));
360 	key.type = BTRFS_EXTENT_DATA_KEY;
361 	key.offset = off;
362 
363 	while (1) {
364 		struct btrfs_file_extent_item *extent;
365 		u64 extent_gen;
366 		int type;
367 		u32 size;
368 		struct btrfs_key new_key;
369 		u64 disko = 0, diskl = 0;
370 		u64 datao = 0, datal = 0;
371 		u8 comp;
372 		u64 drop_start;
373 
374 		/* Note the key will change type as we walk through the tree */
375 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
376 				0, 0);
377 		if (ret < 0)
378 			goto out;
379 		/*
380 		 * First search, if no extent item that starts at offset off was
381 		 * found but the previous item is an extent item, it's possible
382 		 * it might overlap our target range, therefore process it.
383 		 */
384 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
385 			btrfs_item_key_to_cpu(path->nodes[0], &key,
386 					      path->slots[0] - 1);
387 			if (key.type == BTRFS_EXTENT_DATA_KEY)
388 				path->slots[0]--;
389 		}
390 
391 		nritems = btrfs_header_nritems(path->nodes[0]);
392 process_slot:
393 		if (path->slots[0] >= nritems) {
394 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
395 			if (ret < 0)
396 				goto out;
397 			if (ret > 0)
398 				break;
399 			nritems = btrfs_header_nritems(path->nodes[0]);
400 		}
401 		leaf = path->nodes[0];
402 		slot = path->slots[0];
403 
404 		btrfs_item_key_to_cpu(leaf, &key, slot);
405 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
406 		    key.objectid != btrfs_ino(BTRFS_I(src)))
407 			break;
408 
409 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
410 
411 		extent = btrfs_item_ptr(leaf, slot,
412 					struct btrfs_file_extent_item);
413 		extent_gen = btrfs_file_extent_generation(leaf, extent);
414 		comp = btrfs_file_extent_compression(leaf, extent);
415 		type = btrfs_file_extent_type(leaf, extent);
416 		if (type == BTRFS_FILE_EXTENT_REG ||
417 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
418 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
419 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
420 			datao = btrfs_file_extent_offset(leaf, extent);
421 			datal = btrfs_file_extent_num_bytes(leaf, extent);
422 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
423 			/* Take upper bound, may be compressed */
424 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
425 		}
426 
427 		/*
428 		 * The first search might have left us at an extent item that
429 		 * ends before our target range's start, can happen if we have
430 		 * holes and NO_HOLES feature enabled.
431 		 *
432 		 * Subsequent searches may leave us on a file range we have
433 		 * processed before - this happens due to a race with ordered
434 		 * extent completion for a file range that is outside our source
435 		 * range, but that range was part of a file extent item that
436 		 * also covered a leading part of our source range.
437 		 */
438 		if (key.offset + datal <= prev_extent_end) {
439 			path->slots[0]++;
440 			goto process_slot;
441 		} else if (key.offset >= off + len) {
442 			break;
443 		}
444 
445 		prev_extent_end = key.offset + datal;
446 		size = btrfs_item_size(leaf, slot);
447 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
448 				   size);
449 
450 		btrfs_release_path(path);
451 
452 		memcpy(&new_key, &key, sizeof(new_key));
453 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
454 		if (off <= key.offset)
455 			new_key.offset = key.offset + destoff - off;
456 		else
457 			new_key.offset = destoff;
458 
459 		/*
460 		 * Deal with a hole that doesn't have an extent item that
461 		 * represents it (NO_HOLES feature enabled).
462 		 * This hole is either in the middle of the cloning range or at
463 		 * the beginning (fully overlaps it or partially overlaps it).
464 		 */
465 		if (new_key.offset != last_dest_end)
466 			drop_start = last_dest_end;
467 		else
468 			drop_start = new_key.offset;
469 
470 		if (type == BTRFS_FILE_EXTENT_REG ||
471 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
472 			struct btrfs_replace_extent_info clone_info;
473 
474 			/*
475 			 *    a  | --- range to clone ---|  b
476 			 * | ------------- extent ------------- |
477 			 */
478 
479 			/* Subtract range b */
480 			if (key.offset + datal > off + len)
481 				datal = off + len - key.offset;
482 
483 			/* Subtract range a */
484 			if (off > key.offset) {
485 				datao += off - key.offset;
486 				datal -= off - key.offset;
487 			}
488 
489 			clone_info.disk_offset = disko;
490 			clone_info.disk_len = diskl;
491 			clone_info.data_offset = datao;
492 			clone_info.data_len = datal;
493 			clone_info.file_offset = new_key.offset;
494 			clone_info.extent_buf = buf;
495 			clone_info.is_new_extent = false;
496 			clone_info.update_times = !no_time_update;
497 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
498 					drop_start, new_key.offset + datal - 1,
499 					&clone_info, &trans);
500 			if (ret)
501 				goto out;
502 		} else {
503 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
504 			/*
505 			 * Inline extents always have to start at file offset 0
506 			 * and can never be bigger then the sector size. We can
507 			 * never clone only parts of an inline extent, since all
508 			 * reflink operations must start at a sector size aligned
509 			 * offset, and the length must be aligned too or end at
510 			 * the i_size (which implies the whole inlined data).
511 			 */
512 			ASSERT(key.offset == 0);
513 			ASSERT(datal <= fs_info->sectorsize);
514 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
515 			    WARN_ON(key.offset != 0) ||
516 			    WARN_ON(datal > fs_info->sectorsize)) {
517 				ret = -EUCLEAN;
518 				goto out;
519 			}
520 
521 			ret = clone_copy_inline_extent(inode, path, &new_key,
522 						       drop_start, datal, size,
523 						       comp, buf, &trans);
524 			if (ret)
525 				goto out;
526 		}
527 
528 		btrfs_release_path(path);
529 
530 		/*
531 		 * Whenever we share an extent we update the last_reflink_trans
532 		 * of each inode to the current transaction. This is needed to
533 		 * make sure fsync does not log multiple checksum items with
534 		 * overlapping ranges (because some extent items might refer
535 		 * only to sections of the original extent). For the destination
536 		 * inode we do this regardless of the generation of the extents
537 		 * or even if they are inline extents or explicit holes, to make
538 		 * sure a full fsync does not skip them. For the source inode,
539 		 * we only need to update last_reflink_trans in case it's a new
540 		 * extent that is not a hole or an inline extent, to deal with
541 		 * the checksums problem on fsync.
542 		 */
543 		if (extent_gen == trans->transid && disko > 0)
544 			BTRFS_I(src)->last_reflink_trans = trans->transid;
545 
546 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
547 
548 		last_dest_end = ALIGN(new_key.offset + datal,
549 				      fs_info->sectorsize);
550 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
551 						destoff, olen, no_time_update);
552 		if (ret)
553 			goto out;
554 		if (new_key.offset + datal >= destoff + len)
555 			break;
556 
557 		btrfs_release_path(path);
558 		key.offset = prev_extent_end;
559 
560 		if (fatal_signal_pending(current)) {
561 			ret = -EINTR;
562 			goto out;
563 		}
564 
565 		cond_resched();
566 	}
567 	ret = 0;
568 
569 	if (last_dest_end < destoff + len) {
570 		/*
571 		 * We have an implicit hole that fully or partially overlaps our
572 		 * cloning range at its end. This means that we either have the
573 		 * NO_HOLES feature enabled or the implicit hole happened due to
574 		 * mixing buffered and direct IO writes against this file.
575 		 */
576 		btrfs_release_path(path);
577 
578 		/*
579 		 * When using NO_HOLES and we are cloning a range that covers
580 		 * only a hole (no extents) into a range beyond the current
581 		 * i_size, punching a hole in the target range will not create
582 		 * an extent map defining a hole, because the range starts at or
583 		 * beyond current i_size. If the file previously had an i_size
584 		 * greater than the new i_size set by this clone operation, we
585 		 * need to make sure the next fsync is a full fsync, so that it
586 		 * detects and logs a hole covering a range from the current
587 		 * i_size to the new i_size. If the clone range covers extents,
588 		 * besides a hole, then we know the full sync flag was already
589 		 * set by previous calls to btrfs_replace_file_extents() that
590 		 * replaced file extent items.
591 		 */
592 		if (last_dest_end >= i_size_read(inode))
593 			btrfs_set_inode_full_sync(BTRFS_I(inode));
594 
595 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
596 				last_dest_end, destoff + len - 1, NULL, &trans);
597 		if (ret)
598 			goto out;
599 
600 		ret = clone_finish_inode_update(trans, inode, destoff + len,
601 						destoff, olen, no_time_update);
602 	}
603 
604 out:
605 	btrfs_free_path(path);
606 	kvfree(buf);
607 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
608 
609 	return ret;
610 }
611 
612 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
613 				       struct inode *inode2, u64 loff2, u64 len)
614 {
615 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
616 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
617 }
618 
619 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
620 				     struct inode *inode2, u64 loff2, u64 len)
621 {
622 	u64 range1_end = loff1 + len - 1;
623 	u64 range2_end = loff2 + len - 1;
624 
625 	if (inode1 < inode2) {
626 		swap(inode1, inode2);
627 		swap(loff1, loff2);
628 		swap(range1_end, range2_end);
629 	} else if (inode1 == inode2 && loff2 < loff1) {
630 		swap(loff1, loff2);
631 		swap(range1_end, range2_end);
632 	}
633 
634 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end);
635 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end);
636 
637 	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
638 	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
639 }
640 
641 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
642 {
643 	if (inode1 < inode2)
644 		swap(inode1, inode2);
645 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
646 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
647 }
648 
649 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
650 {
651 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
652 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
653 }
654 
655 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
656 				   struct inode *dst, u64 dst_loff)
657 {
658 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
659 	int ret;
660 
661 	/*
662 	 * Lock destination range to serialize with concurrent readahead() and
663 	 * source range to serialize with relocation.
664 	 */
665 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
666 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
667 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
668 
669 	return ret;
670 }
671 
672 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
673 			     struct inode *dst, u64 dst_loff)
674 {
675 	int ret = 0;
676 	u64 i, tail_len, chunk_count;
677 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
678 
679 	spin_lock(&root_dst->root_item_lock);
680 	if (root_dst->send_in_progress) {
681 		btrfs_warn_rl(root_dst->fs_info,
682 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
683 			      root_dst->root_key.objectid,
684 			      root_dst->send_in_progress);
685 		spin_unlock(&root_dst->root_item_lock);
686 		return -EAGAIN;
687 	}
688 	root_dst->dedupe_in_progress++;
689 	spin_unlock(&root_dst->root_item_lock);
690 
691 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
692 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
693 
694 	for (i = 0; i < chunk_count; i++) {
695 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
696 					      dst, dst_loff);
697 		if (ret)
698 			goto out;
699 
700 		loff += BTRFS_MAX_DEDUPE_LEN;
701 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
702 	}
703 
704 	if (tail_len > 0)
705 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
706 out:
707 	spin_lock(&root_dst->root_item_lock);
708 	root_dst->dedupe_in_progress--;
709 	spin_unlock(&root_dst->root_item_lock);
710 
711 	return ret;
712 }
713 
714 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
715 					u64 off, u64 olen, u64 destoff)
716 {
717 	struct inode *inode = file_inode(file);
718 	struct inode *src = file_inode(file_src);
719 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
720 	int ret;
721 	int wb_ret;
722 	u64 len = olen;
723 	u64 bs = fs_info->sb->s_blocksize;
724 
725 	/*
726 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
727 	 * eof block into the middle of a file, which would result in corruption
728 	 * if the file size is not blocksize aligned. So we don't need to check
729 	 * for that case here.
730 	 */
731 	if (off + len == src->i_size)
732 		len = ALIGN(src->i_size, bs) - off;
733 
734 	if (destoff > inode->i_size) {
735 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
736 
737 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
738 		if (ret)
739 			return ret;
740 		/*
741 		 * We may have truncated the last block if the inode's size is
742 		 * not sector size aligned, so we need to wait for writeback to
743 		 * complete before proceeding further, otherwise we can race
744 		 * with cloning and attempt to increment a reference to an
745 		 * extent that no longer exists (writeback completed right after
746 		 * we found the previous extent covering eof and before we
747 		 * attempted to increment its reference count).
748 		 */
749 		ret = btrfs_wait_ordered_range(inode, wb_start,
750 					       destoff - wb_start);
751 		if (ret)
752 			return ret;
753 	}
754 
755 	/*
756 	 * Lock destination range to serialize with concurrent readahead() and
757 	 * source range to serialize with relocation.
758 	 */
759 	btrfs_double_extent_lock(src, off, inode, destoff, len);
760 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
761 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
762 
763 	/*
764 	 * We may have copied an inline extent into a page of the destination
765 	 * range, so wait for writeback to complete before truncating pages
766 	 * from the page cache. This is a rare case.
767 	 */
768 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
769 	ret = ret ? ret : wb_ret;
770 	/*
771 	 * Truncate page cache pages so that future reads will see the cloned
772 	 * data immediately and not the previous data.
773 	 */
774 	truncate_inode_pages_range(&inode->i_data,
775 				round_down(destoff, PAGE_SIZE),
776 				round_up(destoff + len, PAGE_SIZE) - 1);
777 
778 	return ret;
779 }
780 
781 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
782 				       struct file *file_out, loff_t pos_out,
783 				       loff_t *len, unsigned int remap_flags)
784 {
785 	struct inode *inode_in = file_inode(file_in);
786 	struct inode *inode_out = file_inode(file_out);
787 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
788 	u64 wb_len;
789 	int ret;
790 
791 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
792 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
793 
794 		if (btrfs_root_readonly(root_out))
795 			return -EROFS;
796 
797 		ASSERT(inode_in->i_sb == inode_out->i_sb);
798 	}
799 
800 	/* Don't make the dst file partly checksummed */
801 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
802 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
803 		return -EINVAL;
804 	}
805 
806 	/*
807 	 * Now that the inodes are locked, we need to start writeback ourselves
808 	 * and can not rely on the writeback from the VFS's generic helper
809 	 * generic_remap_file_range_prep() because:
810 	 *
811 	 * 1) For compression we must call filemap_fdatawrite_range() range
812 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
813 	 *    helper only calls it once;
814 	 *
815 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
816 	 *    waits for the writeback to complete, i.e. for IO to be done, and
817 	 *    not for the ordered extents to complete. We need to wait for them
818 	 *    to complete so that new file extent items are in the fs tree.
819 	 */
820 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
821 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
822 	else
823 		wb_len = ALIGN(*len, bs);
824 
825 	/*
826 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
827 	 *
828 	 * Btrfs' back references do not have a block level granularity, they
829 	 * work at the whole extent level.
830 	 * NOCOW buffered write without data space reserved may not be able
831 	 * to fall back to CoW due to lack of data space, thus could cause
832 	 * data loss.
833 	 *
834 	 * Here we take a shortcut by flushing the whole inode, so that all
835 	 * nocow write should reach disk as nocow before we increase the
836 	 * reference of the extent. We could do better by only flushing NOCOW
837 	 * data, but that needs extra accounting.
838 	 *
839 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
840 	 * CoWed anyway, not affecting nocow part.
841 	 */
842 	ret = filemap_flush(inode_in->i_mapping);
843 	if (ret < 0)
844 		return ret;
845 
846 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
847 				       wb_len);
848 	if (ret < 0)
849 		return ret;
850 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
851 				       wb_len);
852 	if (ret < 0)
853 		return ret;
854 
855 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
856 					    len, remap_flags);
857 }
858 
859 static bool file_sync_write(const struct file *file)
860 {
861 	if (file->f_flags & (__O_SYNC | O_DSYNC))
862 		return true;
863 	if (IS_SYNC(file_inode(file)))
864 		return true;
865 
866 	return false;
867 }
868 
869 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
870 		struct file *dst_file, loff_t destoff, loff_t len,
871 		unsigned int remap_flags)
872 {
873 	struct inode *src_inode = file_inode(src_file);
874 	struct inode *dst_inode = file_inode(dst_file);
875 	bool same_inode = dst_inode == src_inode;
876 	int ret;
877 
878 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
879 		return -EINVAL;
880 
881 	if (same_inode) {
882 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
883 	} else {
884 		lock_two_nondirectories(src_inode, dst_inode);
885 		btrfs_double_mmap_lock(src_inode, dst_inode);
886 	}
887 
888 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
889 					  &len, remap_flags);
890 	if (ret < 0 || len == 0)
891 		goto out_unlock;
892 
893 	if (remap_flags & REMAP_FILE_DEDUP)
894 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
895 	else
896 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
897 
898 out_unlock:
899 	if (same_inode) {
900 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
901 	} else {
902 		btrfs_double_mmap_unlock(src_inode, dst_inode);
903 		unlock_two_nondirectories(src_inode, dst_inode);
904 	}
905 
906 	/*
907 	 * If either the source or the destination file was opened with O_SYNC,
908 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
909 	 * source files/ranges, so that after a successful return (0) followed
910 	 * by a power failure results in the reflinked data to be readable from
911 	 * both files/ranges.
912 	 */
913 	if (ret == 0 && len > 0 &&
914 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
915 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
916 		if (ret == 0)
917 			ret = btrfs_sync_file(dst_file, destoff,
918 					      destoff + len - 1, 0);
919 	}
920 
921 	return ret < 0 ? ret : len;
922 }
923